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Unusually strong attraction in the presence of continuum bound state

A. Delfino ~~) Sadhan K. Adhikari ( ) Lauro Tomio (~3) and T. Frederico(4)
l iDepartment of Physics and Astronomy, University of Maryland, College Park, Maryland 807/8

and Departamento de Fisica, Universidade Federal Fluminense, 24810 Niteroi, Rio de Janeiro, Brasil
i iInstituto de Fisica Teorica, Universidade Estadual Paulista, 01/05 Sao Paulo, SP, Brasil

~ i School of Physical Sciences, The Flinders University of South Australia, Bedford Park, SA 50$P., Australia
Instituto de Estudos Avangados, Centro Tecnico Aeroespacial„ 1M81 Sao Jose dos Cameos, SP, Brasil

(Received 3 June 1992)

The result of few-particle ground-state calculation employing a two-particle nonlocal potential
supporting a continuum bound state in addition to a negative-energy bound state has occasionally
revealed unusually strong attraction in producing a very strongly bound ground state. In the presence
of the continuum bound state the difference of phase shift between zero and infinite energies has
an extra jump of ~ as in the presence of an additional bound state. The wave function of the
continuum bound state is identical with that of a strongly bound negative-energy state, which leads
us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected
attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states.
PACS number(s): 21.45.+v, 03.65.Nk

I. INTRODUCTION

Usually, in quantum mechanical problems with short-
range local potentials the binding energy of the two-
particle system reflects the strength of the underlying
potential. Also Levinson has shown that for a short-
range local potential the phase-shift at zero energy b(0)
and the phase-shift at infinite energy b(oo) are related by
the condition [1]

b(0) —b(oo) = N7r,

where the quantity N = [b(0) —6(oo)]/vr is the number
of bound states and should be directly related to the
strength of the potential.

The above simple argumentation does not necessarily
work in the case of a general nonlocal potential. Such
nonlocal potentials appear in various areas of physics,
for example, in the resonating group method [2], or in
the Feshbach unified theory of nuclear reactions [3]. The
nonlocal intercluster interaction in the resonating group
method seems to be, in general, stronger than an equiv-
alent local counterpart. Also, the expression b(0) —b(oo)
may have an extra jump of vr {or several 7r's) not dictated
by Levinson's theorem (1). This is true for the 8-wave
n +scattering i-n the resonating group method [2] and for
the S-wave spin quartet neutron-deuteron scattering [4]
using the Faddeev equations [5]. These facts suggest the
existence of excited state(s) not present in the system.
They are the so-called Pauli forbidden states [1,4] which
should contribute to N on the right-hand side of Eq. (1).

All the above-mentioned features of a forbidden state
can be simulated in a simple nonlocal rank-one potential
possessing a continuum bound state (CBS) [1, 6] in ad-
dition to the usual negative-energy bound state(s). The
difference b(0) —b(oo) for such a potential has the re-
quired extra jump of vr [1, 4]. Somehow, the behavior
of the phase shift or the wave function suggest the pres-

ence of an excited state of the system. In the presence
of a CBS the binding energy of the usual bound state
does not necessarily reflect the strength of the potential.
Whenever this potential is used in a multiparticle system
it produces stronger binding compared to that produced
by an "equivalent" local potential which produces the
same negative-energy bound state [7].

A CBS is an S-matrix pole on the real positive-energy
axis [1]. The association with the bound state lies in
the fact that the corresponding wave function, P, has no
outgoing propagation. It is in fact a localized function
of momentum P(p) and its Fourier transform P(r) de-
creases exponentially like a bound-state wave function.
The number N in the Levinson's theorem (1) should in-
clude all exponentially decaying states —bound state(s)
and CBS. A virtual state is exponentially growing and
does not contribute to the Levinson's theorem, although
it implies attraction.

Tabakin [8] constructed a rank-one separable NN po-
tential with a two-term form factor, capable of reproduc-
ing S-wave NN phase shifts reaching moderately high en-
ergies where these phase shifts become negative in agree-
ment with experiment. This potential supports a CBS in
addition to a bound deuteron. A class of similar poten-
tials has been identified later. The use of these poten-
tials in (three-nucleon) 3N and four-nucleon bound-state
calculations [7] leads to ground states of unusually large
binding of several hundred MeV's in addition to a weakly
bound excited state. [7, 9, 10]

One may ask if the Tabakin potential reproduces the
experimental NN phase shifts reasonably well then why
does it fail drastically in the 3N bound-state problem?
Strictly speaking, the experimental NN phase shifts be-
come negative at higher energies and eventually goes to
zero at infinite energy in accordance with the Levin-
son's theorem reHecting the presence of a single bound
deuteron. On the other hand, the Tabakin phase shift
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II. THE MODEL

We consider the following Tabakin-type 8-wave two-
particle potential in the momentum space [6]

&{p,g) = &g(p)g(g),

with

(2)

( '+~,')
v(p —p, )

(p' + P&){p' + Pz)' (4)

where ~—:aq —az and p, :—(a2P~ —aqP&)/z is the
position of the CBS. All the equations of this study are
written in units 5 = 2p = 1, where p, is the reduced mass.
For the NN system the calculation was performed with
h /2p = 41.47 MeVfm .

becomes negative and goes to -m at infinite energy re-
flecting the presence of a CBS in addition to the bound
deuteron in violation of the usual Levinson's theorem (1);
for a Tabakin-type potential b(0) —6'(oo) = 2n.

We shall see that because of an unexpected pole cancel-
lation the momentum-space CBS wave function is found
to be independent of the energy of the CBS and be iden-
tical with that of a negative-energy bound state of a one-
term separable potential. Both the binding-energy and
the potential parameters of this negative-energy bound
state, which we shall call a pseudo bound state, are deter-
mined by the parameters of the original potential. There
are no free parameters in defining the pseudo bound
state. We shall see that whenever the energy of this
pseudo bound state is large the three- and four-particle
systems experience bound state collapse (BSC). If we
would like to use a single energy to reflect upon the
strength of these nonlocal potentials in situations of col-
lapse, it is not the binding energy of the bound state
but the binding energy of the pseudo state which should
reflect the real strength of the potential.

First, we illustrate the idea of the pseudo state in the
case of the 8 wave spin triplet NN channel. We use a
nonlocal separable potential, possessing a CBS but no
real bound state, to simulate the bound state and scat-
tering properties in this channel. This nonlocal potential
simulates a pseudodeuteron at the correct energy. Con-
sequently, the t matrix for the model containing the CBS
simulates the actual state of afFairs reasonably well ex-
cept near the deuteron pole.

In Sec. II we present the separable potential model that
we employ. We also provide arguments for replacing the
CBS by the pseudo bound state. In Sec. III we illustrate
our idea in the case of the NN problem in the 8-wave
spin-triplet channel. In Sec. IV we present the alterna-
tive model incorporating the pseudo bound state. We
also compare the results for the original nonlocal sepa-
rable potential model and the alternative model for the
three-particle system and find that the alternative model
provides a realistic description of the actual state of af-

fairs in situations of collapse. Finally, in Sec. V we

present some concluding remarks.

The two-particle t matrix for this potential, at energy
E = k2, is given by

t(p, g &') =g(p), (k,)g(Q),

where

2A gz (p)p2dp
(6)

For potential (2) the momentum space Schrodinger equa
tion for a bound state or CBS at energy Eb, described by
the wave function P, is given by

0(p) = —&,g(p) (10)

In the present study the binding energy pz of the NN
system is always fixed at the value (2.225/41. 47) fm z,

when we vary the parameters of potential (2). This cor-
responds to a deuteron binding of 2.225 MeV.

If the potential (2) possesses a CBS at energy pz, in
addition to g(p, ) = 0 we also have r(p2) = 0, and its
wave function P, (p) is given by

4"(p) = —t-"„, (11)
C

(p'+ P')(p'+ P.') ' (12)

where we have substituted for g(p) from Eq. (4). Un-
like the bound-state wave function (10) which depends
on binding energy p2, the CBS wave function (12) is
independent of energy pz. We note that at large dis-
tances the CBS wave function decays exponentially as
exp( —P;r) and not as exp( —p,r). A comparison between
Eqs. (10) and (12) reveals that the CBS wave function
(12) is identical with the bound-state wave function (10)
provided that we identify the binding energy p2 with Pz
and the form factor g(p) with (p + P~ ) ~, where P, (P~.)
is the smaller (greater) of Pq and P2. This association is
made because in the configuration space the bound-state
wave function of binding p should behave as exp( —pr)
asymptotically.

The CBS wave function {12)has the behavior of a nor-
mal negative-energy bound-state wave function with a
purely attractive separable potential. It is this negative-
energy bound state which we call a pseudo bound state
which will be seen to play a crucial role in predicting the
collapse.

4(P) = —Z, ,0 q'~g g(g) 4(g)

g(p)
Eb —P~ + io

The normalization constant C is determined by the con-
dition

OO

0'(p)p'dp = 1
7l Q

If the system has a bound state at Eb = —p2, its wave
function is given by
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The phase-shift difference b(0) —6(oo) of potential (2-
4) has an additional jump of vr not accounted for by the
normal bound state, or its wave function has a node [1j at
short distances reflecting the presence of a second bound
state. This is the pseudo bound state predicted by the
CBS.

III. ILLUSTRATION IN A SIMPLE MODEL

We consider the NN problem in the 8-wave spin-
triplet channel employing a purely attractive Yamaguchi
potential. This is the special case of potential (2) with
o,2 = 0. The parameters of this potential are determined
by fitting to a deuteron binding of 2.225 MeV and a NN
spin triplet scattering length of 5.4 fm. This results in

An] = —7.45 fm and P1 = 1.4 fm
We would like the full nonlocal potential (2-4), possess-

ing only a CBS and no true bound state, to simulate the
results of the above Yamaguchi potential via a pseudo
deuteron of 2.225 MeV binding. The discussion related
to Eq. (12) suggests that we choose Pt = 0.23 fm 1, and
P2 = 1.4 fm 1; P~ is the deuteron binding. The param-
eter n2 is taken to be 1. We would like this potential to
have a CBS. The position of this CBS, p„ is still arbi-
trary. Once this position is given the other parameters
of the potential, A and cr1, are determined using the con-
ditions g(p, ) = 0 and v(p, ) = 0. We varied the position
of the CBS a little in order to have a good agreement
between the calculations of the two potentials. Finally,

x(E)

0
0

FIG. 2. The Fredholm determinant r(k ) for the above
Yamaguchi (dashed line) and Tabakin-type (full line) poten-
tial at negative energies.
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200
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we used p, = 0.1 fm, a~ ——0.032, and A = —9.57
fm s. The result is very weakly sensitive to the value of
p, provided that for p, we choose an energy smaller than
deuteron binding.

In Fig. 1 we plot the phase shifts of the original Ya-
maguchi potential possessing a deuteron and those sim-
ulated via the Tabakin-type potential possessing a CBS.
In Fig. 2 we plot the function 7(k~) of Eq. (6) for the two
potentials. The agreement between the two calculations
is good except near zero energy. In both cases b(0) —6(oo)
= vr. For the Yamaguchi potential, the bound state con-
tributes to N and for the Tabakin-type potential the CBS
contributes to N in the Levinson's theorem (1). For the
Yamaguchi potential, r(k2) has a zero at the deuteron
energy; for the Tabakin-type potential, r(k2) does not
have a zero at negative energies. If we exclude a small do-
main, —10 to 10 MeV, the results for the two calculations
are surprisingly similar. For a multiparticle ground-state
calculation the two potentials should produce similar re-
sults. We performed a three-boson calculation with this
Tabakin potential and find a three-boson binding of 38.8
MeV to be compared with 24.7 MeV for the Yamaguchi
potential. These two numbers are in qualitative agree-
ment with each other.

IV. RESULTS AND DISCUSSIONS
FIG. 1. Phase shifts of the Yamaguchi potential (dashed

line) possessing a deuteron of 2.225 MeV binding, and the
Tabakin-type potential (full line) possessing a CBS, which
simu1ates this deuteron via a CBS.

Next, we performed numerical calculations in a sim-
ple separable potential model including this pseudo state
both for the two- and three-particle systems and com-
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pared them with the original potential model supporting
the CBS. On the one hand, we have potential (2)—(4) sup-
porting a regular bound state and a CBS, on the other
hand, we consider the following form factor to be used in
potential (2):

(Bs)l,g = 2B2(2A) (14)

for the two potentials. Here Bq stands for the two-
particle binding energy, calculated when the potential
strength is 3A/2. The LB calculations are shown in the

where P~ is the greater of P1 and P2. By adjusting the
strength parameter A in Eq. (2) the alternative poten-
tial given by Eqs. (2) and (13) is made to reproduce
a (pseudo) bound state at energy P, , where P; is the
smaller of Pi and Pq. The pseudostate and the potential
(13) follow uniquely from the original nonlocal potential;
there are no free parameters.

As the energy of the pseudo state is much larger than
the energy of the normal state in situations of collapse,
in order to illustrate our idea of the dominance of the
pseudostate we have neglected the normal state and con-
sidered only the pseudostate in the alternate potential
model.

We consider the full potential (4) with nq = 1 and

Pi = 1.4 fm, which allows for the possibility of a CBS
to appear. The constants ni and P2 were varied arbitrar-
ily, and then A is adjusted to yield a fixed two-particle
binding of 2.225 MeV and a CBS. In the calculation we

have maintained the parameter Pi constant (=1.4 fm i)
and the parameter Pq is always larger than Pi. The pseu-
dostate always has a binding of P&, or 81.28 MeV pro-
duced by the alternative potential (13). The three-boson
binding in this model should be typically about several
times the two-particle binding. This puts a threshold for
the three-boson ground state binding of about couple of
hundred MeV's. Qualitatively, this explains a large bind-

ing for the three-particle ground state via a pseudostate.
In Table I we exhibit the potential parameters cri, P2,

the position of the CBS, p„and the corresponding three-
particle binding Bs for the potential (2)—(4) and the al-

ternative potential (13). We also exhibit in this table
the lower bound (LB) calculation on Bs, from Ref. [11],
given by

parenthesis in the last two columns. The exact results
for the three-particle ground state for both these poten-
tials are qualitatively similar; the LB calculations provide
good approximations to the exact calculations.

In Table I, as pointed out in a previous study [10],
the increase in the three-particle binding in the case of
the original nonlocal potential is due to the Thomas ef-
fect [12). The Thomas effect also manifests in the case
of the alternative potential (13), where there is only one
range parameter Pq and this parameter should refiect the
range of the potential. An increase of Pq denotes a pas-
sage to a smaller range while maintaining the two-particle
(pseudo) bound-state energy fixed at 81.28 MeV.

V. SUMMARY

Here we have investigated the origin of the unusual
strong attraction, known as BSC, in the problem of multi-
particle ground state while using two-particle nonlocal
potential that supports a CBS.We analyze the wave func-
tion of the CBS in a simple separable nonlocal potential
model (2)—(4) and find that it is identical to the wave
function of a negative-energy bound state which is called
a pseudo bound state. The inclusion of this pseudo bound
state in a simple potential model explains the unusual at-
traction in the presence of the CBS.

The pseudo bound state provides excess binding for the
multiparticle bound state but it cannot really explain the
whole multiparticle spectrum. For example, the presence
of the strongly bound pseudo state eliminates in the sim-

ple model the appearance of the weakly bound excited
states of the multiparticle system present in the original
potential. The purpose of the present study is not to
simulate all the subtle intricacies of a nonlocal potential
with attractive and repulsive parts via a simple potential
model but just to understand how to visualize some of
the consequences of a CBS.

We studied the simple separable potential model con-
taining a CBS because such a potential model simulates
the essential features of a nonlocal intercluster potential
which excludes the Pauli forbidden states. Though we
cannot provide a general proof, it seems quite plausible
that many of our conclusions should carry over to the
case of Pauli forbidden states. Such a proof, or even a
rigorous demonstration, will be a welcome addition to
the literature.

TABLE I. The three-boson bindir. g B of the original Tabakin-type potential (2)—(4) and that
calculated in a simple Yamaguchi model (13) incorporating the pseudo state for nq = 1 and Pi = 1.4
fm . The simple Yamaguchi model hss the range parameter given by P2 and is fitted to a bound
state at energy 1.4 fm . The numbers in parenthesis in the last two columns refer to the LB
calculation employing Eq. (14).

0.05
0.1
0.13
0.15
0.2

P (fm ')
8.47
5.73
4.92
4.53
3.82

p. (fm ')
1.307
1.213
1.167
1.149
1.097

B (MeV) (Tabakin)
930.5 (1173)
545.3 (698)
446. 1 (576)
396.3 (518)
317.3 (420)

B (MeV) (Yamaguchi)
902.3 (1086)
644.8 (748)
578.5 (660)
539.4 (619)
486.5 (549)
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