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3Instituto de Fı́sica Teórica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, São Paulo, Brazil
(Received 27 April 2007; revised manuscript received 18 January 2008; published 27 March 2008)

A novel strategy to handle divergences typical of perturbative calculations is implemented for the
Nambu–Jona-Lasinio model and its phenomenological consequences investigated. The central idea of the
method is to avoid the critical step involved in the regularization process, namely, the explicit evaluation
of divergent integrals. This goal is achieved by assuming a regularization distribution in an implicit way
and making use, in intermediary steps, only of very general properties of such regularization. The finite
parts are separated from the divergent ones and integrated free from effects of the regularization. The
divergent parts are organized in terms of standard objects, which are independent of the (arbitrary)
momenta running in internal lines of loop graphs. Through the analysis of symmetry relations, a set of
properties for the divergent objects are identified, which we denominate consistency relations, reducing
the number of divergent objects to only a few. The calculational strategy eliminates unphysical
dependencies of the arbitrary choices for the routing of internal momenta, leading to ambiguity-free,
and symmetry-preserving physical amplitudes. We show that the imposition of scale properties for the
basic divergent objects leads to a critical condition for the constituent quark mass such that the remaining
arbitrariness is removed. The model becomes predictive in the sense that its phenomenological con-
sequences do not depend on possible choices made in intermediary steps. Numerical results are obtained
for physical quantities at the one-loop level for the pion and sigma masses and pion-quark and sigma-
quark coupling constants.
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I. INTRODUCTION

It is largely accepted that many of the essential features
of chiral symmetry in quantum chromodynamics (QCD)
are captured by the Nambu–Jona-Lasinio (NJL) model [1],
a simple relativistic quantum field theory with (nonrenor-
malizable) four-fermion interactions. In the limit of exact
chiral symmetry the fermions are massless and the inter-
action Lagrangian density of the model, in its simplest
version, contains the chirally symmetric sum of scalar
and pseudoscalar four-fermion interactions. Since the first
works, using the model with quark degrees of freedom, in
the earlier days of QCD [2,3], the model has been exten-
sively used to describe low energy hadronic observables,
like hadronic masses, correlation and structure functions in
vacuum and at finite densities and temperatures—for a
complete list of references see the reviews in Refs. [4–11].

One of the reasons for the widespread use of the model is
that it realizes the dynamical breaking of chiral symmetry
already at the one-loop (mean field) approximation. The
predictions of the model, however, are intimately compro-
mising with the specific strategy adopted to handle the
ultraviolet divergences given the nonrenormalizable nature
of the model. As a consequence, the specification of a
procedure for handling divergent amplitudes is a necessary
and essential first step to be performed before extracting
physical predictions as must be made in any relativistic
quantum field theory. In a renormalizable theory, this is
done by specifying a regularization procedure by which the
divergences are isolated and eliminated through a conve-

nient reparametrization of the theory, removing, in this
way, any parameters introduced in the regularization pro-
cess. Therefore, although essential and necessary, the regu-
larization process plays a secondary role and seems to be a
disposable intermediate step in the sense that it is not
meant to modify the physical content of the theory.
However, there is a distinctive and nontrivial aspect with
the regularization of the ultraviolet divergences in the NJL
model in view of its nonrenormalizability. Unlike with
renormalizable models, as an increasing number of loops
is considered, the reparametrization of the model can be
made only at the cost of adding an increasing number of
terms with extra coupling constants to the original
Lagrangian in order to render physical amplitudes inde-
pendent of the regularization procedure. In principle, there
is no problem with a theory having an infinite number of
coupling constants when using it as an effective field
theory, as explained by Weinberg [12]. However, practi-
tioners of the NJL model have followed the attitude of
using it as a regularization-dependent model, considering
the regularization procedure part of the definition of the
model. Within such an attitude, a large body of interesting
and valuable work has been and continues to be done using
the model.

The regularization of divergent amplitudes is a delicate
process due to the arbitrariness in the manipulation of
improper integrals which can be converted into ambiguities
when results become dependent on the choices involved.
There are ambiguities associated with the arbitrary routing
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of the momenta in internal lines of divergent loop ampli-
tudes, which invariably lead to the violation of space-time
homogeneity. There are also ambiguities associated with
the choice of the common scale for the divergent and finite
parts of amplitudes that may lead to the breaking of scale
invariance. In general, different sorts of ambiguities have
the potential of leading to violations of symmetry relations
of global and local gauge symmetries. The most commonly
used regularization procedures for the NJL model such as
the three- and four-momentum cutoff, Pauli-Villars, and
proper-time lead to one or more of such symmetry viola-
tions. Dimensional regularization, although not much used
within the NJL model, in general, leads to amplitudes free
from ambiguities and symmetry preserving. However, it
has problems at high densities and temperatures, when
chiral symmetry is restored. This is due to the fact that
the quadratic divergence which appears in almost all one-
loop amplitudes must be assumed as zero in the zero-mass
limit. Practice with the NJL model has shown that depend-
ing on the problem studied, one regularization scheme
seems to be more appropriate than another because of the
problems just mentioned. For example, when working with
correlation functions, in general, dispersion relations are
not automatically fulfilled in cutoff and proper-time regu-
larizations, in contrast to Pauli-Villars regularization. On
the other hand, while causality is preserved with Pauli-
Villars regularization, unitarity is violated at high enough
energies, although it is preserved with proper-time regu-
larization. These sorts of problems are well known and
arguments have been put forward and tricks invented to
deal with such problems—for a discussion on these issues,
see, for example, Refs. [13–15]. Obviously, this situation is
unsatisfactory since one would like that the regularization
scheme play a secondary role in the process of making
predictions with the model.

The difficulties pointed out above lead Willey [16] and
Gherghetta [17] to conclude that there is no way to make
consistent physical predictions with the NJL model using
traditional regularization techniques. However, this ques-
tion in the context of the gauged NJL model was consid-
ered in a later work by Battistel and Nemes [18] using a
novel strategy to handle divergent amplitudes [19]. The
referred investigation revealed that NJL amplitudes,
ambiguity-free and symmetry-preserving, can be obtained,
and as such making the NJL model predictive. The central
idea of the method is to avoid the critical step involved in
the regularization process, namely, the explicit evaluation
of divergent integrals. This goal is achieved by assuming a
regularization distribution in an implicit way and making
use, in intermediary steps, only of very general properties
of such regularization. The finite parts are separated from
the divergent ones and integrated free from effects of the
regularization in a completely similar way as made in the
treatment of renormalizable theories. The divergent parts
are organized in terms of standard objects which are inde-

pendent of the (arbitrary) momenta running in internal
lines of loop graphs. Through the analysis of symmetry
relations, a set of properties for the divergent objects is
identified, which we denominate consistency relations
(CR’s), reducing the number of divergent objects to only
a few ones. The remaining objects never really need to be
evaluated. In renormalizable theories, they are eliminated
by the counterterms. In a nonrenormalizable model, such
as in the NJL, the basic divergences are fixed by fitting
observables, as we will see along this contribution.

Having in mind this perspective, in the present work we
extend the original discussion of Ref. [18] by presenting a
complete and unified discussion on the symmetry relations
involving Green’s functions, including tensor operators.
Some of the relations can be derived using the methods
of current algebra, in particular, when using the conserva-
tion of the fermionic vector current and the proportionality
of the divergence of the axial-vector current to the pseu-
doscalar current. Here we also discuss relations of Green’s
functions of tensor operators. Such relations cannot be
obtained through current algebra methods, because the
divergence of the fermionic tensor current cannot be writ-
ten in terms of other fermionic currents. This is the case,
for example, of the relations involving tensor-tensor two-
point amplitudes. In a first step of our investigation, we will
show that it is possible to obtain physical amplitudes
preserving the symmetries and automatically free from
ambiguities associated with the arbitrariness in the routing
of momenta in the internal lines of loops. In a second step,
we will show that the undefined quantities associated with
the divergent objects can be fixed phenomenologically,
without the recourse of calculating any divergent integral,
leading in this way to a regularization independent parame-
trization of the model. The model, within this formulation,
becomes predictive in the sense that all arbitrariness is
removed from the physical amplitudes. The model works
like a ‘‘renormalizable’’ theory at the one-loop level.

The results obtained in the present paper are new and
extend the applicability of the NJL model in a way that it
becomes independent of a particular regularization
scheme, since no explicit regularization is actually used.
It is new because all symmetry constraints on general
Green’s functions, including tensor ones, are preserved
and as such no problems with causality and unitarity can
arise. The present method has also been applied in the
context of CPT breaking in models with Chern-Simons
interactions [20], to the neutral electromagnetic pion decay
where the AVV triangle anomaly phenomenon is dis-
cussed, triangle anomalies [21] and tensor densities [22].
In particular, it was shown that the adopted strategy fur-
nishes the expected anomalous term and the ambiguities
again play no relevant role [23]. One important aspect of
the method presented here is that, since no explicit regu-
lator is used, a result obtained within a given traditional
regularization method can be immediately reobtained by
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explicit evaluation of the implicitly regulated expressions.
With this, the use of the consistency relations allow one to
identify the reasons why commonly used regularization
schemes lead to symmetry violations. Invariably, the rea-
sons are that not all the consistency relations are satisfied
simultaneously within the traditional regularization
methods.

The plan of this paper is the following. In Sec. II, we
present the Lagrangian density of the NJL model used in
this paper and discuss general ‘‘consistency constraints’’
that the one-loop Green’s functions must satisfy in order
not to violate symmetry relations. Next, in Sec. III we
discuss a calculational scheme that preserves the general
relationships among the Green’s functions obtained in
Sec. II. The calculational scheme isolates the purely diver-
gent terms, which will disappear because of symmetry
consideration or will be fitted to observables, while the
finite parts are integrated without any regularization. In
Sec. IV, we discuss the ambiguities associated with the
choices for the momentum routing in the internal lines of
loops and show that the methods used to isolate the diver-
gent parts respect all the general relations among Green’s
functions. This aspect of the regularization is central to the
paper and is highly nontrivial since, because of the ultra-
violet divergences, these relations can very easily be vio-
lated when not being careful with the explicit evaluation of
the integrals within a particular regularization scheme. In
Sec. V, we identify the general properties that the divergent
ambiguous quantities must satisfy in order to guarantee the
preservation of fundamental symmetries. For that, Ward
identities and other general constraints imposed by Furry’s
theorem will be invoked. The phenomenology and numeri-
cal results are presented in Sec. VI. Here, only the tradi-
tional observables, like pion and sigma masses and
coupling constants are calculated to show that the tradi-
tional phenomenology is obtained in a straightforward
way. Our conclusions and perspectives for future work
are presented in Sec. VII.

II. MODEL LAGRANGIAN AND CONSISTENCY
CONSTRAINTS

In this paper, we restrict the discussion to the simplest
SU(2) version of the NJL model that incorporates the light-
quark u and d flavors only. The SU(3) case will be consid-
ered elsewhere [24]. The Lagrangian density is given by

 L � � �i@6 �m0� �GS�� �  �2 � � � ~� i�5 �2�; (1)

where  is the two-flavor, three-color quark field operator
and m0 is the diagonal current quark mass matrix. To
simplify the discussion, we take equal u and d quark
masses. The nonperturbative quark propagator S�p� is
given in terms of the self-energy ��p� as

 S�1�p� � p6 � ��p�: (2)

In the mean field approximation, the self-energy is mo-

mentum independent ��p� � M, with M satisfying a gap
equation [1]

 M � m0 � 2GSNfh �  i; (3)

where Nf � 2 is the number of flavors, and h �  i is the
one-flavor, Lorentz scalar one-point function (the quark
condensate) given by

 h �  i � �i
Z d4k

�2��4
Tr�S�k��

� �4Nci
Z d4k

�2��4
M

k2 �M2 ; (4)

where Nc � 3 is the number of colors.
In general, phenomenological predictions for meson

masses and correlation functions require the evaluation of
purely fermionic n-point Green’s functions. In spite of the
fact that the model is nonrenormalizable, the Green’s
functions obey well-defined relations among them. Such
relations are the manifestation of the symmetries of the
underlying Lagrangian defining the model. Therefore, in
any attempt of describing a specific phenomenology it is
crucial that the evaluation of physical amplitudes preserve
such symmetry relations. If it turns out that such symmetry
relations are not preserved by the calculation, the predic-
tions cannot be characterized as consequences of the
underlying symmetries supposed relevant for the specific
phenomenology and which were the main motivation for
using a schematic model like the NJL model.

A generic one-loop n-point Green’s function can be
defined as
 

T�1�2			�n�k1; k2; 	 	 	 ; kn� �
Z d4k

�2��4
Tr��1S�k� k1�


�2S�k� k2� 	 	 	�nS�k� kn��;

(5)

where the trace is over Dirac indices only, and the �i
represent one or more of the matrices �1; ��; �5;
���5; ���� to which we attribute the labels
�S; V; P; A; T�, respectively. The fermion propagators are
given by Eq. (2) and the kn are arbitrary routing momenta
in the internal lines, and are related to the external mo-
menta. A physical amplitude can depend only on differ-
ences of kn, any dependence on sums of kn is unphysical.
We note that the highest superficial degree of divergence is
cubic, and occurs for the amplitude with n � 1. For n > 4,
the amplitudes are finite. In particular, in the NJL model
the scalar one-point function is relevant for the gap equa-
tion, the two-point functions appear in the bound-state
equations for mesons, the amplitudes with n � 3 describe
meson decays and the four-point functions are relevant for
meson-meson scattering.

At the one-loop level, there appear only two divergen-
ces, a quadratic and the logarithmic. The cubic divergence
is absent in the one-point functions either because of the
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trace or because the integral is identically zero—for the
same reason there is no linear divergence in two- and three-
point functions. The standard procedure to deal with the
divergences is to cut off the momentum integrals at some
momentum �. With this, the model has two unknowns, the
coupling GS and �. These can be fitted by using the values
of the quark condensate h �  i, related to the quadratically
divergent scalar one-point function TS, and the pion-decay
constant f�, related to the logarithmically divergent axial-
vector pseudoscalar two-point function TAP. Since these
two types of divergences are the only ones that appear in all
other Green’s functions of the model, all divergences can
be absorbed by the physical quantities h �  i and f�. In a
certain sense, this is a type of renormalization.

There are two aspects we would like to note with respect
to this ‘‘renormalization.’’ First, one is explicitly using
relations among divergent Green’s functions having differ-
ent numbers of points. Second, given the strict nonrenor-
malizability of the model, divergent amplitudes are related
to physical quantities through a regularization function or,
in the last instance, through the adjustment of regulariza-
tion parameters which are interpreted as cutoffs in the
momentum integration. It is well known that these two
facts lead in general to symmetry violations. Moreover, the
effects of the modification introduced in the regularization
process remain present even in the finite parts of the
amplitudes. In this respect, the regularization and renor-
malization procedure for nonrenormalizable and renorma-
lizable models are treated in completely different manners.
This discussion emphasizes the difficulties in satisfying
kinematical constraints and symmetry relations involving
one or more divergent amplitudes. The method we present
here is based on the following strategy: (1) all constraints
and symmetry relations are imposed without evaluating
any divergent integral, (2) divergences are isolated into
quantities that are independent of arbitrary routing mo-
menta, and (3) amplitudes respecting all symmetry rela-
tions and free from ambiguities are obtained. All this is
achieved without compromising with a particular regulari-
zation scheme.

Let us start considering the general ‘‘consistency con-
straints’’ that Green’s functions must satisfy in order not to
violate symmetry relations. One very general and powerful
way to generate relations among Green’s functions is to
identify identities, at the integrand level, resulting from the
contraction of the Lorentz vector indices of a vertex op-
erator with an external momentum. Although this method
is entirely equivalent to the current algebra technique for
some types of amplitudes, it can be applied also to tensor
currents—for which the methods of current algebra are not
applicable. As an example, consider the identity

 �k1 � k2�
����S�k� k1���S�k� k2��

� ��S�k� k2� � ��S�k� k1�; (6)

where S�k� is the mean field quark operator given by

Eq. (2). This identity follows trivially from the algebra of
the Dirac � matrices. Tracing both sides and integrating in
momentum, a genuine relation among Green’s functions of
the model is obtained

 �k1 � k2�
�TVV�� �k1; k2� � TV��k1� � T

V
��k2�; (7)

where TV� and TVV�� are, respectively, the vector one-point
function (�1 � ��) and the two-point vector-vector am-
plitudes (�1 � ��, �2 � ��), see Eq. (5). In the same way,
one obtains

 �k1 � k2�
�TVV�� �k1; k2� � TV� �k1� � TV� �k2�: (8)

Similarly, one can contract a Lorentz axial-vector two-
point density with an external momentum as
 

�k1 � k2�
�����5S�k� k1����5S�k� k2��

� 2M����5S�k� k1��5S�k� k2�� � ��S�k� k2�

� ���5S�k� k1��5; (9)

where we have used the anticommutation of �5 and the ��
matrices. Again, taking the traces and integrating on both
sides, we obtain

 �k1 � k2�
�TAA���k1; k2� � 2MTAP� �k1; k2� � T

V
� �k2�

� TV� �k1�; (10)

where the indices A and P stand for axial and pseudoscalar
corresponding, respectively, to F � ���5 and � � �5, as
defined in the paragraph following Eq. (5). Following the
procedure described above, we can get also the relations

 �k1 � k2�
�TVS� �k1; k2� � TS�k2� � TS�k1�; (11)

 �k1 � k2�
�TAP� �k1; k2� � �2MTPP�k1; k2� � T

S�k2�

� TS�k1�; (12)

 

�k1 � k2�
�TAV���k1; k2� � �2MTPV� �k1; k2� � TA� �k2�

� TA� �k1�; (13)

 �k1 � k2�
�TAV���k1; k2� � TA� �k2� � T

A
� �k1�: (14)

The expressions (11)–(14) are nothing more than the rela-
tions that follow from current algebra methods when using
the conservation of the fermionic vector current and the
proportionality of the divergence of the axial-vector cur-
rent with the pseudoscalar current. The expressions involv-
ing the one-point functions correspond to the current
commutator terms. Additional relations can be identified
at the trace level:

 TAV���k1; k2� �
i

2M
"�����k1 � k2�

��TSV���k1; k2�; (15)
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 TAP� �k1; k2� � �
1

2M
�k1 � k2���TSS�k1; k2�

� TPP�k1; k2��; (16)

 TVV�� �k1; k2� � TAA���k1; k2� � g���TSS�k1; k2�

� TPP�k1; k2��: (17)

One of the advantages of the method used above is that it
can be used to obtain relations for Green’s functions in-
volving tensor operators. Such relations cannot be obtained
through current algebra methods simply because the diver-
gence of the fermionic tensor current cannot be written in
terms of other fermionic currents. This is the case of
relations involving tensor-tensor two-point amplitudes,
like, for example, the following one:
 

�k1 � k2�
�TTT���	�k1; k2�

� �g���T
V
	�k2� � T

V
	�k1� � �k1 � k2�	T

SS�k1; k2��

� g	��T
V
� �k2� � T

V
� �k1� � �k1 � k2��T

SS�k1; k2��

� �k1 � k2��T
AA
�	�k1; k2� � �k1 � k2�	T

AA
�� �k1; k2�

� 2MTVT��	�k1; k2�: (18)

Given the fact that three other Lorentz indexes are left
uncontracted in the TT two-point function, it is also pos-
sible to establish constraints on successive contractions
with the external momenta. It is immediate to note that
when these contractions involve both Lorentz indexes of a
tensor operator, the result must vanish identically:

 �k1 � k2�
��k1 � k2�

	TTT���	�k1; k2� � 0: (19)

This is due to the fact that TTT���	 � ��	, where ��	 �
�i=2���; �	�, and therefore �k1 � k2�

��k1 � k2�
	��	 �

0. This property imposes additional constraints on the
consistent evaluation of the TT two-point function. Even
if such requirements seem to be obvious at this point, the
divergent character of the integrals defining the amplitude
makes satisfaction of this property far from being trivial.

Following strictly the same procedure outlined above,
relations involving the remaining tensor two-point func-
tions can be established as

 �k1 � k2�
�TTV����k1; k2� � 0; (20)

 �k1 � k2�
�TTP���k1; k2� � �2MTVP� �k1; k2�; (21)

 �k1 � k2�
�TTA����k1; k2� � 2MTTP���k1; k2�; (22)

 

�k1 � k2�
�TTA����k1; k2� � �2MTVA�� �k1; k2�

� �i"���
�k1 � k2�
�


 �TSV�
�k1; k2�; (23)

 

�k1�k2�
�TTS���k1;k2��

1

2m
f�k1�k2�

2TVS� �k1;k2�

��k1�k2���T
S�k2��T

S�k1��g

��
i
2
"���
�k1�k2�

��TAV��
�k1;k2�;

(24)

 

�k1 � k2�
�TTV����k1; k2� �

1

2m
�k1 � k2�

2�TVV�� �k1; k2�

� TAA�� �k1; k2��

� �k1 � k2��TPA� �k1; k2�: (25)

In deriving these results, we have used the relations given
in Eqs. (15)–(17).

At this point, it is very important to note that the results
obtained above for the contraction of amplitudes with the
external momentum are of general validity. Only algebraic
manipulations have been made, no single divergent inte-
gral has been evaluated and no changes of variables under
integration have been made. Thus, the results obtained are
not compromised with any type of regularization. The
important question one has to face when evaluating the
integrals defining the different amplitudes is, how to give a
meaning to the divergent integrals without violating these
relations. This will be discussed in the next section.

III. CALCULATIONAL SCHEME FOR HANDLING
DIVERGENT INTEGRALS

In the preceding section, we have considered the Green’s
functions for which one needs to construct a calculational
scheme that preserves the general relationships among
them, which we denominated consistency constraints. As
a matter of consistency, all the constraints must be fulfilled
without specifying special choices of the loop momenta.
Divergences will appear in the form of improper Feynman
integrals, but only a small number of them need to be
evaluated since all the amplitudes are combinations of a
few Feynman integrals.

The traditional way to handle a divergent Feynman
integral is to adopt an explicit regularization. Invariably,
this amounts to modifying the original integral in a way
that the integration becomes well defined. In the context of
NJL models, such modifications are commonly made by
introducing in the integrand a distribution in the loop
momentum to render the integral convergent. In doing so,
the results of the integrals become a function of the pa-
rameters of the regulating distribution. In perturbatively
renormalizable theories, one tries to isolate the purely
divergent terms in order to specify the adequate counter-
terms for the renormalization. The parts which are inde-
pendent of the regulating parameters are identified as the
finite parts and carry the physical content of the amplitude.
This means that the functions of the physical momenta are
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not affected by the regularization in the limit the regulari-
zation is removed. The procedure we adopt to use for the
NJL model follows this general strategy closely, the purely
divergent parts of the amplitudes will be fitted to observ-
ables, while the finite parts are integrated without any
regularization.

In the first step, one assumes an unspecified regulariza-
tion distribution G�i

�k2;�2
i � dependent on one or more

‘‘cutoff’’ parameters �i, such that the original divergent
integral is replaced by a finite one as [19]

 

Z d4k

�2��4
f�k� !

Z d4k

�2��4
f�k�G�i

�k2;�2
i �

�
Z

�

d4k

�2��4
f�k�: (26)

The generic distribution G�k2;�2
i �, in addition to having

the obvious property of turning the original integral con-
vergent, must depend only on k2 due to Lorentz invariance
and must have the limit

 lim
�2
i!1

G�i
�k2;�2

i � � 1; (27)

which allows us to connect the regularized integral with the
original one. Having assumed the existence of such a
regularization distribution, one manipulates the integrand
of the divergent integral in a way to isolate all the diver-
gences in momentum-independent integrals. This goal can
be achieved by using the identity

 

1

��k� ki�
2 �M2�

�
XN
j�0

��1�j�k2
i � 2ki 	 k�

j

�k2 �M2�j�1

�
��1�N�1�k2

i � 2ki 	 k�
N�1

�k2 �M2�N�1��k� ki�2 �M2�
;

(28)

where the ki is (in principle) an arbitrary routing momen-
tum of an internal line in a loop, andM is the fermion mass
running in the loop. The value of the integer N is the
smallest integer that makes integrals involving this last
term finite when removing the regulating function. In
view of Eq. (27), the corresponding integration can be

performed without restrictions and will be free from the
specific effects of an eventual regularization. No additional
assumptions are made with respect to the remaining diver-
gent terms.

When evaluating the amplitudes considered in the pre-
vious section, after taking the appropriate traces, it is not
difficult to convince ourselves that only five divergent
Feynman integrals will appear, namely

 �I1; I�1 � �
Z d4k

�2��4
�1; k��

��k� k1�
2 �M2�

; (29)

 �I2; I�2 ; I��2 � �
Z d4k

�2��4



�1; k�; k�k��

��k� k1�
2 �M2���k� k2�

2 �M2�
:

(30)

The divergent parts of these integrals can be rewritten in
terms of five divergent quantities that we denote by ��	��,
���, r��, Ilog, and Iquad. Specifically, the integrals I1 and
I1� that appear in the one-point amplitudes can be written
as

 I1�k1� � �Iquad�M2�� � k�1 k
	
1 ���	�; (31)

 I1��k1� � �k1��Iquad�M2�� � k	1 �r	��

� 1
3k
	
1 k

�
1 k

�
1���	��� �

1
3k1�k�1 k

	
1 ���	�

� 1
3k

2
1k
�
1 �����: (32)

The integrals I2, I2�, and I2�� related to two-point ampli-
tudes can be written as

 I2�k1; k2� � �Ilog�M2�� � i�4���2�Z0��k1 � k2�
2;M2��;

(33)

 I2��k1; k2� � �
1
2�k1 � k2�

������ �
1
2�k1 � k2���I2�;

(34)

 

I2���k1; k2� �
1
2�r��� �

1
12�k1 � k2�

2����� �
1
6�k

�
2 k

	
2 � k

�
1 k

	
2 � k

�
1 k

	
1 ����	��� �

1
6�k2�k

	
2 � k1�k

	
2 � k1�k

	
1 ���	��

� 1
6�k2�k

	
2 � k1�k

	
2 � k1�k

	
1 ���	�� �

1
2g���Iquad�M

2�� � 1
12g���k1 � k2�

2�Ilog�M
2�� � 1

6�2k2�k2� � k1�k2�

� k1�k2� � 2k1�k1���Ilog�M
2�� � i�4���2��k1 � k2���k1 � k2�� � g���k1 � k2�

2��14Z0��k1 � k2�
2;M2�

� Z2��k1 � k2�
2;M2�� � i�4���2�k1 � k2���k1 � k2���

1
4Z0��k1 � k2�

2;M2��: (35)

In these, the functions Z0�q
2;M2� and Z2�q

2;M2� are finite and can be written generically as

 Zk�q2;M2� �
Z 1

0
dzzk log

�
q2z�1� z� �M2

�M2

�
; (36)

and ��	��, ���, r��, Ilog and Iquad are momentum-independent divergent quantities given by
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��	�� �
Z

�

d4k

�2��4
24k�k�k�k	
�k2 �M2�4

� g�	
Z

�

d4k

�2��4



4k�k�

�k2 �M2�3
� g��

Z
�

d4k

�2��4
4k	k�

�k2 �M2�3

� g��
Z

�

d4k

�2��4
4k	k�

�k2 �M2�3
; (37)

 ��� �
Z

�

d4k

�2��4
4k�k�

�k2 �M2�3
�
Z

�

d4k

�2��4
g��

�k2 �M2�2
;

(38)

 r�� �
Z

�

d4k

�2��4
2k�k�

�k2 �M2�2
�
Z

�

d4k

�2��4
g��

�k2 �M2�
;

(39)

 Ilog�M2� �
Z

�

d4k

�2��4
1

�k2 �M2�2
; (40)

 Iquad�M
2� �

Z
�

d4k

�2��4
1

�k2 �M2�
: (41)

Since the one-point functions are purely divergent, they
can be expressed entirely in terms of (a subset of) the
above divergent quantities as

 TS�k1� � 4Mf�Iquad�M2�� � k�1 k
	
1 ��	��g; (42)

 

TV��k1� � 4f�k	1 �r	�� �
1
3k
	
1 k

�
1 k

�
1���	��� �

1
3k

2
1k
�
1�����

� 2
3k1�k�1 k

	
1 ���	�g: (43)

The two-point functions contain finite and divergent parts,
and can be written as

 

TSS�k1; k2� � 4f�Iquad�M
2�� � 1

2�4M
2 � �k1 � k2�

2


 �Ilog�M
2�� � i�4���2�4M2 � �k1 � k2�

2�


 �12Z0��k1 � k2�
2;M2��g � �k1 � k2�

�


 �k1 � k2�
	���	� � �k1 � k2�

�


 �k1 � k2�
	���	�; (44)

 

TPP�k1; k2� � 4f��Iquad�M
2� � 1

2�k1 � k2�
2�Ilog�M

2��

� i�4���2�k1 � k2�
2�12Z0��k1 � k2�

2;M2��g

� �k1 � k2�
��k1 � k2�

	���	�

� �k1 � k2�
��k1 � k2�

	���	�; (45)

 

TPA� �k1; k2� � 4M�k1 � k2��f�Ilog�M
2��

� i�4���2�Z0��k1 � k2�
2;M2��g; (46)

 TVS� �k1; k2� � �4M�k1 � k2�

��
��; (47)

 TAV���k1; k2� � �2i"���	�k2 � k1�
	�k1 � k2�


���

 �; (48)

 

TVV�� �k1; k2� �
4

3
��k1 � k2�

2g�� � �k1 � k2���k1 � k2���




�
�Ilog�M2�� � i�4���2




�
1

3
�
�2M2 � �k1 � k2�

2�

�k1 � k2�
2


 �Z0��k1 � k2�
2;M2��

��
� A��; (49)

 

TAA���k1;k2��
4

3
��k1�k2�

2g����k1�k2���k1�k2���




�
�Ilog�M

2��� i�4���2




�
1

3
�
�2M2��k1�k2�

2�

�k1�k2�
2


�Z0��k1�k2�
2;M2��

��
�8M2g��f�Ilog�M2��

� i�4���2�Z0��k1�k2�
2;M2��g�A��; (50)

 

TST���k1; k2� � �2f�k1 � k2���k1 � k2�

��
��

� �k1 � k2���k1 � k2�

��
��g; (51)

 TPT���k1; k2� � �2i"���	�k1 � k2�
��k1 � k2�


��	

 �; (52)

 TAT����k1; k2� � 4i"���	�k1 � k2�

��	


 �; (53)

 

TVT����k1; k2� � 4M�g��g�� � g��g����k1 � k2�
�


 f�Ilog�M
2�� � i�4���2


 �Z0��k1 � k2�
2;M2��g; (54)
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TTT�	���k1; k2� � �g��g	
g�� � g��g	
g�� � g	�g�
g�� � g	�g�
g���
4

3
��k1 � k2�

2g
� � �k1 � k2�

�k1 � k2�

��




�
Ilog�m2� � i�4���2

�
1

3
�

2M2 � �k1 � k2�
2

�k1 � k2�
2 �Z0�M2; �k1 � k2�

2��

��
� 4�g��g	� � g��g	��




�
��Iquad�M2�� �

1

2
�4M2 � �k1 � k2�

2��Ilog�M2�� �
1

2
�4M2 � �k1 � k2�

2�i�4���2�Z0��k1 � k2�
2;M2��

�
1

4
�k1 � k2�

��k1 � k2�

���
� �

1

4
�k1 � k2�

��k1 � k2�

���
�

�
� g��A	� � g��A	� � g	�A�� � g	�A��: (55)

In the above, we have defined A�� as
 

A�� � 4�r��� � �k1 � k2�
��k1 � k2�

	�13��	��

� 1
3g����	 � g���	� � g����	 �

2
3g�	����

� ��k1 � k2�
��k1 � k2�

	 � �k1 � k2�
��k1 � k2�

	�


 �13��	�� �
1
3g����	 �

1
3g���	��

� �k1 � k2�
��k1 � k2�

	���	�� � g�	���

� g���	� � 3g����	�: (56)

The remaining one- and two-point functions not consid-
ered above are identically zero due to vanishing Dirac
traces.

At this point, it is important to note the generality of the
method. No momentum shifts were done and no single
divergent integral was calculated. For this reason, the
results obtained can be used with any preferred regulari-
zation method. Of course, different regularization schemes
can lead to ambiguities and violation of symmetry relations
between Green’s functions, as we shall discuss in the next
section.

IV. AMBIGUITIES AND THE CONSISTENCY
CONSTRAINTS

In the preceding section, we have completed the evalu-
ation of all fermionic one- and two-point amplitudes.
Before any further steps in evaluating these amplitudes, it
is important to notice that there are ambiguities associated
with the choices for the momentum routing in the internal
lines of loops. In the calculations performed in the previous
section, we have not made any momentum shifts in inter-
mediary steps and have left the labels of the internal
momenta k1 and k2 completely arbitrary and unspecified.
However, due to momentum conservation, a physical am-
plitude can depend only on the difference q � k1 � k2, and
no dependence on the sum Q � k1 � k2 can be present in
the amplitude. There can be no dependence on Q because
this combination is ambiguous: two different choices of k1

and k2 can give the same q, but they will always give
different Q’s. In view of this, one could imagine that it is
impossible to make any predictions because the amplitudes
contain dependencies on arbitrary contributions which are

functions of Q. In general, depending on the regularization
scheme used, this is actually true. In the literature associ-
ated with the NJL model, it is usual to use a particular
routing, the symmetric combination k1 � q=2 and k2 �
�q=2, meaning that Q � 0 and the amplitudes are auto-
matically free of ambiguities. However, restriction to one
particular choice, besides breaking homogeneity of space-
time, also leads to difficulties with amplitudes containing
more than two propagators where there are in principle
more than two arbitrary momenta and choices, like the
above would not be allowed because in general it would
lead to violations of momentum conservation.

Our aim now is to show that what we have done so far
does not lead to violations of the relations among Green’s
functions because of arbitrary choices of the momenta k1

and k2. As shown in Sec. II, such relations are very general,
but due to the ultraviolet divergences they can very easily
be violated when not being careful with the explicit evalu-
ation of the integrals within a particular regularization
scheme.

It is a simple task to identify the ambiguous terms,
proportional toQ. In the one-point functions they are given
by (note that for these Q � k1)

 �TS�k1��ambi � 4Mk	1 k
�
1 ��	��; (57)

 �TV��k1��ambi � 4f�k	1 �r	�� �
1
3k
	
1 k

�
1 k

�
1���	���

� 1
3k

2
1k
�
1����� �

2
3k1�k

�
1 k

	
1 ���	�g: (58)

In the two-point functions, the ambiguous terms are given
by

 �TSS�k1; k2��ambi � Q�Q	���	�; (59)

 �TPP�k1; k2��ambi � ��TSS�k1; k2��ambi; (60)

 �TPA� �k1; k2��ambi � 0; (61)

 �TVS� �k1; k2��ambi � �4MQ
��
��; (62)

 �TAV���k1; k2��ambi � 2i"���	q
	Q
���


 �; (63)
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 �TVV�� �k1; k2��ambi � �q
�Q	 �Q�q	��13��	�� �

1
3g����	

� 1
3g���	�� �Q�Q	���	��

� g�	��� � g���	� � 3g����	�;

(64)

 �TAA���k1; k2��ambi � �TVV�� �k1; k2��ambi; (65)

 �TST���k1; k2��ambi � �2fq�Q
��
�� � q�Q
��
��g; (66)

 �TPT���k1; k2��ambi � �i2"���	q�Q
��	

 �; (67)

 �TVT����k1; k2��ambi � 4iM"���	Q

��	


 �; (68)

 �TVT����k1; k2��ambi � 0; (69)

 

�TTT�	���k1; k2��ambi � �
1
4Q

�Q
���
� � g���T
VV
	� �ambi

� g���T
VV
	��ambi � g	��TVV���ambi

� g	��TVV�� �ambi: (70)

Note that all ambiguous terms appear as coefficients of
the divergent quantities r	�, ��	��, and ��	. These
quantities also play an important role in the analysis of
the algebraic relations involving different Green’s func-
tions, the consistency constraints obtained in Sec. II. Those
constraints were obtained by making the only assumption
of the validity of the linearity of the integration operation.
Although this assumption seems very reasonable, the
mathematical indefiniteness due to the divergences turns
the preservation of such relations a nontrivial supposition.

Let us now show that, despite the amplitudes themselves
containing ambiguous terms, the general relations involv-
ing different Green’s functions obtained in Sec. II are not
violated by the manipulations done so far. We start with the
relations in Eqs. (7) and (8) involving the Green’s functions
TVV�� �k1; k2� and TV� �k1�. Contracting TVV�� �k1; k2� given in
Eq. (49) with the external momentum q leads to

 q�TVV�� �k1; k2� � q�A��: (71)

From Eq. (8), one sees that one must identify on the right-
hand side (r.h.s.). of Eq. (71) the difference between two
vector one-point functions corresponding to the internal
propagator carrying arbitrary momenta k1 and k2. For this
purpose, we take Eq. (56) for A�� and contract it with q�

 q�A�� � TV� �k2� � T
V
� �k1�; (72)

and also with q�

 q�A�� � TV��k2� � TV��k1�; (73)

where we used Eq. (43) for identifying TV� �k1�. These
results imply that the algebraic relations of Eqs. (7) and
(8) involving TV� �k1� and TVV�� �k1; k2� obtained by the for-

mal manipulations in Sec. II are preserved by the explicit
and independent evaluations of TVV�� �k1; k2� and TV��k1� in
Sec. III. Therefore, the relations are preserved in spite of
the fact that both amplitudes TV� �k1� and TVV�� �k1; k2� have
ambiguous pieces, which are proportional to the divergent
quantities r	�, ��	��, and ��	.

Next we consider the relation given in Eq. (11) involving
the amplitudes TVS� and TS. Using the explicit expression
for TVS� �k1; k2� given in Eq. (47), one obtains
 

q�TVS� �k1; k2� � �4M�k�1 k


1 � k

�
1 k



2 � k

�
2 k



1 � k

�
2 k



2�


 ��
��: (74)

Because of the obvious symmetry under interchange of the
Lorentz indexes 
 and � in �
�, and by comparing with
the explicit result for TS in Eq. (42), it is very simple to
show that the identity of Eq. (11) is also preserved.

Now we consider the identity given in Eq. (10), involv-
ing the amplitudes TAA��, TAP� , and TV�. Contracting TAA��
given in Eq. (50) with q�, we get

 q�TAA���k1; k2� � 2Mf�4Mq��Ilog�M2�

� i�4���2Z0�q
2;M2��g � q�A��: (75)

It is easy to verify that using Eqs. (43) and (46), the identity
in Eq. (10) is preserved.

We proceed by examining the relation given in Eq. (12)
using Eq. (46) for the amplitude TAP� �k1; k2�. Adding and
subtracting scalar one-point functions carrying momenta
k1 and k2, one can easily check that this expression for
TPP�k1; k2� naturally leads to preservation of the relation in
Eq. (12). Also, the relations involving the AV two-point
function in Eqs. (13) and (14) are immediate: the Green’s
functions TPV� and TA� on the r.h.s. of Eqs. (13) and (14) are
identically zero due to properties the Dirac traces, and on
the left-hand side one also obtains a zero because the
contractions of the explicit expression for TAV���k1; k2� in
Eq. (48) with �k1 � k2�

� or �k1 � k2�
� are zero due to the

antisymmetry of "���
.
Next, we turn our attention to the tensorial amplitudes.

We start with the relations of Eqs. (20) and (25). Initially
we note that the amplitude TVT����k1; k2� given in Eq. (54)
can be reorganized as

 TVT����k1; k2� �
1

2M
q��TVV�� �k1; k2� � TAA�� �k1; k2��

�
1

2M
q��TVV���k1; k2� � TAA���k1; k2��;

(76)

where we have used Eqs. (49) and (50). Written in this
form, it is now trivial to see that Eqs. (20) and (25) are
satisfied. Next, we consider the relation in Eq. (18). The TT
two-point function, given by Eq. (55), after some algebraic
effort can be put in the form
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TTT�	���k1; k2� � g��T
AA
	��k1; k2� � g��T

AA
	��k1; k2�

� g	�T
AA
���k1; k2� � g	�T

AA
�� �k1; k2�

� �g��g	� � g��g	��T
SS�k1; k2�; (77)

where the Eqs. (44) and (50) have been used. It is now
evident that the contraction with the external momentum
leads to Eq. (18). Now, we consider the constraint given in
Eq. (24). First, we note that Eq. (51) for the ST amplitude,
by using Eqs. (15) and (47), can be rewritten as

 TST���k1; k2� �
1

2M
�q�TSV� �k1; k2� � q�TSV� �k1; k2��;

� �
i
2
"���
�T

AV��
�k1; k2�: (78)

Therefore, contraction with the external momentum
 

q�TTS���k1;k2��
1

2M
fq2TSV� �k1;k2��q��T

S�k2��T
S�k1��g;

��
i
2
"���
q��TAV��
�k1;k2�; (79)

leads immediately to Eq. (24). Now, noting that by
Eqs. (48) and (52) the AV Green’s function is identical to
the TP function, we have that

 q�TTP���k1; k2� � �2MTVP� �k1; k2�; (80)

as it should to satisfy Eq. (21). Also, comparing Eqs. (47)
and (53), one sees that

 TAT����k1; k2� � �i"���	�T
SV�	�k1; k2�; (81)

and then

 q�TTA����k1; k2� � 2MTTP���k1; k2�; (82)

 q�TTA����k1; k2� � �2MTVA�� �k1; k2�

� �i"���
q
��TSV�
�k1; k2�: (83)

Therefore, the remaining relations, given by Eqs. (22) and
(23), are also satisfied.

This completes the verification of the consistency of the
manipulations performed at the one-loop level. It is im-
portant to emphasize that all the relations among Green’s
functions which can be stated at the level of integrands are
preserved, in spite of the presence of ambiguous terms. The
arbitrariness concerning the choice of the regularization is
also preserved since only very general mathematical prop-
erties have been assumed.

The crucial point now is that the preservation of the
relations among Green’s functions is not the only require-
ment one should ask for a consistent regularization scheme
since, as we have seen, the amplitudes themselves contain
ambiguities that are functions of the ambiguous combina-
tion of momenta Q � k1 � k2. Therefore, one must have a
scheme that ensures elimination of the ambiguous terms
from the amplitudes themselves, not only in the relations

involving two or more of them. In the next section, we
discuss the constraints imposed by symmetry relations
(Furry’s theorem and Ward identities) on special ampli-
tudes and they will provide guidance for dealing with the
ambiguous terms.

V. AMBIGUITIES AND PRESERVATION OF
SYMMETRIES

In the process of constructing a consistent interpretation
for the divergent one-loop amplitudes the preservation of
symmetries plays a central role. In principle, there is no
a priori reason for expecting that space-time symmetries
will be automatically manifest in divergent amplitudes.
However, it seems nevertheless reasonable to expect that
one should be able to identify general properties that the
divergent quantities must satisfy in order to guarantee the
preservation of such fundamental symmetries. In this
sense, the regularization method itself is not the most
important ingredient, what really matters are the require-
ments that quantities liker	�, ��	��, and ��	 must obey
to preserve the symmetry relations. Having this in mind, let
us now consider the symmetry properties pertinent to the
one- and two-point amplitudes we are discussing. We shall
refer to the Ward identities and other general constraints
imposed by Furry’s theorem on these amplitudes.

We start considering the simplest amplitude that carries
one Lorentz vector index, the amplitude TV��k1�. On gen-
eral symmetry grounds, Furry’s theorem states that this
amplitude must be zero. So, from Eq. (43), Furry’s theorem
requires that
 

TV� � �k
	
1r	� �

1
3k
	
1 k

�
1 k

�
1���	��� �

1
3k

2
1k
�
1�����

� 2
3k1�k

�
1 k

	
1 ���	� � 0: (84)

There are two different ways to satisfy this requirement.
The first one is the choice k1 � 0. But, is it always possible
to make this choice? Thinking on TV� in isolation, the
answer to this question is affirmative, since k1 is arbitrary.
However, TV� is not the only amplitude in the theory and so
one must ask the question if this choice is not invalidating
other symmetry relations. For example, the relation given
in Eq. (8) relates this amplitude to �k1 � k2�

�TVV�� �k1; k2�,
which we repeat here for clarity, is given by

 �k1 � k2�
�TVV�� �k1; k2� � TV� �k1� � TV� �k2�: (85)

Vector current conservation demands that �k1 �

k2�
�TVV�� �k1; k2� � 0. Therefore, the difference of the two

one-point functions on the r.h.s. of Eq. (85) having depen-
dencies on k1 and k2 needs to be zero. Obviously, the
simultaneous choice k1 � 0 and k2 � 0, which would
satisfy both requirements, cannot be made because this
would imply q � k1 � k2 � 0 always. Therefore, we
need another way to satisfy Eq. (84). Since the requirement
of Eq. (84) involves the divergent quantities ��	��, r��,
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and ���, one could ask for a regularization scheme that
leads to

 �
reg
�	�� � r

reg
�� � �reg

�� � 0; (86)

where the superscript ‘‘reg’’ means that the integrals defin-
ing these quantities are regularized.

The same conclusion is reached considering the explicit
expression for TVV�� �k1; k2� given in Eq. (49). Contracting it
with the external momentum q� � �k1 � k2�

�, one obtains
 

q�TVV�� �k1; k2� � 4fq��r���

� �k�1 k
	
1 k

�
1 � k

�
2 k

	
2 k

�
2 �

1
3���	���

� �k2
1k
�
1 � k

2
2k
�
2 �

1
3�����

� �k1�k
�
1 k

	
1 � k2�k

�
2 k

	
2 �

2
3���	�g: (87)

Since a conserved vector current should not be obtained by
convenient choices of the arbitrary momenta k1 and k2, the
conditions of Eq. (86) seem therefore also necessary here.

For the same reason that TV��k1� must vanish, other
vector two-point functions need to vanish identically.
These are TVS� �k1; k2� and TAV���k1; k2� which, from
Eqs. (47) and (48), imply in

 Q
���
� � 0; (88)

 "���	q
	Q
��


�� � 0: (89)

In principle, for these two specific amplitudes both options,
of choosing k1 and k2 in a convenient way or constructing
�reg
�	 � 0, are possible. For example, considering the con-

tractions of these amplitudes with external momenta we
obtain

 q�TVS� �k1; k2� � �4Mq�Q	���	�; (90)

 q�TAV���k1; k2� � �2"���	q
�q	Q
��


��; (91)

 q�TAV���k1; k2� � �2"���	q�q	Q
��

��: (92)

A conserved vector current for TVS� �k1; k2� can be obtained
with the choice k1 � �k2, or by taking �reg

�� � 0.
However, both contractions involving TAV���k1; k2� vanish
identically independently of the two possible choices, just
because the antisymmetric "���	 is contracted with a
symmetric object. The vector current must be conserved,
but the axial-vector current must not. So there is only one
consistent value for TAV���k1; k2�: the identically zero value.
Otherwise, a symmetry relation is broken. We can add to
this argumentation another very general aspect that forces
us to obtain a zero value for TAV���k1; k2� (and TVS� ): unitar-
ity. If the amplitude does not vanish, then it needs to
develop an imaginary part at q2 � 4M2 to be consistent
with unitarity (Cutkosky’s rules). Clearly, from Eqs. (47)

and (48) for TVS� �k1; k2� and TAV���k1; k2�, respectively, this
cannot happen.

Next, we consider TAA���k1; k2�. Using its explicit expres-
sion given in Eq. (50), one can show that
 

q�TAA���k1; k2� � 4f�q��r���

� �k�1 k
	
1 k

�
1 � k

�
2 k

	
2 k

�
2 �

1
3���	���

� �k2
1k
�
1 � k

2
2k
�
2 �

1
3�����

� �k1�k�1 k
	
1 � k2�k�2 k

	
2 �

2
3���	�g

� 2MiTPA� �k1; k2�: (93)

However, the proportionality between the axial vector and
the pseudoscalar current states that q�TAA���k1; k2� �

�2MiTPA� �k1; k2�. Therefore, one arrives at the same con-
clusion as for the amplitude TVV�� �k1; k2�, that the relations
given in Eq. (86) must be satisfied, since TPA� �k1; k2� is free
from ambiguities, see Eq. (46). Also, the same conclusion
is obtained if one rewrites q�TAA�� in terms of the ampli-
tudes TV� �k1�, as in Eq. (10).

Considering all amplitudes and their symmetry rela-
tions, the same conditions will emerge: there is no consis-
tent interpretation for the one-loop divergent amplitudes if
the conditions given in Eq. (86), that we call CR’s, are not
fulfilled. In principle, one could argue that the imposition
of the CR’s represents an arbitrary choice, which is at the
same level of the choice of a specific regulating distribu-
tion to be used in the integrands of the divergent integrals.
However, this is not true. One should consider the CR’s as a
fundamental requirement to be imposed on the one-loop
divergent amplitudes in order to materialize the fundamen-
tal space-time symmetries. Any calculation that violates
the CR’s has the potential of predicting unphysical results,
since it leads to the destruction of the foundations of the
theory which have generated the amplitudes themselves.
Therefore, the CR’s do not represent arbitrary choices,
because there is no option out of these properties capable
to allow a consistent interpretation of the calculations.
Note that the CR’s not only remove all the ambiguous
terms, which are always symmetry violating, but also
remove all the symmetry-violating terms, which are not
always ambiguous.

To finalize this section, we summarize results by defin-
ing what we denominate the ‘‘consistently regularized
amplitudes’’ denoted by T S;T VS

� ;T
SS; 	 	 	 . These are,

respectively, the amplitudes T S;T VS
� ;T

SS; 	 	 	 obtained
previously, with the terms containing the pieces propor-
tional to the quantities ��	��, r��, and ��� removed, as
demanded by the CR’s given in Eq. (86). Explicitly, they
are given by

(I) One-point functions:

 T S � 4M�Iquad�M2��; (94)

 T V
� � 0: (95)
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(II) Two-point functions:

 T VS
� �q� � T AV

���q� � 0; (96)

 T SS�q� � 4
�
�Iquad�M2�� �

1

2
�4M2 � q2��Ilog�M2��

�
1

2
�4M2 � q2�

�
i

16�2

�
�Z0�q2;M2��

�
;

(97)

 T PP�q� � 4
�
��Iquad�M

2�� �
1

2
q2�Ilog�M

2��

�
1

2
q2

�
i

16�2

�
�Z0�q

2;M2��

�
; (98)

 T PA
� �q� � 4Mq�

�
�Ilog�M

2�� �

�
i

16�2

�


�Z0�q
2;M2��

�
; (99)

 T VV
���q� �

4

3
�q2g�� � q�q��

�
�Ilog�M2��

�

�
i

16�2

��
1

3
�
�2M2 � q2�

q2


�Z0�q2;M2��

��
; (100)
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���q� �

4

3
�q2q�� � q�q��

�
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 �Z0�q
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�
: (101)

The tensor amplitudes can be written as

 T ST
���q� � T PT

���q� � T AT
����q� � 0; (102)

 T VT
����q� � 4M�g��g�� � g��g���q�

�
�Ilog�M2��

�

�
i

16�2

�
�Z0�q2;M2��

�
; (103)
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1
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1

2
�4M2 � q2�

�
i

16�2

�
�Z0�q2;M2��

�
: (104)

VI. PHENOMENOLOGY AND NUMERICAL
RESULTS

The amplitudes obtained in the preceding section are
free of ambiguities and are symmetry preserving. In this
paper, we have focused on one- and two-point functions,
where resides the highest degree of divergence, however
similar results can be obtained for three- and four-point
functions used in the model to describe meson decays and
meson-meson interactions. All these mathematical struc-
tures also appear in fundamental theories. Here, as a con-
sequence of the adopted strategy to handle the divergent
structures, it must be noted that such structures are treated
in a very closely related way as in renormalization proce-
dures of renormalizable theories. In the obtained expres-
sions for the calculated amplitudes, only two divergent
objects have survived after the adoption of CR’s, namely
Ilog�M

2� and Iquad�M
2�. The next step, if the amplitudes

were to be considered in the context of fundamental theo-

ries, is the elimination of such objects through the repar-
ametrization of the theory in the renormalization of
physical parameters. Since Ilog�M

2� and Iquad�M
2� are

completely absorbed in this process, the regularization
eventually used plays no relevant role, due to the fact
that the renormalized expressions are independent of par-
ticular aspects of the chosen regularization. The theory is
predictive, given the fact that the results for the amplitudes
associated to physical processes do not depend on the
choices involved in the intermediary steps.

In the case of the NJL model, considering the nonrenor-
malizable character, the remaining undefined objects need
to be specified in some way by using physical parameters
chosen as inputs of the model. The traditional way to make
predictions in the context of NJL involves regularization
such as the introduction of a 3D- or 4D-cutoff � in the
involved Feynman integrals. The expressions for the am-
plitudes are, in this way, dependent on the parameters of
the chosen regularization distribution as well as, if the CR’s
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are not satisfied, on the chosen routing for internal lines
momenta. In this scenario, the model contains at least two
parameters (in the chiral limit m0 � 0); the coupling
strength GS and a regularization parameter (the cutoff
�). The constituent quark massM is not an input parameter
as it is given by the solution of the gap equation. The
parameters GS and � need to be fixed through two items
of experimental information. The quark condensate h �  i
and the pion-decay constant f� are usually used for this
purpose. The first is related to a quadratically divergent
amplitude while the second is related to a logarithmically
divergent one. The values forGS and � which give the best
adjustments to the experimental values of h �  i and f� will
depend on the specific form of the regularization distribu-
tion. As a consequence, all the physical amplitudes de-
scribing processes pertinent to the model are affected by
the choice of the regularization. Because of this reason, the
chosen regularization must be part of the model. The
predictive power of the original quantum field model is
affected since the predictions are dependent on a choice
which characterizes an ambiguity. This is not the desirable
situation. We wish any model prediction becomes unique
in a similar way as it happens in renormalizable theories.
The regularization must become just a convenient choice in
the intermediary steps. In order to show that it is possible to
achieve the desirable situation referred above, we first note
that the adoption of the consistently regularized amplitudes
listed in the preceding section implies that we can only
adopt regularizations that fulfill the CR’s. This does not
represent a choice as, following our analysis, regulariza-
tions which break the CR’s will lead to ambiguities as well
as to symmetry violations, and this is unacceptable. If we
want a predictive model, only regularizations preserving
the CR’s make sense. After these important remarks, let us
now show how the arbitrariness associated to the choice of
regularization can be completely removed.

Having this in mind, we start by showing how to relate
the remaining objects Ilog�M2� and Iquad�M2� to physical
observables chosen as input of the model. First, we point
out that the quark condensate h �  i is related to the T S

one-point function as

 h �  i � �NcT
S: (105)

Substituting the result (94) we get

 h �  i � �4NcM�iIquad�M
2��: (106)

For the second, we note that, in the context of the NJL
model, mesons are relativistic quark-antiquark bound
states. In the random-phase approximation, the meson
propagators can be written as (see, for example, Ref. [5])

 DM�q
2� �

2GS

1� 2GS�M�q2�
; (107)

where �M is the polarization function defined by

 �M�q
2� � i

Z d4k

�2��4
Trf�MS�k� k1��MS�k� k2�g;

(108)

with S being the quark propagator defined previously. �M

stands for the flavor and Dirac matrices giving the quantum
numbers of the meson M. For example, for the neutral
pion, �M � �3�5, for the scalar-isoscalar meson, �M �
1. In writing the equations above, we assumed the most
general labels for the momenta k1 and k2 running in the
internal lines of the loop integral. The physical momentum
q is defined as the difference k1 � k2 as imposed by
energy-momentum conservation at each vertex.

The pole of the propagator in Eq. (107), calculated at
q2 � m2

M, gives the mass of the respective meson. The
condition for the pion mass is given by

 1� 2GS���m
2
�� � 0; (109)

where

 ���q
2� � �iNcNf�T

PP�q��: (110)

Substituting now the explicit form of T PP�q�, derived
previously and given in Eq. (98), we obtain
 

���q
2� � 4iNcNf�Iquad�M

2�� � 2iNcNfq
2

�
�Ilog�M

2��

�

�
i

16�2

�
�Z0�q

2;M2��

�
: (111)

Using the Eq. (3) in order to eliminate Iquad�M2� and
evaluating Eq. (111) at q2 � m2

�, we get the following
expression for the pion mass:

 m2
� � i

m0

4NcNfMGS

1

fi�Ilog�M
2�� � � 1

16�2��Z0�m
2
�;M

2��g
:

(112)

As seen in the chiral limit (m0 � 0), the pion becomes
massless (m� � 0), in agreement with Goldstone’s
theorem.

The pion phenomenology is also characterized by the
decay constant f�. Experimentally it is related to the weak
decay �� ! �� � �� and is calculated from the vacuum
to the one-pion axial-vector current matrix element

 h0j � �x����5�
i=2 �x�j�j�q�i � if�q��ije

�iqx; (113)

where j�j�q�i is a pion state with four-momentum q. At
one-loop order, one can express this matrix element in
terms of the T AP

� two-point function as

 if�q��ij � �Ncg�qq�ij�T �
AP�q��; (114)

where g�qq is the pion-to-quark-quark coupling strength,
related to the residue of Eq. (107) as

 g2
�qq �

�
@�PP�q2�

@q2

�
�1
��������q2�m2

�

: (115)
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Using Eqs. (99) and (111), we can write

 f� � �4Ncg�qqM
�
i�Ilog�M2�� �

�
1

16�2

�
�Z0�m2

�;M2��

�
;

(116)

 

g�2
�qq � �2NcNf

�
i�Ilog�M2�� �

�
1

16�2

�
�Z0�m2

�;M2��

�

� 2NcNfm
2
�

�
1

16�2

�
�Y1�m

2
�;M

2��; (117)

where Y1�q2;M2� is the k � 1 element of the set

 Yk�q
2;m2� �

Z 1

0
dz

zk�1� z�

q2z�1� z� �m2 : (118)

In a completely similar way, for the scalar meson (�) we
have

 m2
� � 4M2 �

m0

M



1

4GSNcNffiIlog�M
2� � � 1

16�2��Z0�m
2
�;M

2��g
;

(119)

 g�2
�qq � 2iNcNf�m2

� � 4M2�

�
i

16�2

�
�Y1�m2

�;M2��

� 2iNcNf

�
Ilog�M

2� �

�
i

16��2

�
�Z0�m

2
�;M

2��

�
:

(120)

It is easy to see from Eqs. (116) and (117) that the observ-
able f� can be related to the undefined quantity Ilog. In
order to make the aspects we want to emphasize clear, we
initially consider this relation in the chirally symmetric
case. Then we get

 iIlog�M2� � �
f2
�

2NcNfM2 ; (121)

since Z0�m2
� � 0� � 0. Through the Eqs. (106) and (121),

we have stated relations between two observables (inputs),
the quark condensate and the pion-decay constant, with
two undefined objects coming from loop calculations.
These objects are functions of the constituent quark mass
which must be determined in some stage. Therefore the
Eqs. (106) and (121) in fact represent the relation of two
quantities to two functions. If we want to know such
functions, we have to integrate Ilog�M2� and Iquad�M2�

which means to adopt an explicit form of regularization
distribution. This process introduces at least one regulari-
zation parameter � as it is well known. Different regula-
rizations will generally lead to different values of � as it is
usual in the context of the NJL model with regularizations.
In order to avoid this situation, we will proceed in a differ-
ent way.

First, we note that those two functions are not indepen-
dent. It is possible to show that they are related by

 

@

@M2
�iIquad�M

2�� � iIlog�M
2�: (122)

On the other hand, we can also state that Ilog�M
2� possesses

the following property:

 

@

@M2
�iIlog�M

2�� �
1

16�2M2 : (123)

In order to satisfy these two conditions, it is necessary to
get the following general forms:

 iIlog�M
2� �

1

16�2 lnM2 � C1; (124)

 iIquad�M
2� �

1

16�2 M
2�lnM2 � 1� C1� � C2; (125)

where C1 and C2 are indeterminate constants—C1 is di-
mensionless and C2 has dimension of �mass�2. In the
context of regularizations, C1 and C2 are related to the
regularization parameter �. Eliminating the constant C1

we see that

 iIquad�M
2� �

�1

16�2 M
2 �M2�iIlog�M

2�� � C2: (126)

Replacing Iquad and Ilog in terms of h �  i and f�, Eqs. (106)
and (121), we get

 

M3

16�2
�

�
f2
�

2NcNf
� C2

�
M�

h �  i
4Nc

� 0: (127)

There are two important aspects involved in the above
equation. First, it ensures that it is crucial to obey the
properties (122) and (123) when the functions Ilog�M2�

and Iquad�M2� are made explicit. These two properties
work as additional constraints to be required of a regulari-
zation distribution if one wants to get consistency in per-
turbative calculations. The violation of these properties
will result in breaking the scale properties of physical
amplitudes, and possesses the same status of symmetry
violations [25]. The second aspect refers to the dependence
of the physical parameters on the choice of the specific
regularization. The above expression states that even if a
regularization obeys the CR’s and simultaneously the con-
ditions (122) and (123) it remains a freedom to distinguish
it from other regularizations belonging to the class of
consistent regularizations, which is the value of C2. Two
consistent regularizations can differ only by the value of
C2. As a consequence, the physical implications of the
model seem to be definitely regularization dependent.
The introduction of experimental values for the inputs
h �  i and f� makes it necessary to specify C2 to get M
and then through the gap equation to get the value for GS.
There is nothing more to be imposed, based on consistency
reasons, to remove this arbitrariness. Apparently all our
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efforts cannot avoid the dependence of the results on the
choice of the regularization, even if we have drastically
restricted the regularizations which can be used in the
calculations.

At this point it seems there is nothing else to do except to
choose convenient values for C2. The convenience of such
choices is related to the fact that we need to choose an
adequate value for C2 in order to get a good value for M
and after this to find a good value for GS. It is precisely in
this process that emerges the most surprising aspect of our
formulation. If we recognize that only positive values ofM
make sense in the equation, the nonlinear character of the
equation in M produces a critical condition to possible
values of C2. It turns out that one finds solutions with M>
0 only for C2 
 Ccrit, such that
 

C2 <Ccrit ! no solutions C2 � Ccrit ! one solution

C2 >Ccrit ! two solutions: (128)

Therefore, it seems obvious that there is only one value for
C2 which is reasonable, the Ccrit, due to the fact that only
this value allows us a consistent physical interpretation of
the model predictions. Assuming this attitude, the NJL
model becomes predictive since the remaining arbitrari-
ness is fixed through the existence of a critical condition.
There are considerable differences between our formula-
tion and the traditional ones. The first and immediate refers
to the determination of the constituent quark massM. Such
value is fixed by the critical point in the diagram M
 C2.
The value of the mass, therefore, depends only on the
experimental values for h �  i and f� which are the chosen
inputs of the model. The gap equation will be used in the
determination of the couplingGS compatible with the mass
fixed by the critical condition. At this point, it is crucial to
ask: are the values for M and GS, emerging from this
critical condition, reasonable?

In Fig. 1 we plot all possible physical solutions (M> 0)
of Eq. (127) as a function of the arbitrary constant C2.
Using as input h �  i � ��250:0 MeV�3 and f� �
93:0 MeV, it results that for values of C2 <Ccrit,
Eq. (127), there is no physical solution, at C2 � Ccrit there
is only one solution, and for C2 >Ccrit there are two
possible solutions. In particular, at the critical point we
obtain Ccrit ’ 24:82 MeV2, M ’ 468:4 MeV, and GS ’
7:5 GeV�2. Therefore the values for M and GS are in
good agreement with the ones found in the literature of
this issue.

Another difference between this formulation and the
traditional ones refers to the meson phenomenology.
When we adopt the present formulation, in the presence
of chiral symmetry breaking parameter m0, previously
fixed, since it is an input parameter, the meson masses
and meson-quark-quark couplings, as well as other physi-
cal aspects, emerge as genuine predictions, including those
of pion. In order to see this aspect clearly, let us consider
the case with m0 � 0. As it can be seen in Eq. (112), the

pion mass is nonzero, reflecting the fact that the original
Lagrangian is not chirally symmetric with m0 � 0. The
introduction of a current quark mass modifies the results
for other quantities as well. For example, the expression for
f� now contains a finite part, and because of this, the
expression of Ilog�M2� in terms of f2

� changes to

 

i�Ilog�M
2�� � �

�Z0�m2
�;M2��

16�2 �
f2
�

4NcNfM
2




0
@1�

�������������������������������������������������������������
1�

NcNfm2
�M2�Y1�m2

�;M2��

2�2f2
�

s 1
A:

(129)

As a result, we can write for the pion mass the following
expression:

 m2
� �

m0M

f2
�GS

0@1�

�������������������������������������������������������������
1�

NcNfm
2
�M

2�Y1�m
2
�;M

2��

2�2f2
�

s 1A�1

:

(130)

Also, for the effective pion-coupling constant we obtain

 

g�2
�qq � �

NcNfm
2
�

8�2 �Y1�m2
�;M2��

�
f2
�

2M2

0
@1�

�������������������������������������������������������������
1�

NcNfm2
�M2�Y1�m2

�;M2��

2�2f2
�

s 1
A:
(131)

As before, eliminating Iquad�M
2� and Ilog�M

2� in favor of
h �  i and f�, we obtain a nonlinear equation for M that
now involves the pion mass m�,
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FIG. 1. Solutions of Eq. (127) as a function of the constant C2.
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(132)

This equation is much more complicated to solve the one in
the case of exact symmetry. This equation and the expres-
sion form�, however, can be simplified using the following
approximations for Z0 and Y1:

 Z0�q
2;m2� � �

q2

6m2 �
q4

60m4 � 	 	 	 ; (133)

and

 Y1�q2;m2� � �
1

6m2 �
q2

30m4 � 	 	 	 : (134)

Using these approximations, we obtain

 m2
� �

m0M

f2
�GS

0@1�

����������������������������
1�

NcNfm
2
�

12�2f2
�

s 1A�1

; (135)

 

M3

16�2 �
f2
�M

4NcNf

0@1�

����������������������������
1�

NcNfm2
�

12�2f2
�

s 1A
�
m2
�M

96�2 � C2M�
h �  i
4Nc

� 0: (136)

Inserting the ‘‘experimental’’ value for m0 (as well as for
h �  i and f�) we search for the value of C2 which corre-
sponds to only one positive value for M and thus deter-
mines the values for GS, m�, and so on. For this propose,
we take m0 � 5:2 MeV, obtaining m� ’ 135:3 MeV, M ’
468:4 MeV, GS ’ 7:5 GeV�2, and Ccrit ’ 24:82 MeV2.
Finally, Eq. (131) furnishes g�qq ’ 4:97. These predictions
are in good agreement with experimental data and those
used in the literature.

In the scalar channel, we have the following expressions
for the � meson mass and the �qq coupling constant:

 

m2
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Numerically, we have m� � 938 MeV and g�qq � 2:29.
The fact of the arbitrary character of C2 being removed,

owing to the existence of a critical condition, it is the most
important result point in the analysis made in this section.
This means that the phenomenology becomes completely
independent of the specific regularization scheme em-
ployed if such a scheme is consistent with the scale
invariance.

The model, within the scope of this prescription, be-
comes predictive since the role played by a regularization
has completely disappeared. In this sense, in spite of being
a nonrenormalizable model, the predictions are made in the
same spirit as in renormalized models, at the considered
level of approximation. This is, undoubtedly, a very im-
portant improvement in the quality of this type of pertur-
bative calculations. However, we must be aware of the fact
that this does not represent the solution to all the problems
involved. Since the amplitudes have acquired structures
which are very similar to those belonging to the renormal-
ized theories, what remains to be considered are the phe-
nomenological implications for the model predictions of
the so-called Landau vacuum instabilities or ghost poles in
boson propagators. This aspect of the perturbative calcu-
lations appeared in hadron physics in connection with the
Skyrme model [26–29]. More specifically, Landau vac-
uum instabilities were found in chiral-quark models when
soliton solutions were searched for in the renormalized
sigma model. (For an update of this problem, please see
the recent paper of Arriola, Broniowski, and Golli [30]).
However, Landau instabilities seem to be present in almost
all renormalizable theories where fermions are coupled
with boson fields [28]. Their occurrence can be indicated
by the presence of tachyon poles in boson propagators
corrected by one-loop fermionic contributions [31]. In
asymptotically free theories where the bosons are self-
interacting fields, contributions coming from bosonic
one-loop diagrams may eliminate the problem [31], other-
wise the general rule seems to be the existence of vacuum
instabilities [28]. In the QED, where the vector gauge field
is not a self-interacting field, tachyonic poles occur in the
photon propagator such that the vacuum is unstable at the
one-loop level. In the linear sigma model, the meson
propagators are equally contaminated by tachyonic poles.
In the QED, the presence of such a type of undesirable
poles does not play a physically relevant role because the
scale of the fluctuations at which the instabilities occur is
me1=� (m is the electron mass and � is the fine structure
constant) [28]. Therefore, this happens in a region which is
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certainly beyond the expected validity of the theory. On the
other hand, in hadronic phenomenological models, where a
fermionic field is coupled with a mesonic one, like in the
Yukawa model or in the chiral � model, such scale of
fluctuations changes drastically (around 1 GeV) due to
the nucleon or quark mass and due to the value of the
constant coupling involved. This means that the ghost
poles may have relevant influence in phenomenological
implications of the model.

In the NJL model, we have only fermions in the
Lagrangian but the meson states are interpreted as quark-
antiquark bound states. The intermediate amplitudes are
fermionic loops such that, in the random-phase approxi-
mation, the meson mass is identified as the pole of
Eq. (107). This is precisely the structure of the renormal-
ized meson propagator in the linear s model. This means
that if we look carefully to the condition stating the pion
mass, for example, we will find that in addition to the pion
pole, there is a tachyonic pole in the Euclidian region with
a negative residue. This implies that the corresponding
dispersion relation will be verified only if this pole is
included. This situation is not commonly considered
within the context of the NJL model due to the use of
cutoffs which change the behavior of the fermionic one-
loop contributions such that the problem is very often
automatically eradicated [30].

In the procedure adopted in the present work, the finite
parts of the Green’s functions are not modified, putting the
physical amplitudes at the same level as those belonging to
renormalizable theories. Because of this, the questions
related to the ghost poles or vacuum instabilities may
become relevant. The presence of ghost poles in meson
propagators or Landau vacuum instabilities in the NJL
model is expected due to its equivalence to the linear �
model. Although the Green’s functions are, strictly speak-
ing, not the same ones, due to the definition of the renor-
malization parameters, the S matrices of both theories are
identical [2].

This aspect can be easily stated if we plot the denomi-
nator of the sigma or pion propagators looking for roots in
the q2 < 0 region. Let us consider the pion propagator at
the random-phase approximation. In the Euclidean region
(q2 < 0) the Eq. (111) may be written

 ���q2� � �
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M
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2
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In Fig. 2, we plot the denominator of the pion propagator,

1� 2GS���q2�, in the Euclidean region. Now we can
clearly see that there is a pole in the Euclidean region
around 1 GeV. Similar results can be found for the sigma
propagator.

On general grounds it is not completely clarified if ghost
poles are real ingredients of quantum field theory (QFT) or
if they are a product of a particular kind of perturbative
solution (one-loop approximation) [28]. Because of the
fact that if they are real ingredients of QFT, fundamental
axioms are violated since only real poles are expected to
exist. The relevant question seems to investigate if this type
of instabilities survives to higher-order calculations. The
acceptance that these undesirable poles are unavoidable
and, therefore, real aspects of QFT, constitutes a very
frustrating fact just because we are accepting that the
solutions we can obtain do not obey the fundamental
axioms of the theoretical apparatus we have constructed.
The most reasonable expectation is that the instabilities
will disappear when contributions of higher order are
computed. If this is the case, there is nothing else to do
but to conclude that the one-loop approximations are not
adequate to investigate phenomenological implications of
a theory or model. If, however, the instabilities constitute
an unavoidable aspect of certain classes of QFT, we must
make efforts to get theories free from those problems by
construction, as in the case of anomalies. Only additional
investigations will clarify these doubts. We are, however,
convinced that the questions related to the regularizations
in QFT are of a different nature from those related to the
ghost poles in perturbative corrections of boson
propagators.

VII. CONCLUSIONS AND PERSPECTIVES

We considered in detail questions relative to the predic-
tive power of the NJL model. Given its nonrenormaliz-
ability, the model predictions are usually compromising

FIG. 2. Denominator of pion-propagator as a function of q2 <
0.
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with the regularization method employed. The regulariza-
tion cannot be removed from the results and consequently,
the physical implications are crucially dependent on the
adopted regularization technique. It is usual practice to
consider the regularization as part of the model, see for
example [5,6,8]. However, depending on the adopted regu-
larization method, physical amplitudes may emerge from
the calculations ambiguous and symmetry violating.
Undefined quantities arising from divergences are fixed
in the parametrization of the model by adjustments in
regularization parameters. In view of this, one has the
potential problem that the results of calculations are not
real predictions, but particular choices for the involved
arbitrariness (ambiguities) [16,17] that lead to results that
might change when different choices are made.

Our investigation in the present paper focused on avoid-
ing as much as possible explicit evaluations of divergent
quantities. Our discussion consisted in basically two steps.
In the first step, we obtained physical amplitudes free from
ambiguities and symmetry preserving. Integrands of diver-
gent Feynman integrals were manipulated such that all the
dependence on internal (arbitrary) momenta is left in terms
that lead to finite integrals, which are then integrated free
from the regularization effects, while purely divergent
objects (combinations of divergent integrals) can be clearly
identified. Invoking symmetry constraints and demanding
elimination of ambiguities lead to what we called consis-
tency relations, which require definite values for the diver-
gent objects. All one- and two-point functions of the
model, in which the highest degrees of divergence reside,
emerge from the calculations free from ambiguities and
respecting symmetry constraints. In the second step, a
parametrization was introduced to eliminate divergences.
We considered a parametrization of the model where the
remaining divergent integrals, Iquad�M

2� and Ilog�M
2�, need

to be eliminated by fixing phenomenological quantities.
We used general scale properties of Iquad�M2� and Ilog�M2�

in order to make explicit the freedom one always has when
choosing a specific regularization through the constant
parameter C2. All this was done without explicit evaluation
of the divergent integrals.

Of course, we could also have chosen a specific regu-
larization for evaluating explicitly Iquad�M

2� and Ilog�M
2�

and put our calculation in close connection with the tradi-
tional regularization methods. As a result, both Iquad�M

2�

and Ilog�M2� become a function of a regularization parame-
ter � and would also depend on the form chosen for the
regularization function G�k2=�2�. In this way, for different
regularizations one would have different values for C2. We
have shown that without making any choice, one can fix
this C2 by simply choosing its critical value. An important
point to be noted, we reiterate, is that all manipulations
done prior to such a choice have been made guaranteed
amplitudes that are free from loop momenta ambiguities
and that preserve the symmetries of the model.

Just due to this fact, we have denominated the formula-
tion presented here as predictive. The assertion that the
formulation of the regularization of the NJL model pre-
sented here is predictive is to be understood in the sense
that no arbitrary choices were made in intermediate steps
up the stage of calculating phenomenological quantities,
like the pion and sigma masses and coupling constants.
Even at this last stage, the existence of a critical value for
C2 that leads to good values for phenomenological quan-
tities is gratifying. One more time, however, we point out
that the procedure adopted in the present work does not
solve all the problems involved, as well as does not guar-
antee that the predictions are in excellent agreement with
all the experimental data pertinent to the model scope. All
we can say is that the predictions are not dependent on
arbitrary choices involved in the calculation of amplitudes.
Intrinsic problems of the perturbative calculations as the
ghost poles or the associated vacuum instabilities must be
studied, and their implications for the phenomenology
clearly stated. Perhaps the association of the procedure
adopted in the present work to treat the amplitudes with
procedures devoted to the elimination of vacuum instabil-
ities may give us adequate answer to such questions [32].
Having this in mind, it would be interesting to apply the
formulation of the NJL model presented here to the SU(3)
version. Work along this line is presently under way.
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