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Stabilization of bright solitons and vortex solitons in a trapless three-dimensional Bose-Einstein
condensate by temporal modulation of the scattering length
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Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright
soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein cond@B§atby a rapid
periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also
stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC,
the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be
stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.
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I. INTRODUCTION interaction can be easily switched between attractive and re-
) , , .. pulsive, thus resulting in a rapid contraction and expansion

~ Solitons are solutions of wave equation where |°Cal'2?t'°'gf the condensate. If the constants of modulation are appro-
is obtained due to a nonlinear attractive interaction. Solitongyiately chosen, this leads to a stabilization of the condensate
have been noted in opti¢s], high-energy physics and water iy 2p with breathing oscillation§8]. However, it has been
waves [1], and more recently Bose-Einstein condensatesprovedn by analytic and numerical calculations in REfO]
(BEC’s) [3,4]. The bright solitons of attractive BEC's repre- that such a stabilization does not take place in 3D.
sent local maximg4-6], whereas dark solitons of repulsive s the problem of the stabilization of a soliton in a trap-
BEC's represent local minimgg]. _ less condensate is of utmost interest in several areas—e.qg.,

A classic textbook example of solitons appears in the fo"optics [2,13, nonlinear physics[2], and Bose-Einstein
lowing one-dimensiona(1D) nonlinear free Schrodinger condensates—we reexamine this problem and find that a

equation in dimensionless unit8,7]: temporal modification of the scattering length can also lead
to a stabilization of the trapless soliton in 3D. We use both
_ ii _ iz — [W(y,t)[2 | W(y,b) =0. (1) variational as well as numerical solutions of the mean-field

at dy time-dependent Gross-Pitaevsk@EP) equation to establish

) ) our claim. To the best of our knowledge this is the first sug-

The solitons of this equation are localized solutions due tqyestion of the stabilization of a trapless soliton in 3D. We
the attractive nonlinear |nteract|on|\}f(y,t)|2 with wave  fing numerically that an untrapped attractive condensate can
funﬁn at time t and positon y:  W(y,t) maintain a reasonably constant spatial profile over a large
=\2|Elexp(-igt)sechyy|€]), with £ the energy[7]. The interval of time through temporal modulation of teavave
Schrodinger equation with a nonlinear interactigi’{? does  scattering length. We also point out a possible reason for the
not sustain a localized solitonic solution in 2D or 3D. How- failure to stabilize a bright soliton in 3D in Ref10].
ever, a radially trapped and axially free version of this equa- The present approach is also extended to stabilize vortex
tion in 3D does sustain such a bright solitonic solutiét6]  solitons in 2D[14] with angular momentunk per atom in
which has been observed experimentally in BE[@ps the axial(azimutha) direction. The two-dimensional geom-

To generate a soliton without a trap the repulsive kineticetry can be achieved in an axially symmetric configuration
pressure has to balance the attractive force. For a condensagg applying a strong trap in the axial directi¢8]. This is
of sizeL, the kinetic energy is proportional 102 whereas also equivalent to applying a very weak trap in the radial
the attraction is proportional ta™ in D dimensions. The direction. In both cases the radial dimension of the conden-
effective potential, which is a sum of these two terms, has &ate is much larger than the axial dimension and a 2D treat-
confining minimum only foD=1, leading to a stable bound ment can be justified. Vortex solitons are rotating solitons of
state[8,9]. Thus no stabilization can be obtained in 2D or 3D an attractive condensate and it is suggestive that a similar
and any attempt to create a soliton leads to either collapse @theme can also be used to stabilize a vortex soliton of a
an expansion to infinity. trapless condensate in 3D. After the experimental observa-

A scheme of stabilization of a soliton in two dimensionstion [15] of a vortex in a rotating BEC and the theoretical
has been suggest¢#l, 10| recently by a rapid periodic tem- prediction[6] of a radially trapped bright vortex soliton, the
poral modulation of scattering lengéhof angular frequency experimental stabilization of trapless vortex solitons seems
w via a—ag[1-c sin(wt)] wherea, andc are constants and viable. However, the stabilization of a vortex soliton in 3D
t is time. Such a modulation of the scattering length is pos<alls for a full three-dimensional calculation and is beyond
sible by manipulating an external magnetic field near a Festhe scope of the present study. In the present study we stick
hbach resonancgll] and has been employed in different to a two-dimensional circularly symmetric configuration. It
studies of the BEG12]. By such a modulation the atomic is well known that in a real 3D problem, the vortices are
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unstable against azimuthal perturbation which breaks the azalong thez axis, ¥(p,t)=¢(p,t)expiL ¢), where ¢ is the
muthal symmetry and calls for a full 3D treatment. However,azimuthal angle. Then the radial part of the GP equatin
these degrees of freedom are expected to be partially supecomeg14]

pressed in the limit of a very strong azimuthal trap or a very

weak radial trap when the vortex dynamics becomes essen- 9 P 1 1o, L2
tially two dimensional. In that limit a circularly symmetric T 902 pap *102° d(t) + 2

2D calculation for a bright vortex soliton should be suffi-
cient. In this paper we find that such a 2D vortex is stable
against radial perturbation. However, we have not estab-
lished its stability under transverse perturbation. The stability
under transverse perturbation can be tested by a calculationith normalization 2r[3dpp|¢(p;t)|?=1. In Eq.(5) we have

in Cartesian coordinates and would be an investigation ointroduced a strength parametd(t) with the radial trap.
future interest. Normally, in the presence of the radial trdft) =1. When the

In Sec. Il we present the mean-field model which we useadial trap is switched offl(t) will be reduced to 0.
in our study. In Secs. Ill and 1V, respectively, we present the The spherically symmetric limit of the three-dimensional
variational and numerical results of our investigation and inGP equation(2) is obtained by takingw,=w,= ;. In the
Sec. V we present our conclusions. spherically symmetric configurationV(f,t)=¢(r,t). Then
the radial part of the GP equati@®) becomes

+ 4027 o(p; D)2 | e(p;t) = 0, (5)

Il. MEAN-FIELD MODEL

2 2
We use the mean-field GP equation for the present inves{— ii - '9—2 _29 + wrzrzd(t) + sq-m\@ o(r;t)? | e(r;t)
tigation [9]. In terms of an external reference angular fre- at arc rar 40

quency{) and lengthl=#%/(mQ) the GP equation for the =0, (6)
time-dependent Bose-Einstein condensate wave function

W(r;t) at positionr and timet can be rewritten in dimen- with normalization 4r[5r2dr|e(r ;t)|>=1. Here, as in Eq5),

sionless form a$l14] d(t) is a strength parameter which is to be reduced to 0 from
2 2 1 when the radial trap is switched off.
{_ ii V24 }(ﬂepz + &22> +8\2mn| W (F; t)|2:|\I/(F- 1) Equations(5) and (6) represent nonrotatingL=0) and
at " 4\0? 0? ’ ’ vortex solitons(L # 0) rotating aroundz axis in the quasi-
-0, ) two-dimensional and spherically symmetric three-

dimensional cases, respectively. To study the solitons we fi-
where length, timey?, and wave function are expressed in nally setd(t)=0 in these equations. It should be noted ®at
units of 1/v2, Q7%, (1/v2)2, and (1/12)7* respectively. s supposed to be a constant reference frequency and not the
Here nonlinearityn=Na/l, mis the mass andll the number  trap frequencies, or w,. However, we took in Eq¥3)—(5)
of atoms in the condensate, ardthe atomic scattering the conditionw,={). This does not correspond to any spe-
length. The scattering length and nonlinearityn are nega-  cialization but only simplifies the equations algebraically.
tive for an attractive condensate and positive for a repulsiv@levertheless, it is of advantage to taReto have the same
condensate. In Eq2) there is an axially symmetric har- order of magnitude as an experimental trap frequency—for
monic trap with angular frequenay, in the radial direction example,Q)= 27X 80 Hz. With this value of) the dimen-
p andw, in the axial directiorz. The normalization condition sjonless time unit corresponds t6)*=1/(27x80) s
in Eq. (2) is [d|W(F;1)|?=1. ~2 ms. In Eq.(6), Q is a constant an€l # w,.

The quasi-2D limit of Eq(2) is achieved by considering  We solve the GP equatiorf§) and(6) numerically using
Q=w,>w,. This condition is satisfied by taking the limit the split-step time-iteration method employing the Crank-
w,—0 for a fixed 2=w,. This corresponds to a pancake- Nicholson discretization scheme described recei#}. The
shaped condensate and we look for a solution of the fornime iteration is started with the known oscillator solution of
V(ri)=A@¥p;t) with A2 satisfying the one- these equations with zero nonlinearity Then in the course

dimensional ground-state oscillator equation of time iteration the attractive nonlinearity is switched on
P 2 1 very slowly and in the initial stage the harmonic trap is also
-— A+ = A=A, (3)  switched off slowly by changingi(t) from 1 to 0. If the
dZ 4 2 nonlinearity is increased rapidly the system collapses. The
with |A(2) 2:\’,mexd_22/2] andf”, | A(2)[?dz=1. Mul- tendency to collapse must be avoided to obtain a stabilized

soliton. After switching off the harmonic trap in Eq$) and
(6) and after slowly introducing a final attractive nonlinearity
Ny, if nis replaced byny[1-c sin(wt)], a stabilization of the

tiplying Eq. (2) by A*(2) and integrating over we get the
guasi-two-dimensional GP equation fe(p;t) [8]:

d ) 122 5 T final solution could be obtained for a suitably choseand a
TR AT +A4n\2m|y(p; 0| [#(p;) =0, (4)  large w. The stabilization could be obtained for a range of
values ofc and w provided than, is negative corresponding
with normalization [dp|y(p;t)|?=1. In a quantized vortex to attraction. After some experimentation with E¢8) and
state[14], with each atom having angular momentimh (6) we opted for the choice=4 andw=10s in all our cal-
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1 T T T dR(t)
=100 —— —— =2R()BO), (9)
9 dt
0 5 L go = '200 _—
| 202 500 gt 2
< i o 2Bt + — . 10
S 0 dt R A 2\273R(t) (10
05 [ From Eqs(9) and(10) we get the following second-order
differential equation for the evolution of the width:
-1 : : : d’R(t) 4  go+g;Sin(wt)
0 2 4 6 8 = + : (11)
(@ A d? Rt \27%RA1)
15 with g=gy+g;sin(wt), whereg, corresponds to the constant
' ' Jo=-100 —— part of the scattering length amgl to the oscillating part. We
T 9o =-200 —— 1 separateR(t) into a slowly varying partA(t) and a rapidly
05 | 9o = 288 — ] varying partB(t) by R(t)=A(t)+B(t). Substituting this into
~ ot Y0 = Eqg. (11) and retaining terms on the order of? in B(t) we
;5 05 | obtain the following equations of motion f@&(t) and A(t):
A d?B(t) _ gssin(wt)
15| d?  V2m3ANY)
_2 1 1 1 /_
0 2 4 6 8 At 4 . 9o 2v2gi(B(t)sin(wt))
(b) A a2 AX(H) \;ﬁ A%(1) T2A5(t) ,
fl(;; 1. Tfflzfgec_“z"gop‘itgggw(% O_f;;q'(l“) VSAin ?rbiltrary where(--) denotes the time average over rapid oscillations.
units for go= ’ ’ : an @drom upper to lower Using the solutionB(t)=-g;sin(wt)/[V2mw?A%(1)], the

curve) for (8) =107 and(b) w=20. . .
urve for @ » ®) @ equation of motion foA(t) becomes

culations except in Fig.(b) in 2D and 3D—variational and d’At) 4 % gf
numerical. In Fig. {b) we report some results fes=20sm for 2 " T 53T 3 250 (12
i dt A V21 A TPcA
comparison.
a2 Jo o
I1l. VARIATIONAL RESULTS = + (13

AA| A2 3\23A3 ¥ 8wt |

To understand how the stabilization can take place we o ] ]
employ a variational method with the following Gaussian The quantity in the square brackets in E43) is the effec-
wave function for the solution of Eq$5) and(6) [8,10: tive potentialU(A) of the equation of motion:

2 . _ g g
o(r,t)= N(t)r'—exp[— 2R + '5,3(t)r2 + Ia(t)] . (7 U(A) = 22 + 3\’,272%3 + 53 ;2 2 (14)

whereN(t), R(t), B(t), and«(t) are the normalization, width, Small oscillations around a stable configuration are possible
chirp, and phase of the soliton, respectively. In 3if) when there is a minimum in this effective potentjd]. Un-

=[#R¥2(t)] and L=0, and in 2D, N(t) fortunately, this condition does not lead to a simple analytical
=[771’2RL*1(I)\E]‘1. The Lagrangian density for generating solution. However, straightforward numerical study reveals

Eq. (6) with w,=0 is [10] that this effective potential has a minimum for a negatiye

_ s oo corresponding to attraction witly,| above a critical value.

L) = e r?_<p* 9@ L?|¢] 1 P& For a numerical calculation the quantityis taken to be of
o\t T ¥ T ar 2 9% the formg=go+gysin(wt) =gg[ 1 - 4sinwt)] so thatg, =-4g

®) with gy negative(attractive.
In Figs. Xa) and 1b) we plot the effective potentidl(A)
WheregEBTrn\s“E in 3D andgE4n\s’Z-r in 2D. The trial wave vs A for different gy for ©=107 and w=20m, respectively.
function (7) is substituted in the Lagrangian density and theWe find that, as the value dj, is reduced, the effective
effective Lagrangian is calculated by integrating the La-potential develops a minimum which gradually becomes
grangian densityt 4= [L(@)dr. deeper and deeper. The depth of the minimum in the effec-
The Euler-Lagrange equations fB(t) and 8(t) are then tive potential increases as increases. Fow=10m and gy

obtained from the effective Lagrangian in standard fashion irF—100 there is no minimum in the effective potenti#lA),

3D: whereas a minimum has appeared ¢g=-200 which be-
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1

comes deeper fog,=—300 and —500. Fow=20mr andgy=

-100, a minimum has already appeared in Figp).1In the

rest of this study we use the frequeneoy 10, although its 108
actual value has no consequence on the calculation as long as . los

it is large corresponding to rapid oscillations. A careful ex- = =
amination reveals that the threshold for the minimum in the = 104 =
present case is given lyy~-116 for w=10w. Hence, for

=107 stabilization is not possible fog,=-100, and it is 102
possible forgy<-116. Also there is no upper limit fdg|

and stabilization is possible for an arbitrarily largg|. As 1000
the first and third terms on the right-hand si@RHS) of Eq. (a) ‘

(14) are positive, no stabilization is possible for a positige

corresponding to repulsion. We shall verify these findings by 50 - . . 1
actual numerical calculation in the following.

Similarly, a two-dimensional soliton of Ed5) leads to 40 108
the following equation of motion for the small oscillation of 30 106
width A(t) for a generaL: § 1 ' §

At) 9 | gotam L1 o2 15 20 8D 104
d? ~ 9Al wA?  47P0PA% | (19 10 102
A similar equation was obtained before fo=0 [8]. The 0 ; : : 0
condition for small oscillations is given bg,<-4m or 0 40 80 120 160 200
n<-\#/2, when the first term on the RHS of E(L5) be- (b) !

comes negative, allowing for the possibility of a minimum in
the effective potential in the square brackets resulting irgtr
stable small oscillations.

FIG. 2. Variation of nonlinearity parametdn(t)] and the
ength of radial trap(t) in (a) Eq. (5) and(b) Eq. (6) in the initial
stage of stabilization until the desired final nonlineariy is at-
tained at timety. For t>ty, the oscillating nonlinearityn=ng[1
-4 sin{10m(t—tg)}] is applied. In 2D,ng=-9.1 for L=0 andny=

IV. NUMERICAL RESULTS -9.7 forL=1; in 3D, ng=-48.9.

With this preliminary variational study we turn to a full
numerical investigation of Eq¢5) and(6) in 2D and 3D. As  tive in the final stage and it eventually collapses. If the non-

a warm-up it is worthwhile to redo the numerical study for alinearity after switching off the harmonic trap is weak for its
L=0 soliton in 2D and extend it to A=1 vortex soliton Size, the system becomes weakly attractive in the final stage

before considering =0 soliton in 3D. and it expands to infinity. The final nonlinearity has to have
There could be many ways of numerical stabilization ofan appropriate intermediate value, decided by trial, for even-
the soliton. In the course of time evolution of the GP equatual stabilization. In Figs. @) and 2b) we provide the actual
tion certain initial conditions are necessary for the stabilizatime variation of nonlinearityn(t)| as well as the strength
tion of a soliton with a specific nonlinearityn,| above a parameter for the radial tragh(t) employed in Eqs(5) and
critical value. As one requires a lar¢gtractive nonlinearity  (6) for 2D and 3D, respectively. A fine-tuning of the final
Ing| for stabilization, one needs to reduce the harmonic tramonlinearity [n(t)| was needed for stabilization over a large
frequency while increasing the nonlinearityl. Unless the interval of time, as reported in this paper.
trap frequency is reduced the system will collafis§ due to The results of numerical calculations based on&yare
attraction. In other words, one allows the system to expandhown in Figs. 8) and 3b) for the two-dimensional soliton
and simultaneously increase the nonlineality During this ~ (L=0) and vortex solitor(L = 1), respectively, where we plot
process the harmonic trap is removed, and after the finghe radial part of the wave function at times
nonlinearityn, is attained at timé, the periodically oscillat- =0,50,100, 150,200,250, 3@fter stabilization is obtained.
ing nonlinearity n=ng[1-4si{10m(t-ty)}] is applied for With the present value of)=27X80 Hz, t=300 corre-
t>t,. If the size of the condensate is close to the desired sizesponds to 600 ms.
a stabilization of the condensate for a large time is obtained. Next we turn to a numerical calculation in 3D. The rela-
This procedure could also be followed in an experimentation between the constagtconsidered in the variational cal-
attempt to stabilize a soliton. Saito and Uef# used a culation and nonlinearityn in the GP equation isg
qualitatively similar, but quantitatively different, procedure =8xn\2~35n. From the variational calculation presented
for stabilization. The procedure of Saito and Ueda could alsin Fig. 1(a) for =10, we find that the condition for stabi-
be applied successfully in the present context. lization of a soliton in 3D igy<<—116 which corresponds to
The correct implementation of the above calculationaln,<-3.3, approximately. From a complete numerical solu-
scheme is important for stabilization. If tigattractive non-  tion of the GP equatiof6) we also find that there is a thresh-
linearity after switching off the harmonic trap is strong for old of nonlinearity for stabilization consistent with the varia-
the size of the condensate, the system becomes highly attratienal calculation. In the numerical calculation it was
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FIG. 3. () Wave function|¢(p)| of stabilized solitons in 2D

80
P

120 160 200

with L=0 and n=-9.1-4 si10#t)] in Eqg. (5) at timest

=0,50,100,150,200,25800. (b) Same for vortex solitons with
L=1 and n=-9.71-4 sif(10xt)]

=0,50,100,150,200,25600.

in Eq. (5 at times t

difficult to obtain accurately the threshold value mf for
stabilization. However, we could not obtain stabilization ofand A of Ref. [10] follows from the present Eq11) and

the soliton forny>-10. The stabilization is possible for their Eq.(37).] The nonlinearityA =-1 is much too weak for
Strongerno (|arger|no|). In F|g 4 we p|ot the radial wave Obta|n|ng a stabilized soliton in 3D. It should be noted that

function of Eqg. (6)

in

3D at

times
=0,50,100,150,200,250,300 fop=-48.9 after obtaining

t

PHYSICAL REVIEW A 69, 063613(2004)

Of the three cases presented in Figs. 3 and 4 the vortex
soliton of Fig. 3b) is the most stable with minimum oscilla-
tions. For the rotatingvortex) soliton, the outwaratentrifu-
gal force approximately balances the attractive inward force
(as seen in a rotating framerhe final exact balance is pro-
vided by the oscillating nonlinearity. However, for0 there
is no centrifugal force and stabilization is more difficult.

The stabilization in both 2D and 3D can be obtained for
(attractive BEC solitons with nonlinearityng| larger than a
critical value. In 2D the variational critical nonlinearity is
ngiw=—V7/2, whereas the final average nonlinearities in
Figs. 3a and 3b) areny=-9.1 and -9.7, respectively. In
actual numerical calculations we found that the stronger the
nonlinearity|ny|, the more sustained was the stabilization of
the soliton. The effective potential develops a deeper mini-
mum for a larger nonlinearitjny|. The variational threshold
for stabilization in 3D igng;| = 3.3. In Fig. 4 the actual final
average nonlinearitjny,|=48.9 is much larger than the varia-
tional thresholdn| = 3.3.

Using a variational procedure alone, not quite identical
with the present approach, Abdullaet al. [10] also had
found that stabilization of a soliton could be possible in 3D
via a temporal modulation of the scattering length. However,
they confirmed after further analytical and numerical studies
that such a stabilization does not take place in 3D. Saito and
Ueda[8], on the other hand, are silent about the possibility of
the stabilization of a soliton in 3D. We point out one possible
reason for the negative result obtained in BID]. The non-
linearity paramete =-1 used in Ref[10] for stabilizing a
soliton in 3D corresponds in our notation tog=
—\273/[8m/2]=—\w/8~=-0.22. [The relation betweem,

the value ofny used for the stabilization of a soliton in 3D in
the present calculation is —-48.9, whereas the variational

the stabilization. The narrow spread of the wave functiorthreshold for stabilization igg;;~-3.3. These values of non-
over the large interval of time shows the quality of stabiliza-linearities are much stronger than the vahye—0.22 used
tion. In both Figs. 3 and 4 the results at intermediate times lién Ref. [10].

in the region covered by the plots. The plot of the full wave
function, rather than that of mean radii or the wave function

V. DISCUSSION AND CONCLUSION

at a particular point versus time, clearly shows the degree of

stabilization achieved.
0.006 .

0.005 ¢
0.004
0.003
0.002
0.001

lo(r)]

O 1
0 10

FIG. 4. Wave functiorje(r)| of stabilized soliton in 3D witm

=-48.91-4 sif10at)]  in
=0,50, 100,150,200, 25800.

Eq.

(6) at  times

t

In this paper we have discussed the stabilization of a
bright vortex soliton in 2D and a bright soliton in 3D by a
periodic temporal modulation of the scattering length. Now
we compare the dimensionless parameters used in the simu-
lations to typical numbers for an experimental systeRb.

This system has a Feshbach resonance which can be used to
vary the effective interaction between atoms by varying the
atomic scattering lengthil7]. With the reference trafg)
=27 X 80 Hz, for ®Rb the dimensionless length parameter
[=\Aa/(MmQ)=1.2 um. In a 3D condensate of 10 000 atoms,
the variational critical nonlinearitjn.,;|=3.3 for this system
corresponds to a scattering lengthn;;|/N=-0.4 nm. The
applied nonlinearityny=-48.9 of the present 3D simulation
corresponds to a scattering lengtl- —5.9 nm. The oscillat-
ing nonlinearity corresponds in this cage~=-5.9 nn) to a
variation of scattering length between -30 nm and 18 nm.
For 100 000 atoms the above values for scattering length will
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be reduced by a factor of 10. Similar variations of the scat- In conclusion, from a numerical solution of the GP equa-
tering length of®®Rb have already been realized in the labo-tion we find that it is possible to stabilize a matter-wave
ratory via a Feshbach resonance in actual experinjddls  bright soliton in 3D and a vortex soliton in 2D by employing
Hence it might be possible to stabilize®8Rb condensate a rapid periodic modulation of the scattering lengtiia a
using a Feshbach resonance. Witk 277 X 80 Hz, the inter- Feshbach resonance with an attractivegativgé mean value
val of stabilization of 300 units of time in Figs. 3 and 4 a; via a—ag[1-c sin(wt)] with a largec and w. From a
corresponds to 600 ms, which is a reasonably large intervalariational calculation we show that this oscillation produces
of time. a minimum in the effective potential, thus producing a po-
The present study has important consequences in the getential well in which the soliton can be trapped and execute
eration of a stable spatiotemporal soliton of nonlinear opticsmall oscillations. The sinusoidal variation afis actually
[2,18 which is an optical wave packet confined in all three not needed for stabilization; any periodic fluctuation between
directions and often referred to as a light bullet. The exispositive and negative values stabilizes the soliton. This is of
tence and stability of self-trapped beams in a nonlinear meinterest to investigate if such BEC “bullets” could be created
dium has been a subject of active research since its suggesxperimentally in 3D. As the mathematical equation satisfied
tion [18]. Such a spatiotemporal optical soliton satisfies arby a light bullet[2] in 3D is quite similar to the nonlinear
equation in an anomalously dispersive medium quite similathree-dimensional equatiq) we suggest the possibility of
to Eq.(6) with w,=0 [2]. Hence a stable solution for a light creating light bullets in a layered Kerr medium with sign-
bullet in actual 3D can be obtained through a modulation ofaltering nonlinearity.
the cubic Kerr nonlinearity. This modulation can be achieved

ip a Igyered nonlinear medigm with sign-alterin'g. Ke'rr non- ACKNOWLEDGMENTS
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