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Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright
soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein condensate(BEC) by a rapid
periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also
stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC,
the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be
stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.

DOI: 10.1103/PhysRevA.69.063613 PACS number(s): 03.75.Kk, 03.75.Lm

I. INTRODUCTION

Solitons are solutions of wave equation where localization
is obtained due to a nonlinear attractive interaction. Solitons
have been noted in optics[1], high-energy physics and water
waves [1], and more recently Bose-Einstein condensates
(BEC’s) [3,4]. The bright solitons of attractive BEC’s repre-
sent local maxima[4–6], whereas dark solitons of repulsive
BEC’s represent local minima[3].

A classic textbook example of solitons appears in the fol-
lowing one-dimensional(1D) nonlinear free Schrödinger
equation in dimensionless units[2,7]:

F− i
]

] t
−

]2

] y2 − uCsy,tdu2GCsy,td = 0. s1d

The solitons of this equation are localized solutions due to
the attractive nonlinear interaction −uCsy,tdu2 with wave
function at time t and position y: Csy,td
=Î2uEuexps−iEtdsechsyÎuEud, with E the energy [7]. The
Schrödinger equation with a nonlinear interaction −uCu2 does
not sustain a localized solitonic solution in 2D or 3D. How-
ever, a radially trapped and axially free version of this equa-
tion in 3D does sustain such a bright solitonic solution[5,6]
which has been observed experimentally in BEC’s[4].

To generate a soliton without a trap the repulsive kinetic
pressure has to balance the attractive force. For a condensate
of size L, the kinetic energy is proportional toL−2 whereas
the attraction is proportional toL−D in D dimensions. The
effective potential, which is a sum of these two terms, has a
confining minimum only forD=1, leading to a stable bound
state[8,9]. Thus no stabilization can be obtained in 2D or 3D
and any attempt to create a soliton leads to either collapse or
an expansion to infinity.

A scheme of stabilization of a soliton in two dimensions
has been suggested[8,10] recently by a rapid periodic tem-
poral modulation of scattering lengtha of angular frequency
v via a→a0f1−c sinsvtdg wherea0 andc are constants and
t is time. Such a modulation of the scattering length is pos-
sible by manipulating an external magnetic field near a Fes-
hbach resonance[11] and has been employed in different
studies of the BEC[12]. By such a modulation the atomic

interaction can be easily switched between attractive and re-
pulsive, thus resulting in a rapid contraction and expansion
of the condensate. If the constants of modulation are appro-
priately chosen, this leads to a stabilization of the condensate
in 2D with breathing oscillations[8]. However, it has been
“proved” by analytic and numerical calculations in Ref.[10]
that such a stabilization does not take place in 3D.

As the problem of the stabilization of a soliton in a trap-
less condensate is of utmost interest in several areas—e.g.,
optics [2,13], nonlinear physics[2], and Bose-Einstein
condensates—we reexamine this problem and find that a
temporal modification of the scattering length can also lead
to a stabilization of the trapless soliton in 3D. We use both
variational as well as numerical solutions of the mean-field
time-dependent Gross-Pitaevskii(GP) equation to establish
our claim. To the best of our knowledge this is the first sug-
gestion of the stabilization of a trapless soliton in 3D. We
find numerically that an untrapped attractive condensate can
maintain a reasonably constant spatial profile over a large
interval of time through temporal modulation of thes-wave
scattering length. We also point out a possible reason for the
failure to stabilize a bright soliton in 3D in Ref.[10].

The present approach is also extended to stabilize vortex
solitons in 2D[14] with angular momentum" per atom in
the axial(azimuthal) direction. The two-dimensional geom-
etry can be achieved in an axially symmetric configuration
by applying a strong trap in the axial direction[8]. This is
also equivalent to applying a very weak trap in the radial
direction. In both cases the radial dimension of the conden-
sate is much larger than the axial dimension and a 2D treat-
ment can be justified. Vortex solitons are rotating solitons of
an attractive condensate and it is suggestive that a similar
scheme can also be used to stabilize a vortex soliton of a
trapless condensate in 3D. After the experimental observa-
tion [15] of a vortex in a rotating BEC and the theoretical
prediction[6] of a radially trapped bright vortex soliton, the
experimental stabilization of trapless vortex solitons seems
viable. However, the stabilization of a vortex soliton in 3D
calls for a full three-dimensional calculation and is beyond
the scope of the present study. In the present study we stick
to a two-dimensional circularly symmetric configuration. It
is well known that in a real 3D problem, the vortices are
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unstable against azimuthal perturbation which breaks the azi-
muthal symmetry and calls for a full 3D treatment. However,
these degrees of freedom are expected to be partially sup-
pressed in the limit of a very strong azimuthal trap or a very
weak radial trap when the vortex dynamics becomes essen-
tially two dimensional. In that limit a circularly symmetric
2D calculation for a bright vortex soliton should be suffi-
cient. In this paper we find that such a 2D vortex is stable
against radial perturbation. However, we have not estab-
lished its stability under transverse perturbation. The stability
under transverse perturbation can be tested by a calculation
in Cartesian coordinates and would be an investigation of
future interest.

In Sec. II we present the mean-field model which we use
in our study. In Secs. III and IV, respectively, we present the
variational and numerical results of our investigation and in
Sec. V we present our conclusions.

II. MEAN-FIELD MODEL

We use the mean-field GP equation for the present inves-
tigation [9]. In terms of an external reference angular fre-
quencyV and lengthl ;Î" / smVd the GP equation for the
time-dependent Bose-Einstein condensate wave function
CsrW ; td at positionrW and timet can be rewritten in dimen-
sionless form as[14]

F− i
]

] t
− ¹r

2 +
1

4
Svr

2

V2r2 +
vz

2

V2z2D + 8Î2pnuCsrW;tdu2GCsrW;td

= 0, s2d

where length, time,¹2, and wave function are expressed in
units of l /Î2, V−1, sl /Î2d−2, and sl /Î2d−3/2, respectively.
Here nonlinearityn=Na/ l, m is the mass andN the number
of atoms in the condensate, anda the atomic scattering
length. The scattering lengtha and nonlinearityn are nega-
tive for an attractive condensate and positive for a repulsive
condensate. In Eq.(2) there is an axially symmetric har-
monic trap with angular frequencyvr in the radial direction
r andvz in the axial directionz. The normalization condition
in Eq. (2) is edrWuCsrW ; tdu2=1.

The quasi-2D limit of Eq.(2) is achieved by considering
V=vz@vr. This condition is satisfied by taking the limit
vr→0 for a fixed V=vz. This corresponds to a pancake-
shaped condensate and we look for a solution of the form
CsrW ; td=AszdcsrW ; td with Aszd satisfying the one-
dimensional ground-state oscillator equation

−
d2

dz2Aszd +
z2

4
Aszd =

1

2
Aszd, s3d

with uAszdu2=Î1/s2pdexpf−z2/2g ande−`
` uAszdu2dz=1. Mul-

tiplying Eq. (2) by Apszd and integrating overz we get the
quasi-two-dimensional GP equation forcsrW ; td [8]:

F− i
]
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− ¹r

2 +
1

4

vr
2

V2r2 + 4nÎ2pucsrW ;tdu2GcsrW ;td = 0, s4d

with normalizationedrW ucsrW ; tdu2=1. In a quantized vortex
state [14], with each atom having angular momentumL"

along thez axis, csrW ,td=wsr ,tdexpsiLfd, where f is the
azimuthal angle. Then the radial part of the GP equation(4)
becomes[14]
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+ 4nÎ2puwsr;tdu2Gwsr;td = 0, s5d

with normalization 2pe0
`drruwsr ; tdu2=1. In Eq.(5) we have

introduced a strength parameterdstd with the radial trap.
Normally, in the presence of the radial trapdstd=1. When the
radial trap is switched offdstd will be reduced to 0.

The spherically symmetric limit of the three-dimensional
GP equation(2) is obtained by takingvz=vr=vr. In the
spherically symmetric configuration,CsrW ,td=wsr ,td. Then
the radial part of the GP equation(2) becomes

F− i
]

] t
−

]2

] r2 −
2

r

]

] r
+

vr
2

4V2r2dstd + 8pnÎ2uwsr ;tdu2Gwsr ;td

= 0, s6d

with normalization 4pe0
`r2druwsr ; tdu2=1. Here, as in Eq.(5),

dstd is a strength parameter which is to be reduced to 0 from
1 when the radial trap is switched off.

Equations(5) and (6) represent nonrotatingsL=0d and
vortex solitonssLÞ0d rotating aroundz axis in the quasi-
two-dimensional and spherically symmetric three-
dimensional cases, respectively. To study the solitons we fi-
nally setdstd=0 in these equations. It should be noted thatV
is supposed to be a constant reference frequency and not the
trap frequenciesvr or vz. However, we took in Eqs.(3)–(5)
the conditionvz=V. This does not correspond to any spe-
cialization but only simplifies the equations algebraically.
Nevertheless, it is of advantage to takeV to have the same
order of magnitude as an experimental trap frequency—for
example,V;2p380 Hz. With this value ofV the dimen-
sionless time unit corresponds toV−1=1/s2p380d s
<2 ms. In Eq.(6), V is a constant andVÞvr.

We solve the GP equations(5) and (6) numerically using
the split-step time-iteration method employing the Crank-
Nicholson discretization scheme described recently[16]. The
time iteration is started with the known oscillator solution of
these equations with zero nonlinearityn. Then in the course
of time iteration the attractive nonlinearity is switched on
very slowly and in the initial stage the harmonic trap is also
switched off slowly by changingdstd from 1 to 0. If the
nonlinearity is increased rapidly the system collapses. The
tendency to collapse must be avoided to obtain a stabilized
soliton. After switching off the harmonic trap in Eqs.(5) and
(6) and after slowly introducing a final attractive nonlinearity
n0, if n is replaced byn0f1−c sinsvtdg, a stabilization of the
final solution could be obtained for a suitably chosenc and a
large v. The stabilization could be obtained for a range of
values ofc andv provided thatn0 is negative corresponding
to attraction. After some experimentation with Eqs.(5) and
(6) we opted for the choicec=4 andv=10p in all our cal-
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culations except in Fig. 1(b) in 2D and 3D—variational and
numerical. In Fig. 1(b) we report some results forv=20p for
comparison.

III. VARIATIONAL RESULTS

To understand how the stabilization can take place we
employ a variational method with the following Gaussian
wave function for the solution of Eqs.(5) and (6) [8,10]:

wsr,td = NstdrLexpF−
r2

2R2std
+

i

2
bstdr2 + iastdG , s7d

whereNstd, Rstd, bstd, andastd are the normalization, width,
chirp, and phase of the soliton, respectively. In 3D,Nstd
=fp3/4R3/2stdg−1 and L=0, and in 2D, Nstd
=fp1/2RL+1stdÎL!g−1. The Lagrangian density for generating
Eq. (6) with vr =0 is [10]

Lswd =
i

2
S ] w

] t
wp −

] wp

] t
wD − U ] w

] r
U2

−
L2uwu2

r2 −
1

2
guwu4,

s8d

whereg;8pnÎ2 in 3D andg;4nÎ2p in 2D. The trial wave
function (7) is substituted in the Lagrangian density and the
effective Lagrangian is calculated by integrating the La-
grangian density:Leff=eLswddrW.

The Euler-Lagrange equations forRstd and bstd are then
obtained from the effective Lagrangian in standard fashion in
3D:

dRstd
dt

= 2Rstdbstd, s9d

dbstd
dt

=
2

R4std
− 2b2std +

g

2Î2p3R5std
. s10d

From Eqs.(9) and(10) we get the following second-order
differential equation for the evolution of the width:

d2Rstd
dt2

=
4

R3std
+

g0 + g1sinsvtd
Î2p3R4std

, s11d

with g=g0+g1sinsvtd, whereg0 corresponds to the constant
part of the scattering length andg1 to the oscillating part. We
separateRstd into a slowly varying partAstd and a rapidly
varying partBstd by Rstd=Astd+Bstd. Substituting this into
Eq. (11) and retaining terms on the order ofv−2 in Bstd we
obtain the following equations of motion forBstd andAstd:

d2Bstd
dt2

=
g1sinsvtd
Î2p3A4std

,

d2Astd
dt2

=
4

A3std
+

g0

Î2p3A4std
−

2Î2g1kBstdsinsvtdl
p3/2A5std

,

wherek¯l denotes the time average over rapid oscillations.
Using the solutionBstd=−g1sinsvtd / fÎ2p3v2A4stdg, the

equation of motion forAstd becomes

d2Astd
dt2

=
4

A3 +
g0

Î2p3A4
+

g1
2

p3v2A9 s12d

=−
]

] AF 2

A2 +
g0

3Î2p3A3
+

g1
2

8p3v2A8G . s13d

The quantity in the square brackets in Eq.(13) is the effec-
tive potentialUsAd of the equation of motion:

UsAd =
2

A2 +
g0

3Î2p3A3
+

g1
2

8p3v2A8 . s14d

Small oscillations around a stable configuration are possible
when there is a minimum in this effective potential[8]. Un-
fortunately, this condition does not lead to a simple analytical
solution. However, straightforward numerical study reveals
that this effective potential has a minimum for a negativeg0
corresponding to attraction withug0u above a critical value.
For a numerical calculation the quantityg is taken to be of
the formg=g0+g1sinsvtd=g0f1−4sinsvtdg so thatg1=−4g0

with g0 negative(attractive).
In Figs. 1(a) and 1(b) we plot the effective potentialUsAd

vs A for different g0 for v=10p and v=20p, respectively.
We find that, as the value ofg0 is reduced, the effective
potential develops a minimum which gradually becomes
deeper and deeper. The depth of the minimum in the effec-
tive potential increases asv increases. Forv=10p and g0
=−100 there is no minimum in the effective potentialUsAd,
whereas a minimum has appeared forg0=−200 which be-

FIG. 1. The effective potentialUsAd of Eq. (14) vs A in arbitrary
units for g0=−100,−200,−300, and −500(from upper to lower
curve) for (a) v=10p and (b) v=20p.
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comes deeper forg0=−300 and −500. Forv=20p andg0=
−100, a minimum has already appeared in Fig. 1(b). In the
rest of this study we use the frequencyv=10p, although its
actual value has no consequence on the calculation as long as
it is large corresponding to rapid oscillations. A careful ex-
amination reveals that the threshold for the minimum in the
present case is given byg0<−116 for v=10p. Hence, for
v=10p stabilization is not possible forg0=−100, and it is
possible forg0,−116. Also there is no upper limit forug0u
and stabilization is possible for an arbitrarily largeug0u. As
the first and third terms on the right-hand side(RHS) of Eq.
(14) are positive, no stabilization is possible for a positiveg0
corresponding to repulsion. We shall verify these findings by
actual numerical calculation in the following.

Similarly, a two-dimensional soliton of Eq.(5) leads to
the following equation of motion for the small oscillation of
width Astd for a generalL:

d2Astd
dt2

= −
]

] A
Fg0 + 4p

pA2 +
1

4

g1
2

p2v2A6G . s15d

A similar equation was obtained before forL=0 [8]. The
condition for small oscillations is given byg0,−4p or
n,−Îp /2, when the first term on the RHS of Eq.(15) be-
comes negative, allowing for the possibility of a minimum in
the effective potential in the square brackets resulting in
stable small oscillations.

IV. NUMERICAL RESULTS

With this preliminary variational study we turn to a full
numerical investigation of Eqs.(5) and(6) in 2D and 3D. As
a warm-up it is worthwhile to redo the numerical study for a
L=0 soliton in 2D and extend it to aL=1 vortex soliton
before considering aL=0 soliton in 3D.

There could be many ways of numerical stabilization of
the soliton. In the course of time evolution of the GP equa-
tion certain initial conditions are necessary for the stabiliza-
tion of a soliton with a specific nonlinearityun0u above a
critical value. As one requires a large(attractive) nonlinearity
un0u for stabilization, one needs to reduce the harmonic trap
frequency while increasing the nonlinearityunu. Unless the
trap frequency is reduced the system will collapse[14] due to
attraction. In other words, one allows the system to expand
and simultaneously increase the nonlinearityunu. During this
process the harmonic trap is removed, and after the final
nonlinearityn0 is attained at timet0 the periodically oscillat-
ing nonlinearity n=n0f1−4sinh10pst− t0djg is applied for
t. t0. If the size of the condensate is close to the desired size,
a stabilization of the condensate for a large time is obtained.
This procedure could also be followed in an experimental
attempt to stabilize a soliton. Saito and Ueda[8] used a
qualitatively similar, but quantitatively different, procedure
for stabilization. The procedure of Saito and Ueda could also
be applied successfully in the present context.

The correct implementation of the above calculational
scheme is important for stabilization. If the(attractive) non-
linearity after switching off the harmonic trap is strong for
the size of the condensate, the system becomes highly attrac-

tive in the final stage and it eventually collapses. If the non-
linearity after switching off the harmonic trap is weak for its
size, the system becomes weakly attractive in the final stage
and it expands to infinity. The final nonlinearity has to have
an appropriate intermediate value, decided by trial, for even-
tual stabilization. In Figs. 2(a) and 2(b) we provide the actual
time variation of nonlinearityunstdu as well as the strength
parameter for the radial trapdstd employed in Eqs.(5) and
(6) for 2D and 3D, respectively. A fine-tuning of the final
nonlinearity unstdu was needed for stabilization over a large
interval of time, as reported in this paper.

The results of numerical calculations based on Eq.(5) are
shown in Figs. 3(a) and 3(b) for the two-dimensional soliton
sL=0d and vortex solitonsL=1d, respectively, where we plot
the radial part of the wave function at timest
=0,50,100,150,200,250,300after stabilization is obtained.
With the present value ofV=2p380 Hz, t=300 corre-
sponds to 600 ms.

Next we turn to a numerical calculation in 3D. The rela-
tion between the constantg considered in the variational cal-
culation and nonlinearityn in the GP equation isg
;8pnÎ2<35n. From the variational calculation presented
in Fig. 1(a) for v=10p, we find that the condition for stabi-
lization of a soliton in 3D isg0,−116 which corresponds to
n0,−3.3, approximately. From a complete numerical solu-
tion of the GP equation(6) we also find that there is a thresh-
old of nonlinearity for stabilization consistent with the varia-
tional calculation. In the numerical calculation it was

FIG. 2. Variation of nonlinearity parameterunstdu and the
strength of radial trapdstd in (a) Eq. (5) and(b) Eq. (6) in the initial
stage of stabilization until the desired final nonlinearityn0 is at-
tained at timet0. For t. t0, the oscillating nonlinearityn=n0f1
−4 sinh10pst− t0djg is applied. In 2D,n0=−9.1 for L=0 andn0=
−9.7 for L=1; in 3D, n0=−48.9.
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difficult to obtain accurately the threshold value ofn0 for
stabilization. However, we could not obtain stabilization of
the soliton for n0.−10. The stabilization is possible for
strongern0 (larger un0u). In Fig. 4 we plot the radial wave
function of Eq. (6) in 3D at times t
=0,50,100,150,200,250,300 forn0=−48.9 after obtaining
the stabilization. The narrow spread of the wave function
over the large interval of time shows the quality of stabiliza-
tion. In both Figs. 3 and 4 the results at intermediate times lie
in the region covered by the plots. The plot of the full wave
function, rather than that of mean radii or the wave function
at a particular point versus time, clearly shows the degree of
stabilization achieved.

Of the three cases presented in Figs. 3 and 4 the vortex
soliton of Fig. 3(b) is the most stable with minimum oscilla-
tions. For the rotating(vortex) soliton, the outwardcentrifu-
gal force approximately balances the attractive inward force
(as seen in a rotating frame). The final exact balance is pro-
vided by the oscillating nonlinearity. However, forL=0 there
is no centrifugal force and stabilization is more difficult.

The stabilization in both 2D and 3D can be obtained for
(attractive) BEC solitons with nonlinearityun0u larger than a
critical value. In 2D the variational critical nonlinearity is
ncrit=−Îp /2, whereas the final average nonlinearities in
Figs. 3(a) and 3(b) are n0=−9.1 and −9.7, respectively. In
actual numerical calculations we found that the stronger the
nonlinearityun0u, the more sustained was the stabilization of
the soliton. The effective potential develops a deeper mini-
mum for a larger nonlinearityun0u. The variational threshold
for stabilization in 3D isuncritu<3.3. In Fig. 4 the actual final
average nonlinearityun0u=48.9 is much larger than the varia-
tional thresholduncritu<3.3.

Using a variational procedure alone, not quite identical
with the present approach, Abdullaevet al. [10] also had
found that stabilization of a soliton could be possible in 3D
via a temporal modulation of the scattering length. However,
they confirmed after further analytical and numerical studies
that such a stabilization does not take place in 3D. Saito and
Ueda[8], on the other hand, are silent about the possibility of
the stabilization of a soliton in 3D. We point out one possible
reason for the negative result obtained in 3D[10]. The non-
linearity parameterL=−1 used in Ref.[10] for stabilizing a
soliton in 3D corresponds in our notation ton0=
−Î2p3/ f8pÎ2g=−Îp /8<−0.22. [The relation betweenn0

and L of Ref. [10] follows from the present Eq.(11) and
their Eq.(37).] The nonlinearityL=−1 is much too weak for
obtaining a stabilized soliton in 3D. It should be noted that
the value ofn0 used for the stabilization of a soliton in 3D in
the present calculation is −48.9, whereas the variational
threshold for stabilization isncrit<−3.3. These values of non-
linearities are much stronger than the valuen0=−0.22 used
in Ref. [10].

V. DISCUSSION AND CONCLUSION

In this paper we have discussed the stabilization of a
bright vortex soliton in 2D and a bright soliton in 3D by a
periodic temporal modulation of the scattering length. Now
we compare the dimensionless parameters used in the simu-
lations to typical numbers for an experimental system85Rb.
This system has a Feshbach resonance which can be used to
vary the effective interaction between atoms by varying the
atomic scattering length[17]. With the reference trapV
=2p380 Hz, for 85Rb the dimensionless length parameter
l =Î" / smVd<1.2 mm. In a 3D condensate of 10 000 atoms,
the variational critical nonlinearityuncritu=3.3 for this system
corresponds to a scattering lengtha=ncritl /N<−0.4 nm. The
applied nonlinearityn0=−48.9 of the present 3D simulation
corresponds to a scattering lengtha<−5.9 nm. The oscillat-
ing nonlinearity corresponds in this casesa<−5.9 nmd to a
variation of scattering length between −30 nm and 18 nm.
For 100 000 atoms the above values for scattering length will

FIG. 3. (a) Wave functionuwsrdu of stabilized solitons in 2D
with L=0 and n=−9.1f1−4 sins10ptdg in Eq. (5) at times t
=0,50,100,150,200,250,300. (b) Same for vortex solitons with
L=1 and n=−9.7f1−4 sins10ptdg in Eq. (5) at times t
=0,50,100,150,200,250,300.

FIG. 4. Wave functionuwsrdu of stabilized soliton in 3D withn
=−48.9f1−4 sins10ptdg in Eq. (6) at times t
=0,50,100,150,200,250,300.

STABILIZATION OF BRIGHT SOLITONS AND VORTEX… PHYSICAL REVIEW A 69, 063613(2004)

063613-5



be reduced by a factor of 10. Similar variations of the scat-
tering length of85Rb have already been realized in the labo-
ratory via a Feshbach resonance in actual experiments[17].
Hence it might be possible to stabilize a85Rb condensate
using a Feshbach resonance. WithV=2p380 Hz, the inter-
val of stabilization of 300 units of time in Figs. 3 and 4
corresponds to 600 ms, which is a reasonably large interval
of time.

The present study has important consequences in the gen-
eration of a stable spatiotemporal soliton of nonlinear optics
[2,18] which is an optical wave packet confined in all three
directions and often referred to as a light bullet. The exis-
tence and stability of self-trapped beams in a nonlinear me-
dium has been a subject of active research since its sugges-
tion [18]. Such a spatiotemporal optical soliton satisfies an
equation in an anomalously dispersive medium quite similar
to Eq. (6) with vr =0 [2]. Hence a stable solution for a light
bullet in actual 3D can be obtained through a modulation of
the cubic Kerr nonlinearity. This modulation can be achieved
in a layered nonlinear medium with sign-altering Kerr non-
linearity [10,13]. The possibility of such a stabilization in
two space dimensions was demonstrated in[13], whereas its
impossibility in 3D has been emphasized in[10].

In conclusion, from a numerical solution of the GP equa-
tion we find that it is possible to stabilize a matter-wave
bright soliton in 3D and a vortex soliton in 2D by employing
a rapid periodic modulation of the scattering lengtha via a
Feshbach resonance with an attractive(negative) mean value
a0 via a→a0f1−c sinsvtdg with a largec and v. From a
variational calculation we show that this oscillation produces
a minimum in the effective potential, thus producing a po-
tential well in which the soliton can be trapped and execute
small oscillations. The sinusoidal variation ofa is actually
not needed for stabilization; any periodic fluctuation between
positive and negative values stabilizes the soliton. This is of
interest to investigate if such BEC “bullets” could be created
experimentally in 3D. As the mathematical equation satisfied
by a light bullet [2] in 3D is quite similar to the nonlinear
three-dimensional equation(6) we suggest the possibility of
creating light bullets in a layered Kerr medium with sign-
altering nonlinearity.
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