Marcela Brasil de Castro Godinho

A influência das barreiras fluviais, clima e topografia nas regiões biogeográficas dos anuros na Floresta Amazônica

> Dissertação apresentada como parte dos requisitos para obtenção do título de Mestre em Biologia Animal, junto ao Programa de Pós-Graduação em Biologia Animal, do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de São José do Rio Preto.

Financiadora: CAPES

Orientador: Prof. Dr. Fernando Rodrigues da Silva

São José do Rio Preto 2017

Godinho, Marcela Brasil de Castro

A influência das barreiras fluviais, clima e topografia nas regiões biogeográficas dos anuros na Floresta Amazônica / Marcela Brasil de Castro Godinho. -- São José do Rio Preto, 2017. 44 f. : il., tabs.

Orientador: Fernando Rodrigues da Silva Dissertação (mestrado) - Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Letras e Ciências Exatas

1. Biologia Animal. 2. Anuro. 3. Anfíbio. 4. Biodiversidade – Conservação. 5. Amazônia. I. Universidade Estadual Paulista "Júlio de Mesquita Filho". Instituto de Biociências, Letras e Ciências Exatas. II. Título.

CDU - 597.8

Marcela Brasil de Castro Godinho

A influência das barreiras fluviais, clima e topografia nas regiões biogeográficas dos anuros na Floresta Amazônica

> Dissertação apresentada como parte dos requisitos para obtenção do título de Mestre em Biologia Animal, junto ao Programa de Pós-Graduação em Biologia Animal, do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de São José do Rio Preto.

Financiadora: CAPES

Comissão Examinadora

Prof. Dr. Fernando Rodrigues da Silva UFSCar – Sorocaba Orientador

Prof^a. Dr^a. Thaís Barreto Guedes UNIFESP - Diadema

Prof. Dr. Tiago da Silveira Vasconcelos UNESP – Bauru

> São José do Rio Preto 2 de maio de 2017

AGRADECIMENTOS

Essa parte do trabalho é a mais gostosa e descontraída, mas também a mais difícil. Durante os dois anos de realização do mestrado muitas pessoas passam pela sua vida seja para ajudar com o projeto ou por participar de um momento de descontração depois de vários dias mergulhada nos estudos tentando entender todos os conceitos e análises do trabalho. Por isso, nesse pequeno espaço, não consigo agradecer todas as pessoas que estiveram comigo. Mas algumas pessoas acabam participando mais que outras e a estas, apesar de já ter agradecido milhares de vezes, vou deixar registrado aqui. Quero agradecer a minha família que aguentou meus momentos de nervosismo e minha ausência. Minha mãe, Ana Rita, e irmã, Mayara, que me viram "surtar" várias vezes, minhas madrinhas, Maristella e Mariangela, meu avô e padrinho, Carlos Henrique, e meu padrinho de formação, Vicente, que sempre me apoiaram e se preocuparam comigo, muitíssimo obrigada por todo amor e carinho. Quero agradecer aos amigos que me escutaram reclamar, comemorar, chorar, sorrir, são muitos, mas dois foram importantes. Talvez eles nem saibam disso, mas eles me incetivaram a tentar quando conversamos lá na Amazônia, Hugo Fernandes e Luis Storti, obrigada pelas palavras no momento certo. Preciso agradecer também a Raphaella e a Renata, obrigada pelas boas risadas. A Raphaella merece mais um agradecimento por escutar meus medos e frustrações e mesmo assim ela escolheu fazer o mestrado, boa sorte, estamos juntas. A todas as outras pessoas que estiveram comigo nesse tempo, muito obrigada de coração.

O mestrado me ensinou muito sobre como fazer pesquisa e sobre o que é fazer pesquisa em nosso país onde poucos têm idéia da importância da ciência. Por isso quero agradecer ao meu orientador por tudo que ele me ensinou, a CAPES pelo apoio financeiro e ao Programa de Pós-Graduação em Biologia Animal do Ibilce/UNESP.

RESUMO

A distribuição espacial da biodiversidade não é explicada por um modelo único e simples, isso depende da combinação de cenários mais complexos. Aqui, avaliamos cinco hipóteses definindo regiões biogeográficas para espécies de anfíbios na floresta amazônica. Para isso, os mapas de amplitude de ocorrência de anfíbios foram sobrepostos em células de grade de 50 x 50 km, para obter uma matriz binária. Esta matriz foi submetida a uma análise de *cluster* para determinar o padrão e o número de regiões biogeográficas para o conjunto de dados. Em seguida, exploramos a importância relativa de variáveis de clima contemporâneo e histórico, complexidade topográfica, barreira fluvial e estrutura da vegetação explicando as regiões biogeográficas identificadas. Nós encontramos nove regiões biogeográficas de anfíbios na floresta amazônica. Nossa análise mostra que vários fatores interagem para determinar a distribuição das espécies. Os principais rios da Amazônia foram a maior contribuição explicando a variabilidade nas regiões biogeográficas de anfíbios, seguido de variáveis climáticas e topografia. O efeito de barreira parece ser forte para alguns rios tais como Amazonas e Tapajós, mas pouco eficaz para outros rios. Além disso, variáveis climáticas e topograficas fornecem um gradiente ambiental definindo a riqueza de espécies e a distribuição de anfíbios. Atualmente, desmatamento, mudanças climáticas e atividades econômicas insustentáveis estão ameaçando a integridade dos ecossistemas amazônicos, alterando os padrões de distribuição das espécies. Considerando isso, nossos resultados poderiam ser usados para abordar questões de conservação da diversidade de anfíbios para florestas tropicais do mundo.

Palavras-chave: anuros, Amazônia, recluster, regionalização, variáveis ambientais

ABSTRACT

It is recognized that the spatial distribution of faunal are not explained entirely by any simple model, but it depends on the combination of complex scenarios. Here, we evaluated five hypotheses correlates biogeographic regions for anuran species in the Amazonian forest. For this, we overlaid range maps of anurans into grid cells at 50 x 50 km to generate a binary matrix. This matrix was subjected to a cluster analysis to determine the pattern and number of biogeographic regions for the dataset. Then, we explored the importance relative of contemporary and historical climate variables, topographic complexity, riverine barrier and vegetation structure explaining the biogeographic regions identified. We found nine biogeographic regions for anuran in the Amazonian forest. Our analysis shows that multiple factors interplay to determine the species distributions. The major rivers in the Amazon made the largest contribution explaining the variability in anuran biogeographic regions, followed by climate variables and topography. The barrier effect seems to be strong for some rivers such Amazon and Tapajós, but it seems not be an effective barrier for other Amazonian rivers. Furthermore, climate and topographic variables provide an environmental gradient driving the number of species richness and anuran range-size distribution. Currently, deforestation, climate change and unsustainable economic activities are threatening the integrity of the Amazonian ecosystems and they will force alterations in the patterns of species distribution. In this scenario, our results provide a spatially explicit framework that could be used to address questions in conservation management of anuran diversity for the largest tropical forests in the world.

Keywords: anurans, Amazon forest, recluster, regionalization, environmental variables

LISTA DE FIGURAS

Figura 3 – Análise da partição da variância......26

LISTA DE TABELAS

SUMÁRIO

1	INTRODUÇÃO	10
2	MATERIAL E MÉTODOS	13
2.1	Dados de distribuição das espécies	13
2.2	Variáveis preditoras	14
2.3	Análises estatísticas	16
2.3.1	Procedimentos de agrupamento	16
2.3.2	Correlações das regiões biogeográficas	18
3	RESULTADOS	19
4	DISCUSSÃO	20
5	CONCLUSÕES	23
	FIGURAS	24
	TABELAS	29
	REFERÊNCIAS	39

1 INTRODUÇÃO

Padrões espaciais de distribuição de species expressam muitos processos ecológicos e evolutivos ligados à um cenário complexo e historicamente contingente. Desde o século XIX, pesquisadores tem dividido a extensão geográfica em regiões de composição faunística ou florística semelhante (Wallace 1854, 1876, Olson et al. 2001, Morrone 2009, Ladle and Whittaker 2011, Holt et al. 2013, Whittaker et al. 2013, Ficetola et al. 2017). Essa abordagem, denominada regionalização biogeografica, tem ajudado a entender se os processos influenciando a distribuição de espécies são determinados por histórias evolutivas compartilhadas (ex. especiação, extinção e distribuição), oscilações climáticas passadas ou atuais (ex. gradientes de precipitação e temperatura) e/ou barreiras físicas (ex. montanhas e oceanos) limitando a dispersão de espécies entre áreas (Mackey et al. 2008, Rueda et al. 2010, 2013, Kreft and Jetz 2010, Vasconcelos et al. 2011, 2014, Holt et al. 2013, Ficetola et al. 2017). Por exemplo, Holt et al. (2013) identificou 20 regiões zoogeográficas distintas combinando dados de distribuição and relações filogenéticas de espécies de vertebrados e encontrou que a substituição espacial na composição filogenética é maior no Hemisfério Sul do que no Norte.

Apesar de padrões globais em grande escala serem relativamente bem estabelecidos (e.g. Olson *et al.* 2001, Proches 2005, Holt *et al.* 2013, Ficetola *et al.* 2017), padrões de regionalização intracontinentais são mais difíceis de detectar, representando um grande desafio para biogeógrafos (Rueda *et al.* 2010, Szumik *et al.* 2012, Ebach and Parenti 2015, He *et al.* 2016). As unidades biogeográficas são organizadas hierarquicamente (McLaughlin 1992) e não há um único modelo biogeográfico ideal para todos os táxons (e.g. Olson *et al.* 2001, Rueda *et al.* 2010, Holt *et al.* 2013, Whittaker *et al.* 2013). Por exemplo, Wallace (1854) considerando a distribuição de primatas reconheceu quatro regiões na Floresta Amazônica. Enquanto, Haffer (1978), Cracaft (1985) e Silva *et al.* (2002) considerando a distribuição de aves identificaram seis, sete e oito regiões, respectivamente.

A Floresta Amazônica abrange mais de 6 (seis) milhões de km², em 9 (nove) países da América do Sul, sendo a maior floresta tropical do mundo. Esse bioma contempla um décimo das species do mundo com mais de 2.000 (duas mil) novas espécies de plantas e vertebrados descritas desde 1999 (Charity *et al.* 2016). Grupo dos anfíbios anuros da Amazônia são um grupo altamente diverso

(aproximadamente 600 espécies; IUCN 2015) com a riqueza de espécies distribuída no espaço de maneira não aleatória (Duellman 1988, Azevedo-Ramos and Galatti 2002). Porque as espécies de anfíbios normalmente são distribuídas em mais regiões do que outros grupos de vertebrados devido à características fisiológicas (e.g. Rueda *et al.* 2010), nós acreditamos que a Floresta Amazônica apresentará mais regiões do que as oito regiões anteriormente propostas por Silva *et al.* (2002). A partir da regionalização biogeográfica, obtem-se informações espaciais para ajudar em questões na gestão de conservação (Mackey *et al.* 2008, Kreft and Jetz 2010, Ladle and Whittaker 2011).

Diferentes hipóteses têm sido levantadas para explicar o padrão de distribuição das espécies no bioma Amazônico (Wallace 1852, Haffer 1969, Hoorn et al. 2010, Smith et al. 2014). Dentre essas hipóteses, a hipótese de clima contemporâneo estabelece que variáveis climáticas sejam determinantes ambientais para composição de anfíbios, pois agem como filtro ambiental influenciando as espécies que ocorre na área (e.g. da Silva et al. 2012). A hipótese dos refúgios no Pleistoceno estabelece que durante o Pleistoceno, diminuições na temperature e umidade na bacia Amazônica deixaram pequenas "ilhas" de floresta tropical rodeada por ambiente seco, isolando populações e mudando os padrões de distribuição (Haffer 1969, 1978). A hipótese orogênica afirma que o soerguimento dos Andes alterou o clima da região e mudou drasticamente a evolução da paisagem na Amazônia (Hoorn et al. 2010). O conceito de habitat templets (Southwood 1977) estabelece que o habitat forneça o modelo no qual a evolução forja estratégias na história de vida animal. Baseado nesta idéia, estudos anteriores encontraram que a estrutura da vegetação tem uma forte correlação com as regiões biogeográficas de anfíbios identificadas na Europa (Rueda et al. 2010), Mata Atlântica (Vasconcelos et al. 2014) e América do Sul (Moura et al. 2016). A hipótese de barreiras fluviais estabelece que os grandes rios atuem como barreiras geográficas para o fluxo gênico, promovendo divergência genética de populações e posterior especiação (Wallace 1854, Haffer 1978). Reconhece-se que padrões de distribuição de espécies na Amazônia não são explicados inteiramente por nenhum modelo único e simples, isso depende da combinação de cenários mais complexos e realistas (Bush 1994, Smith et al. 2014), como é possível perceber nos exemplos supra citados realizados para Amazônia.

Nosso objetivo é determiner as regiões biogeográficas para species de anuros na Floresta Amazônica avaliando cinco hipóteses complementares (não mutuamente exclusivas): i) Hipótese de clima contemporâneo - variáveis climáticas influenciam a composição de espécies. Nós esperamos que áreas com gradientes de clima distintos abriguam espécies distintas devido às necessidades fisiológicas distintas ou traços históricos distintos; ii) hipótese da variação climática no Pleistoceno - padrões atuais de distribuição dos anuros também são influenciados por mudanças climáticas no passado (Araújo et al. 2008, Carnaval et al. 2009). Nós esperamos que áreas que sofreram instabilidade climática durante o Pleistoceno tenham composição de espécies distintas das áreas que mantiveram condições climáticas semelhantes devido às taxas de extinção distintas (Haffer 1969); iii) Hipótese de topografia áreas com maior amplitude de elevação, aumentam as taxas de especiação e endemismo (Janzen 1967, Gascon et al. 2000, Hoorn et al. 2010). Nós esperamos que essas áreas tenham espécies de menor alcance devido à capacidade de dispersão historicamente limitada por barreiras físicas e/ou limitações fisiológicas; iv) Hipótese da estrutura da vegetação – Baseado em estudos anteriores esperamos que as regiões biogeográficas possam ser reconhecidas como uma consegüência da distribuição da vegetação dentro da Floresta Amazônica; v) Hipótese das barreiras fluviais – the major rivers of Amazonia act as geographic barriers to the dispersal of organisms and hampering gene flow between populations, increasing speciation rates (Wallace 1852, Cracraft 1985, Moraes et al. 2016). Nós esperamos que anuros não possam transport os grandes rios da Amazônia resultando emu ma composição de species distintas entre lados opostos dos rios.

2 MATERIAL E MÉTODOS

2.1 Dados de distribuição de espécies

A extensão da Floresta Amazônica foi definida considerando Silva *et al.* (2002) e Cracraft (1985). Nós baixamos os mapas de predição de ocorrência (*range maps*) de todas as espécies de amfíbios registrados para Amazônia através dp site da IUCN (2015; *version* 2015.2). Consideramos somente os anuros e excluímos todas as species de outros biomas (ex. Cerrado) com ocorrência na margem da região da Amazônia. Por fim, obtivemos um total de 577 espécies (16 famílias; Table 3) usadas na análise de regionalização. Sobrepusemos os *range maps* aos 1877 grid cells de 50 × 50 km para gerar a matriz binária (presença e ausência). A nomenclatura das espécies de anuros foi padronizada seguindo o *Amphibian Species of the World* (Frost 2016).

Estamos cientes que inferências biogeográficas são afetadas pelo conhecimento incompleto em relação à taxonomia e distribuição (Kreft and Jetz 2010). Apesar dos mapas dos anfíbios da IUCN incluirem super- ou subpredição principalmente se tratando de regiões tropicais com megadiversidade como a Região Neotropical (Ficetola *et al.* 2014), os *range maps* tem sido usados para investigar a regionalização de anfíbios em diversas escalas espaciais (ex. Rueda *et al.* 2010, Vasconcelos *et al.* 2014, Hortal *et al.*, 2013, Ficetola *et al.* 2017). Além disso, sob uma perspective macroecológica, *range maps* tem excelente desempenho em grades de 50 x 50 km ou maiores (Hawkins *et al.* 2008, Rueda *et al.* 2010, Vasconcelos *et al.* 2014).

2.2 Variáveis preditoras

A fim de testar a potencial correlação dos padrões de agrupamento dos anuros (veja os procedimentos de agrupamento a seguir), nós obtivemos dados de clima atual e histórico, topográficos, barreiras fluviais e estrutura da vegetação, os quais estão detalhados a seguir:

1) *Variáveis climáticas atuais* (Figura 4A) – as variáveis climáticas selecionadas foram: i) média da temperatura máxima anual (AMAXTE); ii) média da temperatura mínima anual (AMINTE); iii) sazonalidade da temperatura (TESE); iv) precipitação anual (APRE); v) amplitude da precipitação (PRER); e vi) sazonalidade da precipitação (PRSE). Essas variáveis foram escolhidas porque descrevem a tendência central, bem como a variação nos descritores representando os limites fisiológicos ou barreiras de dispersão para os anuros (Buckley and Jetz 2007, 2008, Rueda *et al.* 2010, da Silva *et al.* 2012, Vasconcelos *et al.* 2014). Esses dados foram estraídos do banco de dados do Worldclim na resolução de 5' arc-minutos (Hijmans *et al.* 2005).

2) Variáveis climáticas no Pleistoceno – extraímos a média dos valores de precipitação anual e temperatura média anual dos três modelos do Último Máximo Glacial (LGM; CCSM4, MIROC-ESM, MPI-ESM-P) disponíveis no banco de dados do Worldclim (Hijmans *et al.* 2005). Seguindo Moura *et al.* (2016), calculamos duas diferenças históricas nas variáveis climáticas: i) diferença histórica na precipitação anual (HDP) foi calculada através da diferença entre precipitação anual atual e no LGM (Figura 4B); e ii) diferença histórica na temperatura média anual (HDT) foi calculada através da diferença na temperatura média anual (HDT) foi calculada através da diferença na temperatura média anual (HDT) foi calculada através da diferença entre temperatura média anual atual e no LGM (Figura 4C). Essas duas medidas indicam a variação histórica na disponibilidade de água e entrada de energia, respectivamente. Nós usamos a média dos três modelos de circulação como variáveis preditoras na análise (Moura *et al.* 2016).

3) Variáveis topográficas (Figura 4D) – nós calculamos para cada célula da grade, seis medidas de heterogeneidade topográfica baseado nos dados de elevação (~1 × 1 km resolution) disponível em <u>https://lta.cr.usgs.gov/GTOPO30</u>. Essas medidas foram: i) elevação máxima (TOPOMAX); ii) elevação mínima (TOPOMIN); iii) desvio padrão da elevação (TOPOSTD); iv) amplitude da inclinação topográfica (SLOPERAN); v) desvio padrão da inclinação topográfica (SLOPESTD); vi) desvio padrão do aspecto topográfico (ASPECTSTD).

 Barreiras fluviais (Figura 4F) – nós categorizamos as 1877 céluas da grade em regiões diferentes baseado nos oito maiores rios da Floresta Amazônica, classificação proposta por Silva *et al.* (2002): i) Amazonas, ii) Negro, iii) Solimões, iv) Tocantins, v) Madeira, vi) Japurá, vii) Tapajós; e viii) Xingu.

5) Estrutura da vegetação (Figura 4E) – nós usamos a classificação de Olson et al.
(2001) para determiner a porcentagem de tipo de vegetação cobrindo cada célula da grade: i) Floresta Úmida, ii) Floresta Seca, ii) Várzea, iv) Manguezal, e v) Montanha.

2.3 Análises estatísticas

2.3.1 Procedimentos de agrupamento

Nós usamos o algoritmo recluster.region (Dapporto et al. 2013, 2015a) disponível no pacote recluster do software R (Dapporto et al. 2015b) para identificar as regiões biogeográficas na Amazônia com diferenças na composição de espécies de anuros. Esse algoritmo calcula a dissimilaridade da composição de species entre cada célula da grade usando o índice de Simpson (β_{sim}) o qual não é afetado pela variação na riqueza de espécies (Koleff et al. 2003). Esse índice é uma boa escolha para regionalização, pois a substituição de espécies é muito influenciada por fenômenos de vicariância e endemismo (Kreft and Jetz 2010, Dobrovolski et al. 2012). Então, nós usamos o agrupamento hierárquico Ward para converter as matrizes de dissimilaridade em dendrogramas bifurcados (Legendre and Legendere 2012). Esse método é melhor executado em uma simulação para reconhecer padrões de regionalização quando comparados a outros métodos de agrupamento hierárquico comumente usados para análises biogeográficas (Dapporto et al. 2015a). De acordo com Dapporto et al. (2013), devido à elevada frequencia de nós e valores zero produzidos pelos indices de substituição de diversidade beta, dendrogramas cuja topologia e suporte de bootstrap são afetados pela ordem das áreas na matriz binária original. Para evitar esse problema, o algoritmo recluster.region produz n árvores (n = 50 by default) para reordenar aleatoriamente as áreas na matriz de dissimilaridade original. Depois, a função corta essas árvores em diferentes níveis (k_1 - k_n levels; i.e. número de regiões a ser identificado) produzindo n matrizes de áreas versus agrupamento (Dapporto et al. 2015a). Nós delimitamos que o número máximo de regiões seriam 50 agrupamentos. Por fim, para identificar o número de regiões, a função fornece a dissimilaridade explicada (Holt et al. 2013) e a média da largura da silhueta (Bocard et al. 2011) para todas as soluções de agrupamento. A dissimilaridade explicada é representada pela relação entre as somas das dissimilaridades médias entre membros de agrupamentos diferentes e a soma de todas as dissimilaridades da matriz. Esse método maximize a variação entre agrupamentos em relação à variação dentro do agrupamento. De acordo com Holt et al. (2013), agrupamentos que atingem o valor limiar de 90% são uma boa escolha para estabelecer o corte adequado da árvore. A largura média da silhueta mede a força de qualquer uma das partições de objetos de uma matriz de dissimilaridade. Esse índice varia entre -1 e +1, com valores negativos indicando que as células provavelmente estão localizadas no agrupamento incorreto (Borcard *et al.* 2011). Aqui, nós identificamos regiões biogeográficas baseada no número de agrupamentos que melhorou consideravelmente tanto a dissimilaridade explicada como a largura média da silhueta.

2.3.2 Correlações das regiões biogeográficas

Para reduzir a dimensionalidade e o número de correlações entre as variáveis em nosso banco de dados, nós realizamos três analyses de components principais (PCA) separadas, primeiro com o conjunto de variáveis climáticas atuais (AMAXTE, AMINTE, TESE, APRE, PRER e PRSE), em seguida com o conjunto de dados das variáveis topográficas (TOPOMAX, TOPOMIN, TOPOSTD, SLOPERAN, SLOPESTD e ASPECTSTD) e por último com a procentagem de cada tipo de vegetação (Floresta Úmida, Floresta Seca, Várzea, Manguezal e Montanha). Assim sendo, para a análise subsequente nós usamos nove variáveis: i) os dois primeiros eixos da PCA feita com os dados de variáveis climáticas atuais (CURE.PC1 e CURE.PC2), ii) os dois primeiros eixos da PCA feita com os dados de variáveis climáticas (TOPO.PC1 e TOPO.PC2), iii) os dois primeiros eixos da PCA feita com os dados de estrutura da vegetação (VEGE.PC1 e VEGE.PC2), iv) duas variáveis climáticas do Pleistoceno (HDP e HDT), e v) a classificação das células da grade baseado nos oito maiores rios.

Nós usamos modelos de regressão logística multinomial para investigar a influência das variáveis preditoras na explicação das regiões biogeográficas dos anuros (ex. Vasconcelos *et al.* 2014, Moura *et al.* 2016). Nós construímos modelos usando preditores únicos, modelos combinando dois e três variáveis e um modelo completo combinando todas as variáveis. Para determinar o modelo ideal relacionado as regiões biogeográficas, nós usamos o Critério de Informação Akaike corrigido para amostras de pequeno tamanho (AICc; Burnham and Anderson, 2002). O AICc é calculado para cada modelo is calculated for each model from its log-likelihood and number of parameters, and the model with the lowest AICc is judged the best of the candidate models (Burnham and Anderson 2002). Além disso, para avaliar a incerteza da seleção do modelo, nós usamos os pesos de Akaike (ώ), o qual expressa a probabilidade de cada modelo dado os dados e o conjunto de modelos candidatos. Finalmente, nós usamos a análise da partição da variância (Borcard *et al.* 1992) para partição da porcentagem total de variação em contribuições únicas do conjuntos de preditores do melhor modelo.

Todas as analyses foram realizadas com o software R 3.2.3 usando os pacotes *vegan* (Oksanen *et al.* 2015), *nnet* (Ripley and Venables 2016) and *bbmle* (Bolker and R Development Core Team 2016).

3 RESULTADOS

Nós identificamos nove regiões biogeográficas na Floresta Amazônica baseado na composição de espécies de anuros com valores de dissimilaridade explicada de 94% e largura media da silhueta de 0.34 (Figure 1, Tabela 1). Soluções com maiores números de agrupamento não forneceram um aumento substancial desses valores (Tabela 1). Dentre todos os modelos criados com as variáveis preditoras, o modelo incluindo todas as variáveis foi o melhor para explicar os padrões de agrupamento definidos pela análise. Este modelo explicou 77% dos padrões de agrupamento com Δ AICc > 49 (Tabela 2). Considerando o melhor modelo, a análise de partição da variância indicou que o efeito independente das barreiras fluviais foi de 29%, seguido das variáveis climáticas com 14% e depois topografia com 5% (Figura 3). A estrutura da vegetação teve fraca correlação com as regiões biogeográficas dos anuros na Floreta Amazônica (Figura 3)

A variável preditora referente às barreiras fluviais foi a que mais influenciou o melhor modelo, apresentando a maior porcentagem de variância. Os resultados mostraram que o Rio Amazonas está separando as regiões ao norte (BR1, BR2, BR3, BR4 e BR5) das regiões ao sul (BR7, BR8 e BR9) enquanto que o Rio Tapajós está separando as regiões do sudeste (BR8 e BR9) das regiões no noroeste (BR7). A região BR6 está na porção oeste da Floresta Amazônica (Figura 1), esta região possui células da grade contendo os maiores valores de riqueza de espécies de anuros e dentre essas espécies estão anuros com distribuição restrita (Figura 2; Tabela 3). Do lado oposto desse gradiente (BR3, BR4, BR8 e BR9) encontram-se valores baixos de riqueza de espécies, sendo estes anuros de distribuição ampla (Figura 2; Tabela 3).

4 DISCUSSÃO

Nós identificamos nove regiões biogeográficas baseado na dissimilaridade dos anuros na Floresta Amazônica. Essas regiões estão parcialmente inseridas nas oito áreas de endemismo previamente propostas para vertebrados terrestres da Amazônia (Silva et al. 2002). Ao norte do Rio Amazonas, nós encontramos que BR1, BR2, BR3 e BR4 estão aninhadas na área correspondente a Guiana (Silva et al. 2002). As regiões BR5, BR6 e BR7 são parcialmente congruentes com as áreas do Imeri, Napo e Inambari respectivamente. Entretanto, a distribuição das regiões BR8 e BR9 ao sul do Rio Amazonas difere completamente do arranjo espacial das áreas nomeadas Rondonia, Tapajós, Xingu e Belém (Silva et al. 2002). Como já foi dito, não há uma solução única e ideal para todos os táxons (Wallace 1854, Haffer 1978, Cracraft 1985, Silva et al. 2002, Rueda et al. 2010, Holt et al. 2013). Por exemplo, Rueda et al. (2010) encontrou variação substancial no número de regiões considerando diferentes grupos taxonômicos na Europa. Assim, os padrões de regionalização dependem do grupo taxonômico de interesse, além de depender também do conhecimento disponível a respeito da distribuição do grupo de interesse e do método de agrupamento utilizado. Estudos anteriores realizados na região da Amazônia foram desenvolvidos para distribuição espacial de espécies de primatas (Wallace 1854), aves (Cracaft 1985, Silva et al. 2002) e squamata (Da Silva and Sites 1995), por isso nossos resultados trazem nova informação a respeito de fatores associados com o padrão espacial de distribuição de espécies de anuros na Floresta Amazônica.

A regionalização obtida reflete uma combinação dos efeitos das barreiras fluviais, variáveis climáticas e topográficas, sendo as barreiras fluviais a variáveis com maior efeito. Desde Wallace (1854), tem sido debatido se a hipótese de barreira fluvial tem desempenhado um papel importante na formação dos padrões atuais de distribuição de espécies amazônicas (Cracaft 1985, Gascon *et al.* 2000, Silva *et al.* 2005, Smith *et al.* 2014, Moraes *et al.* 2016). Wallace (1854), baseado na composição de espécies de primatas, definiu áreas distintas que foram separadas pelos rios Amazonas, Solimões, Negro e Madeira. Recentemente, Moraes *et al.* (2016) mostrou que o Rio Tapajós é uma barreira para algumas linhagens de anfíbios no oeste e leste da Amazônia. Por outro lado, Gascon *et al.* (2000) não encontraram relação entre a composição de espécies de anfíbios e as margens do

Rio Juruá. Tomados em conjunto, esses resultados indicam que rios contribuem de forma desigual para os padrões observados de distribuição de anfíbios na Floresta Amazônica. Assim, o efeito de barreira pode ser forte para alguns rios tais como o Amazonas e o Tapajós, mas pode não ser uma barreira tão efetiva para rios menores. Isso mostra que os anfíbios podem transpor rios menores, por exemplo, em cima de troncos de árvores ou por algum evento histórico que tenha possibilitado a dispersão dessas espécies.

Variáveis climáticas e topográficas são a segunda e terceira maiores porcentagens de variância que explica a distribuição das regiões biogeográficas identificadas. Esse resultado corrobora com estudos anteriores que definiram regiões biogeográficas para anfíbios na Europa (Rueda et al. 2010), no hotspot Floresta Atlântica no Brasil (Vasconcelos et al. 2014) e em escala global (Ficetola et al. 2017). É bem conhecido o fato das variáveis climáticas serem fortemente associadas com padrões geográficos de ampla escala de distribuição de espécies (Hawkins et al. 2003, Araújo and Peterson 2012). A Floresta Amazônica tem um gradiente climático bem definido com áreas a sudeste apresentando condições climáticas mais quente e sazonal do que áreas a noroeste (Duellman 1988, Hoorn et al. 2010). Esse padrão é associado com a distribuição orogênica, com as maiores elevações do bioma presentes nas áreas do nordeste. Juntos, clima e topografia fornecem um gradiente que está fortemente associado com a amplitude da distribuição das espécies e com a riqueza de espécies do bioma (Duellman 1988, Hoorn et al. 2010). As fronteiras da região BR6, a oeste da Amazônia, é congruente com áreas contendo as maiores elevações e menor sazonalidade. Essa região abriga a maior riqueza de espécies com a maioria delas apresentando distribuição restrita. Do outro lado do gradiente, as regiões BR8 e BR9 abrigam a menor riqueza de espécies com a maioria delas apresentando distribuição ampla. Assim, BR6 é uma região biogeográfica importante por conter altas taxas de endemismo e diversidade do bioma. Esses resultados indicam um papel importante das variáveis climáticas e topográficas na condução da distribuição da diversidade de anuros na Floresta Amazônica.

Diferente de estudos anteriores que encontraram a estrutura da vegetação como um fator importante relacionado as regiões biogeográficas para anfíbios (Rueda *et al.* 2010, Vasconcelos *et al.* 2014), nós encontramos que as diferentes formações florestais na Amazônia teve uma fraca associação com as regiões. De

acordo com Charity *et al.* (2016), floresta úmida é o tipo de vegetação dominante, cobrindo aproximadamente 80% do bioma; outros tipos florestais incluem florestas inundadas e pântano (3,9%), floresta decidual (1.4%), savanas (6.8%) e outras (1.1%). Em larga escala, essa homogeinização da vegetação diminui a importância desta na explicação da distribuição das regiões biogeográficas. Contudo, esse não é o caso quando consideramos escalas menores. Por exemplo, Gascon *et al.* (2000) encontraram que floresta inundada *versus* floreta de terras altas é um importante preditor da semelhança da comunidade na composição de espécies de anfíbios no Rio Juruá. Ilhas de savana de tamanhos variados ocorrem dentro da Amazônia e são "lar" de flora e fauna únicos, incluindo inúmeros endemismos, mas de acordo com Carvalho e Mustin (2017), savanas Amazônicas são pouco conhecidas, muito ameaçadas e sub-protegidas. Assim, a estrutura da vegetação quando avaliado a comunidade dentro das regiões biogeográficas identificadas no estudo, ou seja, em uma escala menor.

5 CONCLUSÕES

Nossos resultados mostram que os efeitos de barreira podem variai de rio para rio, sendo mais forte em rios como o Amazonas e o Tapajós ou menos efetivo para outros rios na Amazônia. Além disso, variáveis climática e topográficas fornecem um gradiente ambiental que infuencia a riqueza de espécies a a amplitude da distribuição das espécies de anuros. Nós encontramos que a região biogeogrpafica no oeste abriga a maior riqueza de espécies de anuros com a maioria deles apresentando distribuição restrita. Enquanto que as regiões biogeográficas identificadas no lado oposto possuem baixa riqueza de espécies e estas com distribuição ampla. Embora o foco da nossa análise não tenha sido conservação, a regionalização biogeográfica fornece informações para abordar processor evolutivos e ecológicos que contribuem para as distribuições atuais. Nossos resultados são importantes, pois a integridade da região Amazônica está sob pressão com o desmatamento, mudanças climáticas e atividades econômicas não sutentáveis (Charity et al. 2016). Considerando isso, essas ações em conjunto estão ameaçando a integridade do ecossistema e forçando alterações nos padrões de distribuição das espécies.

FIGURAS

Figura 1 – Regionalização da dissimilaridade de anuros em nove regiões biogeográficas na Floresta Amazônica baseado no algoritmo *recluster.region* (Dapporto *et al.*, 2015b).

Fonte: Marcela Brasil de Castro Godinho

Figura 2 – Gradientes de (A) riqueza de anuros, e (B) média da amplitude de ocorrência das espécies de anuros em cada célula da grade na Floresta Amazônica.

Fonte: Marcela Brasil de Castro Godinho

Figura 3. Análise de particionamento representando a variância na configuração das regiões biogeográficas explicada pelo clima (atual + diferença histórica), topografia, barreiras fluviais e estrutura da vegetação da Floresta Amazônica. C = clima, T = topografia, V = estrutura da vegetação, R = barreiras fluviais.

Fonte: Marcela Brasil de Castro Godinho

Figura 4 – Distribuição das variáveis preditoras usadas para avaliar as regiões biogeográficas na Floreta Amazônica. (A) *Variáveis climáticas atuais* – primeiro eixo da análise de components principais (PCA) com variáveis de precipitação e temperatura (AMAXTE, AMINTE, TESE, APRE, PRER e PRSE); (B) *Diferença histórica da precipitação (HDP)* – diferença entre precipitação anual atual e no Último Máximo Glacial (LGM); (C) *Diferença histórica da temperatura (HDT)* – diferença entre temperatura média anual atual e no LGM; (D) *Variáveis topográficas* - primeiro eixo da PCA com variáveis de elevação, declive e aspecto topográficos (TOPOMAX, TOPOMIN, TOPOSTD, SLOPERAN, SLOPESTD e ASPECTSTD); (E) *Estrutura da vegetação* – formações florestais na Floresta Amazônica baseado na classificação de Olson et al. (2001; Floresta Úmida, Floresta Seca, Várzea, Manguezal e Montanha); e (F) *Barreiras fluviais* – classificação das células da grade baseado nas margens dos oito maiores rios da Floresta Amazônica, seguindo a proposta de áreas de endemismo de Silva *et al.* (2002).

Fonte: Marcela Brasil de Castro Godinho

TABELAS

Number of cluster	Silh	ex.diss	Number of cluster	Silh	ex.diss
2	0.410	0.384	27	0.351	0.990
3	0.290	0.707	28	0.355	0.991
4	0.314	0.840	29	0.359	0.991
5	0.298	0.876	30	0.363	0.992
6	0.313	0.909	31	0.369	0.992
7	0.336	0.925	32	0.370	0.993
8	0.334	0.937	33	0.378	0.993
<mark>9</mark>	<mark>0.346</mark>	<mark>0.942</mark>	34	0.371	0.993
10	0.320	0.953	35	0.374	0.994
11	0.319	0.960	36	0.376	0.994
12	0.321	0.966	37	0.363	0.994
13	0.335	0.968	38	0.357	0.994
14	0.355	0.971	39	0.352	0.994
15	0.340	0.975	40	0.346	0.994
16	0.340	0.979	41	0.352	0.995
17	0.344	0.980	42	0.356	0.995
18	0.348	0.981	43	0.361	0.995
19	0.337	0.983	44	0.362	0.995
20	0.354	0.984	45	0.364	0.996
21	0.342	0.985	46	0.360	0.996
22	0.350	0.986	47	0.363	0.996
23	0.326	0.987	48	0.365	0.996
24	0.346	0.988	49	0.364	0.996
25	0.333	0.989	50	0.366	0.996
26	0.348	0.990			

Tabela 1. Valores da largura média da silhueta (Silh) e a dissimilaridade explicada(ex.diss) para todas as soluções de agrupamento.

Fonte: Marcela Brasil de Castro Godinho

Tabela 2. Os seis modelos de regressão logística multinomial mais parciomoniosos usados para investigar a influência das condições climáticas atuais e do Pleisticeno, topografia, barreira fluvial e estrutura da vegetação na explicação das regiões biogeográficas para anuros na Floresta Amazônica.

Models	ΔAICc	df	wAICc	%DE
Full model	0	12 8	1	77
Model without vegetation structure variables	49.8	11 2	<0.001	75
Model without topographic variables	357.3	11 2	<0.001	71
Current variables + Pleistocene variables + riverine variables	395.6	96	<0.001	71
Model without Pleistocene variables	443.8	11 2	<0.001	70
Current variables + riverine variables	978.4	80	<0.001	63

Fonte: Marcela Brasil de Castro Godinho

Legenda: ΔAICc = diferença entre o modelo de interesse e o modelo com o menor valor do Critério de Informação Akaike corrigido para amostras pequenas; wAICc = peso do modelo AICc que expressa o peso da evidência favorecendo o modelo como o melhor entre todos os modelos comparados; %DE = porcentagem de variância explicada na variável de resposta pelo modelo em consideração.

Tabela 3 – Lista de espécies de anuros ocorrendo na Amaônia e o número de células da grade que cada espécie ocorre (separado por família em ordem alfabética).

Continua

Espécies	Nº grid	Espécies	Nº grid
	Alloph	rynidae	
Allophryne ruthveni	1010		
	Aromo	batidae	
Allobates brunneus	624	Allobates zaparo	24
Allobates caeruleodactylus	4	Anomaloglossus ayarzaguenai	4
Allobates conspicuus	152	Anomaloglossus baeobatrachus	243
Allobates crombiei	12	Anomaloglossus beebei	1
Allobates femoralis	1679	Anomaloglossus breweri	1
Allobates fuscellus	254	Anomaloglossus degranvillei	71
Allobates gasconi	49	Anomaloglossus guanayensis	2
Allobates granti	21	Anomaloglossus kaiei	10
Allobates insperatus	13	Anomaloglossus murisipanensis	2
Allobates kingsburyi	4	Anomaloglossus parimae	1
Allobates marchesianus	1160	Anomaloglossus parkerae	4
Allobates masniger	8	Anomaloglossus praderioi	1
Allobates melanolaemus	6	Anomaloglossus Roraima	1
Allobates myersi	36	Anomaloglossus rufulus	2
Allobates nidicola	1	Anomaloglossus shrevei	10
Allobates ornatus	2	Anomaloglossus stepheni	13
Allobates paleovarzensis	8	Anomaloglossus tamacuarensis	2
Allobates subfolionidificans	2	Anomaloglossus tepuyensis	4
Allobates sumtuosus	84	Anomaloglossus triunfo	1
Allobates trilineatus	222	Anomaloglossus wothuja	1
Allobates undulatus	2	Colostethus argyrogaster	10
Allobates vanzolinius	46		
	Bufo	nidae	
Amazophrynella bokermanni	18	Rhaebo glaberrimus	196
Amazophrynella minuta	1637	Rhaebo guttatus	1834
Atelopus andinus	4	Rhaebo nasicus	34
Atelopus epikeisthos	1	Rhinella acutirostris	151
Atelopus flavescens	1	Rhinella arborescandens	1
Atelopus franciscus	11	Rhinella castaneotica	997
Atelopus palmatus	1	Rhinella ceratophrys	354
Atelopus planispina	5	Rhinella cristinae	1
Atelopus pulcher	10	Rhinella dapsilis	93
Atelopus pyrodactylus	1	Rhinella festae	13
Atelopus seminiferus	4	Rhinella granulosa	1416
Atelopus siranus	2	Rhinella humboldti	28
Atelopus spumarius	349	Rhinella lescurei	14
Metaphryniscus sosai	2	Rhinella magnussoni	4

Continuação			
Espécies	N⁰ grid	Espécies	Nº grid
·	Bufo	nidae	
Oreophrynella cryptica	2	Rhinella margaritifera	1876
Oreophrynella dendronastes	1	Rhinella marina	1876
Oreophrynella huberi	4	Rhinella martyi	103
Oreophrynella macconnelli	1	Rhinella nesiotes	2
Oreophrynella nigra	2	Rhinella ocellata	117
Oreophrynella quelchii	1	Rhinella poeppigii	38
Oreophrynella vasquezi	3	Rhinella proboscídea	176
Oreophrynella weiassipuensis	1	Rhinella roqueana	176
Osornophryne bufoniformis	3	Rhinella rubescens	37
Osornophryne guacamayo	1	Rhinella schneideri	177
Osornophryne sumacoensis	1		
	Centro	lenidae	
"Centrolene" azulae	1	Hyalinobatrachium ruedai	9
"Centrolene" medemi	1	Hyalinobatrachium taylori	192
"Cochranella" duidaeana	3	Nymphargus chancas	1
"Cochranella" geijskesi	2	Nymphargus cochranae	4
"Cochranella" riveroi	2	Nymphargus laurae	1
Centrolene bacatum	2	Nymphargus mariae	3
Centrolene buckleyi	2	Nymphargus megacheirus	2
Centrolene hybrida	1	Nymphargus posadae	8
Centrolene lemniscatum	1	Nymphargus siren	2
Chimerella mariaelenae	4	Nymphargus wileyi	1
Cochranella resplendens	48	Rulyrana flavopunctata	18
Espadarana audax	1	Rulyrana saxiscandens	2
Espadarana durrellorum	8	Teratohyla Amelie	1
Hyalinobatrachium cappellei	79	Teratohyla Midas	501
Hyalinobatrachium fleischmanni	1	Vitreorana gorzulae	5
Hyalinobatrachium iaspidiense	28	Vitreorana helenae	1
Hyalinobatrachium pellucidum	1	Vitreorana ritae	7
	Cerator	ohryidae	
Ceratophrys cornuta	1562		
	Crauga	storidae	
Ceuthomantis aracamuni	2	Pristimantis lanthanites	226
Ceuthomantis cavernibardus	1	Pristimantis Leoni	2
Ceuthomantis duellmani	2	Pristimantis librarius	3
Dischidodactylus colonnelloi	2	Pristimantis lirellus	4
Dischidodactylus duidensis	1	Pristimantis luscombei	14
Hypodactylus dolops	4	Pristimantis lythrodes	7
Hypodactylus elassodiscus	2	Pristimantis malkini	304
Hypodactylus nigrovittatus	309	Pristimantis marahuaka	1
Noblella lochites	4	Pristimantis marmoratus	320
Noblella myrmecoides	179	Pristimantis martiae	444
Oreobates cruralis	19	Pristimantis melanogaster	2

Continuação			
Espécies	N⁰ grid	Espécies	N⁰ grid
	Crauga	storidae	
Oreobates quixensis	509	Pristimantis memorans	1
Oreobates saxatilis	5	Pristimantis mendax	28
Pristimantis aaptus	38	Pristimantis muscosus	2
Pristimantis acuminatus	244	Pristimantis nephophilus	4
Pristimantis altamazonicus	531	Pristimantis nigrogriseus	4
Pristimantis altamnis	6	Pristimantis ockendeni	300
Pristimantis ardalonychus	7	Pristimantis orcus	80
Pristimantis aureolineatus	40	Pristimantis orphnolaimus	14
Pristimantis aureoventris	1	Pristimantis paululus	24
Pristimantis avius	1	Pristimantis percnopterus	3
Pristimantis bearsei	4	Pristimantis peruvianus	446
Pristimantis buccinator	18	Pristimantis petersi	6
Pristimantis buckleyi	2	Pristimantis prolatus	4
Pristimantis cantitans	4	Pristimantis pruinatus	2
Pristimantis carvalhoi	397	Pristimantis pseudoacuminatus	22
Pristimantis chiastonotus	115	Pristimantis pugnax	3
Pristimantis chloronotus	3	Pristimantis pulvinatus	102
Pristimantis citriogaster	2	Pristimantis quaquaversus	38
Pristimantis colonensis	1	Pristimantis rhabdolaemus	4
Pristimantis conspicillatus	269	Pristimantis rhodostichus	1
Pristimantis corrugatus	1	Pristimantis rubicundus	4
Pristimantis croceoinguinis	116	Pristimantis rufioculis	2
Pristimantis delius	1	Pristimantis saltissimus	8
Pristimantis dendrobatoides	4	Pristimantis savagei	2
Pristimantis devillei	1	Pristimantis schultei	1
Pristimantis diadematus	170	Pristimantis skydmainos	66
Pristimantis eriphus	2	Pristimantis stictoboubonus	2
Pristimantis ernesti	1	Pristimantis tamsitti	3
Pristimantis eurydactylus	137	Pristimantis toftae	44
Pristimantis exoristus	3	Pristimantis trachyblepharis	2
Pristimantis fenestratus	1027	Pristimantis unistrigatus	1
Pristimantis frater	2	Pristimantis variabilis	295
Pristimantis galdi	7	Pristimantis ventrimarmoratus	135
Pristimantis gutturalis	76	Pristimantis vilarsi	579
Pristimantis imitatrix	20	Pristimantis wagteri	2
Pristimantis incanus	2	Pristimantis waoranii	2
Pristimantis incomptus	1	Pristimantis w-nigrum	7
Pristimantis infraguttatus	1	Pristimantis yaviensis	2
Pristimantis inguinalis	65	Pristimantis zeuctotylus	274
Pristimantis inusitatus	5	Pristimantis zimmermanae	24
Pristimantis jester	4	Pristimantis zoilae	3
Pristimantis kichwarum	16	Strabomantis cornutus	12
Pristimantis lacrimosus	141	Strabomantis sulcatus	393

Continuação

Espécies	Nº grid	Espécies	N⁰ grid
	Dendro	batidae	
Adelphobates castaneoticus	24	Hyloxalus eleutherodactylus	1
Adelphobates galactonotus	180	Hyloxalus faciopunctulatus	4
Adelphobates quinquevittatus	493	Hyloxalus fuliginosus	1
Ameerega bassleri	14	Hyloxalus idiomelus	2
Ameerega bilinguis	18	Hyloxalus insulatus	1
Ameerega cainarachi	1	Hyloxalus maculosus	2
Ameerega flavopicta	73	Hyloxalus mittermeieri	1
Ameerega hahneli	1309	Hyloxalus nexipus	23
Ameerega ingeri	1	Hyloxalus patitae	1
Ameerega macero	30	Hyloxalus peruvianus	200
Ameerega parvula	79	Hyloxalus pulchellus	4
Ameerega petersi	52	Hyloxalus sauli	19
Ameerega picta	502	Hyloxalus shuar	6
Ameerega pongoensis	9	Hyloxalus sordidatus	6
Ameerega pulchripecta	8	Minyobates steyermarki	1
Ameerega rubriventris	7	Ranitomeya amazônica	9
Ameerega silverstonei	2	Ranitomeya benedicta	9
Ameerega trivittata	1456	Ranitomeya fantástica	6
Colostethus fugax	5	Ranitomeya flavovittata	9
Dendrobates leucomelas	280	Ranitomeya imitator	9
Dendrobates nubeculosus	1	Ranitomeya reticulata	60
Dendrobates tinctorius	201	Ranitomeya sirensis	34
Excidobates captivus	2	Ranitomeya summersi	1
Hyloxalus azureiventris	3	Ranitomeya uakarii	119
Hyloxalus bocagei	24	Ranitomeya vanzolinii	55
Hyloxalus cevallosi	3	Ranitomeya variabilis	4
Hyloxalus chlorocraspedus	1	Ranitomeya ventrimaculata	871
Hyloxalus craspedoceps	1		
	Eleuthero	dactylidae	
Adelophryne adiastola	98	Eleutherodactylus johnstonei	2
Adelophryne gutturosa	121	Phyzelaphryne miriamae	434
Adelophryne patamona	3		
	Hemiph	ractidae	
Gastrotheca andaquiensis	9	Stefania evansi	24
Gastrotheca longipes	32	Stefania ginesi	4
Gastrotheca monticola	1	Stefania goini	2
Gastrotheca nicefori	2	Stefania marahuaquensis	2
Gastrotheca testudinea	39	Stefania oculosa	4
Gastrotheca weinlandii	13	Stefania percristata	4
Hemiphractus bubalus	32	Stefania riae	2
Hemiphractus helioi	50	Stefania riveroi	2
Hemiphractus johnsoni	11	Stefania roraimae	6
Hemiphractus proboscideus	138	Stefania satelles	6

Continuação			
Espécies	N⁰ grid	Espécies	Nº grid
	Hemiph	ractidae	
Hemiphractus scutatus	423	Stefania scalae	14
Stefania ackawaio	4	Stefania schuberti	2
Stefania ayangannae	4	Stefania tamacuarina	1
Stefania breweri	1	Stefania woodleyi	5
Stefania coxi	4		
	Hyl	idae	
"Hyla" imitator	1	Hypsiboas punctatus	1875
Aparasphenodon venezolanus	46	Hypsiboas raniceps	1275
Dendropsophus acreanus	252	Hypsiboas rhythmicus	4
Dendropsophus anataliasiasi	95	Hypsiboas Roraima	2
Dendropsophus aperomeus	4	Hypsiboas sibleszi	68
Dendropsophus bifurcus	368	Hypsiboas tepuianus	36
Dendropsophus bokermanni	381	Hypsiboas wavrini	838
Dendropsophus branneri	16	Myersiohyla aromática	1
Dendropsophus brevifrons	583	Myersiohyla inparquesi	2
Dendropsophus cachimbo	1	Myersiohyla kanaima	3
Dendropsophus delarivai	9	Myersiohyla loveridgei	2
Dendropsophus gaucheri	5	Nyctimantis rugiceps	22
Dendropsophus haraldschultzi	308	Osteocephalus alboguttatus	10
Dendropsophus joannae	2	Osteocephalus buckleyi	1390
Dendropsophus Juliani	4	Osteocephalus cabrerai	566
Dendropsophus koechlini	352	Osteocephalus castaneicola	11
Dendropsophus leali	575	Osteocephalus deridens	29
Dendropsophus leucophyllatus	1627	Osteocephalus fuscifacies	8
Dendropsophus marmoratus	1494	Osteocephalus heyeri	11
Dendropsophus mathiassoni	8	Osteocephalus leoniae	14
Dendropsophus melanargyreus	504	Osteocephalus leprieurii	1204
Dendropsophus microcephalus	1395	Osteocephalus mimeticus	63
Dendropsophus minimus	1	Osteocephalus mutabor	25
Dendropsophus minusculus	79	Osteocephalus oophagus	349
Dendropsophus minutus	1795	Osteocephalus planiceps	247
Dendropsophus miyatai	489	Osteocephalus subtilis	60
Dendropsophus nanus	959	Osteocephalus taurinus	1730
Dendropsophus parviceps	1384	Osteocephalus verruciger	13
Dendropsophus pauiniensis	125	Osteocephalus yasuni	61
Dendropsophus reichlei	7	Pseudis boliviana	319
Dendropsophus rhodopeplus	435	Pseudis caraya	263
Dendropsophus riveroi	721	Pseudis laevis	24
Dendropsophus rossalleni	495	Pseudis paradoxa	1518
Dendropsophus rubicundulus	194	Scarthyla goinorum	515
Dendropsophus sarayacuensis	609	Scinax baumgardneri	3
Dendropsophus schubarti	135	Scinax blairi	17
Dendropsophus soaresi	3	Scinax boesemani	1413

Continuação			
Espécies	N⁰ grid	Espécies	N⁰ grid
	Hyl	idae	
Dendropsophus timbeba	68	Scinax chiquitanus	43
Dendropsophus tintinnabulum	20	Scinax cruentommus	858
Dendropsophus triangulum	867	Scinax danae	4
Dendropsophus walfordi	450	Scinax eurydice	8
Dendropsophus xapuriensis	60	Scinax exiguus	9
Dryaderces inframaculata	1	Scinax funereus	284
Dryaderces pearsoni	28	Scinax fuscomarginatus	254
Ecnomiohyla tuberculosa	135	Scinax fuscovarius	181
Hyloscirtus albopunctulatus	30	Scinax garbei	1154
Hyloscirtus lindae	5	Scinax ictericus	30
Hyloscirtus phyllognathus	18	Scinax iquitorum	25
Hyloscirtus psarolaimus	1	Scinax karenanneae	4
Hyloscirtus staufferorum	1	Scinax kennedyi	6
Hyloscirtus torrenticola	6	Scinax lindsayi	51
Hypsiboas albopunctatus	203	Scinax nebulosus	1236
Hypsiboas boans	1827	Scinax oreites	11
Hypsiboas calcaratus	1440	Scinax pedromedinae	52
Hypsiboas cinerascens	1793	Scinax proboscideus	71
Hypsiboas crepitans	245	Scinax rostratus	115
Hypsiboas dentei	58	Scinax ruber	1832
Hypsiboas fasciatus	1526	Scinax wandae	31
Hypsiboas fuentei	1	Scinax x-signatus	1714
Hypsiboas geographicus	1876	Sphaenorhvnchus carneus	559
Hypsiboas hobbsi	86	Sphaenorhynchus dorisae	508
Hypsiboas hutchinsi	39	Sphaenorhvnchus lacteus	1589
Hypsiboas iimenezi	2	Tepuihvla aecii	1
Hypsiboas lanciformis	1351	Tepuihyla edelcae	9
Hypsiboas lemai	20	Tepuihyla exophthalma	2
Hypsiboas leucocheilus	3	Tepuihyla luteolabris	2
Hypsiboas liliae	7	Tepuihyla rodriguezi	8
Hypsiboas microderma	127	Tepuihyla warreni	2
Hypsiboas multifasciatus	486	Trachycephalus coriaceus	727
Hypsiboas nympha	88	Trachycephalus hadroceps	
Hypsiboas ornatissimus	136	Trachycephalus resinifictrix	1465
Hypsiboas pulidoi	2	Trachycephalus typhonius	1874
	Leptoda	actvlidae	1011
Adenomera andreae	1722	Leptodactvlus myersi	103
Adenomera heveri	83	Leptodactylus mystaceus	1768
Adenomera hylaedactyla	1850	Leptodactylus mystacious	2
Adenomera lutzi	0009 Q	Leptodactylus naraensis	213
Adenomera martinezi	9 ۵۸	Leptodactylus paraensis	1/01
Edalorhina nasuta	30	Leptodactylus petersii	16/5
Edalorhina nasula	151	Leptodactylus podicininus	222
	404		555

Continuação			
Espécies	N⁰ grid	Espécies	N⁰ grid
	Leptoda	actylidae	
Engystomops freibergi	652	Leptodactylus pustulatus	177
Engystomops petersi	148	Leptodactylus rhodomystax	1602
Engystomops pustulosus	25	Leptodactylus rhodonotus	111
Hydrolaetare dantasi	66	Leptodactylus riveroi	324
Hydrolaetare schmidti	884	Leptodactylus rugosus	67
Leptodactylus bolivianus	1629	Leptodactylus sabanensis	8
Leptodactylus chaquensis	24	Leptodactylus stenodema	1450
Leptodactylus colombiensis	4	Leptodactylus syphax	20
Leptodactylus didymus	7	Leptodactylus validus	215
Leptodactylus diedrus	269	Leptodactylus vastus	30
Leptodactylus discodactylus	412	Leptodactylus wagneri	100
Leptodactylus elenae	88	Physalaemus albonotatus	1
Leptodactylus fragilis	6	Physalaemus centralis	5
Leptodactylus furnarius	9	Physalaemus cuvieri	716
Leptodactylus fuscus	1550	Physalaemus ephippifer	668
Leptodactylus knudseni	1567	Physalaemus fischeri	40
Leptodactylus labyrinthicus	106	Physalaemus nattereri	36
Leptodactylus latrans	1227	Pleurodema brachyops	125
Leptodactylus leptodactyloides	1438	Pseudopaludicola boliviana	875
Leptodactylus lineatus	1576	Pseudopaludicola canga	10
Leptodactylus lithonaetes	56	Pseudopaludicola ceratophryes	182
Leptodactylus longirostris	276	Pseudopaludicola llanera	33
	Microl	nylidae	
Adelastes hylonomos	1	Ctenophryne geayi	1767
Chiasmocleis albopunctata	78	Dermatonotus muelleri	58
Chiasmocleis anatipes	43	Elachistocleis carvalhoi	9
Chiasmocleis antenori	132	Elachistocleis helianneae	385
Chiasmocleis avilapiresae	397	Elachistocleis ovalis	1684
Chiasmocleis bassleri	606	Elachistocleis surinamensis	19
Chiasmocleis carvalhoi	56	Elachistocleis surumu	3
Chiasmocleis devriesi	1	Hamptophryne boliviana	1617
Chiasmocleis hudsoni	372	Otophryne pyburni	171
Chiasmocleis magnova	3	Otophryne robusta	15
Chiasmocleis shudikarensis	990	Otophryne stevermarki	17
Chiasmocleis tridactvla	104	Svnapturanus mirandaribeiroi	488
Chiasmocleis ventrimaculata	214	Svnapturanus rabus	69
Ctenophrvne carpish	3	Svnapturanus salseri	166
	Odontop	hrynidae	
Proceratophrys			
concavitympanum	1		
	Phyllom	edusidae	
Agalychnis buckleyi	28	Phyllomedusa camba	200
Agalychnis hulli	22	Phyllomedusa coelestis	35

Conclusão

Espécies	N⁰ gris	Espécies	N⁰ grid		
	Phyllom	edusidae			
Cruziohyla craspedopus	624	Phyllomedusa hypochondrialis	1182		
Phyllomedusa atelopoides	168	Phyllomedusa palliata	301		
Phyllomedusa azurea	4	Phyllomedusa tarsius	944		
Phyllomedusa baltea	2	Phyllomedusa tomopterna	1662		
Phyllomedusa bicolor	1571	Phyllomedusa vaillantii	1490		
Phyllomedusa boliviana	111				
	Pip	idae			
Pipa arrabali	396	Pipa pipa	1665		
Pipa áspera	36	Pipa snethlageae	675		
Ranidae					
Lithobates catesbeianus	6	Lithobates palmipes	1862		
Fanta Maraala Draail de Castra Cadinh	-				

Fonte: Marcela Brasil de Castro Godinho

REFERENCES

ARAÚJO, M. B.; NOGUÉS-BRAVO, D.; DINIZ-FILHO, J. A. F.; HAYWOOD, A. M.; VALDES, P. J.; CARSTEN, R. Quaternary climate changes explain diversity among reptiles and amphibians. **Ecography**, v. 31, n. 1, p. 8–15, 2008.

ARAÚJO, M. B.; PETERSON, A. T. Uses and misuses of bioclimatic envelope modeling. **Ecology**, v. 93, n. 7, p. 1527-1539, 2012.

AZEVEDO-RAMOS, C.; GALATTI, U. Patterns of amphibian diversity in Brazilian Amazonia: conservation implications. **Biological Conservation**, v. 103, p. 103-111, 2002.

BOLKER, B.; R DEVELOPMENT CORE TEAM. **bbmle: Tools for General Maximum Likelihood Estimation**. R package versão 1.0.18, 2016.

BORCARD, D.; LEGENDRE, P.; DRAPEAU, P. Partialling out the spatial component of ecological variation. **Ecology**, v. 73, n. 3, p. 1045-1055, 1992.

BORCARD, D.; GILLET, F.; LEGENDRE, P. **Numerical Ecology with R**. New York: Springer, 2011. 306p.

BUCKLEY, L. B.; JETZ, W. Environmental and historical constraints on global patterns of amphibian richness. **Proceedings of the Royal Society B: Biological Sciences**, v. 274, n. 1614, p. 1167-1173, 2007.

BUCKLEY, L. B.; JETZ, W. Linking global turnover of species and environment. **Proceedings of the National Academy of Sciences of the United States of America**, v. 105, n. 46, p. 17836-17841, 2008.

BURNHAM, K. P.; ANDERSON, D. R. **Model selection and multimodel inference**: a pratical information-theoretic approach. 2. ed. New York: Springer, 2002. 488p.

BUSH, M. B. Amazonian speciation: a necessarily complex model. Journal of Biogeography, v. 21, n. 1, p. 5-17, 1994.

CARNAVAL, A. C.; HICKERSON, M. J.; HADDAD, C. F. B.; RODRIGUES, M. T.; MORITZ, C. Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. **Science**, v. 323, N. 5915, p. 785-789, 2009.

CARVALHO, W. D. de; MUSTIN, K. The highly threatened and little known Amazonian savannahs. **Nature Ecology & Evolution**, v. 1, p. 1-3, 2017.

CHARITY, S.; DUDLEY, N.; OLIVEIRA, D.; STOLTON, S. Living Amazon Report **2016**: A regional approach to conservation in the Amazon. WWF Living Amazon Initiative, Brasília and Quito, 2016.

CRACRAFT, J. Historical biogeogaphy and patterns of differentiation within the Sputh American avifauna: areas of endemism. **Ornithological Monographs**, v. 36, p. 49-84, 1985.

DAPPORTO, L.; RAMAZZOTTI, M.; FATTORINI, S.; TALAVERA, G.; VILA, R.; DENNIS, R. L. H. recluster: an unbiased clustering procedure for beta-diversity turnover. **Ecography**, v. 36, n. 10, p. 1070–1075, 2013.

DAPPORTO, L.; CIOLLI, G.; DENNIS, R. L. H.; FOX, R.; SHREEVE, T. G. A new procedure for extrapolating turnover regionalization atmid-small spatial scales, tested on British butterflies. **Methods in Ecology and Evolution**, v. 6, n. 11, p. 1287-1297, 2015a.

DAPPORTO, L.; RAMAZZOTTI, M.; FATTORINI, S.; VILA, R.; TALAVERA, G. DENNIS, R. H. L. recluster: Ordination methods for the analysis of betadiversity Indices. R package ver. 2.8. 2015b

da SILVA, F. R.; ALMEIDA-NETO, M.; PRADO, V. H. M. do; HADDAD, C. F. B.; ROSSA-FERES, D. de C. Humidity levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic Forest. **Journal of Biogeography**, v. 39, n. 9, p. 1720-1732, 2012.

DA SILVA, N. J.; SITES, J. W. Patterns of Diversity of Neotropical Squamate Reptile Species with Emphasis on the Brazilian Amazon and the Conservation Potential of Indigenous Reserves. **Conservation Biology**, v. 9, n. 4, p. 873–901. 1995.

DOBROVOLSKI, R.; MELO, A. S.; CASSEMIRO, F. A. S.; DINIZ-FILHO, J. A. F. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. **Global Ecology and Biogeography**, v. 21, n. 2, p. 191-197, 2012.

DUELLMAN, W. E. Patterns of species diversity in anuran amphibians in the American tropics. **Annals of the Missouri Botanical Garden**, v. 75, n. 1, p. 79–104, 1988.

EBACH, M. C.; PARENTI, L. R. The dichotomy of the modern bioregionalization revival. **Journal of Biogeography**, v. 42, n. 10, p. 1801–1808, 2015.

FICETOLA, G. F.; RONDININI, C.; BONARDI, A.; KATARIYA, V.; PADOA-SCHIOPPA, E.; ÂNGULO, A. An evaluation of the robustness of global amphibian range maps. **Journal of Biogeography**, v. 41, n. 2, p. 211-221, 2014.

FICETOLA, G. F.; MAZEL, F.; THUILLER, W. Global determinats of zoogeographical boundaries. **Nature Ecology & Evolution**, v. 1, p. 1-7, 2017.

FROST, D. R. **Amphibian Species of the World: an Online Reference**. Version 6.0 (15 de julho de 2016). - Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA. 2016.

GASCON, C.; MALCOLM, J. R.; da SILVA, M. N.; BOGART, J. P.; LOUGHEED, S. C.; PERES, C. A.; NECKEL, S.; BOAG, P. T. Riverine barriers and the geographic

distribution of Amazonian species. **Proceedings of the National Academy of Sciences of the United States of America**, v. 97, n. 25, p. 13672-13677, 2000.

HAFFER, J. Speciation in Amazonian forest birds. **Science**, v. 165, n. 3889, p. 131-137, 1969.

HAFFER, J. Distribution of Amazon birds. **Bonner Zoologischen Beitrage**, v. 29, p. 38–78, 1978.

HAWKINS, B. A.; FIELD, R.; CORNELL, H. V.; CURRIE, D. J.; GUÉGAN, J. F.; KAUFMAN, D. M.; KERR, J. T.; MITTELBACH, G. G.; OBERDORFF, T.; O'BRIEN, E. M.; PORTER, E. E.; TURNER, J. R. G. Energy, water, and broad-scale geographic patterns of species richness. **Ecology**, v. 84, n. 12, p. 3105–3117, 2003.

HAWKINS, B. A.; RUEDA, M.; ROFRÍGUEZ, M. Á. What do range maps and surveys tell us about diversity patterns?. **Folia Geobotanica**, v. 43, p. 345-355, 2008.

HE, J.; KREFT, H.; GAO, E.; WANG, Z.; JIANG, H. Patterns and drivers of zoogeographical regions of terrestrial vertebrates in China. **Journal of Biogeography**, v. 44, n. 5, p. 1172-1184.

HIJMANS, R. J.; CAMERON, S. E.; PARRA, J. L.; JONES, P. G.; JARVIS, A. Very high resolution interpolated climate surfaces for global land areas. **International Journal of Climatology**, v. 25, p. 1965-1978, 2005.

HOLT, B. G.; LESSARD, J. P.; BORREGAARD, M. K.; FRITZ, S.A.; ARAÚJO, M. B.; DIMITROV, D.; FABRE, P. H.; GRAHAM, C. H.; GRAVES, G. R.; JONSSON, K. A.; NOGUÉS-BRAVO, D.; WANG, Z.; WHITTAKER, R. T.; FJELDSA, J.; RAHBEK, C. An update of Wallace's zoogeographic regions of the world. **Science**, v. 339, n. 6115, p. 74–78, 2013.

HOORN, C.; WESSELINGH, F. P.; STEEGE, H. ter; BERMUDEZ, M. A.; MORA, A.; SEVINK, J.; SANMARTIN, I.; SANCHEZ-MESEGUER, A.; ANDERSON, C. L.; FIGUEIREDO, J. P.; JARAMILLO, C.; RIFF, D.; NEGRI, F. R.; HOOGHIEMSTRA, H.; LUNDBERG, J.; STADLER, T.; SÄRKINEN, T.; ANTONELLI, A. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. **Science**, v. 330, n. 6006, p. 927-931, 2010.

HORTAL, J.; CARRASCAL, L. M.; TRIANTIS, K. A.; THÉBAULT, E.; MEIRI, S.; SFENTHOURAKIS, S. Species richness can decrease with altitude but not with habitat diversity. **Proceedings of the National Academy of Sciences of the United States of America**, v. 110, n. 24, p. 2149-2150, 2013.

IUCN Global Species Programme Red List Unit. IUCN UK Office, 219c Huntingdon Road Cambridge CB3 0DL, United Kingdom. 2015

JANZEN, D. H. Why mountain passes are higher in the tropics. **The American Naturalist**, v. 101, n. 919, p. 233–249, 1967.

KOLEFF, P.; GASTON, K. J.; LENNON, J. J. Measuring beta diversity for presenceabsence data. **Journal of Animal Ecology**, v. 72, p. 367-382, 2003.

KREFT, H.; JETZ, W. A framework for delineating biogeographical regions based on species distribution. **Journal of Biogeography**, v. 37, p. 2029-2053, 2010.

LADLE, R. J.; WHITTAKER, R. J. **Conservation biogeography**. Wiley-Blackwell, 2011. 320p.

LEGENDRE, P.; LEGENDRE, L. **Numerical ecology**. 3. ed. Amsterdam: Elsevier, 2012.

MACKEY, B. G.; BERRY, S. L.; BROWN, T. Reconciling approaches to biogeographical regionalization: a systematic and generic framework examined with a case study of the Australian continent. **Journal of Biogeography**, v. 35, n. 2, p. 213-229, 2008.

MCLAUGHLIN, S. P. Are floristic areas hierarchically arranged?. Journal of Biogeography, v. 19, n. 1, p. 21–32, 1992.

MORAES, L. J. C. L.; PAVAN, D.; BARROS, M. C.; RIBAS, C. C. The combined influence of riverine barriers and flooding gradients on biogeographical patterns for amphibians and squamates in south-eastern Amazonia. **Journal of Biogeography**, v. 43, n. 11, p. 2113-2124, 2016.

MORRONE, J. J. **Evolutionary biogeography**: an integrative approach with case studies. New York: Columbia University Press, 2009.

MOURA, M. R.; ARGÔLO, A. J.; COSTA, H. C. Historical and contemporary correlates of snake biogeographical subregions in the Atlantic Forest hotspot. **Journal of Biogeography**, v. 44, n. 3, p. 640-650, 2016.

OLSON, D. M.; DINERSTEIN, E.; WIKRAMANAYAKE, E. D.; BURGESS, N. D.; POWELL, G. V. N.; UNDERWOOD, E. C.; D'AMICO, J. A.; ITOUA, I.; STRAND, H. E.; MORRISON, J. C.; LOUCKS, C. J.; ALLNUTT, T. F.; RICKETTS, T. H.; KURA, Y.; LAMOREUX, J. F.; WETTENGEL, W. W.; HEDAO, P.; KASSEM, K. R. Terrestrial ecoregions of the world: a new map of life on Earth. **BioScience**, v. 51, n. 11 p. 933–938, 2001.

OKSANEN, J.; BLANCHET, F. G.; FRIENDLY, M.; KINDT, R.; LEGENDRE, P.; MCGLINN, D.; MINCHIN, P. R.; O'HARA, R. B.; SIMPSON, G. L.; SOLYMOS, P.; STEVENS, M. H. H.; SZOECS, E.; WAGNER, H. **vegan: community ecology package**. R package ver. 2.3-2. 2015

PROCHES, S. The world's biogeographical regions: cluster analysis based on bat distributions. **Journal of Biogeography**, v. 32, n. 4, p. 607–614, 2005.

RIPLEY, B.; VENABLES, W. nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models. R package ver. 7.3-12. 2016

RUEDA, M.; RODRÍGUEZ, M. Á.; HAWKINS, B. A. Towards a biogeographic regionalization of the European biota. **Journal of Biogeography**, v. 37, n. 11, p. 2067-2076, 2010.

RUEDA, M.; RODRÍGUEZ, M. Á.; HAWKINS, B. A. Identifying global zoogeographical regions: lessons from Wallace. **Journal of Biogeography**, v. 40, n. 12, p. 2215-2225, 2013.

SILVA, J. M. C. da; NOVAES, F. C.; OREN, D. C. Differentiation of Xiphocolaptes (Dendrocolaptidae) across the river Xingu, Brazilian Amazonia: recognition of a new phylogenetic species and biogeographic implications. **Bulletin of the British Ornithologists' Club**, v. 122, n. 3, p. 185-194, 2002.

SILVA, J. M. C. da; RYLANDS, A. B.; FONSECA, G. A. B. da. The fate of the Amazonian Areas of Endemism. **Conservation Biology**, v. 19, n. 3, p. 689-694, 2005.

SMITH, B. T.; MCCORMACK, J. E.; CUERVO, A. M.; HICKERSON, M. J.; ALEIXO, A.; CADENA, C. D.; PÉREZ-EMÁN, J.; BURNEY, C. W.; XIE, X.; HARVEY, M. G.; FAIRCLOTH, B. C.; GLENN, T. C.; DERRYBERRY, E. P.; PREJEAN, J.; FIELDS, S.; BRUMFIELD, R. T. The drivers of tropical speciation. **Nature**, v. 515, n. 7527, p. 406-409, 2014.

SOUTHWOOD, T. R. E. Habitat, the templet for ecological strategies?. **Journal of Animal Ecology**, v. 46, p. 337–365, 1977.

SZUMIK, C.; AAGESEN, L.; CASAGRANDA, D.; ARZAMENDIA, V.; BALDO, D.; CLAPS, L. E.; CUEZZO, F.; GÓMEZ, J. M. D.; GIACOMO, A. D.; GIRAUDO, A.; GOLOBOFF, P.; GRAMAJO, C.; KOPUCHIAN, C.; KRETZSCHMAR, S.; LIZARRALDE, M.; MOLINA, A.; MOLLERACH, M.; NAVARRO, F.; NOMDEDEU, S.; PANIZZA, A.; PEREYRA, V. V.; SANDOVAL, M.; SCROCCHI, G.; ZULOAGA, F. O. Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. **Cladistics**, v. 28, n. 3, p. 317-329, 2012.

VASCONCELOS, T. S.; RODRÍGUEZ, M. Á.; HAWKINS, B. A. Biogeographic Distribution Patterns of South American Amphibians: A Regionalization Based on Cluster Analyses. **Brazilian Journal of Nature Conservation**, v. 9, n. 1, p. 67-72, 2011.

VASCONCELOS, T. S.; PRADO, V. H. M.; da SILVA, F. R.; HADDAD, C. F. B. Biogeographic Distribution Patterns and Their Correlates in the Diverse Frog Fauna of the Atlantic Forest Hotspot. **PLoS One**, v. 9, n. 8, p. 1-9, 2014.

WALLACE, A. R. On the monkeys of the Amazon. **Annals and Magazine of Natural History**, v. 14, n. 84, p. 451-454, 1854.

WALLACE, A. R. **The geographical distribution of animals**: with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth's surface. New York: Harper & Brothers, v. 1, 1876. 503pp.

WHITTAKER, R. J.; RIDDLE, B. R.; HAWKINS, B. A.; LADLE, R. J. The geographical distribution of life and the problem of regionalization: 100 years after Alfred Russel Wallace. **Journal of Biogeography**, v. 40, n. 12, p. 2209–2214, 2013.