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1. INTRODUCTION

Polar curves of plane algebraic curves in characteristic zero have been
studied extensively by several people and appear in the classical literature
related to Pllicker’s formulas (see for example [2, 8, or 10]).

This study however has not been carried out in depth for curves defined
over fields of positive characteristic, and the aim of this work is to
contribute to filling this gap. It turns out, as we will see, that the theory in
positive characteristic is quite different from the characteristic zero case
and establishes interesting interplays between geometry and number the-
ory.

Our motivation comes from [5] where, making a new use of polar curves
in positive characteristic, we improved on the known upper bounds for the
number of points of Fermat curves over finite fields. After the study we
make in the present paper, it will be possible to apply the methods of [5] to
other families of curves as well.

The paper is organized as follows. Let Z be a projective plane curve of
degree d and let A be an integer between 1 and d. We denote by A% Z the

* Partially supported by CNPg-Brazil.

449

0021-8693 /96 $18.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



450 HEFEZ AND KAKUTA

polar A-ic of Z at P. In Section 2 we show that the intersection multiplicity
of Z and A% Z at P is an upper semi-continuous function in P on Z. The
minimum value of this function, achieved on an open dense Zariski subset
of Z, will be denoted by 7, ,. It is shown in Theorem 2.5 that there exists
an arithmetical function n(d, A) such that for any curve Z of degree d we
have n, , > n(d, A), with equality holding for the general curve of degree
d. In Section 3 we characterize the non-general curves Z, that is, the
curves for which n, , > n(d, A), in terms of the vanishing of certain
derivatives of the defining polynomial of Z, assuming some mild behaviour
on the singularities of the curve. In Section 4 we show how to get in some
cases the shape of the equation of a non-general curve. In Section 5 we
totally describe the arithmetical function n(d, A). In Section 6 we give an
enumerative formula for the stationary points on a suitably general curve
with respect to its associated family of polar A-ics. More precisely, we
count the number of points P on Z at which Z and A% Z have intersec-
tion multiplicity greater than ), ,. This result contains in particular the
usual Plucker’s formula for the number of flexes of a non-singular plane
projective curve. In Section 7 we introduce the polar morphisms of plane
curves, which generalize the Gauss map, and prove a formula that general-
izes Plucker’'s formula relating the degree of a curve, the degree of its
Gauss map, and the degree of its dual curve.

2. GENERAL THEORY

Let K be an algebraically closed field, of characteristic p > 0, fixed
once and for all. Let F € K[ X,, X;, X,] be a homogeneous polynomial of
degree d and let Q be an element of K* We consider, for A =1,...,d,
the homogeneous polynomials

(A/\QF)(XO'XI' X,) = by (Dio,il,izF)(Q)XéonlXéz’
igtigti=A
where D, ; ; denotes the mixed partial Hasse differential operator, of

order i, with respect to the indeterminate X, for » = 0,1, 2. We will also
denote D; o, Dy ; o @and Dy, ; respectively by DY, Dy, and DY . For
the properties of these operators needed here we refer the reader to [3].

From the definition of the Hasse operators, we have, for P, Q € K* and
indeterminates ¢, and ¢,, the identity

F(tyP +1,0) = t{F(P) + 1§ '1,( A F)(Q) + -
+ 1ot (A TF)(Q) + t{F(Q) (D



POLAR CURVES 451

The above identity gives many relations involving the polynomials A)‘QF,
of which we use only a few.

LEMMA 2.1. We have the relations
() (ALFXQ) = (A% *F)(P).
(i) (ARF)XP) = (DF(P),

(i) Let T be a linear automorphism of K®. For any polynomial G in
K[ X,, X, X,] and any Q in K3, we denote G(T(Q)) by G'(Q). Then we
have

(M’F)T - (AAT*(P)FT)'

Proof. (i) is obtained by comparing the corresponding identity for
F(¢,0Q + t,P) with (). (ii) follows easily from identity (1) when we put
P = Q. (iii) follows replacing Q by T(Q) in both members of (1) and then
developing the first member using again formula (1).

Note that Lemma 2.1 (ii) is a generalization of Euler’s relation, which
applied to the monomial XgoX[*X72, with n, + n, + n, =d, gives in
particular the well known relation, still called Euler’s relation,

RN AR

Note also that what we established for polynomials in three indetermi-
nates is valid in any number of indeterminates; in particular, also in the
above Euler’s relation.

DeriNniTION.  If Z is a projective plane curve defined by F = 0, and if
some of the derivatives of F of order A evaluated at P is nonzero, then the
curve A} Z defined by A% F = 0 is called the polar A-ic curve of Z at P.

In particular, we have for A = 1 the polar line at P (which is, for P € Z,
the tangent line at P), for A = 2 we have the polar conic at P, and for
A = 3 the polar cubic at P.

It is clear from Lemma 2.1 (i) that our indices for polars are reversed
with respect to the classical use, that is, our definition of A’ is the classical
A?~* (as defined for example in [2] or in [8]). We also have from this
formula that P € A}, Z if and only if O € A% *Z. It follows from Lemma
2.1(ii) that if P € Z, then P € A} Z for all A. Lemma 2.1(iii) says that the
polar A-ic is a well defined projective object.
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In order to study the behavior of the intersection multiplicity function of
Z with its polar curves, we establish the following result.

PrROPOSITION 2.2. Let Z: F = 0 be an integral projective plane curve and
let Z> Z be the normalization map of Z. Let A be an integer such that
1 < A <d, and some mixed derivative of F of order A is not identically zero.
Then the integer-valued function on Z defined by the formula

P ord,—;(A’,‘,(p)F)

IS upper semi-COntinuous.

Proof. Let Q € Z and suppose without loss of generality that 7(Q) =
(1; a; b). Choose a rational function s € K(Z) such that its image in_the
local ring 7.0 is a uniformizing parameter. If U is the open set of Z of
all points P for which ¢ = s — s(P) is an uniformizing parameter of @5 5
and 7(P) & {X, = 0}, then we have that

(A);T(ﬁ)F)(l’xn)’) = Z (Dio,il,izF)(ﬂ'(ﬁ))xilyiz-

ig+ig+is=A

Consider the powers series T,, (D{(xem)t' and ¥,, ,Di(yem)t' in

K[UT[¢]]. These powers series with their coefficients evaluated at P € U
represent the expansions of the functions x o s and y o in the comple-
tion of the local ring @z 5. Consider now the expansion

(3 ) (1 T DiCxem) (Pt £ Dy em) (Bye) = S m(P

i>0 i=0 i>0

where each #4; is a regular function on U. Let 1 be the first index i for
which h; # 0 (such an index exists because some derivative of I of order A
is nonzero) _then ordﬁ(A,,(P)F) is equal to n for P in the open dense set
(Pe Ulh (P) + 0} and is greater than  at the other points of U, so the
function under consideration is upper semi-continuous on U, hence on Z

We will denote by I(P, F.G) the intersection multiplicity of the curves
F =0and G = 0 at the point P.

CoROLLARY 2.3. If F is an irreducible polynomial of degree d in
K[ X,, X,, X,], then for every A = 1,...,d — 1 such that some derivative of
order \ of F is nonzero, the function P — I(P, F.A},F) is upper semi-con-
tinuous on Z . F = 0.
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The upper semi-continuity of the above intersection multiplicity implies
that its minimum value is achieved in a non-empty Zariski open set of Z.

DeriNiTION.  We define 7, , as being the minimum value of the above
intersection multiplicity function.

The number 7, , is well known and it is the last order &, of the order
sequence of the curve in the projective plane, that is, it is the intersection
multiplicity at a general point P of Z with its tangent line at P (see for
example [6] or [9].

In order to compute the value of 7, ,, we will give the expansion of the
polynomial A} F at a point P.

Let f(x,y) be a polynomial in K[x, y]l. If P’ = (a,b) is a point in the
affine plane, and r is an integer such that 0 < r < deg(f), we define

fp(x,y) = ¥ D f(P)(x—a)(y—b),

i+j=r

where D, ; means the Hasse differential operator of order i with respect
to x and of order j with respect to y. It is clear that we have

deg(f)

f(x,y) = ;0 frp(x,y).

In the following we will denote by P the point (a, a,, a,), with a, # 0,
in K3 and by P’ the point (a, b) = (a,/a,, a,/a,) in K2

LEMMA 2.4.  Let F(X,, X, X,) be a homogeneous polynomial of degree d
in K[X,, X, X,], and let P = (ay, a,,a,) € K3, with a, # 0, and \ an
integer such that 1 < A < d.

(i) IfQ € K3, then
A , .
(A)‘QF)(l,x,y) = X a’t.)Jrij(Ai;ADo,i,jF)(Q)(x —a)(y - b).
i+j=0

(i) If f(x, y) denotes the polynomial F(1, x, y), then

") T Do (P =)' (v =)

r i+j=r

(ALF)(1,x,y) = Zoag_,\(i -

Aﬁ( _ )rP/(xy)

r=0
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Proof. () If I =C(iy,iy,i,), and |I| =i, +i; +i,, we have

X DF(Q)(x—a+a)i(y—b+b)"

[I]=x

=2 ()]

><D,F(Q>(Z—;)ili(;’—o)i”<x—a)f<y—b>f 2)

(A)‘QF)(l,x,y)

A
=X X ag" "M Dy, iy-ii,—j ° Doi ;F)(Q)

[I|=Xi+j=0

Xagay~lay I (x = a)'(y = b)’ (3)

A
Y ag N AY D, F)(P)(x —a)'(y = b)
i+j=0

Y ag TN (A5 Dy F)(Q)(x = a)'(y = b), (4)

i+j=0
where equality (2) is obtained from the binomial expansion, equality (3) is

a consequence of the composition law for the Hasse differential operators,
and equality (4) follows from Lemma 2.1(i).

(ii) This formula follows from (i) and from Lemma 2.1(ii).

It follows from part (ii) of the above lemma that
I(P,ZAyZ)>2, VYPeZ.

DerFINITION. Let d and A be two integers such that 1 < A <d. We

define
d—1 d—s
(A_l)i(/\_s)modp}.

n(d, A) = min{s
It is clear that
2<n(d, ) <rA+1<d.

In particular, for any d > 1 we have n(d,1) = 2. We also have that if
p =0, then n(d, )) is always equal to 2.
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DerFiNniTION. If d =d, +d,p + --- +d, p" is the p-adic expansion of
d, then A =d, + - +d,, p™, for m <n, is called the truncation of d at
order m, or simply a truncation of d.

Remark 1. When p > 0 and A # 0 is a truncation of d, then ({~1) =
1mod p, and

n(d,A) =1+ 1.

The above equality follows from the following well known congruence,
which we will refer to as the fundamental congruence,

() - e

The following result will illustrate the importance of this arthimetical
function.

ag+a,p+a,p*+ -
by + b,p + b,p* + -

THEOREM 2.5. Let Z: F = 0 be an irreducible projective plane curve of
degree d > 2, and let A be an integer such that 1 < A < d. Then we have
0] Nz, x = n(d, M),
(i) m, , > n(d, M), if and only if,

n(d, N)
Y (D5 - D F) (-,
r=0

)V T(Fe) =0 modF, (5)

i

for somei,j =0,1,2, withi # j.
(i) If Z is a general curve of degree d, then n, , = n(d, A).

Proof. (i) Let P = (1; a; b) be a general point of Z, and let P’ = (a, b).
If f(x,y) =F@ x,y) = X,.of p(x,y), and (A} f)x, y) =
X O(jfj:)f,y p(x, y), then we have from Lemma 2.4(ii) that

(P, F.AVF) = I(P', [N ).

Now, since

I(P', fAYf) = I(P’,f.(A’}yf— (f : ;)f))
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and

S ST [ R Vo | PG
we have that

I(P,F.AVF) > n(d, A).

(i) Remark that (5) is always true if i = j. We keep the notation of

(i) and assume that f,(x,y) # 0 (because if f,(x,y) =0, then we have

f(x,y)# 0, and the argument is similar). We may then choose a
parametrization of Z at P as follows:

P(t) = (Lia+1;b+ byt +byt> + ). (7

This implies, for n = n(d, A), that

2= (42|

Since (f: ) # (1~ 1)mod p, we have that I(P, F.A}, F) > 7 if and only

(Y L@ e

+ higher powers of ¢. (8)

if
Y by (D, f)(P) = 0
r=0

Now, since b, = —f(a,b)/f(a,b) = —Fyx(1,a,b)/Fx(1,a,b), it fol-
lows that I(P, F.A}%F) > n if and only if

;0(Do,,,n_,F)(P)(FXZ(P))’(—FX1<P))”" =0, (9)

and since P is general, this is equivalent to (5) for i = 1 and j = 2. The
other cases are proved taking P = (a;1;b) or P = (a; b;1).

(iii) Part (ii) shows that n, , = n(d, A) is an open condition in the
open subset of irreducible curves in the space of all curves of degree d, so
the only thing we have to show is that this condition is not empty, which
amounts to produce any polynomial F such that (5) is not satisfied.
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Given d and A as above, let
F(X,, X,, X,) = X7X§~ " + X, X{7 1,

where n = n(d, A). In this case the left-hand side of the congruence in (5),
fori=1,j=2,is XJ*"=2 which is clearly not divisible by F.

DerFINITION. An irreducible curve Z of degree d will be called (d, A)-
general if m, , = n(d, M).

In particular, a (d, 1)-general curve is a curve with 7, , = n(d,1) = 2.
Thus if char K # 2, then (d, 1)-generality is equivalent to reflexivity.

Remark 2. The proof of Theorem 2.5(ii) shows that if (5) is true for
some i,j = 0,1,2, with i # j, then it is true for all {,j = 0,1, 2.

COROLLARY 2.6. Let n = n(d, M. If for some i and j, with i # j, we have
Dy, D} "F =0, for all r =0,...,m, then the curve F =0 is not (d, A)-
general.

ExampLE 1. We give here an example of a family of non-general
curves.
Let d and A be such that d = n(d, A) — 1 mod p* with n(d, A) < p*, for
some positive integer s. If F is of the form
F= Xz P (X8 XP XP) Xoo X (1 X52,

igtip+i,=n(d, N)—-1

for some homogeneous polynomials P; then the curve Z: F =0 is
not (d, A)-general.
Indeed, for all non-negative integers j,, j;, and j, such that j, +j, +

j» = m(d, A), we have that

Ny

D.

JorJ1:J2

F =0,
and the result follows from the above corollary.

COROLLARY 2.7. Let Z be a projective irreducible curve of degree d > 2
defined over a field K of characteristic p + 2. Let A be an integer such that
1 <A <d. Then m, , > 2 if and only if either Z is non-reflexive or

d—1)_(d—-2
()\—1)=()\—2) mod p.
Proof. Since m, , > n(d, A) = 2, it follows from Theorem 2.5 that
Mz, = 2 if and only if n(d, A) = 2 and for some i,j = 0,1,2,i # j,

2
Y (Dy o D3 F)(~Fy) "(Fy) #0  modF,
r=0

which, according to [3, Proposition 4.12], is equivalent to reflexivity.
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Remark 3. The above collary tells us that in characteristic zero we
always have 7, , = 2, and since n(d, A) = 2, we always have (d, A)-gener-
ality in this case.

Remark 4. In general, the polar A-ic curve does not coincide with the
osculating curve of degree A, since for a general curve Z these curves have
different intersection multiplicities with Z at a general point.

3. NON-GENERAL CURVES

In order to characterize the non-general curves in terms of their
defining equations we have to make some restrictions on the singularities
of the curve.

DeriniTioN.  We will say that a curve Z of degree d has mild singulari-
ties with respect to the pair (d, ) if the following inequality holds;

Y e <d(n(d,A) — 1),

prPez

where e, is the multiplicity of the Jacobian ideal of Z at P.
Note that all non-singular curves satisfy the above condition.

PropPosITION 3.1. Let Z: F = 0 be an irreducible curve of degree d with
mild singularities with respect to (d, ). Suppose that for some p > n(d, \)
and for alli,j = 0,1, 2, we have

Y (Dj,eDg F)(~Fy)" '(Fy) =0  modF,  (10)
r=0
then foralli,j = 0,1,2, and all r = 0,1,..., p, we have
D}'(l ° D)‘(’j”F = 0.

Proof. We may choose coordinates in P2 in such a way that for every
singular point Q of Z we have for all i = 0,1, 2 that

ep =1(0, F.FXi),
and such that no partial derivative of F of the first order vanishes at the

smooth points of Z located on any of the coordinates axes. In particular,
Fy #0,foralli =012
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Now, from (10) we get, for all i, j = 0,1, 2, that
(DL F)(Fy)" =Fx.G  modF (11)

for some polynomial G.
Suppose by reductio ad absurdum that D¢ F + 0 for some j. From (11
it follows, for all i = 0,1,2 and for all P € Z, that

I(P,F.D{F) + pI(P,F.Fy) = I(P,F.Fy). (12)
If P is a regular point of Z, then for some k = 0,1,2 we have
I(P,F.Fy) =e, =0,
therefore from (12) taking i = k, we get that
I(P,F.D{F) = I(P,F.Fy),
hence
I(P,F.D{F) +ep=I(P,F.Fy). (13)
If P is any singular point of Z, we have clearly that
I(P,F.D{F) +ep=ep=1I(P F.Fy). (14)

Summing (13) over all regular points of Z, with (14) over all singular
points of Z, we have

Y I(P,F.D{F) + Y ep= ) I(P,F.Fy),
PeZ PeZ Pez

which together with Bézout’s Theorem yields (recall that DR F, Fy # 0)

d(d—p)+ Y ep=d(d—1).

Pez

It then follows that

Y epzd(p-1)>d(n-1),

PeZ

contradicting the assumption that Z has mild singularities with respect to
the pair (d, A), hence

DgF =0, Vj=01.2
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We will analyze now the vanishing of Dy o D)’(’y’lF. If i =}, we have
Dy e Dy *F=(p—1)D{F = 0.

So we may assume i # j and, again by reductio ad absurdum, assume that
Dy, o Dg 'F + 0. Since D¢ F =0, from (10) we have that there is a
polynomial G’ such that

(DY, e Dg'F)(~Fx)" ' =F,.G'  modF,
and consequently we have for any P € Z that
I(P,F.DY e D{™'F) + (p— 1)I(P,F.Fy) > I(P,F.Fy). (15)

Let now P be a regular point of Z. If Fy(P) # 0, then we have from
(15) that

I(P,F.DY o Dg'F) = I(P,F.Fy). (16)
If Fy(P) =0, then from Euler’s relation we get, for k # i and k # j,
that
PFy(P) + P.Fy(P) =0,
and since our coordinates have been chosen in order that the point P is
not on any of the coordinate axes, we must have FX(P) # 0. This implies

that (16) is also true in this case. Therefore we have for all regular points
P of Z that

I(P,F.DY e D{'F) + e, = I(P, F.Fy).

If P is any singular point, then we have an equation analogous to (14)
with DX o DLTF in place of DXPF and the proof proceeds exactly as
above to show that Dy o D¢ 'F = 0.

The same argument can now be used to show that D2 ° DP 2F =0,
and so on.

Let 4 and A be positive integers with A < d, and p a prime number.
Consider the following open statements on integers v:

R(y):(i;’j)sé(jfj)

S(v):EIi,j=0,1,2,E|r=0,...,v;D}iOD}}J__’F#O.

and
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THEOREM 3.2. Let Z: F = 0 be an irreducible projective plane curve of
degree d with mild singularities with respect to a pair (d, \). We have that m,
is the smallest integer in the set

{n(d,A) < v<AR(v)and S(v)} U {v> AS(v)}.

Proof. Let p be the smallest integer in the above set. Let P = (1; a; b)
be a general point of Z, then we have a formula like (6) with p instead of
n(d, M). This expression evaluated at a parametrization of Z at P like (7)
yields a formula like (8) with p instead of n, hence n, , = I(P, F. A} F) >
p. Also, n, , > p implies a formula like (9) with p instead of n. The same
argument will show that if n, , > p, then (10) holds for all i,j =0,1,2
with i # j, therefore from Proposition 3.1 it follows that for all 7, j = 0,1, 2
andall r =0,..., p,

Dy » D,’(’/_’rF =0,
which contradicts the definition of p. So n, , = p.

Remark 5. 1f A # 0 is a truncation of d and Z has mild singularities,
then we have that

My, = min{v > AlS(v)}

The following result is a generalization for all A of [7, Theorem 2.1; 3,
Theorem 5.1; and 1, Theorem 3], all established for A = 1.

CoROLLARY 3.3. Let Z:F =0 be an irreducible curve of degree d with
mild singularities with respect to (d, A). The curve Z is not (d, \)-general if
and only if for all i, j = 0,1,2, and all integers m and n such that m + n =
n(d, N), we have

Dy e Dy F = 0.
ExampLE 2. Let p=>5and d = 38. If
F=X'X2+ X X7 + X3 + X3,

then the curve Z: F = 0 is smooth of degree 38 over the algebraic closure
of ;. So we may apply to it Theorem 3.2 and the above corollary.

For A = 3, the curve Z is (d, A)-general because, as it is easy to verify,
we have 7(d, A) = 4, and Dy F = X;X7° + 0.

For A = 13, the curve Z is not (d, A)-general, because we have in this
case n(d, A) = 14, and for all i,j = 0,1,2, and all m, n with n + m = 14,
that

D} DY F =0,

Now since we have DY F = 2X¢ X7 # 0, it follows that 7, , = 15.
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ProposITION 3.4. Let Z: F = 0 be an irreducible projective plane curve
of degree d with mild singularities with respect to a pair (d, A).

(i) We have n, , <d.
If moreover A is a truncation of d, then

(D) VX, n(d, X) = n(d, ) = n; , = 1, ,.
(i) IfP,Qe€ P2 andP € Z N A’ZQ‘)‘Z, then
I(P,ZNAG'Z) = m, , — A
Proof. (i) and (ii) follow immediately from Theorem 3.2, while (iii) is
proved also using Lemma 2.4 (i), replacing A by d — A.

COROLLARY 3.5. With the same hypotheses as in Proposition 3.4 (iii), and

assuming that A‘g AF + 0, we have
d(d — A
#(Z N A7) < AN
Mz~ A

4. THE EQUATION OF A NON-GENERAL CURVE
In order to give explicitly the shape of the equation of a curve which is
not (d, A)-general, we will need the following two lemmas:

LEMMA 4.1. Let non-negative integers ny, nqy, n,, m, and p be given such
that p is prime, 2 < n<p, and n—1=ny, +n, + n, mod p. If for all
non-negative integers o and B with a + B =, and for all i,j = 0,1,2, we

have
n\ "
al\ B
then for all non-negative integers i, i,, and i, with iy + i, + i, = m, we have

L) o o

Proof.  Write the p-adic expansion of n; as
n;,=n;qgtn;p+-.

0 mod p,

Since a + B = n <p, we have from the hypotheses and from the
fundamental congruence that

- 345



POLAR CURVES 463

It then follows that
ni,0+nj,OSn—1, Vi,j=0,1,2,
hence

2(ng o+ ny o tn,,) <3(n—1). (17)
Since n, + n,; + n, = n — 1mod p, we have, for some r € {0, 1, 2}, that

Moo+ nog+tn,o=m—1+rm. (18)
From (17) and (18) it follows that 2rp < — 1 < p. So r = 0 and

Moo+t Hyot+nyo=m—1

So for all (iy, iy, i,) with iy +i; + i, = m, we have

) = e ) <o moss

L I
PrROPOSITION 4.2. Let d, m, and p be integers such that p is prime,
2<mn<p,andd =n—-1modp. If F € K[ X,, X,, X,] is homogeneous of
degree d, where char K = p, and

D)‘;ID)QF:O Vi,j=0,1,2,Va,B;a + B=m,
then
i i, F =0 Vig, iy, iy, ig +i; +i,=m.
Proof. It is sufficient to prove the assertion for monomials
XX Xj2, ng+n, +n,=d,
and in this case the result follows from Lemma 4.1.

The assertion in Proposition 4.2 may fail if the hypotheses are not
satisfied, as one can see in the following example.

ExampLE 3. Put p =5 and let
F = X2X?X3.
It is easy to verify for all i,j = 0,1, 2 that

D¢DEF=0 Va,B;a+p=6,
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but D} D% D% F + 0. This does not contradict Proposition 4.2, since
n=6>p=>.

Given a multi-index I = (iy,iy,...,i,), we will use the notation

=i+ iy + - +i,.

n

We will also use the notation a <, b to mean that a is less than or
equal to b with respect to the p-adic ordering, that is, a; < b;, for all i,
where a; and b, are respectively the coefficients of the p-adic expansions
of a and b.

It follows immediately from the fundamental congruence that

(Z) #Z0modp b <, a.

LEMMA 4.3.  Given non-negative integers p. and p such that p <, u and
gwen J = (jy,...,J,) such that |J| = u, then there exists I = (i, zl, cen )
with |I| = p such that

lo <p Jorerin <p Jn
Proof.  Suppose by reductio ad absurdum that for all [ such that

[1] = p, there exists an integer s(I) such that0 < s(I) < nand i, £, j,)
It then follows that for all such I there exists s(I) such that

js(I)
is(])

From Euler’s relation we get that

-2 )]

whence p £, u, a contradiction.

0 mod p.

0 mod p,

PROPOSITION 4.4, Suppose that D, . are Hasse differential operators
acting on a function space. Assume that for some function f all derivatives of
some order p are zero, that is,

D, . f=0, VI={(iy,...,i,); I =p,

LT n

then all derivatives of order p of f are zero if p >, p.
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Proof. Suppose that J = (j,, ..., j,) is such that |[J| = u. From Lemma
4.3 there exists I = (iy,...,i,) with [I| = p such that i, <, jo, ...
Since

!n—p]n

and (fg) (f) # 0, it follows that D;,

THEOREM 4.5. Let Z: F = 0 be a projective plane curve of degree d with
mild singularities with respect to the pair (d,N). If 1 <A <p—1 and
d = Amod p, then the following assertions are equivalent:

() Zis (d, M-non-general
(i) m, , =p* for some integer a > 1.

(iii) There exist homogeneous polynomials Q e K[ X,, X, X,]

such that F is of the form

Loy l1,1p

F= Y XpXiXpQ!

igtigti,=A

tg, iy, ip"

Proof. Since 1 <A <p—1and d =Amod p, it follows that A is a
truncation of d, hence from Remark 1 we have that n(d, A) = A + 1 < p.

(i) = (ii): Since Z is (d, A)-non-general with mild singularities then
from Corollary 3.3 we have, for all i,j = 0,1,2 and all integers m and n
such that m +n = A + 1, that

Dy » D}}/_F =0.
It follows from Proposition 4.4 that for all i,j = 0,1, 2,

D;’}'iOD;J_F=O, Vm,nym+n=, A+ 1.

Now, since A + 1 < p, we have that the least possible value for m + n
with m +n > A + 1 such that Dy °Dy F+0 is p® for some a > 1.
Hence from Theorem 3.2 we have 7, , =p°‘.

(i) = (ii):  If , , = p* for some « > 1, then from Theorem 3.2 we
have for all i,j =0,1,2,

D;?IODQQ_F=O, Vm,n,m+n=\x+1.
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So from Proposition 4.2 we have

D, . . F=0, Vigijiyig+i,+i,=A+1.

ig,ig,ip
Hence for all iy, i,, i, such that iy, +i, +i, = A, and for all i = 0,1, 2, we
have

DY(D, , .F)=0.

Lo 11,1

So D, ; ., F, with iy + i, +i, = A, is of the form Qf ; .. Now from the
generalized Euler’s relation we get that
F= Z (Dio,il,izF)Xéo)(lil)(2i2 = Z Qipo,il,iZXéonlXZiz'
iotiptip=2A igtigtiz=A

(iii) = (i):  From Theorem 3.2 we have that (iii) implies that 1, , >
p. Then

za=p>A+1=mn(d ),
so Z is (d, A)-non-general.

Remark 6. Example 2 shows us that (i) may not imply (ii) if n(d, A) > p.

5. THE FUNCTION n(d, A)

DerFINITION.  We define the integral function u(d, A) as

=

w(d, A) =max{u‘(A_l = (d::)modp,Vr,lsrs,u}.

A
It is clear that we have
n(d,A) = p(d, A) + 1.

In this section we will study the function u(d, A), and consequently the
function n(d, A). We introduce the notation 4" to denote the truncation
of the p-adic expansion of @ = a, + a, p + -+ up to order [, that is,

a=ay+ap+ - +ap.
LEMMA 5.1. Let a, b, a, B, and vy be positive integers.

() Ifa<p?andb <p?, then
ap —a)| . p-afa—1)(b-1
Bp’—b)_( Y (B—l)(a—l) modp

(i) ulap”, Bp?) = pue, B).




POLAR CURVES 467

Proof. (i) First note that it is easy to prove by induction on a, observing
that the case a = 1 is Wilson’s Theorem, that

(p—1l(a—-1)1=(-1)" modp.

Using this and proceeding by induction on v, the case a=8=1is
proved. The general statement follows from observing that from the
fundamental congruence we have
a—1\[p'—a
B-—1)\p"—b])

(ii) This follows from (i) and from the fundamental congruence.

(apy—a) _ (a—1p"+p’—a
Bp” —b (B=1p"+p"—b

From now on, 4 and A will be integers such that 1 < A <d, and p*
(respectively p*) will be the highest power of p that divides A (respectively
d).

Remark 7. 1t is easy to verify that the condition

(d—l

A_l)séo mod p (19)

is equivalent to

@ s<t A <d,and A, <d;, Vi>t+1 or
(b) s=tand A\, <d,Vix>t.

Note that when d, # 0, then ¢ = 0 and necessarily we are in case (b),
hence in such case we have that condition (19) is equivalent to A <, d.

PROPOSITION 5.2. Let d and A be integers such that 1 < A <d, and
suppose that (¢~ 1) # 0mod p. Then we have

@ If w(d, N) > 1 thend = Amod p.
(ii)  Suppose that d = Amod p. If I = max{ild" = A"}, then we have

da® ifd" +0
ifd® = 0.

Proof. (i) Remark that w(d, A) > 1 is equivalent to (‘j:i) =
(f - ;) mod p, which in turn is equivalent to (’j B f) = Omodp.
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Case d,=0.If Ay > 1, then we have

e e I

which is not congruent to zero mod p in view of Remark 7. So A, = d,.

Case d, + 0. From Remark 7 we have that A, # 0 and A <, d, hence
0< A, <d,.Soifdy,=1 wehavethat \j =1. If dy > 2, then d, — 2 <
Ao — 1, hence d, < Ay + 1, and therefore d, = A,.

(ii) Suppose that d = Amod p, and write d = d” + ap'** and A =
/\(1) + ,Ble-

Case d® = XD % 0. From Lemma 5.1()) and from the fundamental
congruence we have, for all r with 1 < r < d®, that

(d—r) al\[XD—r) _ [«
A= BJ\a®h —r B)

Now, since from Remark 7 we have that A, < d,, for all i >/ + 1, then
from the definition of [ it follows that A,,, < d,,, and hence

(a— 1) _ ((d1+1 — 1) +pdp, + o

#0 mod p.
B Ajpr T PA L, + 0 P

It then follows from Stifel’s relation and from Lemma 5.1(i) that
(d—d(l)—l) (a—l)i(a) (d—d(l)
A—db -1 B—-1 B A —db

hence u(d, 1) = d®.

Case d® = A" = 0. From Lemma 5.1(ii) we have that
p(d, x) = p(ap™t, Bp"*?) =p*iu(a, B).

Since (f - 1) # 0, it follows from Lemma 5.1(i) that (g: 1) # 0, and from

the definition of / we have that « # 8 mod p, so from (i) we have that
w(a, B) = 1, from which the result follows.

) mod p,

PROPOSITION 5.3. Let d and A be integers such that 1 < A <d, and
(1=1) = 0mod p. Then we have
dm, if A %, d
d,\) =
MAEN =4 o iz, d

with m = max{i|d” < AV}, and p® the highest power of p that divides A.
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Proof. Case X &, d. Writing d =d" + ap™** and A= 2A" +
Bp™*?1, it follows from the definition of m that d“ < A", d, ., > A, , 4,
and a >, B.

First of all let us observe that d“™ =+ 0. This is so because otherwise we
would have as a consequence of d,,,, > A, that

P R iy P B

Now, for all r such that 1 < r < d), since d" < A", it follows that
d—r\_[d™ —r|[a)| _ 0
A—r - A(m) —r B -

On the other hand,
m+1 _ _
_ p 1 a—1 £0,
A —gm — 1|\ B

hence in this case we have u(d, A) = d™.

d— (d™ + 1)
A= (d"™ +1)

Case A <, d. In this case the hypotheses imply that s > ¢ > 0, hence
d“~Y % 0. Write d = d®V + ap® and A = Bp°.
Now, since d“~P < p*, we have for all r, such that 1 < r < d“~ Y, that

(AT G [ R

On the other hand,

d— (d~Y + 1)
A— (dCY + 1)

p -1 a—1
L (e
hence in this case we have u(d, A) = d“~ V.

COROLLARY 5.4.  For any pair (d, A) of positive integers with 1 < A < d,
we have that

p(d, u(d, A)) = p(d, A).

Proof.  This follows from Propositions 5.2 and 5.3 by a direct verifica-
tion.

PROPOSITION 5.5.  For any pair (d, A) of positive integers with 1 < A < d,
we have that

p(d,d =) = u(d, A).
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Proof. The proof of this result is elementary and may be done using the
definition of wu(d, A) and twice Stifel’s relation. Alternatively, this can be
proved using Propositions 5.2 and 5.3.

CoOROLLARY 5.6. Let Z be a plane projective curve of degree d and let A
be an integer such that 1 < A < d. Then

() Zis (d, N-general if and only if Z is (d, d — M)-general.
(i) If Z has mild singularities, and X is a truncation of d, then

Nz, d—x = Mz, A

Proof. (i) is a consequence of Theorem 2.5 and Proposition 5.5, while
(ii) is a consequence of Corollary 3.4(ii) and of Proposition 5.5.

6. STATIONARY POINTS

Let Z: F = 0 be a projective irreducible plane curve of degree d. Let A
be an integer such that 1 < A <d and some mixed derivative of F of
order A is nonzero.

DerINITION. A point P € Z will be called A-stationary if
I(P,Z.A}Z) > 1My )

By the very definition of 1, , we have that there are finitely many such
points, and the aim of this section is to determine their number. We will
compute this number when either Z is (d, A)-general, or when A is a
truncation of d, and Z has mild singularities with respect to the pair
(d, A). We will make this assumption from now on in this section.

For any integer p and distinct integers, i, j, k = 0,1,2, we define for
i <j,

AP = T (D5« D F)(Fy) (<F )
r=0

Note that from the arguments we used in the proof of Theorem 2.5, and
from Remark 5 and Proposition 3.1, we have that P € Z is a A-stationary
point if and only if "2 V(P) = 0, for all k = 0,1,2.

Remark that from the above definition we have that all singular points
of Z are stationary points.

To establish the main result of this section, namely Theorem 6.7, we will
need several auxiliary results.
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LEMMA 6.1.  Let a be an integer. If b is minimal among the integers greater
than a but not p-adically greater, then there exists some r > 1 such that

b=a—-a""Y+p.

Proof. Let a=a,p*+a,,,p’"*+ - +a,p", with a, # 0, be the p-
adic expansion of a. It is clear that the first integer greater than a which is
not p-adically greater than a is

by=(a,,1 +1)p*t+ - +a,p" =a—a® +p*t
Now we can restrict our search to the integers which are greater than b,
but not p-adically greater, and the result follows clearly.

PROPOSITION 6.2. Let Z be a projective irreducible plane curve of degree
d, and let A = d" for some I. Suppose that Z is not (d, A)-general and with
mild singularities, then we have for some r,

Mz A = dP —ad" b+ pr. (20)
Proof. Since A is a truncation of d, we have from Remark 5 that
My, =min{v> A+ 1S(v)}.

Now, in view of Proposition 4.4, n, , must be an integer greater than
n(d, ) = A + 1, but not p-adically greater than A + 1, and minimal with
respect to the p-adic ordering. So from Lemma 6.1 we have that

Nz = (A+1)—(A+ 1)(r_1) +p

for some r, and the proposition follows.

COROLLARY 6.3. Let Z:F = 0 be a plane projective irreducible curve of
degree d and X\ =d" for some 1. If Z is not (d, \)-general, with mild
singularities, then m, , = 0 modp.

LEMMA 6.4. If (d, D) is a pair of integers such that 1 < A < d, then we
have

(n<5;>s—s)50m°dp Vsis=2...m(d.A) - 1.

Proof.  From Stifel’s relation we have that
d—s d—s B d—(s—-1)
n(d,2) —s) T\ ud oy —s) T

wd oy - (s-1) &
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Now, from Corollary 5.4 it follows that

d — u(d, A)
p(d,A) — u(d, A) |

M(j, ;)l— 1) - (M(;, ;)2— 2) = =

From this and from (21), we get that

d—=s
(n(d,/\)—s)zomOdp’ s=2,...,m(d, ) — 1.

LEMMA 6.5. Let d and A be integers such that 1 < A <d. If A is a
truncation of d, and m, , is as in (20), then

d—=s _ _
(nz,A—S)=0m0dp’ s=2,..., A\

Proof. Suppose that A = d" for some />0, and let n, , = d" —
d"V + p", for some r with 1 <r <[ + 1. We will initially suppose that
r <1+ 1. From the fundamental congruence we get, for all s = 0,...,d",
that

d—s dD + ap'tt - d® —
(nZ,A_S): dD —dr=bY 4 pr—3 - dD —drb 4 pr— =0.

Suppose now that » =/ + 1, then n, , = p’, and from the fundamental
congruence we have for s > 1 that

d—s) _[d""V+Bp —s| _[d"P 5| _
p—s p—s P

PROPOSITION 6.6. Let Z: F = 0 be a projective irreducible plane curve of
degree d and let A be an integer such that 1 < A < d. Suppose that either Z is
(d, M-general, or Z has mild singularities and X is a truncation of d, then we
have for n = Nz and for all integers i, j = 0,1, 2, that

X]jq%(n) = Xﬂ?;-(") mod F.

Proof. If i = j, there is nothing to prove. We will only prove the case
j = 0and i = 2, since the other cases are similar.
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Let P = (ay, a;, a,) € K From Lemma 2.4(ii) we have

X, X2
XP(ALF) (1
Xo Xo
n
=457 ZXg*’(f,ii)
r=0
X Z (DO,a,BF)(P)(aOXl - alXO)a(aon - azXo)B!

atB=r

and
X, X,
XP(A%F) 1

X, X,

n
=a," Z Xg—x(frl’ :i)
s=0
X Y (D, 50F)(P)(a,X, — aoX,)"(a, X, — a,X,)°.

y+o6=s

Now, since obviously
Aﬁ A& A% Aﬁ
XJ(ALF) |1, —, = | = X3(AWF) | —, —. 1],
X, X, X, X,
we get by comparing the coefficients of X;X7~* of both expressions that

Dom,:F(P)—aznZ( s)

X X (DysoF)(P)(~ a0>( )a;(_al)»r

y+o=s

Now, from the above expression, Lemmas 6.4 and 6.5, and Theorem 3.2,
we have that

X;"DO,[,”,,F=(§))(°)X2( ~X,)~ F+(d i)
< (9] =X xim 4 (H-x0xem,

D K [CRNSTE S e

y+é=n
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Using Euler’s identity and the above one, we get the following equalities
and congruences mod F,

XE)” yZ(n)

Z (D;éo ° Df{lF)Xg( _‘Xv()FXo)S(FX1)y

y+é=n

Y. (D}, D3F)X3(X,Fy, + X,Fy,)’ (Fy,)

y+o=nq
- T2 (30 eb) ) ()"
y+8=m1t=0

t

XX5(=Fy,)" ' (F,)

% R R (47
x[( —Xo) Fy(—Fy))" + (—X,) Fx(—Fy)"

+X, Fy —FXI)”’lFXZ]

n
X3 Y (D, e D)?;tF)(_Fxl)nit(sz)t = X775
t=0

Remark 8. The above proposition tells us that the data

Zm
U, — :
X"
a «=0,1,2

where U, = {(X,; X;; X,)| X, # 0}, define a section of the fiber bundle
@,(d(n + 1) — 3n), whose zeros are the stationary points of Z with
respect to (d, A).

DeriniTION.  We define the A-weight of P as being the order of
vanishing w(P) at P of the above section. So P € Z is a A-stationary
point if and only if w(P) > 0.

THEOREM 6.7. Let Z: F = 0 be a projective irreducible plane curve of
degree d and let A be an integer such that 1 < A < d. Suppose that either Z is
(d, M-general, or Z has mild singularities and ) is a truncation of d; then we
have, for n = m, ,, that

Y w(P) =d[d(n+ 1) — 3n].

prPez



POLAR CURVES 475

Proof. This follows immediately from the above remark, and from the
definition of w(P).

Remark 9. The method of proof of the above theorem is inspired from
[4], where the result is proved for A = 1. Observe that if a curve Z of
degree d is reflexive, then it is (d, 1)-general. And if Z is smooth and
(d, 1)-non-general, then d = 1 mod p (see for example [3] or [7]), then 1 is
a truncation of d, so that Theorem 6.7 gives us the classical formula for
the weighted number of flexes of a non-singular plane curve Z of degree
d. Namely,

f= d[d(a2 +1) - 382],

where ¢, is the intersection multiplicity of the curve with its tangent line
at a general point, or alternatively, the inseparable degree of the dual map
of the curve. (see for example [10] and [6] or [9]).

Remark also that in characteristic zero, a point is A-stationary if and
only if it is a flex, so in this case we are just counting the flexes.

7. POLAR MORPHISMS

Let Z: F = 0 be an irreducible smooth plane curve of degree d, and let
A be an integer such that 1 < A <d, and suppose that some mixed
derivative of F of order A is nonzero. Let N, = A(A + 3)/2.

DerINITION.  The Ath polar morphism is the morphism defined by
Dy Z - P
P (D, ;. ,F(P);ig+iy +i,=))

We will denote the image of p, by Z,.

So for A = 1, we have that p, is the Gauss map and Z, is the dual curve
of Z.

We will also denote by v, the Veronese A-uple embedding,

v PE = (P
Q — (QpQ1QF; i + iy + iy = A).

THEOREM 7.1. Let Z be a smooth curve of degree d, and let A be an
integer such that 1 < A < d. Then we have

deg( py)deg(Z,) = d(d — A).
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Proof. We will denote by deg,(p,) (respectively, deg,(p,)) the separa-
ble (respectively, inseparable) degree of p,.
Let P,,..., P. € Z be the points such that

U=27, \ {p/\(Pl), . --'p,\(Pr)}

is the open set of points R for which

#p, (R) = deg,(p,).

Let Q be a point of P2, and consider the hyperplane Hy, in P> whose
coefficients are the coordinates of the point v,(Q) € (PY»)*. So

HQ: Z Q QllQZ ig,iq, iy O’

igtigtis=A
where Z, ; , are the coordinate functions of P
For Q general in P2 we have that
H,NZ, cU,
because the above condition means that the general point Q of P? is not a
zero of any of the nonzero polynomials A}IF, fori=1,...,r

Now, from standard ramification theory and from Lemma 2.1(i) we have
that

deg,(p)I(p(P). HyNZ,)) =I(P,Z N A*F(Q)) = I(P, Z N A”fQ’AZ),
where

AYF(Q)= X 0¢Qr0#D; . . F(X, X1, X;).
igtigtis=A
Now, from Bézout’s Theorem we have

d(d — ) = PZZI(P, ZNAG'Z) = degi(pA)PZZI(pA(P), Hy N Z)

deg;( py)deg,(p,) b I(R, H, N ZA) = deg( p,)deg(Z,).

ReZ,

The above theorem is a generalization of Plticker’s formula, which was
known for A = 1, relating the degree of a curve with that of the Gauss map
and of the dual curve.
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