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Abstract Among the various possibilities to probe the the-
ory behind the recent accelerated expansion of the universe,
the energy conditions (ECs) are of particular interest, since
it is possible to confront and constrain different theories
of gravity with observational data. In this context, we use
the ECs to probe any alternative theory of gravity whose
extra term acts as a cosmological constant. For this purpose,
we apply a model-independent approach to reconstruct the
recent expansion of the universe. Using Type Ia supernova,
baryon acoustic oscillations and cosmic-chronometer data,
we perform a Markov Chain Monte Carlo analysis to put
constraints on the effective cosmological constant Ω0

eff . In
addition, we find out that about 30% of the posterior distribu-
tion is incompatible with a cosmological constant, showing
that this method can potentially rule it out as a mechanism for
the accelerated expansion. We also study the consequence of
these constraints for two particular formulations of the mas-
sive gravity in a scenario where both theories mimic Gen-
eral Relativity with a cosmological constant. Using the Ω0

eff
observational bounds along with the upper bounds on the
graviton mass we obtain constraints on the parameter spaces
of both theories.
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1 Introduction

The currently observed acceleration of the Universe is
inferred, for example, from the measurements of luminos-
ity distance as a function of redshift for distant Type Ia
supernovae (SNe Ia) [1,2]. This result has been supported by
other cosmological observations such as the anisotropies in
the Cosmic Microwave Background radiation (CMB) [3,4],
the Baryon Acoustic Oscillation (BAO) [5] and the Large
Scale Structure (LSS) [6,7] data. Two possible approaches
to describe this phenomenon consist in modifying the theory
of gravitation or to include new fields in the matter-energy
content of the universe (see [8] and references therein). Fol-
lowing the former, an attractive method to tackle this prob-
lem is to consider possible modifications of the Einstein’s
theory of General Relativity (GR), considering for example
that gravitons are massive particles (see, e.g., [9–12]).

Independently of the method used to approach the acceler-
ation phenomenon, in most cases, when dealing with homo-
geneous and isotropic background, one can rewrite the equa-
tion of motion for the scale factor as a Friedmann equa-
tion with an extra term. For this reason it is useful to study
this extra term phenomenologically. Then, once its proper-
ties are constrained by the data, one can study their con-
sequences for specific theories behind the aforementioned
term. In this work we follow this approach focusing on the
consequences of assuming that the extra term behaves as a
cosmological constant. Subsequently, we apply the obtained
constraints for two distinct formulations of massive grav-
ity.
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The massive graviton problem has been studied since the
seminal work by Fierz and Pauli (FP) in 1939, when they first
wrote the action for a Lorentz invariant massive spin-2 the-
ory [9]. The linear FP model coupled to a source was studied
by van Dam and Veltman [13] and Zakharov [14,15] (vDVZ),
who discovered the surprising fact that the FP model differs
from GR even when the graviton is massless. This prob-
lem, known as vDVZ discontinuity, can be avoided by the
Vainshtein mechanism, which takes into account the non-
linearities of the FP model [16]. However, soon after the
Vainshtein findings, Boulware and Deser (BD) studied some
specific fully nonlinear massive gravity theories and showed
that they possess ghost-like instabilities [17]. Since then, the
problem of the ghost-like solutions in massive gravity theo-
ries have been extensively debated in the literature (see, e.g.,
[18–21]). See also the review [22] and references therein.

Consequently, the extension of massive gravity to strong
fields (non-linear order) is not a trivial task. One attempt was
carried out by Visser by introducing a background metric
that is not subjected to any dynamical equation [10]. In his
theory the mass term depends both on the dynamical and
background metrics such that, in the linear limit, the massive
field obeys a Klein–Gordon equation with a source term, and
the full GR is recovered when the graviton mass vanishes.
However, in Ref. [23], de Roany et al. have pointed out that
the Visser massive graviton tensor must be corrected by a fac-
tor equal to the square root of the ratio of the determinants of
the background and of the dynamical metrics. They claimed
that a multiplicative factor is missing in the graviton tensor
originally derived by Visser, which has no consequences on
the weak field approach but becomes important in the strong
field regime when, for instance, cosmological applications
are considered.

Nevertheless, it is well-known that bimetric gravity the-
ories are generally affected by the same ghost instability
appearing in massive gravity [24]. Recently, however, the
existence of a consistent ghost-free bimetric theory of mas-
sive gravity was demonstrated by Hassan and Rosen [21]. It
was shown that the theory is ghost-free at the complete non-
linear level (see also [19,20,25–29]). The remaining pres-
ence of a BD ghost for a family of theories, due to the van-
ishing Hessian of their actions, was discussed in Ref. [30].
Notwithstanding, Alexandrov confirmed that those theories
are ghost-free [31].

An analysis of the relationship between massive gravity
and bimetric gravity (the so called bigravity) in the context
of the Hassan and Rosen [21] approach was carried out by
Bacceti et al. [24], focusing on a procedure which allows
massive gravity to be treated as a suitable limit of bigravity.
In essence, we can say that in the limit of a vanishing kinetic
term for the background metric, the solutions of bigravity will
also be solutions of massive gravity compatible with a non-
flat-background metric. Such a limit is usually called the GR

limit of bimetric gravity, since the equations of motion are
equivalent to GR theory with a cosmological constant. In this
sense, cosmological solutions of massive gravity respecting
the GR limit are continuous in the parameter space, i.e., they
are solutions of both massive gravity and bimetric gravity in
the non-dynamical background limit.

Recently, different cosmological applications of bigravity
and massive gravity models have been analysed (see, e.g.,
[32–39]). Particularly, von Strauss et al. [35] have consid-
ered cosmological solutions of bigravity that reproduce the
current cosmic acceleration and fitted such models to obser-
vational data like SNIa, CMB and BAO. Koennig et al. [37]
constrained the parameters of bigravity using SNeIa data, and
they found out a number of simple rules for viable cosmologi-
cal models that lead to a final de Sitter cosmological state. The
cosmological viability of bigravity has also been examined
by Akrami et al. [39]. Exploring a region of the parameter
space, overlooked so far, they showed that the model provides
late-time acceleration in agreement with observations.

In Refs. [40–43] the authors have shown that Visser’s mas-
sive gravity could be a viable explanation of the late-time
acceleration phase of the Universe. These work have demon-
strated that the predicted growth rate of clustering as well
as the shape and amplitude of the redshift distribution of
cluster-size halos are slightly different from those obtained
in the ΛCDM cosmology. Therefore, these different signa-
tures could be compared and tested against observations.

One way to probe a theory of gravitation is to compute its
respective energy conditions (ECs) and confront them with
the observational data. In the context of GR the ECs bounds
were scrutinized using SNeIa data [44–46]. A number of
authors also studied the ECs in alternative theories of grav-
itation. For instance, the ECs have been used to constrain
f (R) theories of gravity [47–49], and extensions involving
nonminimal curvature couplings [50–55]. Bounds on mod-
ified Gauss–Bonnet f (G) gravity from the ECs have also
been analyzed [56–58]. The recently proposed f (R, T ) the-
ories of gravity have been considered [59–61]. The bigravity
theory has also been studied in the same context [62] and a
possible violation of the null EC was found.

In this work, we present the ECs and use them to con-
strain, in the cosmological scenario, the extra effective term
(working as a cosmological constant), and also the massive
gravity theories that come from the approaches by de Roany
et al. [23] (Visser’s Lagrangian) and Baccetti et al. [24] (Has-
san and Rosen’s Lagrangian). In the latter, the constraint
imposed by the GR limit of bimetric gravity is considered.
Here we introduce a different idea, instead of simply test-
ing the ECs, we assume that the remaining matter content
(baryons, photons, neutrinos, cold dark matter, etc) fulfills
the ECs. By doing this, we are now able to obtain lower and
upper bounds for the cosmological constant term. Then, we
confront these bounds with estimates of the deceleration and
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Hubble functions, which are reconstructed as functions of
the redshift by using the model-independent approach pre-
sented in Ref. [63]. This reconstruction makes use of the
Sloan Digital Sky Survey-II and Supernova Legacy Survey 3
years (SDSS-II/SNLS3) combined with the Joint Light-curve
Analysis SNe Ia sample (JLA) [64], BAO data [65–70] and
H(z) measurements [71–75]. As a result, we are able to find
out the admissible regions of the parameter space of both
bimetric massive theories in order to fulfill the strong and
dominant ECs.

The paper is organized as follows: in Sect. 2 we briefly
introduce the bimetric massive gravity by using both the
Visser’s and the Hassan and Rosen’s Lagrangian. In Sect. 3
we present the ECs for gravitational theories where the extra
term acts as a cosmological constant (obtained in details in
a general context for a class of extended theories of gravity
in the companion paper [76]), and then we derive the EC
inequalities for these two bimetric massive gravity theories.
In Sect. 4, by using the EC bounds estimated from SNe Ia,
BAO and H(z) data, we discuss the constraints imposed on
the parameters of these massive gravity theories. Finally, in
Sect. 5 we present our concluding remarks. Throughout the
article we use the metric signature (−,+,+,+) and units
such that c = h̄ = 1 unless otherwise mentioned.

2 Massive gravity and the GR limit of bimetric gravity

The graviton mass can be consistently taken into account by
imposing the existence of a background metric fμν in addi-
tion to the dynamical (foreground) metric gμν . In the context
of massive gravity the metric fμν is externally specified and
not determined by the theory itself [22]. Only the physical
metric gμν couples to matter and determine the geodesics
followed by particles. As mentioned in Sect. 1, we consider
here two different approaches to massive gravity: (i) the one
proposed by Visser [10] and (ii) the massive Lagrangian pro-
posed by Hassan and Rosen [21] viewed as the GR limit of
bimetric gravity. These two theories possess some similari-
ties as well as important differences as described below.

In both cases the action can be written in the following
form

SMG = 1

16πG

∫
d4x

√−g [R(g) − 2Λ + L int(g, f )]+Sm,

(1)

where G is the gravitational constant, gμν is the foreground
metric, R(g) is the Ricci scalar and Sm is the matter action,
as usual. Finally, L int is the interaction Lagrangian which is
the only quantity depending on both gμν and fμν . Hence, the
mass of the graviton is introduced via an interaction between
the dynamical and the background metrics.

In the Visser’s approach, the cosmological constant is gen-
erally taken to be zero and the interaction Lagrangian is given
by [10]

L int(g, f ) = −1

4
m2

√− f√−g

{
f αβ f μν(gαμ− fαμ)(gβν − fβν)

−1

2

[
f αβ(gαβ − fαβ)

]2
}
, (2)

wherem is the mass of the graviton. This Lagrangian is essen-
tially motivated by the fact that at the linear level, for which
gαβ = fαβ + hαβ with |hαβ | � 1, we obtain the Klein–
Gordon equation for the hαβ , when fμν is taken to be the
Minkowski metric ημν . In this case, GR is consistently recov-
ered when the graviton mass vanishes.

On the other hand, the interaction Lagrangian considered
by Hassan and Rosen [20,21] is a function of the quantity

γ μ
ν =

(√
g−1 f

)μ

ν

, i.e., γ μ
σ γ σ

ν = gμσ fσν, (3)

and is given by

L int(K ) = 2m2 [e2(K ) − c3e3(K ) − c4e4(K )] , (4)

with Kμ
ν = δμ

ν −γ μ
ν . The parameters c3 and c4 are dimen-

sionless, and en(K ) are elementary symmetric polynomials
given by

e2(K ) = 1

2

(
[K ]2 − [K 2]

)
, (5)

e3(K ) = 1

6

(
[K ]3 − 3[K ][K 2] + 2[K 3]

)
, (6)

e4(K ) = 1

24

([K ]4 − 6[K 2][K ]2 + 3[K 2]2

+ 8[K ][K 3] − 6[K 4]), (7)

where [K ] = tr(Kμ
ν).

The Lagrangian given by Eq. (4) is the most general ghost
free mass term and it is constructed as a “deformed” deter-
minant. It can be seen that it is of fourth order in the quantity
γ μ

ν , and all higher order terms are identically zero in four
dimensions (for further discussions, see [20]). Therefore,
unlike the Visser’s Lagrangian, this theory has two additional
parameters, namely c3 and c4, besides the graviton mass m
and the cosmological constant Λ.

Regarding the bimetric gravity approach, one has to con-
sider a kinetic term to the background metric, a background
cosmological constant Λ̄ and “background matter” S̄m cou-
pled to fμν . The corresponding action can be written as:

SBG = 1

16πG

∫
d4x

√−g [R(g) − 2Λ + L int(K )] + Sm,

+ κ

16πG

∫
d4x

√− f
[
R( f ) − 2Λ̄

] + ε S̄m, (8)
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where L int is given by (4) and κ and ε are two parameters
that can in principle be adjusted independently.

The field equations for massive gravity are obtained by
variational principle applied to the action (1) with respect to
gμν . They are given by:

Gμν − Λgμν − Vμν = 8πGTμν, (9)

where Tμν is the energy–momentum tensor of the matter
fields and the graviton mass contribution is:

Vμν = τμν − gμνL int, (10)

with:

τμ
ν = γ μ

ρ

∂L int

∂γ ν
ρ

. (11)

Considering also that the Einstein tensor satisfy the con-
tracted Bianchi identity an that Sm is invariant under dif-
feomorphisms (∇νTμν = 0), we are lead to the following
constraint to the graviton mass tensor:

∇νV
μν = 0. (12)

The bimetric gravity theory, on the other hand, has two sets
of equations, obtained by varying the action with respect to
the two metrics. The first set is exactly equation (9) and the
set with respect to f μν is:

κ
(
Gμν − Λ̄gμν

) − V̄μν = ε8πGT̄μν, (13)

where:

V̄μν = −
√−g√− f

τμν, (14)

and we have also the constraint ∇ν V̄μν = 0.
The action of massive gravity is consistently recovered

from the action of bimetric gravity (8) by simultaneously
taking the limits κ → 0 and ε → 0 (see, e.g., [24,38]). Con-
sidering such a limit in the background equations of motion
(13), we are lead to the following constraint:

τμ
ν = 0. (15)

Moreover, taking into account the definition (10) and the
constraint (12) we obtain:

∂νL int = 0. (16)

Therefore, we conclude that the equations of motion of
massive gravity considered as a limit of bimetric gravity,
is equivalent to the introduction of a cosmological constant

in the Einstein equations with the cosmological term given
by Vμν = −gμνL int. This is the GR limit. In such a limit,
solutions of massive gravity are continuous in the parame-
ter space of this theory, in the sense that they are solutions
simultaneously of both massive gravity and bimetric gravity
in the limit of a vanishing kinetic term.

3 Energy condition bounds in massive gravity

In order to further study the massive gravity theories
described in Sect. 2, we now apply the general methodol-
ogy presented in [76], in the context of extended theories of
gravity, to compute the ECs and, then, put constraints on the
parameters of these bimetric massive theories using obser-
vational data.

3.1 Energy conditions

As discussed in [76] the strong and the null ECs are derived
from the Raychaudhuri equation for congruences of timelike
and null curves, respectively. That is,

Rμν t
μtν ≥ 0, (17)

Rμνk
μkν ≥ 0, (18)

where tμ (kμ) is a timelike (null) tangent vector field. Now,
considering that only the ordinary matter should obey such
conditions, Eq. (17) can be rewritten in terms of the energy-
momentum tensor, namely

(
Tμν − 1

2
gμνT

)
tμtν ≥ 0. (19)

Furthermore, considering the fluid four velocity U ν =
(−1, 0, 0, 0), the above inequation can be split in the follow-
ing two inequalities

TμνU
μU ν + 1

2
T ≥ 0, (20)

and

Tμνk
μkν ≥ 0. (21)

Note that Eq. (18) also leads to Eq. (21). Therefore, Eqs. (20)
and (21) express simultaneously the strong energy condi-
tion (SEC) and Eq. (21) expresses the null energy condition
(NEC). Thus, the fulfillment of SEC implies also that NEC
is fulfilled.

In short, we are assuming that Tμν includes only ordinary
matter such as baryons, dark matter, radiation and neutrinos.
Consequently, in the absence of modifications, Eqs. (20) and
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(21) imply Eqs. (17) and (18). This is motivated by the fact
that in other scales, where the modification should be irrele-
vant (e.g., laboratory, solar system), these matter components
fulfill the ECs. In other words, at local tests GR has been
shown to be a very accurate description of gravity (see, e.g.,
[77,78]) and at these tests all energy momentum components
satisfy the energy conditions, i.e., the energy momentum ten-
sor satisfies the aforementioned inequalities. For this reason,
here we assume that these same components, when averaged
at cosmological scales, still satisfy the energy conditions even
though the theory of gravitation is not necessarily GR. Natu-
rally, there are exceptions for this assumption. For example,
one can model the dark sector by a single component that
behaves as dark energy only on large scales. Nevertheless,
here we are interested in modeling the acceleration through
modifications on the theory of gravitation and not a mixture
of an alternative gravity theory and a dark energy like com-
ponent. This means that we are assuming that the only source
of an accelerated expansion is the modification on the the-
ory of gravitation. Moreover, in the context of an extended
theory of gravity it is usual to think in terms of an effective
energy–momentum tensor T̃μν which is a sum of Tμν and an
extra tensor containing the additional degrees of freedom of
the theory [see Eq. (25) bellow], but it would be mislead-
ing to consider that the energy conditions should be imposed
to T̃μν , since such a condition does not emerge only from
Tμν but also from the geometrical quantities of the theory.
For further discussions regarding such an issue we refer the
reader to Refs. [79,80]. As pointed out in these works, in the
case of the extended theories of gravity, the SEC does not
imply necessarily that gravity is attractive since the condi-
tions of focusing of congruences [Eqs. (17) and (18)] are not
necessarily satisfied.

The weak energy condition (WEC) and dominant energy
condition (DEC) are restrictions on the energy–momentum
tensor Tμν . WEC states that

Tμν t
μtν ≥ 0, (22)

or

TμνU
μU ν ≥ 0, and Tμνk

μkν ≥ 0, (23)

while DEC,

TμνT
ν
λt

μtλ ≥ 0, (24)

states that the speed of the energy flow of matter is less than
the speed of light. It is worth noting that DEC includes WEC.

3.2 Friedmann equations and energy conditions in the
bimetric massive gravity

In Ref. [76], we considered a class of extended theories of
gravity for which the field equations can be written in the
generic form

Gμν + Hμν = 8πG

g1
Tμν, (25)

where Gμν is the Einstein tensor with Tμν being the usual
energy–momentum tensor for matter fields. The additional
tensor Hμν depends on the details of each theory and can be
a function of the metric, of scalar and vector fields and on
covariant derivatives of these quantities. The factor g1 drives
the modified coupling with the matter fields. Such a class
of theories is characterized by the existence of cosmologi-
cal solutions. In this work we consider the case for which
the modified gravity term acts effectively as a cosmological
constant and g1 = 1.

In the context of massive gravity theories the tensor
Hμν can be derived in a straightforward manner from
the Lagrangians (2) or (4) (we refer the reader to Refs.
[20,23,24]) as it was shown in Sect. 2. In this respect, there
is a particular choice for the background metric that relates
it to the physical metric by a position-independent rescaling,
namely, a positive constant D2 (such as in Refs. [23,24]),

fμν = D2 gμν. (26)

This is a well motivated choice for both, the Visser theory
and for the Hassan and Rosen theory, since it leads to a mas-
sive tensor that acts effectively as a cosmological term in the
Einstein field equations [23,24]. Thereupon, it is straightfor-
ward to show that in both cases it is possible to write the Hμν

tensor as

Hμν = −ρeff gμν, (27)

where hereρeff is an effective constant energy density coming
from the massive term.

We can also define an effective pressure peff with equa-
tion of state peff = −ρeff , such that this term works like a
cosmological constant. The specific dependence of ρeff on
the parameters of each theory will be shown below. Before
proceeding, let us write the general form of the Friedmann’s
equations and of the ECs for the two massive models. Con-
sidering that gμν is given by the Friedmann metric and
that the energy–momentum tensor for the matter fields is
Tμν = (ρ + p)UμUν + pgμν , we find the Friedmann’s equa-
tions

(
ȧ

a

)2

= 8πG

3
(ρ + ρeff) − k

a2 , (28)
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and

ä

a
+ 1

2

(
ȧ

a

)2

= −4πG(p + peff) − k

2a2 , (29)

where a(t) is the scale factor, the dot corresponds to the
derivative with respect to the cosmic time t , and k is the
curvature of the spatial section. In what follows we use the
definitions for the Hubble function H ≡ H0E(a) ≡ ȧ/a, the
deceleration function q = −äa/ȧ2 and the present value of
the density parameter associated with the cosmological con-
stant like term, namely Ω0

eff ≡ 8πGρeff/3H2
0 . Hereafter the

subscript and superscript 0 stand for the present-day quanti-
ties.

Therefore, by using Eqs. (28) and (29) together with the
results of Sect. 3.1, it is straightforward to show that SEC
and DEC put, respectively, lower and upper bounds on Ω0

eff ,
namely

Ω0
eff ≥ Ω low

eff (z) ≡ −q(z)E2(z), (30)

Ω0
eff ≤ Ω

up
eff(z) ≡

{
[2 − q(z)] E(z)2 − 2Ω0

k (1 + z)2
}

3
,

(31)

where 1 + z ≡ a0/a and Ω0
k = −k/(a0H0)

2 is the curvature
density. Note that Eqs. (30) and (31) refers respectively to

SEC ρ + 3p ≥ 0, (32)

DEC ρ − p ≥ 0. (33)

Notice that at this point the above conditions apply to any
contribution to the field equations which behaves as an effec-
tive cosmological constant. Therefore the bounds we will find
on Ω0

eff in the next section are valid for any theory that enters
in such a restricted class. Moreover, general bounds imposed
on non-constant cosmological terms were addressed in Ref.
[76].

Therefore, if we are able to determine from observations
the curvature and the behavior of q(z) and E(z), it is possi-
ble to specify the kinetic constraints imposed by ECs on Ω0

eff
and, consequently, on the parameters involved in each mas-
sive theory. Moreover, the determination of these functions
provide a whole range of upper and lower bounds, i.e., the
inequalities (30) and (31) must be fulfilled in the entire range
of redshift z where they were determined. Accordingly, since
we are dealing with inequalities we need only the maximum
of Ω low

eff (z) and the minimum of Ω
up
eff(z), that is

z1 = arg max Ω low
eff , Ω low�

eff = Ω low
eff (z1), (34)

z2 = arg min Ω
up
eff , Ω

up�

eff = Ω
up
eff(z2). (35)

It is worth noting that for the same reconstruction z1 and
z2 can be different. There is also the possibility that Ω low�

eff >

Ω
up�

eff , which means that the cosmological constant would
be ruled out since it could not satisfy the bounds, indicating
that the modification term should be at least time dependent.
In other words, the presence of lower and upper bounds,
distributed in a wide range of redshifts, raises the possibility
that the reconstructed curves lead to the largest lower bound
(at z1) larger than the smallest upper bound (at z2). This is
clearly inconsistent with an effective constant modification,
we would need a time dependent Ωeff in order to satisfy both
bounds. We explore this fact in Sect. 4.

3.3 Density parameter for the Visser’s Lagrangian

Notice that the specific expressions for ρeff depend on the
particular Lagrangian adopted. Recall that ρeff ≡ Tμν

eff UμUν ,
where Uμ is the four velocity and Tμν

eff is calculated by vary-
ing the Lagrangian [in particular, Eqs. (2) and (4)] with
respect to gμν and considering that fμν and gμν are inde-
pendent. For the Visser’s Lagrangian (2), in the absence of a
bare cosmological constant we find that ρeff is given by [23]

ρeff = m2

16πG
(D2 − 1). (36)

In principle, ρeff can be positive or negative, but it needs
to be positive by requiring that (D2 − 1) > 0 in order to be
consistent with the recent phase of accelerated expansion of
the Universe without the addition of any other component.
The corresponding dimensionless density parameter is

Ω0
eff = m2

6
(D2 − 1), (37)

where m ≡ m/H0.
In physical units the above mass parameter reads m =

m/(h̄H0/c2) = �H/λg , where �H = c/H0 is the Hub-
ble distance and λg = h̄/mc is the Compton wavelength
of the graviton. If λg < �H , i.e., m > 1, this would
mean that m > h̄H0/c2 or m > 2.13 × 10−33 h eV/c2 for
H0 = 100 h km s−1Mpc−1.

3.4 Density parameter for massive gravity in the GR limit

In the context of massive gravity in the GR limit, ρeff is
obtained from the Hassan and Rosen Lagrangian and from
the definition of Vμν (10), such that T eff

μν = Vμν/8πG, con-
sidering also the fulfillment of the constraint (15). Thus, it is
straightforward to show that [24]

ρeff = 3m2

8πG
Q(c3, c4), (38)
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where

Q(c3, c4) = 1

3
(1 − D)2 [c3(1 − D) − 3] , (39)

and D is now given by

D = 1 + 3c3

2c4
±

√(
1 + 3c3

2c4

)2

− 1. (40)

Note that c3(1− D) > 3, in order to have ρeff > 0. In this
case, the corresponding density parameter reads

Ω0
eff = m2Q(c3, c4). (41)

As we have shown in Sect. 2, such a solution is a solution of
bimetric gravity with a vanishing kinetic term, and, therefore,
it is compatible with massive gravity since the constraint
(15) is satisfied. In this sense, we say that the solution is
continuous in the parameter space since it is simultaneously
a solution of both theories.

In the bimetric gravity approach the above solution is
called the GR limit, which was consistently taken into
account by Baccetti et al. [24]. In the limit, any bimetric
model can be brought arbitrarily close to GR solutions by
adjusting the parameter κ (and also the parameter ε in the case
a background energy–momentum tensor T̄μν is considered)
avoiding the vDVZ discontinuity [81]. This corresponds to
take a small value for the Planck massm f associated with the
metric fμν (which in our notation is identified asm2

f ≡ κ/G)
leading, therefore, to a strong coupling limit for the fμν sec-
tor. For m f → 0, the effect of this strong coupling is to
suppress the dynamics of fμν . Therefore, we are left with a
theory given by the massive action (1) plus an additional con-
straint (15) that makes it compatible with bimetric gravity.
The same constraint can be obtained by varying the massive
action with respect to the metric fμν . Nevertheless, the gμν

sector does not exhibit strong coupling.
In Ref. [24] it was shown that proportional metrics is a

consistent solution for this limiting case. A similar solution
was found by Akrami et al. [39] where the authors showed
the cosmological viability of bimetric gravity. It is worth
noticing that they started with a FLRW form for both metrics
which are not proportional from the beginning. After writing
the Friedmann equations, the application of the GR limit
κ → 0 (α → 0 in their case) leads to proportional metrics
and to an extra term in the Friedmann equations appearing as
a cosmological constant. This is a special but very important
case since solutions which are not exactly in the GR limit
can be studied as higher order corrections (in terms of κ) of
this limit. As shown by Akrami et al., such corrections result
in a time-varying effective cosmological term Λeff(t).

Another interesting example are the βi -models defined by
Hassan et al. [81]. For these models, if one of the metrics has

GR solutions (i.e., solutions of Einstein’s equations in the
presence of sources) than the other metric is proportional to
the first metric. Such a model is a particular case of the model
studied here, but of course in the present case one would need
to take into account the additional GR limit constraint.

In principle, there is no reason to consider the above
defined ρeff to be positive, but if we assume the hypothe-
sis that there is not a vacuum contribution for the energy-
momentum tensor Tμν (i.e., the bare cosmological constant
vanishes Λ = 0), then the only component responsible to
accelerate the Universe is the effective cosmological con-
stant coming from the modification of gravity induced by
the massive Lagrangian, and then ρeff > 0 is a necessary
condition. This is the viewpoint considered in the present
work.

Furthermore, it is worth mentioning that, besides the
bimetric approach, there are also other methods to model a
massive gravity. For instance, the introduction of an auxiliary
extra dimension [82,83] and the generation of mass through
a gravitational Higgs mechanism [84–88]. These two alter-
natives can be formulated in terms of the bimetric massive
gravity as discussed in [21,89].

4 Results

In Ref. [76] (the companion paper) we considered a class of
ETGs [Eq. (25)] and derived the energy conditions bounds
assuming only a homogeneous and isotopic metric. In this
context, the modified gravity term Hμν can be written in
terms of two functions of time only, ht (t) and hs(t). In order
to confront this ETG class with observational data and, con-
sequently, shed light on the features of the modified term,
we wrote the weak and dominant energy conditions in terms
of q(z), E(z), ht (t) and hs(t). This provides upper bounds
on combinations of the last two functions. Furthermore, we
also considered a fifth condition by imposing that ordinary
matter implies that GR is always attractive and, therefore,
any DE like behavior originates exclusively from the tensor
Hab. This condition provides a lower bound on (−ht +3hs).

The observational bounds for the energy conditions (con-
sidering both GR and this ETG class) were obtained from
SNe Ia, BAO and H(z) data. In particular, we used the JLA
catalog of 740 SNe Ia [64], 11 BAO measurements [65–70],
and 22 H(z) data points [71–74]. These data sets are com-
prised in the redshift interval z ∈ [0, 2.33]. We then esti-
mated q(z) and E(z) in this redshift range, using the model-
independent reconstruction method introduced by Vitenti and
Penna-Lima [63].1 We applied the Markov Chain Monte
Carlo (MCMC) approach, where we run about 5×106 points
distributed among 50 chains for three different cases. These

1 We applied this approach to reconstruct q(z) using cubic splines.
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Fig. 1 The (Ω low�
eff ,Ω

up�

eff )

posterior probability distribution
for the three cases studied, i.e.,
flat universe (left panel) and
considering Gaussian priors on
Ωk with zero mean and scatters
equal to 0.05 (middle panel) and
0.1 (right panel). The shaded
blue areas represent the regions
where Ω low�

eff > Ω
up�

eff . That is, a
solution like the cosmological
constant is rule out at this area
of the parameter space
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correspond to flat universe, Ω0
k = 0, and two conservative

Gaussian priors where Ω0
k = 0 ± 0.05 and Ω0

k = 0 ± 0.1.
For this, we made use of the MCMC ensemble sampler algo-
rithm from the NumCosmo library (NcmFitESMCMC) [90]
based on Ref. [91]. The respective SNe Ia, BAO and H(z)
likelihoods are also implemented in NumCosmo. For details
of these likelihoods and the data sets, see [76].

Besides the constraints on ht (t) and hs(t), we also
obtained that the strong energy condition is violated, corre-
sponding to an accelerated expansion, with more than 5.22σ

confidence, and a phantom-like dark energy (dark energy
with equation of state w < −1) can be favored when consid-
ering an ETG effective energy density and equation of state.
These constraints were obtained in a general setting, provid-
ing a general framework of constraints on ETGs. This allows
the determination of bounds on quantities of specific models,
which is the objective that we follow in this work.

From these reconstructions of q(z) and H(z), in this
work we obtain observational constraints for the upper and
lower bounds for Ω0

eff , see Eqs. (30) (SEC) and (31) (DEC).
For each point p of the MCMC catalog, we calculated the
functions Ω low

eff,p(z) and Ω
up
eff,p(z) determining their maxima

(Ω low�
eff,p) and minima (Ω

up�

eff,p). These extremes were calcu-
lated considering different intervals

z ∈ [0, 0.5], z ∈ [0, 1.25], z ∈ [0, 1.5].

The results concerning the upper and lower bounds of Ω0
eff

are virtually independent of the choice of the intervals
above. Nevertheless, using a larger redshift range increases
the variances of Ω low�

eff,p and Ω
up�

eff,p, since the reconstructed
curves have wider variance for higher z as showed in

Penna-Lima et al. [76]. In practice this results in a larger
probability of finding Ω low�

eff,p > Ω
up�

eff,p, which highlights the

following trade-off. Our method constrains Ω0
eff in the red-

shift interval used to determine the extremes. Thus, more
can be said about the behavior of Ω0

eff with a larger range,
notwithstanding, as the interval increases so the variance.
Here we carry out the analysis using the interval z ∈ (0, 0.5).
We emphasize that this choice makes almost no difference in
the determination of Ω low�

eff,p and Ω
up�

eff,p.

From our sample (Ω low�
eff,p, Ω

up�

eff,p) we estimate the poste-

rior probability density P(Ω low�
eff , Ω

up�

eff ) as showed in Fig. 1.
The probability distribution correlates both bounds in all
three cases, and there are probabilities of about 30% of find-
ingΩ low�

eff > Ω
up�

eff (shaded blue areas). Note that this percent-
age is much more influenced by our choice of redshift interval
discussed above. Larger intervals leads to regions where the
curves are less constrained and consequently fluctuates and
produces more points in the Ω low�

eff > Ω
up�

eff region.2 In short,
for all three cases, the cosmological constant like model has
a 30% probability of being rejected. These cases suggest
that a time dependent modeling would be necessary. Despite
the probability be low and the cosmological constant be still
allowed, this amounts to show that this method is capable of
excluding a cosmological constant as the driver of the accel-
erated expansion in a model independent way.

In Fig. 2 we show the 1σ − 3σ confidence regions of
(Ω low�

eff ,Ω
up�

eff ). These contours were computed, respectively,
as P(Ω low�

eff ≥ x, Ω
up�

eff ≤ y) = 68.27, 95.45 and 99.73%,

2 For the other intervals, z ∈ (0, 1.25) and z ∈ (0, 1.5) we have, respec-
tively, the probability of 48 and 65% of finding Ω low�

eff > Ω
up�

eff .
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Fig. 2 The 1σ − 3σ contours
of the (Ω low�

eff ,Ω
up�

eff ) posterior
probability distribution for the
three cases studied, i.e., flat
universe (left panel) and
considering Gaussian priors on
Ωk with zero mean and scatters
equal to 0.05 (middle panel) and
0.1 (right panel). We identify the
points in the curves where we
have the smallest intervals for a
given confidence level
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where

P
(
Ω low�

eff ≥ x, Ω
up�

eff ≤ y
)

=
∫ y

0
dΩ

up�

eff

∫ ∞

x
dΩ low�

eff P
(
Ω low�

eff , Ω
up�

eff

)
. (42)

That is, the contour curves correspond to intervals (xc, yc),
such that there is a probability of 31.73, 4.55 and 0.27%
(respectively 1σ , 2σ and 3σ ) of finding Ω low�

eff < xc and
Ω

up�

eff > yc. For a given nσ contour curve the point (0, yc)
is equivalent to marginalize the distribution in Ω low�

eff obtain-
ing the point where the marginal probability of finding Ω

up�

eff
smaller than yc is nσ . Analogously, the point (xc, ∞), corre-
sponds to the point where the marginal probability of finding
Ω low�

eff larger than xc is nσ .
In particular, for the flat case, the smallest allowed inter-

vals within 1σ , 2σ and 3σ confidence levels (CL) are, respec-
tively,

0.59 ≤ Ω0
eff ≤ 0.91, (43)

0.48 ≤ Ω0
eff ≤ 0.92, (44)

0.40 ≤ Ω0
eff ≤ 0.93, (45)

as one can see in Fig. 2. It is also worth noting that as we move
in the Ω low�

eff → 0 direction the upper bound moves to the
one obtained marginalizing over Ω low�

eff as discussed above,
with the analogous happening when Ω

up�

eff → ∞. From this
we realize that the round corners of the contours result from
the correlation between Ω low�

eff and Ω
up�

eff . This effect is more
pronounced when Ω0

k �= 0, where we can see that the results
obtained using individual marginalization of Ω low�

eff and Ω
up�

eff
would have lead to tighter but wrong constraints.

Since we are constraining the parameter Ω0
eff , it is not

possible to obtain tight constraints on each specific parameter
of the massive gravity theories. However, it is possible to trace
some conclusions about the parameter space as follows.

For the case of the Visser’s theory, the bounds on Ω0
eff

implies bounds on the parameters m and D. In Fig. 3 we
show the constraints on the parameter space of the Visser’s
theory. The blue region is the 3σ CL of Ω0

eff . It can be seen
that the closer to one D2 is, the higher is the graviton mass
parameter. Since fμν = D2gμν , Fig. 3 suggests that these
metrics would differ only slightly from each other.

In the non relativistic regime massive gravity reduces to
a Yukawa-like potential instead of the Newtonian potential.
Therefore, this can in principle be used to constraint m. This
was already accomplished in Refs. [94,95,97]. In Ref. [97]
the authors considered analytical models of disk of spiral
galaxies to constraint Yukawian potentials. They conclude
that for disk galaxies exist mg < 5.6 × 10−27 eV/c2. In
addition, in Refs. [94,95], the authors use numerical simu-
lations of spiral and elliptical galaxies to probe Yukawian
potential. They find that consistent structures of galaxies can
be obtained ifmg < 5.6×10−28 eV/c2. The aforementioned
results imply the following constraint log(D2 −1) > −10.8.
If we adopt such a lower bound as a reference we are lead
to D2 ∼ 1 in the Visser’s theory, which indicates again that
fμν and gμν would differ slightly from each other.

There are other bounds on the graviton mass in the lit-
erature obtained by using a gravitational Yukawa potential.
Two examples are the bound from the precession of Mer-
cury which gives m < 7.2 × 10−23 eV/c2 [98,99] and a
stronger bound from weak lensing data of a cluster of stars
at z = 1.2 is m < 6 × 10−32 eV/c2 [96]. Where the last has
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Fig. 3 The space parameter
log(m) vs. log(D2 − 1) for the
Visser’s theory considering Ωeff
in the interval of 3σ CL. The
upper bounds on the graviton
mass summarized in Table 1 are
also indicated

the caveat of being dependent of the dark matter distribution
and cosmological model.

In the dynamical regime, bounds on the graviton mass
have been recently obtained using a modified dispersion rela-
tion in the observation of gravitational waves from the merger
of binary black hole systems by the LIGO interferometer. In
its third detection, an upper limit of 7.7 × 10−23 eV/c2 [93,
100] was established. Before LIGO, the bound due to grav-
itational wave emission was m < 7.6 × 10−20 eV/c2 [92]
which was obtained from pulsar timing of PSR B1913+16
and PSR B1534+12. For a detailed review on the current and
projected bounds on the graviton mass and the theoretical
aspects related to such bounds see Ref. [101]. In Table 1 we
summarize some upper bounds on the graviton mass and the
corresponding lower bounds on D.

For the case of the Hassan and Rosen theory, there are
now three parameters, namely, m, c3 and c4. In what fol-
lows we consider only the case with the plus sign before the
square root in the expression of D given by Eq. (40). Similar
conclusions could be drawn by using the minus sign.

First of all, notice that Ω0
eff = Ω0

eff(m, c3, c4) given by
Eq. (41) does not have real values for c4 > 0, whereas c3

can be positive or negative. Figure 4 shows the parame-
ter space where c3 < 0. Notice also that, in order to have
Ω0

eff(m, c3, c4) > 0, there is a forbidden area in the param-
eter space, as indicated. Such a region is delimited by the
function

c�
4 = 1

3
c2

3(c3 − 3), (46)

Table 1 The upper bounds on the graviton mass mentioned in the main
text and the corresponding lower bounds on log(D2 − 1) for the Visser
theory. To calculate the latter we considered h = 0.73 and the lowest
value of Ω0

eff in the interval of 3σ CL

mup (eV/c2) log(m̄up)
[
log(D2 − 1)

]
low

7.6 × 10−20 [92] 13.7 −27.0

7.7 × 10−23 [93] 10.7 −21.0

5.6 × 10−28 [94,95] 5.6 −10.8

6 × 10−32 [96] 1.6 −2.82

in the (c3, c4) plane. Therefore, the maximum region for
admissible pairs of values of these two parameters is

c�
4 < c4 < 0, if c3 < 0. (47)

If we combine the bounds on Ω0
eff with an upper bound

on the graviton mass we conclude that

Q(c3, c4) >
Ω low�

eff

m2
up

, (48)

where Q(c3, c4) is given by Eq. (39). The above equation
gives the possible values of c3 and c4 given Ω low�

eff and mup.
In Fig. 4 we have used the 3σ CL of Ω0

eff , h = 0.73 and
two values of mup, namely, 6×10−32 eV/c2 and 5.6×10−28

eV/c2. For the latter value, the region almost coincides with
the maximum allowed space parameter in the ranges chosen,
which can be found by imposing mup → ∞ in the Eq. (48)
leading again to Eqs. (46) and (47).
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Fig. 4 The allowed region in
the c4 vs. c3 plane for the
Hassan and Rosen theory. The
black line is the analytical
function given by Eq. (47)
which determines the maximum
allowed region (obtained for
mup → ∞). The larger mup is,
the larger is the admissible
space parameter for (c4, c3). As
an example, we show the region
for mup = 6 × 10−32 eV/c2 and
for mup = 5.6 × 10−28 eV/c2

(which encompasses the region
for mup = 6 × 10−32 eV/c2). In
the latter case, the region is
almost coincident with the
maximum allowed space
parameter by virtue of the
ranges used for c3 and c4. We
used h = 0.73

Notice that there is a large range for which |c4| 
 |c3|,
in this case we obtain D ∼ 1 from Eq. (40) indicating that
this theory also includes the case for which the difference
between the dynamical and the background metrics is very
small.

5 Conclusion

In this article we considered an arbitrary alternative gravity
theory whose extra term acts like a cosmological constant.
Then, using the strong and dominant energy conditions and
the assumption that ordinary matter fulfills these conditions,
we derived lower and upper bounds for Ω0

eff . Considering
three different priors for the curvature parameter (Ω0

k ), we
applied the reconstruction method using a set of low redshift
data [63,76]. The bounds Ω low

eff (z) and Ω
up
eff(z) limit the value

of Ω0
eff in the considered redshift interval. On the grounds that

both curves may have different shapes there are a non-zero
probability of excluding a constant Ω0

eff since there are cases
where Ω low

eff (z) > Ω
up
eff(z

′). In particular for z ∈ [0, 0.5] this
probability is about 30% for all three cases. In order to study
more closely these bounds, we obtained the bi-dimensional
probability distribution of the extremes Ω low�

eff and Ω
up�

eff , find-
ing the smallest allowed bounds in 1σ − 3σ as exemplified
for the flat case in Eqs. (43–45).

It is worth emphasizing that we have presented in this work
a model-independent procedure to test the nature of the dark
energy in cosmological models like ΛCDM, which in turn
can stem from many possible modifications in the gravita-
tional theory. Furthermore, by assuming that ordinary matter

do not violate the EC’s we were able to impose both lower
and upper bounds on Ω0

eff . The value of these constraints
are in accordance with the model dependent analysis, which
leads to Ω0

eff = ΩΛ ≈ 0.7 (see for example [4]). This shows
two independent analyses pointing out in the same direction.

In light of these results we also studied the constraints for
two bimetric massive gravity theories, namely, the Visser’s
and the Hassan and Rosen’s. We have taken into account the
particular case for which the massive term mimics a cos-
mological constant in the Einstein’s field equations and a
bare vacuum contribution is absent. Besides such a solution
can potentially generate the present acceleration of the Uni-
verse, it is also motivated by the fact that it is continuous in
the parameter space, in the sense that it is a solution simul-
taneously of massive gravity and bigravity in the limit of
vanishing kinetic term (GR limit).

By considering the SEC and DEC we also have imposed
constraints in the parameter space of both massive theo-
ries. Particularly, in the context of the Hassan and Rosen’s
approach, we identified a forbidden region in the (c3, c4)

plane which is independent of the graviton mass. But, in gen-
eral, it is not possible to obtain tight constraints on each spe-
cific parameter of the theories since the ECs involve essen-
tially Ω0

eff which is a combination of the c3, c4 and m param-
eters. In this sense, we established a wide range of possi-
ble values of c3 and c4 which are in accordance with the
bounds for the graviton mass. For instance, considering the
maximum allowed region in the space parameter, we have
c�

4 < c4 < 0 where the lower bound for c4 is given by
Eq. (46). Therefore, if c3 = −1 → c�

4 = −1.33 while if
c3 = −103 → c�

4 = −3.34×108. In order to impose further

123



710 Page 12 of 14 Eur. Phys. J. C (2018) 78 :710

constraints in such a space parameter, other gravitational tests
designed to bound c3 and c4 (independent of Ω0

eff ) would be
needed.
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