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We study a field theory formulation of a fluid mechanical model. We implement the Hamiltonian formalism
by using the BFFT conjecture in order to build a gauge invariant fluid field theory. We also generalize previous
known classical dynamical field solutions for the fluid model.
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I. INTRODUCTION

The basis of the canonical quantization for systems w
infinite degrees of freedom has been the powerful chara
and applicability of the Dirac method@1#. Despite its current
use in different systems, alternative formalisms have b
developed in order to solve particular difficulties whic
come from Dirac’s formulation@2#. One of these problems i
the role of first- and second-class constraints when we id
tify the classical brackets as commutators. While first-cl
constraints are related to symmetries the second-class
may imply some ambiguities when treated as quantum
erators. The physical status of a theory is chosen by imp
ing complementary conditions which are given by the fir
class constraints. In order to avoid the presence of sec
class constraints we can separate it into first-class ones
gauge fixing terms; however, there is a special situat
where the constraints are nonlinear so that this proced
fails @3#.

An alternative way to circumvent this difficulty is to em
ploy an interesting machinery proposed by Batalin, Fradk
Fradkina, and Tyutin~BFFT! @4#, which converts the second
class constraints into first order ones by using auxili
fields. Its applicability has been demonstrated in many
ferent systems involving linear constraints@5,6# and also in
nonlinear cases@3,7,8#. As we expect, the implementation o
the above mentioned method through the introduction of n
fields gives rise to a kind of Wess-Zumino terms which tu
the resulting effective theory gauge invariant.

In this paper we discuss the Hamiltonian formalism fo
scalar field fluid theory from a BFFT method point of view
The fluid field theory has been introduced as a laborator
study some classical aspects of membrane problem@9# but
there are also other classical and quantum systems which
be described by this model@10–12#. We can mention, for
instance, the hydrodynamical formulation of quantum m
chanics@13# or a dimensional reduction of a relativistic sc
lar field theory@14#.

Recently, Bazeia and Jackiw@10# have discussed thi
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model by making a careful analysis of the Galileo and Po
carésymmetries. In particular, they obtained dynamical s
lutions for the original fields by choosing a singular potent
~see also Refs.@11,12#!. In our study we use the BFFT
method to build a gauge invariant theory to obtain the
spective generators of the extended gauge transformat
As a consequence of this symmetry we show that for lin
constraints, the Lagrangian is invariant in a similar way
respect to that discussed by Amorim and Barcelos@6# for
chiral bosons theories.

We have organized this paper as follows. In Sec. II
present the fluid field theory as described by Bazeia
Jackiw. We show that their dynamical solutions for the s
gular potential can be generalized to other potentials lead
to diverse physical systems. Section III is dedicated to
explanation of the BFFT method applied to the fluid fie
theory. Finally in Sec. IV we present an analysis of the
sults obtained and give our conclusions. We have also
cluded two appendices where some technical calculations
given.

II. THE MODEL: ITS SYMMETRIES AND SOLUTIONS

Let us consider a fluid dynamical model@15# described by
the following Lagrangian ind dimensionalr space, evolving
in time t:

L5E ddr S uṙ2
1

2
r¹u•¹u2V~r! D , ~2.1!

wherer5r(t,r ), u5u(t,r ) and the overdot means time di
ferentiation. In a usual fluid mechanical modelr is the mass
density andu is the velocity potential,v5¹u. Then, we
have the equations of motion

ṙ5¹~r¹u!, ~2.2!

u̇52
1

2
~¹u!22

d

drE ddrV. ~2.3!

These equations of motion are recognized as the con
tional ones for isentropic irrotational fluids@15#. As this sys-
tem is a nonrelativistic one it has naturally the Galilean sy
©2000 The American Physical Society16-1
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metry @16#, i.e., it is invariant under the Galilean grou
which generators are

H5E ddrE, E5
1

2
r~¹u!21V~r!, ~2.4!

P5E ddrP, P5r¹u, ~2.5!

Ji j 5E ddrJ i j , J i j 5r iP j2r jP i , ~2.6!

B5E ddrB, B5tP2rr, ~2.7!

N5E ddrr, ~2.8!

which, respectively, give time and space translation a
space rotation, in addition to the Galileo boost and ‘‘charg
generatorN which in this case is the total mass of the flui
being naturally conserved. The Poisson brackets of th
generators close under an algebra corresponding to the
leo group. For instance,

$Bi ,Pj%5d i j N. ~2.9!

A connection with the membrane problem@9# is done
whend52 and

V~r!5
g

r
, ~2.10!

whereg is the coupling constant~this potential also connect
the fluid field theory problem tod branes ind11 space
dimensions@11,12#!. In this case, the actionI 5*dtL is in-
variant under time rescalingt→ewt generated by~dilation!

D5E ddr ~ tE2ru!. ~2.11!

Another symmetry of this action is given implicitly b
@10#

t→T~ t,r !5t1w•r1
1

2
w2u~T,R!,

r→R~ t,r !5r1wu~T,R!,

where

u~T,R!5u~ t,r2wt !1w•r2
1

2
w2t

which are generated by

G5E ddr ~rE2uP!. ~2.12!

The geometrical meaning ofG is not clear, as pointed out in
Ref. @10#; however, one should note thatD andG depend on
02501
d
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the velocity potentialu which is meaningful only in the ir-
rotational case. They speculated that, since the fluid fi
model corresponds to a gauge-fixed version of the relativi
membrane in the lightcone, the symmetry generated byG
may be a residual gauge invariance of that model. As is w
known, the Galileo group~2.4!–~2.8! together with the gen-
erators~2.11! and ~2.12! defined in (d11) dimensions is
isomorphic to a Poincare´ group defined in (d11,1) dimen-
sions@17#.

Bazeia and Jackiw presented some solutions for this
tem with the potential~2.10! which are

u~ t,r !52
r 2

2~d21!t
, ~2.13!

r~ t,r !5A2g

d
~d21!

utu
r

~2.14!

valid for d.1. They discuss other solutions for the free ca
~a particular case of the above solution! and also some solu
tions for d51, which are not our main concern here. Oth
solutions in different dimensions can also be found in R
@11#.

Here we note that it is possible to extend the above res
considering now the following potential:

V~r!5
g

rn ~2.15!

which describe ideal polytropic gases, i.e., a gas in which
pressure is proportional to a power of the density@18#, for
which we find the solutions

u~ t,r !52
r 2

@d~n11!22#t
, ~2.16!

r~ t,r !5H ng@d~n11!22#2t2

d~n11!r 2 J 1/(n11)

, ~2.17!

which are valid ind.1 space dimensions, generalizing th
solutions obtained by Bazeia and Jackiw@10#. Their solution
is a particular case of the above class of solutions which
be recovered when we taken51 in the above equations. A
we are going to show in the following section, the abo
fluid field theory also admits a gauge symmetry which
respected by a general potentialV(r).

III. BFFT QUANTIZATION AND GAUGE SYMMETRY

Let us now construct a gauge invariant version of t
model described above using the method developed by B
lin, Fradkin, Fradkina, and Tuyutin~BFFT! @4# which trans-
forms second-class constraints into first-class ones@6#.

Considering the Lagrangian~2.1! we obtain the primary
constraints

xr5Pr2u'0, ~3.1!

xu5Pu'0 ~3.2!
6-2
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which satisfy the algebra

$xr ,xu%52erud~x2y![Dru~x,y!. ~3.3!

Then, the primary Hamiltonian is given by

Hp5E ddr ~Prṙ1Puu̇2L1lrxr1luxu!

5E ddr S ~Pr2u!ṙ1Puu̇1
1

2
r~¹u!21V~r!

1lrxr1luxuD
5E ddr S 1

2
r~¹u!21V~r!1l̃rxr1l̃uxuD , ~3.4!

where we definedl̃r5lr1 ṙ, l̃u5lu1 u̇. The consistency
condition for the constraints determine the fieldsl̃r , l̃u and
there are no other constraints.

Before we implement the BFFT method it is necess
here to make a brief review of it. For a more comprehens
and elegant discussion see Refs.@4,6#. Let us now begin by
extending the phase space including the new fieldswr and
wu which satisfy the algebra

$wr ,wu%5vru~x,y! ~3.5!

such that the new constraintsVr , Vu should be first class
and could be written in general as

Vb5xb1sbawa, ~3.6!

where sba5sba(r,u). The central idea of the BFFT
method is to write the first-class constraints in terms of
second-class ones as

Vb5 (
n50

`

xb
(n) , ~3.7!

with the conditionxb
(0)[xb . So,xb

(n) is of nth order in the
field wa . The new constraints defined by Eqs.~3.6!, ~3.7!
satisfy the relation$Va ,Vb%50 and then

$xa ,xb%(r,u)1$xa
(1) ,xb

(1)%(w)50, ~3.8!

$xa ,xb
(1)% (r,u)1$xa

(1) ,xb%(r,u)1$xa
(1) ,xb

(2)% (w)

1$xa
(2) ,xb

(1)% (w)50, ~3.9!

$xa ,xb
(2)%(r,u)1$xa

(1) ,xb
(1)%(r,u)1$xa

(2) ,xb%(w)

1$xa
(1) ,xb

(3)%(w)1$xa
(2) ,xb

(2)% (w)1$xa
(3) ,xb

(1)%(w)50.

~3.10!

Here, we are using the notation$,%(r,u) , $,%(w) referring to
the Poisson brackets of the pairs (r,u) and (wr ,wu). From
Eqs.~3.3!, ~3.5!, ~3.6!, ~3.8! and using that$Va ,Vb%50 we
have
02501
y
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Dru52sravabsub , ~3.11!

which for the fluid field problem can be written as

Dru52erud~x2y!

52E dzdz8sra~x,z!vab~z,z8!sub~y,z8!.

~3.12!

As vab is obtained from second-class constraintswa we can
choosevab5eabd(x2y) which implies sra5erad(z2x)
so that

Vr~x!5xr~x!1E dzd~z2x!wu~z!

5xr~x!1sruwu~x! ~3.13!

and similarly

Vu~x!5xu~x!1surwr~x!. ~3.14!

The next step is to include corrections to the canoni
Hamiltonian. We remark that in this formalism any dynam
cal functionA(r,u) can also be properly modified in order t
be strong involutive with first-order constraints. So,
Ã(r,u,w) is this quantity we have

$Vr ,A%50 ~3.15!

with the boundary condition

Ã~r,u,0!5A~r,u!. ~3.16!

In order to generateÃ we can repeat the same steps f
the obtainment ofVr above, i.e., we consider the expansi

Ã5 (
n50

`

A(n), ~3.17!

whereA(n) is a term of ordern in the fieldw. Consequent-
ly,from Eqs.~3.8!–~3.10! rewritten forA(n) and the condition
A(0)5A, we have

A(1)52wavabsbg$xg ,A%, ~3.18!

where vab5(vab)21 and sbg5(sbg)21. An equation
analogous to Eq.~3.9! for A(2) gives

$xr
(1) ,A(2)%52Gr

(1) ~3.19!

such that

Gr
(1)5$xr ,A(1)% (r,u)1$xr

(1) ,A%(r,u)1$xr
(2) ,A(1)%(w) .

~3.20!

Then, we have, forA(2),

A(2)52
1

2
wavabsbgGg

(1) ~3.21!
6-3
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and in general, forn>1,

A(n11)52
1

n11
wavabsbgGg

(n) , ~3.22!

with the auxiliary conditionGr
(0)5$xr ,A% so that

Gr
(n)5 (

m50

n

$xr
(n1m) ,A(m)% (r,u)1 (

m50

n22

$xr
(n2m) ,A(m12)%(w)

1$xr
(n11) ,A(1)%(w) . ~3.23!

A. Particular case: sab independent of„r,u…

In the particular case wheresab does not depend on
(r,u) the A(n) are still given by Eq.~3.22! but

Gr
(n)5$xr ,A(n)%. ~3.24!

Let us analyze this particular case further with the additio
hypothesis that the second-class constraints are all lin
Then, we can write

A(n11)52
1

n11
wavabsbg$xg ,A(n)%

52
1

n11
wavabsbg$xg ,zi%

]

]zi
A(n)

52
1

n11
waka

i ] iA
(n), ~3.25!

where we have used the Jacobi identity and the definedzi is
a generalized phase space coordinate, in the sense th
could be either a canonical coordinate or a canonical m
mentum. Note thatka

i [vabsbg$xg ,zi% is a constant matrix
since the constraints are linear,$xg ,zi%5const andsbg is a
constant matrix too in this particular case. Using Eq.~3.25!
iteratively one finds

A(n)5
~21!n

n!
~waka

i ] i !
nA ~3.26!

so that

Ã~r,u;w![ (
n50

`

A(n)

5 (
n50

`
~21!n

n!
~waka

i ] i !
nA5exp~waka

i ] i !A

~3.27!

and then in this case the operatorÃ will be of the form

Ã~zi ,wa!5A~zi2waka
i !. ~3.28!
02501
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B. General case:sab as as function of„r,u…

Let us now return to the discussion of the general c
and construct the extended Hamiltonian. Noting that forn
>2, xr

(n)50, so that

Hc
(n11)52

1

n11E dxdydzwa~x!~vab!21~sbg!21Gg
(n) ,

~3.29!

whereGg
(n) is given by

Gg
(n)5$xg ,Hc

(n)%. ~3.30!

Since (vab)21 and (sbg)21 are proportional to Dirac delta
functions, we have

Hc
(0)5E dxF1

2
r~¹u!22V~r!G ~3.31!

so that

Gr
(0)5$xr ,Hc

(0)%52
1

2
~¹u!21]rV ~3.32!

and also

Gu
(0)5$xu ,Hc

(0)%52
1

2
r¹2u ~3.33!

so that the correctionHc
(1) is given by

Hc
(1)52E dxH F1

2
~¹u!22]rVGwr2

1

2
~r¹2u!wuJ .

~3.34!

Continuing the iteration process and summing up all the c
tributions we find that the canonical Hamiltonian is th
given by ~see the Appendix A!

Hc5Hc
(0)1E dxF2luwr1lrwu2

1

2
~]r

2V!wr
21•••

1
~21!n

n!
~]r

nV!wr
n1•••G

5Hc
(0)1E dxF2luwr1lrwu1 (

n50

`
~21!n12

~n12!!

3~]r
(n12)V!wr

(n12)G , ~3.35!

where the term corresponding toHc
(1) is contained inlu

5 1
2 (¹u)22]rV. Note that from the definition~3.6! the first-

class constraints are given by

Vr5xr1sruwu, ~3.36!

Vu5xu1surwr, ~3.37!
6-4
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wheresru52sur51. Let us now go back to the canonic
Hamiltonian Eq.~3.35! and analyze its last term. We no
that

(
n50

`
~21!n12

~n12!!
~]r

(n12)V!wr
(n12)

5 (
n50

`

Q~n21!
~21!n

n!
~]r

nV!wr
n

52V~r!1wr]rV~r!2e2wr]rV~r!, ~3.38!

whereQ(x) is the Heavside function. This way we have

Hc5E dx@2luwr1lrwu2e2wr]rV~r!#

5E dxF1

2
r~¹u!22

1

2
~¹u!2wr2

1

2
r¹2uwu

2e2wr]rV~r!G . ~3.39!

In order to find the corresponding Lagrangian, we ident
w[wr andPw[wu as a pair of canonical conjugate coord
nates and write the generating functional

Z5NE @dr#@dPr#@du#@dPu#@dw#@dPw#

3d~Pr2u1Pw!d~Pu2w!

3expH i E dxFPrṙ1Puu̇1Pwẇ2
1

2
r~¹u!2

1
1

2
~¹u!2w1

1

2
r¹2uPw1e2w]rV~r!G J , ~3.40!

where the delta functions represent the first-class constra
Noting that

~i! E @dPu#d~Pu2w!expH i E dxPuu̇J
5expH i E dxwu̇J ,

~ii ! E @dPr#d~Pr2u2Pw!expH i E dxPrṙJ
5expH i E dx~Pw1u!ṙJ

and substituting these results into the generating functio
we find
02501
ts.

al

Z5NE @dr#@du#@dw#@dPw#expH i E dxFuṙ1Puu̇1Pwẇ

2
1

2
r~¹u!21

1

2
~¹u!2w1

1

2
r¹2uPw1e2w]rV~r!G J .

~3.41!

The functional integral overPw gives

E @dPw#expH i E dxPwS ṙ1ẇ1
1

2
r¹2u D J

5d~ṙ1ẇ1lr!

so that the generating functional reads

Z5NE @dr#@du#@dw#d~ ṙ1ẇ1lr!

3expH i E dxFuṙ1wu̇2
1

2
~r2w!~¹u!2

1e2w]rV~r!G J ~3.42!

and then the extended Lagrangian density is given by

L̃5uṙ1wu̇2
1

2
~r2w!~¹u!21e2w]rV~r!. ~3.43!

In the limit in which the auxiliary field vanishes,w→0, we
get back the original Lagrangian~2.1! as it should. Let us
now look at the last term of this Lagrangian which involv
the potentialV(r). Assuming that the potential function ca
be expanded in a power series we have

e2w]rV~r!5V~r2w!. ~3.44!

So, we can apply the above equation for a wide range
functionsV(r), as for example, the potentials discussed
Sec. II.

Then, the extended Lagrangian density after a partial
tegration becomes

L̃52~r2w!u̇2
1

2
~r2w!~¹u!21V~r2w! ~3.45!

so that the Lagrangian is invariant under the exchangr
→r2w which is the gauge symmetry of the model. Sin
the first-classV is strongly involutive with canonical Hamil-
tonian~see the Appendix B! it is easy to check the invarianc
of L̃(r,u,w).

Now, we can look at the consequences of this gauge s
metry on the previous known symmetries for the fluid d
namical model. The Galileo and Poincare´ groups in the
gauged model can be obtained from the the density gen
tors of the nongauge model, Eqs.~2.4!–~2.8!, ~2.11!, and
~2.12! simply through the shiftÕ5e2w]rO, so that the origi-
nal Galileo and Poincare´ invariances of the fluid field mode
6-5
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are preserved by the introduction of the auxiliary field whi
bring to it a gauge symmetry.

IV. CONCLUSIONS

In this article we have studied the fluid field theory@9# for
which we found a class of classical solutions which reco
previous known particular cases@10#.

Then, by means of the BFFT formalism@4# we extended
the original phase space by including new fields which p
mitted the transformation of the set of second-class c
straints into a first-class one. We have analyzed a situa
where we found an extended gauge symmetry for an a
trary potential with linear constraints and a kind of a We
Zumino Lagrangian was built. As a result we have obtain
a new gauge invariant system. This new system may b
interest to the membrane problem related to Lagrangian~2.1!
since that formulation corresponds to a gauge fixed vers
in the light-cone gauge. As a final remark it is important
mention that the procedure discussed here could also be
plied successfully to a situation where nonlinear constra
were involved, as is well known in general for the BFF
method.
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APPENDIX A

In this Appendix we give some details of the iteratio
process necessary to construct the canonical Hamiltonia
the case of the linear constraint discussed in Sec. III. Us
Eqs. ~3.29! and ~3.30! we found the first correction,Hc

(1) .
For the next correction we have

Gr
(1)5$xr ,Hc

(1)%52
d

dr
Hc

(1)52~]r
2V!wr2

1

2
~¹2u!wu

~A1!

while

Gu
(1)5$xu ,Hc

(1)%52
d

du
Hc

(1)51
1

2
~¹2u!wr ~A2!

so that

Hc
(2)52

1

2E dx~]r
2V!wr

2 . ~A3!
-
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For third correction to the canonical Hamiltonian, we find

Gr
(2)5$xr ,Hc

(2)%52
d

dr
Hc

(2)5
1

2
~]r

3V!wr
2 ~A4!

and

Gu
(2)52

d

du
Hc

(1)50 ~A5!

so that

Hc
(3)5

1

2.3E dx~]r
3V!wr

3 . ~A6!

For the next term we have

Gr
(3)5$xr ,Hc

(3)%52
d

dr
Hc

(3)5
1

2.3
~]r

4V!wr
3 ~A7!

andGu
(n)50 for n>2 so that

Hc
(4)52

1

2.3.4E dx~]r
4V!wr

4 . ~A8!

APPENDIX B

Let us show here that the first-class constraintsVa are
strongly involutive in respect to the canonical Hamiltoni
Hc(r,u,wr ,wu), i.e.,$Va ,Hc%50. First note that from defi-
nition of Vr , Vu , Eqs. ~3.36!, ~3.37!, and the canonica
Hamiltonian Eq.~3.39!, we have

$Vr ,Hc%5$Vr ,Hc
(0)%1$lr ,Vr%wu2lu$Vr ,wr%

2$lu ,Vr%wr2$Vr ,e2wr]rV%, ~B1!

where we have used the fact that$Vr ,wu%50. Then,

$Vr ,Hc%5$lr ,Vr%wu2$lu ,Vr%wr . ~B2!

Now, usingwu5Vr2xr andwr5Vu2xu we have

$Vr ,Hc%5$lr ,Vr%~Vr2xr!2$lu ,Vr%~Vu2xu!

5~$lr ,Vr%2$lr ,xr%!Vr1~$lu ,Vu%

2$lu ,xu%!Vr5$lr ,Vr%Vr1$lu ,Vu%Vr

~B3!

and then we find

$Vr ,Hc%50. ~B4!

An analogous result can be found forVu , proving our origi-
nal statement.
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