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We study a field theory formulation of a fluid mechanical model. We implement the Hamiltonian formalism
by using the BFFT conjecture in order to build a gauge invariant fluid field theory. We also generalize previous
known classical dynamical field solutions for the fluid model.

PACS numbgs): 11.10.Ef, 11.10.Lm, 11.30.Cp

[. INTRODUCTION model by making a careful analysis of the Galileo and Poin-
caresymmetries. In particular, they obtained dynamical so-
The basis of the canonical quantization for systems witHutions for the original fields by choosing a singular potential
infinite degrees of freedom has been the powerful charactdsee also Refs[11,12). In our study we use the BFFT
and applicability of the Dirac methdd]. Despite its current Method to build a gauge invariant theory to obtain the re-
use in different systems, alternative formalisms have beefiPective generators of the extended gauge transformations.
developed in order to solve particular difficulties which AS & consequence of this symmetry we show that for linear
come from Dirac’s formulatiofi2]. One of these problems is constraints, the Lagrangian is invariant in a similar way in
the role of first- and second-class constraints when we iderf€SPect to that discussed by Amorim and Barc¢®sfor
tify the classical brackets as commutators. While first-clas§hiral bosons theories.
constraints are related to symmetries the second-class onesVe have organized this paper as follows. In Sec. Il we
may imply some ambiguities when treated as quantum opPresent the fluid field theory as described by Bazeia and
erators. The physical status of a theory is chosen by imposlaCk'W- We _show that their dynamlcal solutions fpr the sin-
ing complementary conditions which are given by the ﬁrst_gula'r potential can be generalized to othgr pote_ntlals leading
class constraints. In order to avoid the presence of second diverse physical systems. Section il is dedicated to the
class constraints we can separate it into first-class ones aPlanation of the BFFT method applied to the fluid field
gauge fixing terms; however, there is a special situatiofh€ory. Finally in Sec. IV we present an analysis of the re-
where the constraints are nonlinear so that this procedur@lts obtained and give our conclusions. We have also in-
fails [3]. cl_uded two appendices where some technical calculations are
An alternative way to circumvent this difficulty is to em- 9!ven.

ploy an interesting machinery proposed by Batalin, Fradkin,
Fradkina, and TyutitBFFT) [4], which converts the second- IIl. THE MODEL: ITS SYMMETRIES AND SOLUTIONS

class constraints into first order ones by using auxiliary . . . .
fields. Its applicability has been demonstrated in many dif- Let us consider a fluid dynamical modab] described by

ferent systems involving linear constraint6] and also in the following Lagrangian ind dimensionak space, evolving

nonlinear casel3,7,8. As we expect, the implementation of in time t
the above mentioned method through the introduction of new 1
fields gives rise to a kind of Wess-Zumino terms which turns L= J ddr( 6p—=pVO-Vo—V(p)|, (2.2
the resulting effective theory gauge invariant. 2

In this paper we discuss the Hamiltonian formalism for a
scalar field fluid theory from a BFFT method point of view.
The fluid field theory has been introduced as a laboratory t
study some classical aspects of membrane proljEnbut X _
there are also other classical and quantum systems which c@gVe the equations of motion
be described by this mod¢l0-12. We can mention, for :
instance, the hydrodynamical formulation of quantum me- p=V(pV0), (2.2
chanics[13] or a dimensional reduction of a relativistic sca-

wherep=p(t,r), 6=6(t,r) and the overdot means time dif-
ferentiation. In a usual fluid mechanical mogeis the mass
density andé@ is the velocity potentialy=V 6. Then, we

lar field theory[14]. .1 2 O 4
Recently, Bazeia and Jackijd0] have discussed this o= Z(VB) Sp drv. 23
These equations of motion are recognized as the conven-
*Email address: cesar@if.uff.br tional ones for isentropic irrotational fluidié5]. As this sys-
"Email address: boschi@if.ufrj.br tem is a nonrelativistic one it has naturally the Galilean sym-
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metry [16], i.e., it is invariant under the Galilean group the velocity potentialh which is meaningful only in the ir-

which generators are rotational case. They speculated that, since the fluid field
1 model corresponds to a gauge-fixed version of the relativistic

_ d _ = 2 membrane in the lightcone, the symmetry generatedsby
H f dré, & ZP(VQ) Vi), @4 may be a residual gauge invariance of that model. As is well

known, the Galileo grou2.4)—(2.8) together with the gen-

B d _ erators(2.11) and (2.12 defined in @+1) dimensions is
P_f drp,  P=pVe, 29 isomorphic to a Poincargroup defined in @+ 1,1) dimen-
sions[17].
o o I Bazeia and Jackiw presented some solutions for this sys-
_ d - _
& _f dr g%, JV=r'pi-rp (2.8 tem with the potentia(2.10 which are
r2
B=J dirB, B=tP-rp, (2.7 o(t,r)=— 20d=Dt’ (2.13
2 t
N=J d’rp, (2.9 p(t,r)= \/Fg(d—l)y (2.14

which, respectively, give time and space translation anq,jiq for g>1. They discuss other solutions for the free case

space rotation, in addition to the Galileo boost and “charge”(a particular case of the above soluti@nd also some solu-
generatoN which in this case is the total mass of the fluid, ;< ford=1, which are not our main concern here. Other

being naturally conserved. The Poisson braqkets of thes, olutions in different dimensions can also be found in Ref.
generators close under an algebra corresponding to the G 51]

leo group. For instance, Here we note that it is possible to extend the above results

(B, PI1=GIN. (2.9 considering now the following potential:
[ [ i g
Whﬁﬂzo;ge;::gn with the membrane probleff] is done Vip)= = (2.19
g which describe ideal polytropic gases, i.e., a gas in which the
B hich describe ideal pol [ [ in which th
Vip)= p' (2.10 pressure is proportional to a power of the dengitg], for

which we find the solutions
whereg is the coupling constargthis potential also connects

the fluid field theory problem ta branes ind+1 space r2

dimensiong11,12). In this case, the actioh= [dtL is in- o(t,r)=— [d(n+1)—2]t’ (2.16
variant under time rescaling—e"“t generated bydilation)
ngld(n+1)—2]%? V(D)
_ | qd p(t,r)= > . (217
D= | d%(t€—p0). (2.11 d(n+21)r

which are valid ind>1 space dimensions, generalizing the

solutions obtained by Bazeia and Jackil@]. Their solution

is a particular case of the above class of solutions which can
1 be recovered when we take=1 in the above equations. As

t—T(t,r)=t+w-r+ EWZG(T,R). we are going to show in the following section, the above

fluid field theory also admits a gauge symmetry which is

r—R(t,r)=r+wé(T,R), respected by a general potenti&p).

Another symmetry of this action is given implicitly by
[10]

where IIl. BFFT QUANTIZATION AND GAUGE SYMMETRY

1 Let us now construct a gauge invariant version of the
O(T,R)=6(t,r —wt) +w-r— EWZ'[ model described above using the method developed by Bata-
lin, Fradkin, Fradkina, and Tuyuti(BFFT) [4] which trans-
which are generated by forms second-class constraints into first-class ¢bgs
Considering the Lagrangiaf2.1) we obtain the primary

G:f dr (ré— op). (2.12 constraints
x,=11,— 6~0, (3.1
The geometrical meaning @ is not clear, as pointed out in
Ref.[10]; however, one should note thatandG depend on xo=114~0 3.2
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which satisfy the algebra

{Xp 1)(0}:_Ep05(x_y)EAp9(X!y)' (33)

Then, the primary Hamiltonian is given by
Hp=f d (T1,p+TT,0— L+, x,+\gxp)
. 1
=f ddl‘<(HP—0)p+H90+ Ep(VG)Z-I—V(p)
+)\po+>\0)(0)

1 - -
= f ddr(zp(ve>2+V<p>+xpx,,+xgx9 . (34

where we defined ,=\,+p, X,=\,+ 6. The consistency

condition for the constraints determine the fieTq,s X, and
there are no other constraints.
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Ap9=—0'paw‘w0'05, (311)
which for the fluid field problem can be written as

Apﬂz - €p05(x_y)

=— f dzdZo,,(x,2)w**(2,2 ) oyp(y.2').
(3.12

As w®? is obtained from second-class constraiptswe can
choosew*?=€,56(x—Yy) which implieso,,= €,,5(z—x)
so that

0,()=x,(x)+ f d28(2—X)¢4(2)

= Xp(X)+ 0,50"(X) (3.13

and similarly

Qp(X)=x(X)+ 040" (X). (3.14

Before we implement the BFFT method it is necessary
here to make a brief review of it. For a more comprehensivelhe next step is to include corrections to the canonical
and elegant discussion see R¢#s6]. Let us now begin by Hamiltonian. We remark that in this formalism any dynami-
extending the phase space including the new figidsand  cal functionA(p, #) can also be properly modified in order to
¢, Which satisfy the algebra be strong involutive with first-order constraints. So, if

(3.9

such that the new constrain€,, (), should be first class
and could be written in general as

{Qop 1(100}: wpﬂ(xly)

where og,=0ps.(p,0). The central idea of the BFFT

method is to write the first-class constraints in terms of the

second-class ones as

nfgo X3, (3.7)

with the conditionyy’=x. So, x§” is of nth order in the
field ¢,. The new constraints defined by Ed8.6), (3.7)
satisfy the relatiof{),,Qz}=0 and then

{XavXB}(p,H)+{X(czl)=X,(Bl)}(<p):01 (38)
2
{Xa 1X(Bl)}(p,0)+{)((al) X} o0 T IXD ,ng h o)

+{X(c12)1X(Bl)}(tp)=01 (3.9

2 1) 1 2

{Xa -X(p Bt ,X% Yoot X xeho)
3 2) (2 3

O X XD X0+ X X} =0
(3.10

Here, we are using the notatidn}, ), 1.}, referring to
the Poisson brackets of the pairs, ¢) and (¢, ,¢,). From
Egs.(3.3), (3.9, (3.6), (3.9 and using that(),,Q ;=0 we
have

A(p,0,¢) is this quantity we have

{Q,.,A}=0 (3.19
with the boundary condition
A(p,6,0=A(p,0). (3.16

In order to generaté we can repeat the same steps for
the obtainment of), above, i.e., we consider the expansion

A= AM, (3.17)
n=0

whereA(™ is a term of orden in the field ¢. Consequent-
ly,from Egs.(3.8—(3.10 rewritten forA(™ and the condition
A=A we have

A= — o0, ,0Px, A}, (3.18
where w,z=(0*)"! and aﬁfz(oﬁy)*l. An equation
analogous to Eq3.9) for A gives

M Ay = _g®
XM, A@ = -G (3.19
such that
G ={x, AP0 X AL+ X AV}

(3.20

Then, we have, foA®?),

1

AP)=— Ewwaﬁaﬁve(yl) (3.2
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and in general, fon=1,

1
A(n+1)= - m(pawalgoﬁyG(yn) , (322‘

with the auxiliary conditionG{?={y, A} so that

n n-2
(n) _ (n+m) (n—m) +2
G _m§=:0 X ’A(m)}‘p"’)+n12=o g™ AT

+{H Y ALY (3.23

A. Particular case: o,z independent of (p, 6)
In the particular case where,; does not depend on
(p,0) the A are still given by Eq(3.22 but

GV={x, AM}. (3.24

Let us analyze this particular case further with the additiona
hypothesis that the second-class constraints are all linear.

Then, we can write

1
A+ = _ m (Pawaﬁo-ﬁv{xy ,A(”)}

:_L(Paw aPrx Zi}iA(n)
n+1 B 77

- mwkiaf?iA(”), (3.29

where we have used the Jacobi identity and the defihés
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B. General case.o g as as function of(p, 0)

Let us now return to the discussion of the general case
and construct the extended Hamiltonian. Noting thatror
=2, x{V=0, so that

1
H D= — mf dxdydzp,(X)(wap)  Hos,) G,
(3.29
(N iq i
whereGJ" is given by
GV ={x, H"}. (3.30

Since (,5) * and (o,) ! are proportional to Dirac delta
functions, we have

(0) 1 2
He/= | dx EP(VH) —V(p) (3.31
g0 that
GO=fy HO __ ! V6249V 3.3
p _{Xpi c }_ E( 0) +‘9p ( . 3
and also
(0) on__ 1 o2
Gy '=1{xe.He }Z_EPV 0 (3.33

so that the correctiohl™ is given by

H®=— f dx[

1 2
5(VO)?=3,V

1 2
¢~ 5(PV 0@y
(3.39

a generalized phase space coordinate, in the sense that it

could be either a canonical coordinate or a canonical mocontinuing the iteration process and summing up all the con-
mentum. Note thak;,= w,z0”"{x,.Z'} is a constant matrix tributions we find that the canonical Hamiltonian is then
since the constraints are linedy, ,z'}=const andr?” isa  given by(see the Appendix A

constant matrix too in this particular case. Using E3125
iteratively one finds

(0) 1 o0 2
H.=H¢’+ [ dx —)\g(pp+)\pq00—§(ﬂpV)<,Dp+--~

=D i e
AT =——— (9K, d)"A (3.26 (="
n + oy (&pv)¢p+...
so that ® (_1)n+2
) _ A
) ) H +fdx >\0<pp+xp<p(,+n§0 72
Alp.O;0)=2 A
n=0
) X (2 o2 (3.35
(-1)

=2 (¢°kyd)"A=exp 0 K ) A
n! a a . 1) . . .
n=0 ' where the term corresponding teh(c) is contained in\,

3.27  =3(V6)*>~4,V. Note that from the definitio(3.6) the first-
class constraints are given by
d then in thi th afowill be of the f
and then in this case the operatowill be of the form Q,J:Xpﬂfpe(ng (3.3
'A(zi,goa):A(zi—<p“kia)_ (3.28 Qo= xo+ 04,0", (3.37
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whereo ,,=—0,,=1. Let us now go back to the canonical _
Hamiltonian Eq.(3.35 and analyze its last term. We note ZZNJ [dp]ldé][de][dII ]ex lf dx

that

(_1)n+2
N T a(n+2) (n+2)
2 a7 Ve

[

(="
n!

=nzo O(n—1) (V)

==V(p)+e,d,V(p)—e ’N(p), (3.39

where® (x) is the Heavside function. This way we have

HC: f dX[_)\e(pp‘f‘)\quo_e_(pP&PV(p)]

- [ ax

—e_“""QPV(p)}-

1 2 1 2 1 2
P(VO = 5(VO) ¢,~ 5pV 00y

(3.39
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Op+11,0+11 ¢

1 2 1 2 1 2 —@d
—5p(VO)2+ 5(V0) 2+ 5pV20lT e “V(p) | .

(3.41

The functional integral ovell,, gives

J [dH(p]exp(iJ’deLP

=8(p+e+r,)

.01
p+ o+ EpVZHH

so that the generating functional reads

Z=NJ [dp][dOl[de]d(p+¢+\,)

xexp{ifdx

+e *V(p)

| )
Op+eb—5(p=9)(VO)

] (3.42

In order to find the corresponding Lagrangian, we identify ;4 then the extended Lagrangian density is given by

¢=¢, andIl = ¢, as a pair of canonical conjugate coordi-

nates and write the generating functional

Z=Nf [dp][dIT,][dO][dIT,][de][dIT,]

X S(I,— 0+11,) (15— )

Xexp{ifdx

1 1
+ E(V 0)%p+ EpVZGH(p-F e%V(p)H . (3.40

. . 1
I,p+1,0+11 0~ Ep(V 6)?

- . .1
£=0p+<pa—E(p—go)(ve)%e*%wp). (3.43

In the limit in which the auxiliary field vanishegg— 0, we
get back the original Lagrangiaf2.1) as it should. Let us
now look at the last term of this Lagrangian which involves
the potentiaM(p). Assuming that the potential function can
be expanded in a power series we have

e *WV(p)=V(p—e). (3.49

So, we can apply the above equation for a wide range of
functionsV(p), as for example, the potentials discussed in

where the delta functions represent the first-class constraints€¢: Il

Noting that

(i)
f [dna]a(na—go)exp[ifdxna'a]

=exp[if dx<p€],

(i) f[dnp]g(np— 0—H¢)exp{inXHpb]

=exp[ i J dx(IT,+ 0);3]

Then, the extended Lagrangian density after a partial in-
tegration becomes

- 1
L==(p=¢)0=5(p—)(V 0)?>+V(p—¢) (3.45

so that the Lagrangian is invariant under the exchapmge
—p— ¢ Which is the gauge symmetry of the model. Since
the first-clasq) is strongly involutive with canonical Hamil-
tonian(see the Appendix Bit is easy to check the invariance
of Z(p,6,¢).

Now, we can look at the consequences of this gauge sym-
metry on the previous known symmetries for the fluid dy-
namical model. The Galileo and Poincageoups in the
gauged model can be obtained from the the density genera-
tors of the nongauge model, EqR.4—(2.8), (2.11), and

and substituting these results into the generating functiond2.12 simply through the shif®o=e~¢%(©, so that the origi-

we find

nal Galileo and Poincariavariances of the fluid field model

025016-5



C. P. NATIVIDADE AND H. BOSCHI-FILHO PHYSICAL REVIEW D62 025016

are preserved by the introduction of the auxiliary field whichFor third correction to the canonical Hamiltonian, we find
bring to it a gauge symmetry.
GO~ {x, HOl =~ —HO= (V)2 (Ad)
IV. CONCLUSIONS p pre op ¢ 20T
In this article we have studied the fluid field the¢®j for  and

which we found a class of classical solutions which recover

previous known particular cas€s0]. @_ %
. Gy/’=—=H;’'=0 (A5)

Then, by means of the BFFT formalisi#] we extended 56 ¢

the original phase space by including new fields which per-

mitted the transformation of the set of second-class conso that

straints into a first-class one. We have analyzed a situation 1

where we f_ound_ an extended gauge symmetry for an arbi- H(C3): _f dX(ﬁiVﬁPﬁ- (AB)

trary potential with linear constraints and a kind of a Wess- 2.3

Zumino Lagrangian was built. As a result we have obtained

a new gauge invariant system. This new system may be dfor the next term we have

interest to the membrane problem related to Lagran(ak)

. . : . 8 1

since that formulation corresponds to a gauge fixed version GP={x, H=- —HP®=_—(aVv)e> (A7)

in the light-cone gauge. As a final remark it is important to Sp 2.3

mention that the procedure discussed here could also be ap

plied successfully to a situation where nonlinear constraints

were involved, as is well known in general for the BFFT 1

method. H® = — 2—34J dx(d2V) ¢ . (A8)

ndG{"=0 for n=2 so that
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APPENDIX A {9, Hb={0, HOM+{N, Q00— o(Q, 0}
_{)‘Hvﬂp}(Pp_{Qp'ei%apv}v (BY)

In this Appendix we give some details of the iteration
process necessary to construct the canonical Hamiltonian iynere we have used the fact tH&,, ¢, =0. Then,
the case of the linear constraint discussed in Sec. Ill. Using P
Egs. (3.29 and (3.30 we found the first correctiort (. {Q, Hd=\,,Q, o= {Ny,Q, )0, (B2)

For the next correction we have )
Now, usinge,=Q,—x, and¢,=Q,— x, we have

(1) (1) d (1) 2 ! 2
G, ={x, . He }=—$Hc == V)@, 5(V0) ey {Q, Heb={\ ), Q1 Q= X,) = {A g, 2, }( Q5= x0)
(A1) =N Qb= {N X, D2+ ({h g, Q)

while —{NgxeDQ,={\,.Q,1Q,+{\;,Q,Q,

) 1 (B3)
Gi={xs H} == H=+5(V20)g, (A2)
/ e 56 ¢ 2 . and then we find
so that {Q, Hc}=0. (B4)
1 . o
2__ = 2\ 2 An analogous result can be found f@r,, proving our origi-
He 2 f A A3 nal statement.
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