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ABSTRACT

Numerical optimization techniques are useful in solving problems of computing the best inputs for

systems described by mathematical models and when the objectives can be stated in a quantitative

form. This work concerns the problem of optimizing the drug doses in the treatment of AIDS in

terms of achieving a balance between the therapeutic response and the side effects. A mathematical

model describing the dynamics of HIV viruses and CD4 cells is used to compute the short term

optimal drug doses in the treatments of patients with AIDS by a direct method of optimization

using a cost function of Bolza type. The model parameters were fitted to actual published clinical

data. In order to simplify the numerical procedures, the control law is expressed as a series and

the sub-optimal control is obtained by truncating the higher terms. When the patient reaches a

clinically satisfactory state, the LQR – Linear Quadratic Regulator technique is used to determine

the long period maintenance doses for the drugs. The doses computed using the LQR technique

tend to be smaller than equivalent constant-dose therapy in terms of increase in the counts of

CD4+T cells and reduction of the density of free viruses.
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INTRODUCTION

Quantitative descriptions of the dynamics exhibited by AIDS is now available as a consequence of

intense clinical research, together with advances in the mathematical modeling methods: (Nowak

and Bangham 1996, Phillips 1996, Perelson et al. 1993, Tan and Wu 1998). These mathematical
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models can be used to optimize the drug doses required in the treatment. The model used in this

work was proposed by Tan and Wu (Tan and Wu 1998), and is similar to Perelson (Perelson et

al. 1993). The model paremeters are fitted using the actual clinical data found in Pontesilli et al.

(1999).

This mathematical model comprises four differential equations representing the uninfected

CD4+T cells, latent infected CD4+T cells, active infected CD4+T cells and free viruses.

At present, one of the most popular treatment scheme is HAART (highly active antiretro-

viral therapy) which uses an association of reverse transcriptase inhibitors (eg.zidovudine and

lamivudine) and protease inhibitors (eg.saquinavir, indinavir andritonavir). After several months

of treatment with those drugs, some patients have experienced increase in the side effects such

as abdominal girth, abdominal fullness, distention or bloating (Mittler et al. 1998). Others pa-

tients reported adverse effects such as headache, malaise, fatigue, nausea, vomiting, cough, nasal

symptoms and musculoskeletal pain.

The effectiveness of a particular treatment scheme must be measured in an objective manner.

One possibility is to construct a cost function that takes into account the number of non-infected

CD4 cells and the administered doses of the drugs. The CD4 cells indicate the effectiveness of the

treatment, while the doses of the administered drugs reflect the intensity of the side effects. Once

the system model and the cost function are chosen, a variety of optimization techniques can be

invoked to compute the best treatment scheme.

It was shown in a previous work (Caetano and Yoneyama 1999a) that it is possible to improve

the treatment effectiveness by using a closed loop drug administration strategy. It was also shown

(by computer simulation) that it is possible to use optimal control theory to minimize the side effects

during a short term treatment scheme. However, the problem becomes hard to solve numerically

when long term treatment is to be optimized. Here, after the patient reaches a clinically satisfactory

state, a long term maintenance scheme is proposed based on Linear Quadratic Regulator theory

(LQR). Small changes in the patient’s state are compensated using small changes in the drug doses

that are optimal in the sense of minimizing a quadratic type performance index. The LQR control

is widely used in the engineering area and references may be found, for instance, in Lewis (1986)

and Kirk (1970).

MATERIALS AND METHODS

The Dynamic Model

A number of mathematical models have been proposed in the field of immunology, which can be

found, for instance, in (Murray et al. 1998, Mittler et al. 1998, Wick 1999, Behrens et al. 1999,

Tan and Xiang 1999, Nowak et al. 1991, 1995, 1997 and Wein et al. 1998), among other works.

The model in (Nowak et al.1991) considers a system of ordinary differential equations with four

variables xi, yi , vi and zi which denote respectively strain-specific CD4 cells, total CD4 cells, virus

population and cross-reactive CD4 cells. The authors simulate the mathematical model for a number

An Acad Bras Cienc (2002)74 (3)



OPTIMIZATION OF DRUG DOSES IN AIDS 381

of immunotherapy starting at different times after infection. In (Nowak and Bangham 1996) three

dynamic models of HIV infection are compared. The first is the simplest and contains three variables

x, y and v denoting, respectively, uninfected cells, infected cells and free viruses. Another model

uses four variables where the three first variables are the same x, y, v as before and the new variable

z represents CTL lymphocytes. The last model has four variables and includes the variability of

the viruses. The model by Phillips (1996) involves four differential equations in variables R, L, E

and V which represent, respectively, uninfected CD4, latent infected cells, infected cells and free

virions. This model can be used to simulate the initial phase of infection. The model in (Nowak et

al. 1995) considers the interaction between CTL and the multiple epitopes of a genetically variable

pathogen. The version proposed in (Nowak et al. 1997) includes a population of mutant viruses,

and provides analytic approximation for the rate of emergence of resistant viruses. This model

comprises five equations and the results match the experimental data of three infected patients

treated with Neverapine (NVP). In (Murray et al. 1998), the proposed model uses eight differential

equations with the variables that represent the naïve cells. The model in (Wick 1999) takes into

account the dynamics of T cells in which rising activation rates yield decreasing T cell counts and

where apoptosis and proliferation must nearly balance. This model has four differential equations

describing the dynamics of naïve T cells and memory cells in active and latent states. The model

in (Zaric et al. 1998) focuses on the simulation of protease inhibitors and development of drug-

resistant HIV strains. The model is composed of eleven differential equations, including couplings

between organisms that are infected with resistant and non-resistant HIV strains. The model in

(Tan and Wu 1998 and Tan and Xiang 1999) describe the HIV pathogenesis under treatment by

antiviral drugs. The model has four differential equations and stochastic terms in the variables that

represent the number of latent infected T cells. It has also stochastic components on infectious free

HIV and non-infectious free HIV variables.

The mathematical model used in this work is a simplification of a more general version that

includes stochastic terms, as originaly presented by (Tan and Wu 1998). The dynamics is described

by the differential equations

ẋ1 = S(x4) + λ(x1, x2, x3)x1 − x1{µ1 + k1(m1)x4}
ẋ2 = ωk1(m1)x4x1 − x2{µ2 + k2(m2)}
ẋ3 = (1 − ω)k1(m1)x4x1 + k2(m2)x2 − µ3x3

ẋ4 = N(t)µ3x3 − x4{k1(m1)x1 + µv}

(1)

whereẋ represents the time derivative dx/dt,

S(x4) = sθ

θ + x4
(2)

λ(x1, x2, x3) = r

(
1 − x1 + x2 + x3

Tmax

)
(3)

N(t) = β2(β2 − N0)e
−β1t (4)
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with x1 = x1(t) ≡ uninfected CD4+ T cells; x2 = x2(t) ≡ latent infected CD4+ T cells; x3 =
x3(t) ≡ active infected CD4+ T cells;x4 = x4(t) ≡ free viruses HIV;s: rate of generation ofx1 from

precursors;r: rate of stimulated growth ofx1; Tmax : maximum T cells population level;µ1: death

rate ofx1; µ2: death rate ofx2; µ3: death rate ofx3; µv: death rate ofx4; k1: infection rate from

x1 to x2 by viruses;k2: conversion rate fromx2 to x3; N : number of infectious virions produced

by an actively infected T cell;θ : viral concentration needed to decreases. The coefficientsk1 and

k2 are functions of the drug doses

k1(m1) = k10e
−α1m1 (5)

k2(m2) = k20e
−α2m2 (6)

wherek10, k20, α1 andα2 are constants.

Basically,x1 cells are stimulated to proliferate with rateλ(x1, x2, x3) in the presence of antigen

and HIV (equation 3). Without the presence of HIV, the rate of generation isS(x4) (equation 2).

In the presence of free HIV(x4), uninfected cellsx1 can be infected to becomex2 cells orx3 cells,

depending on probability of the cells to become actively or latently infected with rateω. Thex2

cells can be activated to becomex3 cells. The activation rate isk2. Thex3 cells are short living

and will normally be killed upon activation with death rateµ3. Thex1, x2 cells andx4 free viruses

have finite life and the death rates in this model areµ1, µ2 andµv respectively. Whenx3 cells die,

free virusesx4 are released with rateN(t) described by (4). Drugs such as reverse transcriptase

inhibitors (zidovudine andlamivudine) and protease inhibitors (saquinavir, indinavir andritonavir)

affect the dynamics via parametersk1 andk2.

The Sub-optimal Control

The objective in a general optimal control problem is to find a control inputm(t) = [m1(t)m2(t)]T
that minimizes the cost function

J [m] = h(x(tf ), tf ) +
∫ tf

t0

g(x(t), m(t), t)dt (7)

wheret0 andtf are the initial and final times, fixeda priori. The functionsh andg are required to

be positive. Moreover,x(·) andm(·) are constrained by the state equation

ẋ = f (x(t), m(t), t) (8)

In the specific problem treated in this work,x = [x1x2x3x4]t ∈ Rn andm = [m1m2]t

f (x, m, t) =


S(x4) + λ(x1, x2, x3)x1 − x1{µ1 + k1(m1)x4}

ωk1(m1)x4x1 − x2{µ2 + k2(m2)}
(1 − ω)k1(m1)x4x1 + k2(m2)x2 − µ3x3

N(t)µ3x3 − x4{k1(m1)x1 + µv}

 (9)
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k1(m1) = k10e
−α1m1 (10)

k2(m2) = k20e
−α2m2 (11)

h(x(tf ), tf ) = γ1

x1(tf )
(12)

g(x(t), m(t), t) = φ1
[
1 − exp

(−ε1m1(t)
2
)] + φ2

[
1 − exp

(−ε2m2(t)
2
)] + γ2

x1(t)
(13)

wherek10, k20, α1, α2, φ1, φ2, γ1, γ2, ε1 andε2 are constants.

The biological interpretation of the proposed cost functional is that the first termh(x(tf ), tf )

represent the target of maximizing non-infected CD4 after a pre-specified time horizon. The

coefficientsφ1 andφ2 in the integrandg(x(t), m(t), t) are weights that reflect the dose-related

side effects of the two drugs (m1 andm2) which must be adequately balanced. The last term in

g(x(t), m(t), t) is included to forcex1 (uninfected CD4+ T cells) to increase with treatment.

Optimal control problems can be solved by indirect or direct methods. In the solution using an

indirect method, one is required to solve a boundary value problem with 2n equations corresponding

to n state and n adjoint variables if Maximum Principle is invoked or to solve a partial differential

equation if Dynamic Programming is used (Kirk 1970, Lewis 1986 and Bulirsh and Stoer 1980).

In the solution using a direct method, one attempts to minimize directly the performance measure

(7) after a suitable parametrization of the admissible control inputsm(t). Here, a direct method

proposed by Jacob (1972) is used. The parametrization of the input functionsm(t) involves, in

the present case, a subset of the coefficients in the series expansion employing sine functions.

Therefore, only approximations to the actual optimalm(t) can be obtained. Those approximations

are sub-optimal, in the sense that the cost achieved is generally greater when the higher terms of the

series expansion are neglected, compared to the case resulting from the use of the actual optimal

control. However, those sub-optimal control inputs were found to be satisfactory in the present

problem.

Parametrization of the Control Input

The numerical algorithm proposed in (Jacob 1972) is available in the form of a computer program

called EXTREM. Each component of the control inputm(t) is represented by an expansion over

the interval[0, tf ] with the form

mi(t) = c1,i + c2,i sin(tπ/tf ), +c3,i

[
2 sin(tπ/tf ) cos(tπ/tf )

]
+ c4,i

[
3 sin(tπ/tf ) cos(tπ/tf )2 − sin3(tπ/tf )

]
+ . . . +
cni

{
(n − 1) sin(tπ/tf ) cosn−2(tπ/tf ) − [

(n − 1)/3
]

sin3(tπ/tf ) cosn−4(tπ/tf )

+ [
(n − 1)/5

]
sin5(tπ/tf ) cosn−6(tπ/tf ) − . . . + . . .

}
(14)

where the coefficientsci,j are to be determined by minimizing (7).
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Linear Mathematical Model

Once the patient’s state reaches a clinically satisfactory region after the sub-optimal short term

treatment, the idea is to use the LQR (Linear Quadratic Regulator) as the long term treatment.

In order to obtain a linearized model to be used within the clinically satisfactory region, the data

corresponding to the patient A by (Pontesilli et al. 1999) is considered for illustration purposes.

For other patients, the clinical data gathered before and during the short-term treatment is used to

identify the numerical values of the parameters for the linearized model. The estimated numerical

values for the model parameters of patient A are shown in Table I. The graph in Figure 1 shows

the values determined by simulation and the actual data for the uninfected CD4+T cells and HIV

free viruses of patient A by (Pontesilli et al. 1999). In the case of constant doses therapy, these

were adjusted to be the same as in the actual treatment reported by Pontesilli, i.e., 900 mg of a

transcriptase inhibitor and 1200 mg of a protease inhibitor during 224 days.

TABLE I

Model parameters used in the numerical simulations.

S R Tmax µ1 µ2 µ3 µv k10 k20 N0

10 0.52 1700 0.4 0.5 2.4 2.4 2.410-5 3.10-1 1400

φ1 φ2 ε1 ε2 γ1 γ2 α1 α2 θ ω

1 1 1.10-6 1.10-6 250.103 250.103 0.005 0.005 1.106 1

β1 β2 x1(0) x2(0) x3(0) x4(0) tf (days)

1.10-1 65470 357 10 100 133352 224

For this patient, with the parameters of Table I, one is able to find the equilibrium points by

solving the equations (1) after lettingdx/dt = 0:

S(x4) + λ(x1, x2, x3)x1 − x1{µ1 + k1(m1)x4} = 0

ωk1(m1)x4x1 − x2{µ2 + k2(m2)} = 0

(1 − ω)k1(m1)x4x1 + k2(m2)x2 − µ3x3 = 0

N(t)µ3x3 − x4{k1(m1)x1 + µv} = 0

(15)

The critical points for the patientA are found to be:

first point x∗ = (462.828; 0; 0; 0)

second point x∗ = (4.07; 13.1; 131.04; 107241)

third point x∗ = (−70.62; 0; 0; 0)

The third critical point is not of interest, because negative values of uninfected CD4+T cells

can not occur in practice. The second point is the state of a patient with AIDS and the first is the

state when the patient is free of HIV.
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Fig. 1 – Comparison between sub-optimal (computer simulation) and constant-dose treatment schemes (actual data).

The point A indicates initial infection; B represents an advanced stage on AIDS without treatment; C represents the

condition at the beginning of the sub-optimal treatment.

A local analysis of these points show that the first point is unstable while the second is stable.

In fact, the eigenvalues of the linearized model at the first point are:

λ1 = −2.13+ 1.35i

λ2 = −2.13− 1.35i

λ3 = 1.019

λ4 = −0.163

(16)

and the eigenvalues at second point are:

λ1 = −2.439+ 0.189i

λ2 = −2.439− 0.189i

λ3 = −0.7747

λ4 = −0.0319

(17)
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Therefore, the idea of using LQR scheme is to keep the patient’s state near the first critical

point, which is unstable without feedback control. Initially, the patients use either sub-optimal

or constant doses therapy of reverse transcriptase inhibitor plus protease inhibitor until the level

of CD4+T is near to the first critical point, shown in Figure 2. For instance, after a short period

constant doses treatment withm∗ = (900, 1200), the reached state is

x∗ = (462.6639, 0.0271, 0.1247, 103.3111)
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Fig. 2 – Drug doses used in the computer simulations.

Now, it is possible to linearize the equations (1) about this state. Thus, for small perturbations

near the critical point:

x̃1 = x∗
1 + 
x1

x̃2 = x∗
2 + 
x2

x̃3 = x∗
3 + 
x3

x̃4 = x∗
4 + 
x4

(18)
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corresponding to small adjustments in the control variable (drugs doses)

m̃1 = m∗
1 + 
m1

m̃2 = m∗
2 + 
m2

(19)

and adopting an additional assumption of negleting the variations of the active and latent cells, one

can write


ẋ = ∂f

∂x

∣∣∣∣
(x∗,m∗)


x + ∂f

∂m

∣∣∣∣
(x∗,m∗)


m (20)

or

ẋ1


ẋ2


ẋ3


ẋ4

 =


r(1 − 2x1

T
) − (µ1 + k1x4) 0 0 −x1k1

k1x4 −(µ2 + k2) 0 k1x1

0 k2 −µ3 0

−k1x4 0 Nµ3 −(k1x1 + µv)


(x∗,m∗)



x1


x2


x3


x4



+


x1x4k10e

−α1m1 0

−x1x4k10e
−α1m1 x2k20α2e

−α2m2

0 −x2k20α2e
−α2m2

x4x1α1k10e−α1m1 0


(x∗,m∗)

[

m1


m2

]
(21)

In the region of interest, the model becomes:

ẋ1


ẋ2


ẋ3


ẋ4

 =


−0.165 0 0 −0.0111

0.0024 −0.8 0 0.0111

0 0.3 −0.03 0

−0.0024 0 42 −2.4111





x1


x2


x3


x4



+


0.00008644 0

−0.00008644 0.00001872

0 −0.00001872

0.00008644 0


[

m1


m2

]
(22)

and the observation equations, assuming that only CD4+T cells and free virus are monitored,

becomes:

[
y1

y2

]
=

[
1 0 0 0

0 0 0 1

] 

x1


x2


x3


x4

 (23)
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The Linear Quadratic Regulator

The LQR is widely used in control engineering because of its simplicity and robustness properties.

The action of the control variable is to minimize a performance index:

Minimize J = 1

2

∫ +∞

0

(

x(t)T Q
x(t) + 
mT (t)R
m(t)

)
dt (24)

subject to 
ẋ = A
x + B
m (25)

whereA, B, Q andR are matrices of appropriate dimensions andR is positive definite.

The solution of the LQR problem is well known and can be found, for instance, in Lewis

(1986) and Kirk (1970):


m(t) = −R−1BT P
x(t) (26)

whereP is to be found by solving the algebraic Riccati equation:

AT P + PA − PBR−1BT P + Q = 0 (27)

TheQ matrix is the weight on the states
x andR matrix is the weight on the control variable


m. The values ofQ andR used here are:

Q =


10−6 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 R =
[

5x103 0

0 102

]
(28)

A larger weight was placed on the reverse transcriptase inhibitor because the objective is to

reduce the number of active infected cells.

RESULTS

The actual clinical data were extracted from Pontesilli et al. (1999) and refers to a patient (patient

A) that contracted AIDS and his T cell counts were measured during 224 days. Firstly, the model

parameters were adjusted by an identification procedure to match the available data. The model

parameters are presented in Table I.

The control variables were constrained to be in the range(300 mg) ≤ m1(t) ≤ (900 mg)

reverse transcriptase inhibitor and(300 mg) ≤ m2(t) ≤ (900 mg) protease inhibitor, respectively,

which are the same values proposed in Pontesilli et al. (1999).

Computer simulations were carried out using the model described by equations (8)–(11) and

with parameters of Table I. Numerical results were obtained for both constant-dose and sub-optimal

treatment schemes with computer simulations. Figure 1 shows the variations on the counts of

uninfected CD4 cells and the density of free viruses corresponding to the actual clinical data found
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in Pontesilli and the computer-generated sub-optimal response. Figure 1 also shows the path A–

B followed by a recently infected patient with an infinitesimal quantity of viruses. The point C

corresponds to the initial condition used in the simulations. The other components of the state (x2

andx3) are also close to the actual data. The doses in the case of sub-optimal treatment scheme

are lower than the constant dose strategy, as seen in Figure 2.

In order to evaluate the long period maintenance doses for the drugs, the equations (8)–(11)

were integrated assuming constant drug doses with values that equal those used in the treatment of

patient A in (Pontesilli et al. 1999). After 224 days, the drug administration strategy was switched

to the optimal control law based on LQR.

Figure 3 shows the results of the count of uninfected CD4+T cells and free viruses, respectively,

under LQR drug doses. It is seen that the level of CD4+T increases while the free viruses are further

reduced.
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Fig. 3 – CD4+T cells and Free Virus under LQR drug doses.

Figure 4 shows two curves correspondig to the case of a two phase treatment scheme, where

in the short term the doses are kept constant and in the long term the LQR is used. The doses are

seen to adjust themselves towards stationary values with a slight and progressive reduction of the

reverse transcriptase inhibitor and a significant reduction of the protease inhibitor.

DISCUSSIONS AND CONCLUSIONS

Numerical optimization methods based on mathematical models can be of value in providing drug

administration schemes that lead to a good compromise between therapeutic and side effects. A
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drawback is the necessity to estimate the model parameters for each patient, which may be a

formidable task. However, simulation studies carried out with clinical data indicate that even

models with considerable uncertainty can yield useful results. The sub-optimal treatment scheme

may produce inferior results when compared to the actual optimal scheme, but in view of the

subjective nature of the cost function and of the required computational effort, the approximation

obtained by the proposed method may still be adequate. An interesting fact is that for other patients

reported in Pontesilli, (patients B, C and D) the proposed method yields good numerical results

obtained by computer simulation.

The combined short and long period treatment schemes aims at providing a standard and

effective treatment in the attack phase and, after the improvement of the patient’s condition, a

maintenance treatment based on optimized doses that has less side-effects yet keeps the health

condition in a clinically satisfactory region. In the previous results by the authors, the original

non-linear model was used to compute the optimal strategy for the whole control horizon (see, for

instance, Caetano and Yoneyama 1999b, Felippe de Souza et al. 2000, Kirschner and Webb 1996

and Kirschner et al. 1997). However, it was very difficult to extend them for computing long term

treatment schemes. In the proposed new approach, the sub-optimal technique (or even a standard

constant-doses treatment) is required only to bring the health conditions to a satisfactory state so
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that the much simpler LQR method can be used to compute the doses for the long term treatment.

Moreover, because of the usual robustness properties of the LQR regulator, the controller tends to

be less sensitive to modeling errors (Lewis 1986).

RESUMO

Técnicas de otimização numérica são úteis na solução de problemas de determinação da melhor entrada

para sistemas descritos por modelos matemáticos e cujos objetivos podem ser expressos de uma maneira

quantitativa. Este trabalho aborda o problema de otimizar as dosagens dos medicamentos no tratamento da

AIDS em termos de um balanço entre a resposta terapêutica e os efeitos colaterais. Um modelo matemático

para descrever a dinâmica do vírus HIV e células CD4 é utilizado para calcular a dosagem ótima do medica-

mento no tratamento a curto prazo de pacientes com AIDS por um método de otimização direta utilizando

uma função custo do tipo Bolza. Os parâmetros do modelo foram ajustados com dados reais obtidos da

literatura. Com o objetivo de simplificar os procedimentos numéricos, a lei de controle foi expressa em

termos de uma expansão em séries que, após truncamento, permite obter controles sub-ótimos. Quando os

pacientes atingem um estado clínico satisfatório, a técnica do Regulador Linear Quadrático (RLQ) é utilizada

para determinar a dosagem permanente de longo período para os medicamentos. As dosagens calculadas

utilizando a técnica RLQ , tendem a ser menores do que a equivalente terapia de dose constante em termos

do expressivo aumento na contagem das células T+ CD4 e da redução da densidade de vírus livre durante

um intervalo fixo de tempo.

Palavras-chave: modelamento, simulação, medicamentos, tratamento, AIDS.
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