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. . . once or twice she had peeped into the book . . . but it had no pictures

or conversations in it, �and what is the use of a book,� thought Alice

�without pictures or conversation?�

Alice's Adventures in Wonderland (Lewis Carroll)

�Reason must approach nature with the view, indeed of receiving infor-

mation from it, not however in the character of a pupil, who listens to all

that his master chooses to tell him, but in that of a judge, who compels

the witnesses to reply to those questions which he himself thinks �t to

propose.�

Critique of Pure Reason (Kant)

�I think nature's imagination is so much greater than man's, she's never

going to let us relax.�

�But you gotta stop and think about it, about the complexity to really

get the pleasure and it's all really there, the inconceivable nature of

nature.�

Fun to Imagine (Richard Feynman)
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Resumo

Consideramos dois métodos, chamados transformações de Darboux e Bäcklund,

para geração de soluções solitonicas no modelo integrável de Tzitzéica. No contexto

de modelos com defeitos, tratamos essas transformações e percebemos que elas estão

escondidas no sistema sob a forma de condições sobre o defeito. Por �m, usando as

profundas relações entre teorias clássicas de superfícies e solitons, mostramos que

os métodos de Bäcklund e Darboux estão intimimante relacionadas com a clássica

transformação de Tzitzéica.

Palavras Chaves: Solitons; Tzitzéica; Bäcklund; Darboux; Invariância de Calibre.

Áreas do conhecimento: Física Matemática; Teoria de Campos; Modelos Inte-

gráveis.

iv



Abstract

We consider two methods, called Darboux and Bäcklund transformations, for

generating of solitonic solutions in the Tzitzéica integrable model. In the context

of models with defects, we treat these transformations and we realized that they

are hidden under the form of conditions over the defect. At the end, using the

deep relations between classical theories of surfaces and solitons, we show that the

Bäcklund and Darboux methods are intimately related with the classical Tzitzéica

transformation.

Key Words: Solitons; Tzitzéica; Bäcklund; Darboux; Gauge Invariance.

Areas: Mathematical Physics; Field Theory; Integrable Models.
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Chapter 1

Introduction and General Overview

N
on-linear theories play an important role in modern science, the phe-

nomena described for some sorts of such theories, are endowed with two

kinds of behaviour which are not mutually exclusive, �chaotic� and �de-

terministic�. We are interested in the second type and Solitons are within this class

of phenomena. Physicists and mathematicians share a deep interest in systems with

regular behaviour, besides, it is not unusual for biologists to apply solitons in their

works.

Therefore, besides several applications in physical phenomena, such as solitary

wave in water and signal in optical �bre, in biological systems, such as chemical en-

ergy transport in proteins, solitons provide an e�ective mathematical lab, for study-

ing of non-linear partial di�erential equations, di�erential geometry of surfaces, Lie

theory and so on [1, 2].

A well known story, is that John Scott Russell, in 1834, observing a boat being

drawn by two horses along a channel in Edinburgh, noticed that, after the boat

suddenly stopped, a bow wave, with a shape of a solitary wave continued its motion

forward - without changing its form or velocity. Russell, perhaps because he was a

naval engineer, realized that such a wave was not an ordinary phenomenon and, he

followed that solitary wave, until lost it, two miles later.

The scientist built a tank where he kept studying what he named wave of trans-

lation, and he could notice some of its properties, through several experiments;

however, the length of the tank and consequently, the short duration of the wave,

did not allow the scientist to be able to see the interaction of two solitons [1, 3, 4].
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In 1895, Korteweg and de Vries derived the equation, known today as KdV

equation, which describes water waves in shallow channels, however, a less known

fact is that, a pair of equivalent equations had already been found by Boussinesq at

1870, which describe waves propagation in rectangular channels, and independently,

by Rayleigh that studied and explained mathematically the Russell's observation

[1, 4].

Zabusky and Kruskal, via a computational approach, could rediscover the KdV

equation in the continuum limit of an anharmonic lattice model and they could

consider its solutions. By the way, they named these solutions as solitons, to denote

the particle-like behaviour of these solitary waves under interaction, in this sense,

this is just a �parody� of protons, electrons, neutrons and so on [1, 4].

The modern study of theory of solitons began in this context, when the com-

putational tools could be used, and solitons - at this time, still a curiosity - have

become a useful mathematical tool.

But, what really is a soliton? This question does not have a unique answer and

today there are several uses of this term in some di�erent contexts. The solitons

that we are interested in, can be described as localized and stable solutions of a

completely integrable system. By localized and stable, we mean that they look like

solitary waves or lumps, which can be scattered without loss of their characteristics

including, their shape, even when interact with other solitons. The stability of these

solutions are guaranteed by in�nitely many dynamical conserved quantities in the

system [5, 6].

Another type of solitons (that we will not deal in this work), are those which have

their stability guaranteed by discrete homotopy invariants, in this sense, they are

topological solitons. Kinks in one dimension, vortices in two dimensions, monopoles,

skyrmions and instantons are some examples of topological solitons which have a

huge value in modern science [5, 7, 8].

∗ ∗ ∗

On the other hand, the relation between theory of surfaces and theory of solitons,

is a well understood subject today, and maybe, due the large �overlap� that exists

between these two areas, sometimes they appear to be the same study under di�erent

perspectives [4, 9, 10, 11, 12].

Di�erential geometry of curves and surfaces have its origin in the early XIX

century, mainly in the works of Gaspard Monge(1746 − 1818) and Carl Friedrich
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Gauss or simply Gauÿ (1777 − 1855). Monge, whose main work in di�erential

geometry of surfaces is compiled at Application de l'analyse à la géométrie, published

in 1807 [13], was responsible for a descriptive study of curves and surfaces. He was

an engineer, and it was an important detail in his work, because, Monge has seen the

surfaces strongly related with the surrounding space and tried to make a relation

between these surfaces and partial di�erential equations. Most of his work were

generated by this attempt.

One of the greatest scientists of all times, certainly was Gauss. His approach to

surfaces theory started with the attempt to measure quantities, such as distance,

on the surface of the Earth. Thereby, he realized that to study a generic two

dimensional surface, he does not necessarily need to attach the surface to a three

dimensional space, but one may assign to that surface, its own intrinsic geometric

properties [14]. As we know today, this was a paradigm that grew up and from

which emerged the development of non-Euclidean geometries � that have found

several applications in physics, including the so charming General Relativity. The

fundamental contribution of Gauss in surfaces theory, Disquisitiones generales circa

super�cies curvas (General investigations of curved surfaces), published in 1827 [15],

is a mathematical masterpiece still today.

Gauss set down a system of equations, known evidently as Gauss equations, that

are fundamental in the description and analysis of surfaces. Furthermore, from the

symmetries and compatibility of this system of equations � for a special class of

surfaces � arise the remarkable connection between classical di�erential geometry of

surfaces and solitons theory.

The special surfaces referred in last paragraph are named hyperbolic surfaces :

those with negative Gaussian curvature1. For instance, the celebrated sine-Gordon

equation

ωρ% =
1

a2
sinω,

that was born in the Edmond Bour description of hyperbolic surfaces with constant

curvature κ := −1/a2 in 1862, and in this sense, a pseudo-spherical surface [1,

3, 4, 16]. Independently, Bonnet in 1867 and Enneper in 1868, through the same

consideration of pseudo-spherical surfaces, rediscovered the sine-Gordon equation.

1It is worth remembering that the total curvature of a surface S is given by
∫ ∫

S
κdS, where κ

is the Gaussian curvature. As this is an easy formula to remember, we will avoid to use the term

total curvature.
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Underlying the hyperbolic surfaces description in terms of di�erential equations

systems, such as Gauss equations, and its relation with solitons theory, the success

of these two areas � and of the di�erential geometry as a whole �, are due the

procedures of generating iteratively surfaces of a type, from a previous one of the

same type, called seed [17]. Albert Victor Bäcklund (1845−1922), Gaston Darboux

(1842 − 1917) among others important mathematicians, investigated these mecha-

nism of generating surfaces and the classes of surfaces which admit those kind of

transformations. Moreover, the transformations that bear theirs names are today a

well established subject in di�erential geometry of hyperbolic surfaces, also, the in-

variance under these transformations seems to be a shared property of the solitonic

equations [4, 9, 16].

In the sine-Gordon case, for example, the iterative procedure comes from a geo-

metric construction of pseudo-spherical surfaces. Furthermore, the new solution of

the sine-Gordon equation is result of the compatibility conditions, that the system of

equations which describe the new surface recently constructed, must satisfy. Rogers

& Schief, at [16], summarize wonderfully this e�ort as

�. . . if a point P is taken on an initial pseudo-spherical surface Σ and

a line segment PP ′ of constant length and tangential to Σ at P is con-

structed in a manner dictated by a Bäcklund transformation . . . then the

locus of the points P ′ as P traces out Σ is another pseudo-spherical sur-

face Σ′ with the same total curvature as Σ. The procedure may be iterated

to generate a sequence of pseudo-spherical surfaces all with the same total

curvature as the original seed surface Σ.�

This procedure yields the well known Bäcklund transformation for the sine-Gordon

equation (
ω′ − ω

2

)
ρ

=
β

a
sin

(
ω′ + ω

2

)
,(

ω′ + ω

2

)
%

=
1

β a
sin

(
ω′ − ω

2

)
,

where β is what is known as Bäcklund parameter , a = (−κ)−1/2 is the pseudo-radius

and ω, ω′ are two solutions of the sine-Gordon equation. It is worthwhile to comment

that the Bäcklund parameter is far to be a negligible constant. Actually, it has a deep

connection with a non-linear superposition principle, that is embodied in something

4



known as permutability theorem, and has as a consequence, the commutativity of

two successive Bäcklund transformations.

∗ ∗ ∗

Sustained by these relations between solitons and surfaces theories, the statement

mission of this work is to consider the transformations of the Tzitzéica equation under

these two perspectives, the solitonic and the geometric. Along this work we will

speak a little more about the historical contribution of the Romanian mathematician

Tzitzéica under these two approaches, pointing some important aspects, the real

motivation and the modern interest in this model.

It is worth commenting that, Tzitzéica started studying a class of hyperbolic

surfaces whose have Gaussian curvature satisfying the condition that bears his name,

κ ∼ −d4,

where d is the distance from the origin to a generic point in the surface. Due its

importance in a�ne geometry, the Tzitzéica surface is called a�nsphären or a�ne-

spheres. Remarkably, Tzitzéica set down not only a linear representation of this

surface � equivalent in modern language to the Lax pair � but also, he found a

Bäcklund-like transformation that bears his name.

The solitonic Tzitzéica equation

(ln v)ρ% = v − v−2

arises from the compatibility conditions of the Gauss system for the surface, as we

already know, and as example of a physical system which this equation is naturally

adopted, consider the anisentropic gasdynamics system. Also, this last equation

keeps important connections with TODA lattice model, as shown in [4, 16].

The �rst part of this work, is devoted to the solitonic approach. Then, in the next

chapter, we give the basic framework for the study of integrable models. We present

the notion of integrability, Poisson structure, Lax pair and zero curvature equation

for continuous systems. We chose a non standard way to present these concepts in

view of completeness, however, several good texts discuss the same issues in a more

algebraic fashion [5, 6, 18].
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Chapter 3 is devoted to the Tzitzéica model, the criteria which made us to divide

this text in part I and II will be clear in that chapter. We discuss the Lax pair

and the zero curvature condition, after, using the gauge invariance, we propose the

Darboux and Bäcklund transformation for this beautiful model.

The application of the Bäcklund transformation may be realized in the chapter

4. The method of Corrigan & Zambon is dealt here, where we consider an integrable

system built by two domains and its interface is thought as a defect. The conditions

in the defect will determine the behaviour of the whole system and of its conser-

vation laws, including energy and momenta [19, 20]. The key point in this chapter

is that, at the defect position, the Bäcklund transformation naturally appears as

conditions over the defect. Parallel to this work, we have found at [21], in�nitely

many conserved quantities, which guarantees that the introduction of the defect for

the Tzitzéica model does not spoil its integrability.

The solitonic context is abandoned and a less natural way to deal with these kind

of systems is started in the second part, under the perspective of surfaces. Then, a

new introduction will be necessary now, and we describe in the chapter 5, the basic

theory of surfaces, following the methodology of Monge and Gauss.

In the next chapter, we show the notion of hyperbolic surfaces and a�nsphären.

Also, the prototype of a generalization of the treatment of soliton theory is tasted,

in this sense, we can see that the soliton theory can admit an approach under the

concepts of surface [4, 16].

Finally, in the chapter 7, we show that the Bäcklund transformation, previously

found in the third chapter, hides the classical Tzitzéica transformation. And we

consider at the end, a naive example of this transformation.

In order to be coherent and self-consistent, we would like to use some mathe-

matical concepts and terms that are not too familiar among most of the physicists.

Then, we o�er some mathematical appendices, that are not mandatory but can be

very useful for some readers and evidently to the author itself. Thus, from the main

text together with the appendices, we hope that the whole work can be read, just

based in the work itself.
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Part I

Solitonic Context
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Chapter 2

Integrable Models

O
ne can, in a heuristic way, de�ne the subject that we are interested

in, saying: An integrable model consists of non-linear di�erential equa-

tions which can be solved analytically, at least �in principle�.

Since mathematicians as well as physicists are quite interested in these models, today

there are several works, looking through their theoretical and experimental aspects.

The formal characteristics of the integrable models, concepts such as in�nite dimen-

sional Lie algebras and their representations and new subjects that were born in

the core of di�erential geometry as well as in the Sturm-Liouville problem � like

Bäcklund, Moutard, Darboux transformations and so on �, are the main interests

shared by mathematicians. Physicists, naturally, are interested in the possibility

of applying these models in physical phenomena, besides, the solitonic solutions

of these models emerge as a good opportunity to test new ideas in the areas of

non-linear optics, hydrodynamics, condensed matter, continuous mechanics, plasma

physics and high energy physics [4, 5, 6]. In fact, solitons are the strongest tools

for non-perturbative approach in various theories, from the hydrodynamics to string

theory.

In this chapter, the goal is to present in a very succinct fashion, the classical

ideas of integrable systems. We start with the general aspects of a Hamiltonian

system and present the Liouville theorem, which states what an integrable system

is. After, we talk a little bit about the geometry of phase space, we point the general

aspects of a symplectic manifold and �nally, the Lax pair is presented. It is worth

remembering that we will try in this chapter, give just the fundamental concepts

8



that we will need to attack the Tzitzéica model, however, for those who are not

familiar with the subject of integrable models, we strongly recommend a reading of

the books [5, 6] for a complete treatment of this topic.

2.1 Hamiltonian System

The evolution of some mechanical systems with n degrees of freedom can be

described by the Hamilton's equations, in such a case, one says that those systems

are Hamiltonian systems. The motion of such a system can be analyzed in a 2n-

dimensional space, which is spanned by the coordinate functions (qi, pi), i = 1, . . . , n,

i.e. the canonical coordinates and the momenta respectively. This space, that one

denotes by M, is called phase space, and it is locally euclidean, it means that in

a neighborhood of a point, this space looks like the R2n, but globally, it can be a

non-trivial manifold1.

One can consider di�erentiable functions (that are called dynamical variables)

f, g : M× R → R such that f = f(q, p; t) and g = g(q, p; t) 2, where p, q are the

coordinates of the phase spaceM and t is the evolution parameter, which is usually

called time. Also, one can de�ne now, the famous Poisson bracket as

{f, g} :=
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
, (2.1)

that satis�es two important properties,

{f, g} = −{g, f} skew-symmetry

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0. Jacobi identity

When {f, g} = 0, one says that f and g are in involution.

1In a mathematical language, the con�guration space where the system lives in, is the manifold

N and the points of such a manifold are denoted by q. In addition, one knows that the momenta,

in the Lagrangian mechanics, are de�ned by p := ∂L
∂q̇ , so the momenta lives in the cotangent space

T N ∗
q . Thus, the phase space is the cotangent bundle M = T N ∗ := {(q, p) | q ∈ N , p ∈ T N ∗

q}
[22].

2The dependence of a dynamical variable f on the parameter t is usually given through the

coordinate functions q and p, so it is usual to split this dependence, writing f = f(q, p; t) ≡
f(q(t), p(t)) instead of f = f(q, p, t). This last notation, one often uses when there exists an

explicit dependence on t.
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The well known results about Hamiltonian system are summed by: Given a

system with n degrees of freedom, coordinate functions (qi, pi), i = 1, . . . , n and a

Hamiltonian H = H(q, p; t), the Hamilton's equations are

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
, (2.2)

since the Poisson bracket of the coordinate functions (qi, pi) satis�es

{qi, qj} = 0 = {pi, pj} and {qi, pj} = δij.

Considering again, the function f = f(q, p; t), one can write the total derivative

df

dt
=
∂f

∂t
+

n∑
i=1

(
∂f

∂qi

dqi
dt

+
∂f

∂pi

dpi
dt

)
=

n∑
i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
= {f,H}, (2.3)

where the Hamilton's equations of motion have been used and ∂f/∂t = 0, since the

function f has no explicit dependence on the time.

A function f = f(q, p; t) such that ḟ = 0 when (2.3) is valid, is called a �rst inte-

gral or as physicists usually call, a constant of motion. Evidently, the Hamiltonian

itself is a constant of motion, since {H,H} = 0. In addition, in the case when the

dynamical variable f is equal the coordinate function pi or qi, one has the Poisson

bracket

q̇i = {qi, H} and ṗi = {pi, H}.

Let us now, enunciate two important theorems,3

Theorem 1 (Liouville) A Hamiltonian system is integrable by the method of qua-

dratures, if and only if, it is a 2n dimensional phase space M with a set of n

functionally independent functions that are in involution, i.e. κ1, . . . , κn, such that

{κi, κj} = 0, i, j = 1, . . . , n.

so, the functions κi are constants of motion.

3The reader can �nd the proofs in [5], further references are in [23, 24].
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Theorem 2 (Arnold-Liouville) Consider now, the integrable system

(M, κ1, . . . , κn)

and the Hamiltonian H := κ1. Also, let

Mκi := {(p, q) ∈M | κi(p, q) = constant} i = 1, . . . , n,

be an n-dimensional level surface of constants of motion.

WhenMκi is compact and connected, this surface is di�eomorphic to the torus

T n := S1 × · · · × S1,

and we can de�ne the coordinates,

I1, . . . , In;φ1, . . . , φn, 0 ≤ φi ≤ 2π,

that are known as action-angle coordinates, respectively. The angle φi are coordi-

nates on the level surfaceMκi and the actions Ii are the constants of motion.

With this construction, the Hamilton's equations are

İi = 0 and φ̇i = ωi(I1, . . . , In).

Integrating these equations, we have

φi(t) = ωi(I)t+ φi(0) and Ii(t) = Ii(0),

that are n circular motions with constant angular velocities. We can realize that,

it is always possible to solve an integrable model through a sequence of algebraic

operations and integrations.

2.2 Poisson Structures

The coordinate functions (qi, pi) in a 2n-dimensional manifoldM can be written

in a most natural form when one combines the positions qi with the momenta pi by:

ya := (qi, pi),

{
i = 1, . . . , n

a = 1, . . . , 2n
, (2.4)
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in a way that

yi = qi and yi+n = pi.

With this de�nition, the Poisson bracket of the coordinate functions are

{ya, yb} := εab, (2.5)

where the antisymmetric 2n× 2n matrix

εab :=

(
0 In×n

−In×n 0

)
has been de�ned.

In the same way, one can evaluate the Poisson bracket of two dynamical functions

by

{f, g} =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)

=
2n∑

a,b=1

n∑
i=1

(
∂f

∂ya
∂ya

∂qi

∂yb

∂pi

∂g

∂yb
− ∂g

∂yb
∂yb

∂qi

∂ya

∂pi

∂f

∂ya

)

=
2n∑

a,b=1

{
∂f

∂ya

[
n∑
i=1

(
∂ya

∂qi

∂yb

∂pi
− ∂yb

∂qi

∂ya

∂pi

)]
∂g

∂yb

}

:=
∂f

∂ya
{ya, yb} ∂g

∂yb
:= εab∂af ∂bg, (2.6)

where the implicit summation over repeated indices and

∂a ≡
∂

∂ya
,

have been de�ned.

Naturally, given the Hamiltonian H : M× R → R, the generalized Hamilton's

equations are

ẏa = {ya, H} = εab∂bH. (2.7)

We have seen that, with a little bit of sophistication, we could treat the Poisson

bracket in a very natural way. When we thought in the Hamiltonian structure in

a geometric fashion, the Poisson bracket seems to gain a �cause�. After this little

e�ort, we are going to consider the classical �road� for the generalization of the

Hamiltonian systems.
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Evidently, we will not to study each �minutia� and de�nitely, we will not arrive

too far, but in the end of this chapter, we will to know exactly what is enough

to understand the mathematical structure of an integrable model and its geometric

approach, that is what we are really interested. From now on, the aim of this chapter

is to present some geometric ideas of the Hamiltonian systems and their impact over

the integrable models, that is, we are looking to the Lax Pair.

2.2.1 Symplectic Structure

The ideas behind the Poisson bracket provide a generalization of a geometric

approach to the Hamiltonian systems, let us clarify this a�rmation with �work�, be-

cause, this is the way that physicists like. Consider, then, a p-dimensional manifold

M with coordinates functions (x1, . . . , xp).

De�nition: A skew-symmetric matrix ωab = ωab(x) is called a Poisson structure if

the Poisson bracket, de�ned by

{f, g} :=

p∑
a,b=1

ωab(x)
∂f

∂xa
∂g

∂xb
= ωab(x)∂af ∂bg,

satis�es the well known skew-symmetry property and the Jacobi identity. Evidently,

one gets

ωab(x) = {xa, xb}

when the coordinates functions are used in the Poisson bracket.

In this point of view, the Hamiltonian function is H : M× R → R and the

generalized Hamilton's equations are

ẋa = {xa, H} = ωcb∂cx
a(x)∂bH = ωcbδ a

c ∂bH

= ωab(x)∂bH. (2.8)

Furthermore, everything known about Hamiltonian system can be recovered,

when one sets in the manifold M, the dimension p = 2n and one identi�es the

coordinate functions ya ∈ M with the generalized phase space coordinates, i.e.

xa ≡ ya. Whereas the functions ya form a basis of the phase space M, then, ωab

must be non-singular, so, the inverse matrix ωab = (ωab)−1 can be de�ned by

ωabωbc := δac := ωcbω
ba. (2.9)
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In addition, it is known that the Jacobi identity is satis�ed, i.e.

{ya, {yb, yc}}+ {yb, {yc, ya}}+ {yc, {ya, yb}} = 0,

and from this identity, follows the Bianchi identity.

∂aωbc + ∂bωca + ∂cωab = 0,

In this case, ωab is called a symplectic structure and the spaceM endowed with

such a structure is called a symplectic manifold. This symplectic structure ωab can

be used in an analogous form to the Riemannian metric4 gµν , what we mean is

that, this structure can be used to lower indices and in this sense, is the metric of

a symplectic manifold. In the same way, the Poisson structure ωab can be used to

raise indices in the same manifoldM.

It is worthwhile to comment that, formally, a symplectic manifold M is more

general than we have de�ned here [25], so, the phase space is just, a special case of

a symplectic manifold [6]. One of the most important features of the phase space of

an integrable model can be summarized, when one realizes that, since we are dealing

with a Hamiltonian system with n degrees of freedom and as it is integrable, we can

think of each conserved quantity κi, i = 1, . . . , n as a Hamiltonian [18]. We conclude

that, since for an integrable model there are at least two distinct Hamiltonians, in

the symplectic manifold of this model there exist at least two distinct symplectic

structures. Next section, we will start quantifying these last words and the general

features of the phase space of an integrable model will be more evident.

2.3 Phase Space of an Integrable Model

Considering from now that there are two distinct symplectic structures in some

dynamical system, this is equivalent to consider the dynamics generated by two

distinct Hamiltonians, or more basically, two distinct Lagrangians, then

L = πa(y)ẏa −H(y) (2.10)

and

L̄ = Πa(y)ẏa − H̄(y), (2.11)

4Appendix A page 76 for details.
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where a = 1, . . . , 2n, the generalized momenta are π and Π, and the dot over the

coordinates functions, denotes the evolution parameter derivative, that is naturally,

the time. The Euler-Lagrange equations for this system are

d

dt

∂L

∂ẏa
− ∂L

∂ya
= 0 ⇒ (∂aπb − ∂bπa)ẏb = ∂aH,

and
d

dt

∂L̄

∂ẏa
− ∂L̄

∂ya
= 0 ⇒ (∂aΠb − ∂bΠa)ẏ

b = ∂aH̄,

and from equations (2.8) and (2.9) one can write

ωab ẏ
b = ∂aH,

Ωab ẏ
b = ∂aH̄, (2.12)

where the symplectic structures

ωab := ∂aπb − ∂bπa

and

Ωab := ∂aΠb − ∂bΠa,

have been de�ned, each generating its own Poisson structure [6]. Then, from the

de�nition of Poisson bracket, one gets

{f, g}L = ωab ∂af ∂bg

{f, g}L̄ = Ωab ∂af ∂bg. (2.13)

Finally, the Hamilton's equations are

ẏa = ωab∂bH,

ẏa = Ωab∂bH̄,

that describe, naturally, the same dynamic

ωab∂bH = Ωab∂bH̄.
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2.3.1 The Lax Pair

Firstly, a new quantity in the manifold5 must be de�ned with the symplectic

structure above, then, let

Sba := ωacΩ
cb (2.14)

be such a quantity.

The next step is to consider the cross derivative of the equations (2.12), so, by

consistency

∂a ∂bH ≡ ∂b ∂aH,

which implies

0 = ∂a(ωbc ẏ
c)− ∂b(ωac ẏc)

= (∂aωbc)ẏ
c + ωbc∂aẏ

c − (∂bωac)ẏ
c − ωac∂bẏc

= (∂aωbc + ∂bωca)ẏ
c + ωbc∂aẏ

c − ωac∂bẏc, (2.15)

using now, the Bianchi identity

∂aωbc + ∂bωca + ∂cωab = 0,

and the following de�nition

∂aẏ
b = ∂a(ω

bc∂cH) = ∂a(Ω
ab∂bH̄) := U b

a ,

one can write (2.15) as

−∂cωab ẏc − U c
a ωcb + U c

b ωca = 0,

or
dωab
dt

= −U c
a ωcb + U c

b ωca. (2.16)

In the same way, one �nds

dΩab

dt
= −U c

a Ωcb + U c
b Ωca. (2.17)

To consider the expression for the Poisson structure, just take the derivative

d(ωabωbc)

dt
= 0

dωab

dt
ωbc + ωab

dωbc
dt

= 0

5One could de�ne Sba := Ωacω
cb, that the calculation would be the same.
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then
dωab

dt
ωbc = ωab(U e

b ωec − U e
c ωeb)

multiplying by the inverse ωcd

dωab

dt
δdb = ωab(U e

b ωec − U e
c ωeb)ω

cd,

that can be written �nally, as

dωab

dt
= ωacU b

c − ωbcU b
c , (2.18)

in the same way, one �nds

dΩab

dt
= ΩacU b

c − ΩbcU b
c . (2.19)

When one takes the time derivative of (2.14) and carefully uses (2.16) and (2.19),

will conclude that
dSba
dt

= ScaU bc − U caSbc ,

which, in the matrix form, is
dS
dt

= [S,U ]. (2.20)

This last equation is known as Lax equation and the matrices S and U as Lax Pair.

The Lax pair is a powerful tool in the study of integrable models. The basic

idea behind is that, if a non-linear equation is associated to the Hamiltonian system

and one can �nd such matrices, then, to this dynamical system, a Schrödinger like-

equation can be associated. With this e�ort, the inverse scattering method6 can be

used, which lead to the integrability of the Hamiltonian system.

Therefore, given the non-linear evolution equation of a system, one would like

to �nd a linear operator L(t) whose eigenvalues are constant under the non-linear

dynamical evolution. In order to be coherent, the linear operator evolve in the

Heisenberg picture7 like

L(t) := U(t)L(0)U †(t),

6This method is used to solve a initial value problem of an integrable system and can be thought

as an analogue of the Fourier transform, but in the non-linear case. We suggest, in crescent order

of di�culty [18, 6, 26] for further reading.
7We are treating with a classical system, however, we allow ourselves to use this abuse of

terminology.
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then

U †(t)L(t)U(t) = L(0), (2.21)

where U(t) is an unitary operator. Then

U †(t)U(t) = 1 ⇒ ∂U †(t)

∂t
U(t) + U †(t)

∂U(t)

∂t
= 0.

In addition, one assumes that, there exists another operator M , not necessarily

linear, such that
∂U(t)

∂t
:= −M(t)U(t),

which implies
∂U †(t)

∂t
= U †(t)M.

Taking the derivative of (2.21),

∂U †(t)

∂t
L(t)U(t) + U †(t)

∂L(t)

∂t
U(t) + U †(t)L(t)

∂U(t)

∂t
= 0,

and using the derivative of the evolution operator U(t), one concludes that:

∂L(t)

∂t
= [L(t),M(t)],

that is naturally, the Lax equation (2.20).

Finally, one would like that the eigenvalue of the linear operator was constant,

in fact, easily this statement can be proven true. Assume �rstly, that

L(t)ψ(t) = λ(t)ψ(t),

in a way that the eigenfunction evolves as

ψ(t) = U(t)ψ(0),

from where follows that
∂ψ(t)

dt
=
∂U(t)

dt
ψ(0) = −M(t)U(t)ψ(0) = −M(t)ψ(t).

Taking the derivative of the eigenvalue equation

∂

∂t
(L(t)ψ(t)) =

∂

∂t
(λ(t)ψ(t))

∂L(t)

∂t
ψ(t) + L(t)

∂ψ(t)

∂t
=
∂λ(t)

∂t
ψ(t) + λ

∂ψ(t)

∂t(
∂L(t)

∂t
− L(t)M(t)

)
ψ(t) =

(
∂λ(t)

∂t
−M(t)L(t)

)
ψ(t),
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which implies
∂L(t)

∂t
= [L(t),M(t)] +

∂λ(t)

∂t
,

and from the Lax equation one �nally concludes that

∂λ(t)

∂t
= 0.

The constant eigenvalue λ is usually called spectral parameter.

2.3.2 Continuous Systems

Up to now, we have considered systems with n degrees of freedom, however, the

Poisson structure that we have just seen is useful when we want (or need) to work

in a continuous system. There are a kind of pattern that help us to pass from a

discrete system to a continuous one [5], we can sum up this scheme as:

� Replace the coordinates yi(t) from the discrete system to a dynamical variables

u(x, t), in a way that, the discrete index i becomes the continuous variable x ∈ R;

� The phase spaceM is replaced by a space of smooth functions on a line;

� The summation over the indices a by integrals in x;

� The functions of the coordinates f(y) by functional F [u];

� The partial derivative by functional derivative.

One can write a functional as

F [u] =

∫
R
f(u, ux, uxx, . . . )dx,

where the subscript denotes partial derivative, and the functional derivative is given

by
δF

δu(x)
=
∂f

∂u
− ∂

∂x

∂f

∂ux
+

∂2

∂x2

∂f

∂uxx
+ . . .

with
δu(z)

δu(x)
= δ(z − x),

where δ is the Dirac delta. Therefore, the ordinary di�erential equations, that one

used to have, are replaced by partial di�erential equations.
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By mimicking what was made in the discrete system, a Poisson bracket may be

de�ned considering two functional through

{F,G} :=

∫
R2

ω(x, z, u)
δF

δu(x)

δG

δu(z)
dxdz, (2.22)

where, we require that ω(x, z, u) is a Poisson structure. A possible choice (but not

the only one) is

ω(x, z) =
1

2

∂

∂x
δ(x− z)− 1

2

∂

∂z
δ(x− z).

Now, with this de�nition, one could work a little bit with (2.22), so

{F,G} =
1

2

∫
R2

∂

∂x
δ(x− z)

δF

δu(x)

δG

δu(z)
dxdz − 1

2

∫
R2

∂

∂z
δ(x− z)

δF

δu(x)

δG

δu(z)
dxdz

= −1

2

∫
R2

δ(x− z)

(
∂

∂x

δF

δu(x)

)
δG

δu(z)
dxdz+

+
1

2

∫
R2

δ(x− z)
δF

δu(x)

(
∂

∂z

δG

δu(z)

)
dxdz

= −1

2

∫
R

(
∂

∂z

δF

δu(z)

)
δG

δu(z)
dz +

1

2

∫
R

δF

δu(z)

(
∂

∂z

δG

δu(z)

)
dz

=
1

2

∫
R

δF

δu(z)

(
∂

∂z

δG

δu(z)

)
dz +

1

2

∫
R

δF

δu(z)

(
∂

∂z

δG

δu(z)

)
dz,

thus, one concludes that

{F,G} =

∫
R

δF

δu(z)

(
∂

∂z

δG

δu(z)

)
dz, (2.23)

from which follows that the Hamilton's equations are

∂u

∂t
= {u,H[u]} =

∫
R

δu(x)

δu(z)

(
∂

∂z

δH[u]

δu(z)

)
dz

=
∂

∂x

δH[u]

δu(x)
. (2.24)

2.4 The Zero-Curvature Formulation

Among various integrable models, we are sure that the most interesting and

mathematically richer are those continuous. Naturally, we would like to treat a

large number of these models with only a few mathematical tools, we mean that,
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we would like to have a way to unify a description of a large number of continuous

integrable models. When Zakharov and Shabat were working with one of these

models, namely, non-linear Schrödinger, they have used an approach, that later was

generalized by Ablowitz, Kaup, Newell and Segur, which allows to work with several

others integrable models.

This approach uses a Lax operator that is of �rst order in ∂
∂x
. Remember that

the Lax equation is
∂L(t, x)

∂t
= [L(t, x),M(t, x)],

that one can write as

[∂t +M(t, x), L(t, x)] = 0, (2.25)

where we have denoted the dependence on the continuous variable x. Also, we

already know that

∂tψ(t, x) = −M(t)ψ(t, x) := −At ψ(t, x)

and when one supposes that there exists an operator N(t, x) such that

L(t, x)ψ(t, x) = (∂x +N(t, x))ψ(t, x) = λψ(t, x),

one gets the equation

∂xψ(t, x) = −(N − λ)ψ(t, x) := −Ax ψ(t, x),

�nally, from the Lax equation presented in the form (2.25), one has

[∂t + At(t, x), ∂x + Ax(t, x)] = 0.

This last equation can be written as

∂tAx − ∂xAt + [At, Ax] = 0, (2.26)

that is often called zero-curvature equation8. The origin of this usual name comes

from the di�erential geometry and even the study of this name would lead us to

a long road in the mathematics realm. Generically this equation means that the

curvature of the connection A := Ax dx+At dt vanishes. Connections, on the other

hand, are necessary structures to lead to a �well de�ned� notion of derivative in the

manifold9.
8So do zero-curvature condition and Zakharov-Shabat equation.
9We suggest [27, 28] for a succinct reading about this topic.
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Summing up In this chapter we have dealt with the notion of integrable models;

also, with some mathematical rigour, we have presented the Lax pair and the zero-

curvature condition that are the main classical results needed for the following work.
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Chapter 3

The Model and its Transformations

O
ne of the few relativistic integrable models in 1 + 1 dimensions with

one scalar �eld, is the Tzitzéica model ; and it is what we will consider in

this chapter. This model, as well as sine-Gordon model, �rst appeared in

the study of hyperbolic surfaces and has been rediscovered in the solitonic context

some years later [4, 16, 29, 30, 31].

This model is a good alternative to extend the developments done in the re-

search of the sine-Gordon model, actually, the Tzitzéica model can be a laboratory

to develop and test new ideas in non-perturbative methods in physics. Besides, this

model awakes interest in its con�nement mechanism and the conformal invariance

extension [32]. Therefore, if we take account these cited applications, the phe-

nomenological use in gas-dynamics and the enormous value in the a�ne di�erential

geometry [4, 16], we justify any e�ort done by physicists and mathematicians to a

better understanding of this model.

In this chapter, we try to present the basic aspects of the Tzitéica model, from

its Lagrangian density to the Lax pair, also, we will consider a particular type of

gauge transformation, and we derive a system (of di�erential equations) that makes

a relation between two Tzitzéica solitons solutions [30], this di�erential relation in

known as Bäcklund transformation.

On one hand, there are in the literature, several Bäcklund transformations avai-

lable for the Tzitzéica model � for instance [29, 33, 34] � which have a strong non-

linear structure and do not allow e�ective calculations. On the other hand, there

was a kind of misunderstanding that do not exist Bäcklund transformations for the
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Tzitzéica model. What is true in this story is that: It does not exist a transformation

similar to the Bäcklund of the sine-Gordon model1. A necessary condition for the

existence of similar transformation [35, 36, 37, 38], states that:

The non-linear Klein-Gordon equation

φ+− = F (φ)

has a Bäcklund similar to the Bäcklund of the sine-Gordon model, if and

only if F (φ) satis�es the linear condition

d2F (φ)

dφ2
+ kF (φ) = 0.

The Tzitzéica model does not satisfy this requirement, then, it does not have a

Bäcklund similar to the Bäcklund of the sine-Gordon model. The misunderstand-

ing comes from the belief that this requirement is a little bit stronger: The only

integrable non-linear Klein-Gordon equations, are those which satisfy the linear con-

dition above. Again, what is true is that: This is a su�cient requirement for the

integrability, but not a necessary condition.

Then, the Bäcklund transformation that Borisov et. al. has found [30] is not

so simple, indeed, it will depend of an auxiliary �eld. Besides the relationship with

integrable defects that we are going to explain in the next chapter, the advantage of

this transformation over the previously obtained at [29, 33, 34], is in the geometric

context, in fact, Borisov et. al. showed how one can reduce his Bäcklund trans-

formation to another classical transformation, the Tzitzéica-Moutard, that as the

name suggests, is a Moutard-type transformation that was obtained by Gheorghe

Tzitzéica [39, 40, 41, 42] and we will explain latter.

3.1 The Tzitzéica model

The starting point for this study is the Lagrangian density that was de�ned in

[32] by

L =
1

2
∂µφ∂

µφ− 1

2

(
2eφ + e−2φ

)
, (3.1)

1In the introduction we have presented such a Bäcklund transformation; also, we will often

omit, by simplicity, the word �transformation�.
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which gives the following �eld equation

∂+∂−φ ≡ ∂µ∂
µφ ≡ ∂2φ = −eφ + e−2φ, (3.2)

where, the light-cone coordinates:

x± :=
1

2
(t± x) , (3.3)

have been de�ned. From this de�nition, one gets the following derivatives

∂± = ∂t ± ∂x ⇒ ∂+∂− = ∂2
t − ∂2

x,

that will be used exhaustively.

Tsarev noticed that in a series of papers between 1907 and 1910 [39, 40, 41, 42],

the geometer Tzitzéica analyzed surfaces associated with an equation in the form

∂ρ∂% (ln v) = v − 1

v2
.

When one de�nes ln v := φ, last equation gets a new form

∂ρ∂% (φ) = eφ − e−2φ.

that is the �eld equation (3.2) above considered, with an appropriate global sign.

This sign one can be recovered when one chooses2 ρ→ −x+ and %→ x−, then

∂+∂− (ln v) = −v +
1

v2
, (3.4)

that one can write as

∂2v − ∂+v ∂−v

v
= −v2 +

1

v
.

Equations (3.2) and (3.4) are usually called Tzitzéica equation3.

In the second part of this work we will turn to talk about the Tzitzéica model,

but under a di�erent perspective, we will study the Tzitzéica surfaces, that will be

useful to construct transformations; but for while, this is everything what we have

to talk about them.

As a last comment in this section, the argument of the �elds has been hidden,

but always keep in mind the dependence

φ ≡ φ (x, t) ≡ φ (x+, x−) .

2Evidently, the choice ρ → x+ and % → −x− would provide the same sign, however, the

equations considered in the chapter 6, show that this choice is wrong.
3There are in the literature, some people that call (3.2) as Bullough-Dodd equation and (3.4) as

Tzitzéica equation.
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3.2 Lax Pair

In the previous chapter, we have considered the whole theory of integrable models

in a very short version, however, the most remarkable aspect of this chapter is that

we can understand that, if we have the Lax pair of one given model, then such a

model is integrable. Thus, we will avoid any consideration about the integrability

of the Tzitzéica model and we will justify it, giving its Lax pair.

In this short section, the Lax pair considered by [32] is presented and as one would

expect, we will �nish this section with the zero curvature equation. Therefore, let

the Lax pair4 be:

A+ = −

(√
2

2
eφ λT+ + e−2φ λL−2

)
=

 0 −i λeφ 0

0 0 −i λeφ

λe−2φ 0 0


and

A− = −∂−φT3 +

√
2

2

1

λ
T− +

1

λ
L2 =

 −∂−φ 0 − 1
λ

− i
λ

0 0

0 − i
λ

∂−φ

 ,

where λ is the spectral parameter and the pair is living in the Lie Algebra su(3)

with T3, T±, L±2 among its generators5. When one decides to use the �eld v = eφ,

the Lax pair will be presented as

A+ =

 0 −i λ v 0

0 0 −i λ v
λ v−2 0 0

 and A− =

 −
1
v
∂−v 0 − 1

λ

− i
λ

0 0

0 − i
λ

1
v
∂−v

 . (3.5)

Now, taking the system

∂±Ψ = −A±Ψ , (3.6)

or yet

(∂± + A±)Ψ := P±Ψ = 0,

and considering the relation

[P+, P−] Ψ = [∂+ + A+, ∂− + A−] Ψ

= (∂+A− − ∂−A+ + [A+, A−]) Ψ = 0,

4Formally, the Lax pair is P± := ∂± +A±, but, without loss of generality, just the connections

A± can be called as Lax pair.
5Appendix B, page (100).
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the Zero-curvature condition naturally appears

∂+A− − ∂−A+ + [A+, A−] = 0. (3.7)

Direct substitution of the potentials A± (3.5) in the zero-curvature equation gives

the Tzitzéica equation.

3.3 Gauge Transformations

A new solution of the system (3.6) is considered6, when one de�nes the gauge

transformation

Ψ̄ = KΨ,

where K is an element of the Lie group SU(3). Follows from this last system, that

∂±Ψ̄ = ∂±(KΨ) = (∂±K) Ψ + K (∂±Ψ) = (∂±K)K−1Ψ̄−KA±Ψ

= [(∂±K)K−1 −KA±K
−1]Ψ̄ = −Ā±Ψ̄,

then, the system (3.6) is invariant under the gauge transformation

Ψ⇒ Ψ̄ = KΨ

A± ⇒ Ā± = KA±K
−1 − (∂±K)K−1,

that yields

∂±K = KA± − Ā±K. (3.8)

Where we have considered that there exists another solution φ̄ = ln v̄ of the Tzitzéica

equation such that, the new lax pair is given by

Ā+ =

 0 −i λ v̄ 0

0 0 −i λ v̄
λ v̄−2 0 0

 and Ā− =

 −
1
v̄
∂−v̄ 0 − 1

λ

− i
λ

0 0

0 − i
λ

1
v̄
∂−v̄

 .

Choosing the operator K depending on the spectral parameter λ, one can con-

struct the Bäcklund transformation [1, 4] that can be de�ned as:

6Among the variety of works explaining what we are going to start now, we recommend [3].
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De�nition:

Consider two non-linear operators P and Q such that P[ϕ(x, t)] = 0 and

Q[ϑ(x, t)] = 0. A Bäcklund Transformation is a pair of relations

Ri(ϕ, ϑ, ϕx, ϑx, ϕt, ϑt) = 0, i = 1, 2

which is integrable for ϕ when Q(ϑ) = 0 and the resulting ϕ satis�es

P(ϕ) = 0, and vice-versa. In the particular case P = Q one calls

Ri, i = 1, 2 a self-Bäcklund transformation7.

This type of gauge transformation is called Darboux Transformation and the opera-

tor K, which is called Darboux matrix, must satisfy some requirements, including

the one that �xes its form.

Indeed, the Darboux matrix associated with a Lax pair which is polynomial in

the parameter λ and in the inverse λ−1, has its general form given by8 [4, 10]

K =
1

λn
Kn +

n−1∑
i=0

1

λi
Ki, (3.9)

where Kn is a constant diagonal matrix, that without loss of generality we will

choose to be the identity matrix I. Since this type of transformation have been

considered along the years [3, 19, 43, 44], we are going to start now, an extension of

the same problem, but with the degree of the Darboux matrix equal to three, n = 3.

This number has been found by the unglamorous method of trial and error.

3.3.1 Gauge transformation for the Tzitzéica model

Now we use the technology that was used by [30] to construct the Darboux

transformation related to the Lax pair (3.5). When we consider a full matrix K,

relating the matrices A± and Ā± with components in the form

kij = αij + βij
1

λ
+ δij

1

λ2
+ γij

1

λ3
,

7As we are interested just in self-Bäcklund transformation, we will speak just Bäcklund trans-

formation, but keep in mind the terminology
8The positive expansion in λ is admissible and gives the same result - see in the appendix C the

way that we can use this expansion and convince yourself that, what is really important in this

calculation are the equations; and that their order in λ, assumes a place in the organization of the

system, what can be done by positive or negative powers in λ.
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we �nd three uncoupled systems of PDE involving the variables

1st−{α11 := α1;α22 := α2;α33 := α3; β13 := β1; β21 := β2; β32 := β3;

δ12 := δ1; δ23 := δ2; δ31 := δ3; γ11 := γ1; γ22 := γ2; γ33 := γ3},
2nd−{α12;α23;α31; β11; β22; β33; δ13; δ21; δ32; γ12; γ23; γ31},
3rd−{α13;α21;α32; β12; β23; β31; δ11; δ22; δ33; γ13; γ21; γ32}.

As we just said, we work with the �rst system because the lower order matrix with

n = 3 must be diagonal, then the others terms naturally vanish, hence

K =

α1 0 0

0 α2 0

0 0 α3

+

 0 0 β1

β2 0 0

0 β3 0

 1

λ
+

 0 δ1 0

0 0 δ2

δ3 0 0

 1

λ2
+

γ1 0 0

0 γ2 0

0 0 γ3

 1

λ3
.

When we put this Ansatz in (3.8), we will �nd several coupled PDEs, which

when solved give9:

K =

 α + ν λ−3 2 ξ v̄ ν
αγ

(α + ξ) λ−2 2 ξ2v̄2 ν
α2γ2 (α + ξ )2 λ−1

αγ
ξv̄
λ−1 ξ + ν λ−3 2 ξ v̄ ν

αγ
(α + ξ) λ−2

αγ2

2v̄2ξ2 λ
−2 γ

v̄
λ−1 ξ2 1

α
+ ν λ−3

 ,

where ξ and ν are constants and the �elds α and γ must satisfy the equations

∂+α− i
α γ

ξ
− 2 ν

γ2
(α + ξ )2 = 0 (3.10)

1

v̄
∂+γ −

γ

v̄2
∂+v̄ +

2 ν ξ

α v̄ γ
(α + ξ ) + i

γ2

2 v̄ ξ
= 0 (3.11)

∂−α− i
2 v̄ ξ

γ
(α + ξ ) +

α2γ2

2 ν v̄2 ξ2
= 0 (3.12)

∂−γ

v̄
+ i ξ

(
ξ

α
− 1

)
= 0 (3.13)

and

α =
v̄

v
ξ. (3.14)

It is worthwhile to say that equations (3.10) to (3.13) also could be called Dar-

boux Transformation, that together with (3.14) may be used to �nd new solutions

9In the appendix, a kind of sketch for this calculation will be presented, that, although it is

easy, it is annoying too.
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for the Tzitzéica equation through a previous one. Nevertheless, this is not a simple

system to solve, as easily one can notice throughout its cumbersome structure.

We can de�ne two useful functions

p :=
φ+ φ̄

2
q :=

φ− φ̄
2

(3.15)

whose de�nition allows us to write

α = exp (−2 q) ξ, (3.16)

from which follow the equations (3.10) to (3.13) given now by

∂+q = −1

2

[
i
γ

ξ
+

2ν ξ

γ2

(
eq + e−q

)2
]
,

∂+γ − γ ∂+p = −νξ (e2q − e−2q)

γ
,

∂−q = −1

2

[
i

2 ξ ep

γ

(
eq + e−q

)
− γ2

2ξν
e−2p

]
,

∂−γ = i ξ ep
(
e−q − eq

)
.

As a guess, we set

γ := eΛ,

thus, the above equations give

∂+q = −1

2

[
i

ξ
eΛ + 2 ν ξ e−2Λ

(
eq + e−q

)2
]

(3.17)

∂+ (Λ− p) = −ν ξ e−2 Λ
(
e2 q − e−2 q

)
(3.18)

∂−q = −1

2

[
2i ν ξ ep−Λ

(
eq + e−q

)
− e2Λ−2p

2 ξ

]
(3.19)

∂−Λ = i ξ e−Λ+p
(
e−q − eq

)
. (3.20)

Finally, the compatibility condition

(∂+∂−) q = (∂−∂+) q ,

is satis�ed and in order to satisfy (3.9), we choose ν = 1.

Again, we remember that a natural question that arises is: What would happen

if we had taken K with positive expansion in λ? In other words, if we choose K as

K =

α1 0 0

0 α2 0

0 0 α3

λ3 +

 0 0 β1

β2 0 0

0 β3 0

λ2 +

 0 δ1 0

0 0 δ2

δ3 0 0

λ+

γ1 0 0

0 γ2 0

0 0 γ3

 ,
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how would be the Darboux Transformation (DT) now? From what we have said

about the form of the matrix (3.9), we can realize that the DT will not change, and

naturally, the matrix K is

K =

 αλ3 + ν 2 ξ v̄ ν
αγ

(α + ξ) λ 2 ξ2v̄2 ν
α2γ2 (α + ξ )2 λ2

αγ
ξv̄
λ2 ξ λ3 + ν 2 ξ v̄ ν

αγ
(α + ξ) λ

αγ2

2v̄2ξ2 λ
γ
v̄
λ2 ξ2 1

α
λ3 + ν

 .

The Bäcklund transformation, could be considered just writing (3.17) and (3.19)

in terms of the �elds, so

∂+(φ− φ̄) = −
[
i

ξ
eΛ + 2ξe−2Λ(e

1
2

(φ−φ̄) + e−
1
2

(φ−φ̄)2

]
, (3.21)

∂−(φ− φ̄) = −
[
2iξe−Λ(eφ + eφ̄)− e−2Λ

2ξ
e−φ−φ̄

]
. (3.22)

Summing up In this chapter, we have presented the Tzitzéica model through its

Lagrangian density, also, we have presented a particular gauge transformation called

Darboux transformation, which allowed us to de�ne a pair of di�erential equations,

which make a relation between two known solutions of the Tzitzéica equation.
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Chapter 4

The Tzitzéica Model With Defects

S
ome years ago, it was introduced the notion of models that remain

integrable even when there exists an internal boundary condition, or using

the standard nomenclature, a defect or jump defect [19]. In this sense, one

could think of the whole system as the junction of two domains, each one, integrable

by itself.

In this approach, the sine-Gordon and Liouville models have been considered and

the conserved charges required for the integrability of the whole system were found

[19, 45]. Also, from the defect conditions (internal boundary conditions) between

these domains emerge the Bäcklund transformation at the defect.

Despite the success in some integrable non-linear Klein-Gordon equations, this

approach does not work with the Tzitzéica model and needed to be generalized.

With this aim, Corrigan & Zambon [20] allowed to the defect a kind of �well de�ned�

degree of freedom. Therefore, in the �rst section of this chapter, we will show what

they did in an e�ective fashion and later, we will apply it in the Tzitzéica model.

After, we easily conclude that exists a deep connection between the formulation

considered here and the gauge formulation considered in the previous chapter, i.e.

there exists a relation between the Darboux transformation and the defect conditions

that emerge from the integrable defects.
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4.1 Introducing Defects

Consider, �rst of all, the action

S[φ, φ̄,Λ] :=

∫
d2x θ(−x)Lφ(φ, ∂µφ) +

∫
d2x θ(x)Lφ̄(φ̄, ∂µφ̄)+

+

∫
d2x δ(x)LD(φ, ∂tφ, φ̄, ∂tφ̄,Λ, ∂tΛ),

where θ(x) is the Heaviside function and δ(x) de Dirac function1. Making a variation

δS = 0, considering the Gauss theorem and that the variation of the �eld vanishes

at the boundary of the system, one can write

0 =

∫
d2x θ(−x)

[
∂Lφ
∂φ
− ∂µ

(
∂Lφ
∂∂µφ

)]
δφ+

∫
d2x θ(−x)∂µ

(
∂Lφ
∂∂µφ

δφ

)
+

+

∫
d2x θ(x)

[
∂Lφ̄
∂φ̄
− ∂µ

(
∂Lφ̄
∂∂µφ̄

)]
δφ̄+

∫
d2x θ(x)∂µ

(
∂Lφ̄
∂∂µφ̄

δφ̄

)
+

+

∫
R
dt

{[
∂LD
∂φ
− ∂t

(
∂LD
∂∂tφ

)]
δφ+

[
∂LD
∂φ̄
− ∂t

(
∂LD
∂∂tφ̄

)]
δφ̄

}∣∣∣∣
x=0

+

+

∫
R
dt

[
∂LD
∂Λ
− ∂t

(
∂LD
∂∂tΛ

)]
δΛ

∣∣∣∣
x=0

+

∫
R
dt∂t

(
∂LD
∂∂tφ

δφ

)∣∣∣∣
x=0︸ ︷︷ ︸

(=0)

+

+

∫
R
dt∂t

(
∂LD
∂∂tφ̄

δφ̄

)∣∣∣∣
x=0︸ ︷︷ ︸

(=0)

+

∫
R
dt∂t

(
∂LD
∂∂tΛ

δΛ

)∣∣∣∣
x=0︸ ︷︷ ︸

(=0)

,

also, one can de�ne the currents

jµ = (jt, jx) :=
∂Lφ
∂∂µφ

δφ,

and

Jµ = (Jt, Jx) :=
∂Lφ̄
∂∂µφ̄

δφ̄,

1Pay attention here, the Dirac delta δ(x) has an argument, while the variation δ does not have.

Also, as d2x means dxdt, the Heaviside function must be taken, just in the space component.
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so, one �nds the expression

0 =

∫
d2x θ(−x)

[
∂Lφ
∂φ
− ∂µ

(
∂Lφ
∂∂µφ

)]
δφ+

∫ 0

−∞
dx

∫
R
dt [∂tjt + ∂xjx] +

+

∫
d2x θ(x)

[
∂Lφ̄
∂φ̄
− ∂µ

(
∂Lφ̄
∂∂µφ̄

)]
δφ̄+

∫ ∞
0

dx

∫
R
dt [∂tJt + ∂xJx] +

+

∫
R
dt

{[
∂LD
∂φ
− ∂t

(
∂LD
∂∂tφ

)]
δφ+

[
∂LD
∂φ̄
− ∂t

(
∂LD
∂∂tφ̄

)]
δφ̄

}∣∣∣∣
x=0

+

+

∫
R
dt

[
∂LD
∂Λ
− ∂t

(
∂LD
∂∂tΛ

)]
δΛ

∣∣∣∣
x=0

�nally

0 =

∫
d2x θ(−x)

[
∂Lφ
∂φ
− ∂µ

(
∂Lφ
∂∂µφ

)]
δφ+

∫
d2x θ(x)

[
∂Lφ̄
∂φ̄
− ∂µ

(
∂Lφ̄
∂∂µφ̄

)]
δφ̄+

+

∫
R
dt

{[
∂LD
∂φ
− ∂t

(
∂LD
∂∂tφ

)]
δφ+ jx +

[
∂LD
∂φ̄
− ∂t

(
∂LD
∂∂tφ̄

)]
δφ̄− Jx

}∣∣∣∣
x=0

+

+

∫
R
dt

[
∂LD
∂Λ
− ∂t

(
∂LD
∂∂tΛ

)]
δΛ

∣∣∣∣
x=0

.

Then, the Euler-Lagrange equations are
∂Lφ
∂φ
− ∂µ

(
∂Lφ
∂∂µφ

)
= 0 x < 0,

∂Lφ̄
∂φ̄
− ∂µ

(
∂Lφ̄
∂∂µφ̄

)
= 0 x > 0

(4.1)

together with the boundary (x = 0) conditions

∂LD
∂φ
− ∂t

(
∂LD
∂ (φt)

)
= − ∂Lφ

∂ (φx)
,

∂LD
∂φ̄
− ∂t

(
∂LD
∂
(
φ̄t
)) =

∂Lφ̄
∂
(
φ̄x
) , (4.2)

∂LD
∂Λ
− ∂t

(
∂LD
∂ (Λt)

)
= 0.

The Lagrangian of the integrable defect is de�ned as2

LD = −φφ̄t − φtφ̄
2

− Λ
(
φ− φ̄

)
t
+ Λt

(
φ− φ̄

)
+D

(
φ, φ̄,Λ

)
,

2It is worthwhile to comment that, this de�nition of the Lagrangian di�ers by a minus from the

Lagrangian de�ned by the original work [20]. The reason of this di�erence is the consistence with

the notation of the article [32]; if we had decided to use the Lagrangian de�ned by the �rst paper,

we would have to change the Lax pair of the second work by A+ 
 A−, to make both articles

work consistently at the same time.
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then, the boundary (or defect) conditions are

φx = −φ̄t + 2 Λt +
∂D
∂φ

,

φ̄x = −φt + 2 Λt −
∂D
∂φ̄

, (4.3)

φt = φ̄t +
1

2

∂D
∂Λ

.

Since time translation invariance is not broken, the energy E −D (where E is the
bulk energy of the �elds φ and φ̄) is conserved. On the other hand, the usual total

momentum is not conserved, then, some contribution over the defect must save this

conservation law. Corrigan & Zambon [20] have considered the following momentum

P :=

∫ 0

−∞
dxφxφt +

∫ ∞
0

dxφ̄xφ̄t.

Taking the time derivative and using the Euler-Lagrange equations (4.1) with the

usual Lagrangian densities, one has

Ṗ =

∫ 0

−∞
dx(φxtφt + φxφtt) +

∫ ∞
0

dx(φ̄xtφ̄t + φ̄xφ̄tt)

=

∫ 0

−∞
dx

(
φxtφt + φxφxx − φx

∂V (φ)

∂φ

)
+

+

∫ ∞
0

dx

(
φ̄xtφ̄t + φ̄xφ̄tt − φ̄x

∂V̄ (φ̄)

∂φ̄

)
=

1

2

(
φ2
t + φ2

x − 2V (φ)
)∣∣∣∣
x=0

− 1

2

(
φ̄2
t + φ̄2

x − 2V̄ (φ̄)
)∣∣∣∣
x=0

, (4.4)

keeping in mind that this equation is considered at the point x = 0, one can go on,

and uses the defect conditions (4.3), so

Ṗ =− φ̄t
∂D
∂φ
− φt

∂D
∂φ̄

+ 2Λt

(
∂D
∂φ

+
∂D
∂φ̄

+
1

2

∂D
∂Λ

)
+

+
1

2

[(
∂D
∂φ

)2

−
(
∂D
∂φ̄

)2
]
− V (φ) + V̄ (φ̄). (4.5)
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Considering that Ṗ is the total derivative of some function −Υ such that

∂Υ

∂φ
=
∂D
∂φ̄
− F,

∂Υ

∂φ̄
=
∂D
∂φ

+ F, (4.6)

∂Υ

∂Λ
=− 2

(
∂D
∂φ

+
∂D
∂φ̄

+
1

2

∂D
∂Λ

)
,

for some F = F (φ, φ̄,Λ), one has

Ṗ =− φ̄t
∂Υ

∂φ̄
− φt

∂Υ

∂φ
− Λt

∂Υ

∂Λ
+

+
1

2

[(
∂D
∂φ

)2

−
(
∂D
∂φ̄

)2
]
− V (φ) + V̄ (φ̄) + (φ̄t − φt)F

=− dΥ

dt
+

1

2

[(
∂D
∂φ

)2

−
(
∂D
∂φ̄

)2
]
− V (φ) + V̄ (φ̄)− 1

2

∂D
∂Λ

F︸ ︷︷ ︸
=0

and �nally (
∂D
∂φ

)2

−
(
∂D
∂φ̄

)2

= 2(V − V̄ ) +DΛF. (4.7)

Also, using the functions previously de�ned

p :=
φ+ φ̄

2
and q :=

φ− φ̄
2

,

and with some algebra, one writes (4.6) and (4.7) as

∂Υ

∂p
=
∂D
∂p

∂Υ

∂q
= −∂D

∂q
− 2F

∂Υ

∂Λ
= −∂D

∂Λ
− 2

∂D
∂p

.

Eliminating Υ from the previous system, one gets

∂D
∂q∂p

= −∂F
∂p

∂D
∂Λ∂p

= −∂
2D
∂p2

∂F

∂Λ
=

∂D
∂q∂p

= −∂F
∂p

.
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From these equations, Corrigan & Zambon at [20] found, by a heuristic argument,

that

D = f(p− Λ, q) + g(q,Λ), (4.8)

together with

F = −∂f
∂q

and Υ = f − g

then, equation (4.7) is

DpDq = 2(V − V̄ ) + (fΛ + gΛ)F,

which can be written as

fqgΛ − fΛgq = 2(V − V̄ ). (4.9)

Remark: Every dependence on Λ is in the left-hand side. This last equation will

be fundamental in our future considerations about transformations of the Tzitzéica

model.

4.2 Lagrangian approach

We already know that the Lagrangian to be considered is

L = θ (−x)Lφ + θ (x)Lφ̄ + δ (x)LD, (4.10)

where the integrable defect will be given through

LD = −φφ̄t − φtφ̄
2

− Λ
(
φ− φ̄

)
t
+ Λt

(
φ− φ̄

)
+D

(
φ, φ̄,Λ

)
,

with �elds implemented by the following Lagrangian densities

Lφ =
1

2
∂µφ∂

µφ− V (φ),

and

Lφ̄ =
1

2
∂µφ̄∂

µφ̄− V̄ (φ̄),

where the �eld φ is taken for x < 0 and, obviously, φ̄ will be de�ned for x > 0. The

Tzitzéica potentials are given by

V (φ) =
1

2

(
2eφ + e−2φ

)
=

1

2

(
2ep+q + e−2p−2q

)
(4.11)

V
(
φ̄
)

=
1

2

(
2eφ̄ + e−2φ̄

)
=

1

2

(
2ep−q + e−2p+2q

)
. (4.12)
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With some algebraic manipulations, from the boundary conditions (4.3) and the

de�nition (3.15) we can set the following relations

∂+q =
1

2

(
∂D
∂p

+
∂D
∂Λ

)
, (4.13)

∂−q = −1

2

(
∂D
∂p

)
. (4.14)

Last section, we have shown as Corrigan & Zambon [20], by a heuristic argument,

have proved that D can be set down as

D = f + g,

where the function g depends3 on q and Λ, and f depends on q and p − Λ. Also,

such functions must satisfy the bracket (4.9), i.e.

fq gΛ − fΛ gq = 2
(
V − V̄

)
,

which, any dependence on Λ contained in the left hand side of the equation must

cancel out [20]. With the potentials given by (4.11) and (4.12), the most general

Ansatz is

f = ∆ e2 Λ−2 p + Ω ep−Λ and g = Ξ e−2 Λ + Π eΛ, (4.15)

where ∆, Ω, Ξ and Π are functions of q. When we put (4.11), (4.12) and (4.15) into

(4.9), we �nd the constraints

∆q Π = 2 ∆ Πq; Ξq Ω = 2 Ξ Ωq;

2 (∆ Ξ)q =
(
e2 q − e−2 q

)
; (Ω Π)q = 2

(
eq − e−q

)
,

where the solution can be constructed by

(ΩΠ)q = 2(eq − e−q) ⇒ ΩΠ = 2(eq + e−q),

2(∆Ξ)q = (e2q − e−2q) ⇒ 2∆Ξ =
1

2
(e2q + e−2q),

∆q Π = 2 ∆ Πq ⇒ ∆ = κΠ2,

3Pay attention that at this point, the function Λ here is, a priori, a di�erent function from the

previously de�ned function Λ at chapter 3. This Greek letter has been chosen just for convenience,

because, in few lines, it will be proved that they are the same function.
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thus, the general solution is

Ω =
2

Π

(
eq + e−q

)
, ∆ = κΠ2, Ξ =

1

4κΠ2

(
eq + e−q

)2
.

Hence,

D = f + g

= κΠ2 e2 Λ−2 p +
2

Π

(
eq + e−q

)
ep−Λ +

1

4κΠ2

(
eq + e−q

)2
e−2 Λ + Π eΛ.

Taking this last equation, placing it in (4.13) and (4.14) we arrive at the following

equations

∂+q = −1

2

[
1

2κΠ2
e−2Λ

(
eq + e−q

)2 − Π eΛ

]
, (4.16)

∂−q = −1

2

[
−2κΠ2 e2 Λ−2 p +

2

Π

(
eq + e−q

)
ep−Λ

]
, (4.17)

that we must compare with the Darboux Transformation, in particular, with equa-

tions (3.17) and (3.19). Now, we can realize that

Π = − i
ξ

and Π2 =
1

4 ξ κ
,

remembering that we have put ν = 1, therefore

κ = −ξ
4
.

Finally, the whole Lagrangian is given by

L =θ (−x)

(
1

2
∂µφ∂

µφ− 1

2

(
2eφ + e−2φ

))
+ θ (x)

(
1

2
∂µφ̄∂

µφ̄− 1

2

(
2eφ̄ + e−2φ̄

))
+

+ δ (x)

[
−φφ̄t − φtφ̄

2
− Λ

(
φ− φ̄

)
t
+ Λt

(
φ− φ̄

)
+

1

4 ξ
e2 Λ−2(φ−φ̄)+

+ 2 i ξ
(
e2φ + e−(2 φ̄)

)
e−Λ + ξ

(
eφ−φ̄ + eφ̄−φ

)2

e−2 Λ − i

ξ
eΛ

]
. (4.18)

It has been proved so, that from the Lagrangian above constructed, the Darboux

transformation naturally appears. Then, the Lagrangian with this kind of defect

(that was analyzed by [20]), remains integrable and the relation between the solitons

in di�erent domains is given by the Darboux Transformation associated to the linear
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problem, i.e. to the system that arises from the Lax Pair. The Darboux, or even the

Bäcklund transformation is a weak criterion to prove the integrability of the whole

system; we need to �nd the conserved charges. In fact, in our recent work [21], we

have found the in�nite number of conserved charges, which prove that this whole

system is integrable, even with the existence of this kind of defect.

Summing up In this chapter, we have considered a method to introduce inte-

grable defects, broad enough to encompass the model important in this work - the

Tzitzéica model. Also, we have found a Lagrangian density which describes the inte-

grable defect in the system. And �nally, we have proved that the Darboux transfor-

mation (and hence the Bäcklund Transformation) obtained by Borisov agreed with

the defect conditions obtained by Corrigan & Zambon.
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Part II

Geometric Context
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Chapter 5

Theory of Surfaces

A
fter the great effort that we have done up to now, we arrive at

the easiest chapter of this work. Certainly there are non-trivial results

here, however, theory of curves and surfaces is a topic with a strong

visual appeal and in this sense, the subject is more pleasant. The �rst section

is devoted to curves and the principal result is the Frenet equations. The second

section, naturally, the ideas of curves are extended and we deal with surfaces. In the

last two sections the Gauss-Weingarten equations as well as the Mainardi-Codazzi

equations are presented.

This chapter represents a sort of training for the next chapter. There, we will

use the technology that we are going to develop here and we will look the Tzitzéica

model through its original point of view, the geometric one. Therefore, the idea of

surface and the equations that describe a generic surfaces must be known, so, in

this chapter, the aim is to present those ideas and, that is the reason why we need

this little introduction to the theory of surfaces. We have created this short chapter,

following the classical books of Do Carmo [47] and Struik [14].

5.1 Curves

Before start studying surfaces itself, let us talk a little about curves in R3, this

is the conventional approach and we will use that. As was pointed by Struik at [14],

One can think curve in space as paths of a point in motion.
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The coordinates (x1, x2, x3) of a point can be expressed as functions of a parameter

u ∈ I ⊆ R
xi := xi(u) i = 1, 2, 3,

where the evolution parameter u is usually called time. So, the curve C is represented
by the map

r(u) := (x1(u), x2(u), x3(u)) : I → R3.

One can de�ne the length of this curve as

s = s(u) :=

∫ u

u0

∣∣∣∣drdu
∣∣∣∣ du,

and from the fundamental theorem of calculus

ds

du
=

∣∣∣∣drdu
∣∣∣∣ .

This equation de�nes a representation of the curve C in terms of the arc length or

natural representation, so in this representation one writes r = r(s) and∣∣∣∣drds
∣∣∣∣ = 1,

thus, dr
ds
≡ ṙ is a unit vector, since∣∣∣∣drds

∣∣∣∣2 =
dr

ds
· dr
ds

= ṙ · ṙ = 1.

The vector ṙ is called unit tangent vector and it is denoted by

t ≡ ṙ.

Now, one can take the derivative of the tangent vector and one de�nes the curvature

vector,

k = k(s) = ṫ.

The magnitude of this vector is called curvature of the curve C at the point P ∈ x(s)

and it is presented as

k = |k(s)|.

Also, one can think of a unit vector n in the direction of the curvature vector

and naturally, perpendicular to the unit tangent vector t, so

k = kn.
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The vector n is called principal normal vector. Finally, since one has the orthogonal

vectors t and n, a new vector, perpendicular to both, called unit binormal vector

can be de�ned as

b := t× n.

The triad (t,n,b) is known as moving trihedron of the curve C.
As b · t = 0, taking its derivative

d

ds
(b · t) = ḃ · t + b · ṫ = 0,

so

ḃ · t = −b · ṫ = −kb · n = 0,

then, ḃ is perpendicular to t, and from b ·b = 1 one concludes that ḃ is orthogonal

to b too, since

ḃ · b = 0,

one concludes so, that b is proportional to n, what allows one to write

db

ds
= ḃ := −τn,

and one calls τ the torsion of the curve C at the point P ∈ x(s).

Evidently, the derivative of the unit vector n is needed. For this deal, it is enough

to notice that one can write this vector as

n = b× t,

so, its derivative is just

ṅ = ḃ× t + b× ṫ = −τn× t + kb× n = −kt + τb.

One can sum up these last results as

dt
ds

= kn
dn
ds

= −kt τb
db
ds

= −τn
(5.1)

and
dr

ds
= t. (5.2)

These equations are called Frenet Formulas or Serre-Frenet Formulas and describe

the motion of the moving trihedron along the curve.
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5.2 Surfaces

Heuristically, one can understand a surface Σ as the set of points in the euclidean

space R3 that in certain sense resembles deformed sheets placed together, in a way

that there are no sharp points, cutting, self intersections and so on 1.

Intelligently, one may mimic what was done in curves and try to extend it for

surfaces. So, a map from a space parameter, that without loss of generality can be

a subset of the plane S ⊆ R2, onto a set of points in U ⊂ R3, is a representation of

a surface in the euclidean space R3. Expressing the rectangular functions of R3 in

terms of two parameters ρ, % ∈ S, one has

xi := xi(ρ, %), i = 1, 2, 3;

and in vector form

r := r(ρ, %) = x1e1 + x2e2 + x3e3 : S ⊆ R2 → U ⊂ R3.

Over this surface, one can de�ne a curve C; in other words, on the surface one can

glue a curve, to be determined by functions with a parametric forms ρ = ρ(t) and

% = %(t). In this sense, the functions ρ and % draw a curve in S ⊆ R2 and then, xi
draws the curve on the surface,

xi ◦ ρ, xi ◦ % : R→ R3 i = 1, 2, 3.

The tangent vector2 to this curve on the surface is de�ned as

dr :=
dr

dρ
dρ+

dr

d%
d% ≡ rρdρ+ r%d%.

And the distance between two points on the curve is already known

s =

∫ ∣∣∣∣drdt
∣∣∣∣ dt.

that one would have obtained integrating

√
ds2 =

√
dr · dr,

1Regular surface, but the adjective is hidden, because the curves treated here, are so smooth

and well behaved that the notions of calculus can be extended.
2In the appendix A, page 83, we explain the di�erential as a map between tangent spaces.
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along the curve. The quantity to be considered now, is

I = ds2 = dr · dr = Edρ2 + 2Fdρd%+Gd%2, (5.3)

where: E = rρ · rρ, F = rρ · r% and G = r% · r%, that one could sum up through

· rρ r% N

rρ E F 0

r% F G 0

N 0 0 1

The function I = ds2 is known as First Fundamental Form and indicates how the

surface inherits the inner product of the euclidean space R3. Also, notice that when

the parametric curves are orthogonal rρ ⊥ r% then F = 0. Another important result

is the positivity of

EG− F 2 = (rρ · rρ) (r% · r%)− (rρ · r%) (rρ · r%) ,
=
(
δjmr

j
ρr
m
%

) (
δknr

k
ρr
n
%

)
−
(
δjnr

j
ρr
n
%

) (
δkmr

k
ρr
m
%

)
=
(
δjmδ

k
n − δjnδkm

)
rjρr

n
% r

k
ρr
m
%

and using

εijkεimn = δjmδ
k
n − δjnδkm,

easily one concludes that

EG− F 2 = |rρ × r%|2 := H2 > 0. (5.4)

Those familiar with special relativity can recognize that when one deals here

with ds, it is doing the same considerations that are usually done there. The only

di�erence is the coe�cients E, F , G that depend of the space structure, which in

the relativity case, is Minkowski space. In relativity, the quantity ds is written as

ds2 = −c2dt2 + dr · dr,

that is the space-time interval, an invariant quantity as well as the length is an

invariant in the euclidean space. Also, we know that the function ds is enough

to our considerations in the relativity, mainly because the Minkowski space is not

embedded in a space of higher dimension. When we treat spaces embedded in some
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space of higher dimension, we need some information about the normal vector to

the surface in each of its points. This information will be counted when one de�nes

another invariant quantity, but at this time, besides the tangent vectors to some

curve on this space, the normal vector must be considered. This invariant quantity

is called Second Fundamental Form.

Evidently, a generic two-dimensional surface, that is the goal of this section,

must be thought as a space embedded in the euclidean three-dimensional space.

The second invariant quantity will be considered by setting a normal unit vector to

the surface

N =
rρ × r%
|rρ × r%|

. (5.5)

Considering now the curvature vector of a curve C at the point P, we can decompose

dt

ds
= r̈ = k = kn + kt,

where kn is normal and kt is tangent to the surface. Naturally, one can de�ne a

proportionality constant kn such that

kn := knN, (5.6)

this vector is called normal curvature vector and its component kn is the normal

curvature, by de�nition. The tangent vector t := ṙ is orthogonal to N, then

d

ds
(t ·N) =

dt

ds
·N + t · dN

ds
= 0.

As, the curvature vector is k = dt
ds
, one has

k ·N = −dr
ds
· dN
ds

,

using the natural representation, de�ned by dr
ds

= 1, �nally

kn = −dr · dN
dr · dr

. (5.7)

Only de numerator is unknown, the denominator is the �rst fundamental form, then

dN := Nρdρ+ N%d% and dr := rρdρ+ r%d%,

what allows to set down

II = −dr · dN = edρ2 + 2fdρd%+ gd%2, (5.8)
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where e = −rρ ·Nρ, f = −1
2

(rρ ·N% + r% ·Nρ) and g = −r% ·N%.

Now, using

rρ ·N = 0 = r% ·N,

one can write e = rρρ · N, f = rρ% · N and g = r%% · N. This last function II, is

what one calls Second Fundamental Form. The general aspects of the surface in the

three-dimensional space can be determined just with these quantities, the �rst and

second fundamental forms.

Another important result is the Gaussian Curvature,

κ :=
eg − f 2

EG− F 2
, (5.9)

that says the behaviour of the curvature in a given point. Follows from this de�nition

that each point in the surface is a

Hyperbolic point if: eg − f 2 < 0 ⇒ κ < 0,

Parabolic or planar point if: eg − f 2 = 0 ⇒ κ = 0,

Elliptic point if: eg − f 2 > 0 ⇒ κ > 0,

since (5.4) sets that EG−F 2 > 0. The derivation of the expression for the Gaussian

curvature is not complicated, however, it would demand a short deviation of the real

aim of this section, this derivation is made in a wonderful fashion in [14, 48].

Asymptotic Curves

Now, let us talk about asymptotic curves very quickly. Asymptotic directions

occurs when:

kn = 0 ⇒ II = 0 ⇒ edρ2 + 2fdρd%+ gd%2 = 0,

and curves having these directions are called asymptotic curves. They occurs, for

instance, if there exists a straight line on the surface.

When e = 0 = g, and f 6= 0, i.e. in a hyperbolic point, the asymptotic curves

are given by

dρ = 0⇒ ρ = c0 ∈ R,

d% = 0⇒ % = c1 ∈ R,

i.e, ρ and % constants. Therefore,
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In a neighborhood of a hyperbolic point on a surface, there exist two

distinct families of asymptotic lines.

The asymptotic curves in the case of a hyperbolic point are useful parametrizations.

For elliptic points, there are no real curves that satisfy kn = 0.

5.3 The Gauss-Weingarten equations

One can think about the Gauss-Weingarten equations for surfaces analogously

to the Frenet equations for curves. It means that, as in the case of curves that one is

able to express the vectors ṫ, ṅ and ḃ in terms of the orthonormal moving trihedron

for curves t, n and b (5.1) one would like to express rρρ, rρ%, r%% and Nρ, N% in

terms of a new linearly independent (not necessarily orthonormal) moving trihedron

for surfaces, rρ, r%, and N. These equations can be de�ned as

rρρ := Γ1
11rρ + Γ2

11r% + α11N

rρ% := Γ1
12rρ + Γ2

12r% + α12N

r%% := Γ1
22rρ + Γ2

22r% + α22N

Gauss equations

Nρ := β1
1rρ + β2

1r% + γ1N

N% := β2
1rρ + β2

2r% + γ2N

}
Weingarten equations

where Γijk, αij, β
j
i , γi for i, j, k = 1, 2 must be determined.

Explicit calculations for determination of Γijk, αij, β
j
i , γi were carefully made by

[48]. This achievement is not complicated, however, demands a little e�ort. The

key point of this achievement is to consider the orthogonality relations

N ·Nρ = N ·N% = 0 = N · r% = N · rρ

and that N is a unit vector.

The Gauss equations associated with a surface Σ in R3 are

rρρ = Γ1
11rρ + Γ2

11r% + eN

rρ% = Γ1
12rρ + Γ2

12r% + fN (5.10)

r%% = Γ1
22rρ + Γ2

22r% + gN.
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While the Weingarten equations are

Nρ =
fF − eG
EG− F 2

rρ +
eF − fE
EG− F 2

r%, (5.11)

N% =
gF − fG
EG− F 2

rρ +
fF − gE
EG− F 2

r%.

The coe�cients Γijk, called Christo�el symbols, are given3 by

Γ1
11 =

GEρ − 2FFρ + FE%
2H2

, Γ2
11 =

2EFρ − EE% − FEρ
2H2

,

Γ1
12 =

GE% − FGρ

2H2
, Γ2

12 =
EGρ − FE%

2H2
, (5.12)

Γ1
22 =

2GF% −GGρ − FG%

2H2
, Γ2

22 =
EG% − 2FF% + FGρ

2H2
.

The compatibility conditions (rρρ)% = (rρ%)ρ and (r%%)ρ = (rρ%)% make arise the

Mainardi-Codazzi equations:

e% − fρ = Γ1
12e+

(
Γ2

12 − Γ1
11

)
f − Γ2

11g,

f% − gρ = Γ1
22e+

(
Γ2

22 − Γ1
12

)
f + Γ2

21g. (5.13)

There are several analytical expressions for the Mainardi-Codazzi equation, in this

work, one particularly useful can be obtained considering the derivative( e
H

)
ρ(%)

=
eρ(%)

H
− e

H2
Hρ(%) ⇒ eρ(%) =

( e
H

)
ρ(%)

H +
e

H
Hρ(%)(

f

H

)
ρ(%)

=
fρ(%)

H
− f

H2
Hρ(%) ⇒ fρ(%) =

(
f

H

)
ρ(%)

H +
f

H
Hρ(%)( g

H

)
ρ(%)

=
gρ(%)

H
− g

H2
Hρ(%) ⇒ gρ(%) =

( g
H

)
ρ(%)

H +
g

H
Hρ(%)

and plugging these equations in (5.13). Hence, one gets another formula for the

Mainardi-Codazzi equations [14]( e
H

)
%
−
(
f

H

)
ρ

+
e

H
Γ2

22 − 2
f

H
Γ2

12 +
g

H
Γ2

11 = 0,( g
H

)
ρ
−
(
f

H

)
%

+
e

H
Γ1

22 − 2
f

H
Γ1

12 +
g

H
Γ1

11 = 0. (5.14)

3We physicists usually write the Christo�el symbols in a particular fashion, for this, consider

the de�nition g11 = E, g22 = G, g12 = F , see [14, 48] for details.
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Summing up The general aspects of surfaces embedded in the euclidean space

R3 have been considered here. We learn about the Gauss approach for surfaces

including the Gaussian curvature and the Gauss-Weingarten equations, also from

the compatibility conditions for these equations, emerge the Mainardi-Codazzi equa-

tions.
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Chapter 6

From geometry to Tzitzéica equation

I
n this brief chapter, the focus are surfaces with negative Gaussian

curvature, or hyperbolic surfaces, in particular, surfaces whose the Gaus-

sian curvature at a generic point, is proportional to the fourth power of

the distance from origin to this point. There are a particular interest in these sur-

faces called a�ne spheres or a�nsphären, because, from the compatibility condition

of the equations which describe this surface, emerge the equation that we know as

Tzitzéica equation. This was the approach used by Tzitzéica in his work, which

culminated in the origin of a new branch of di�erential geometry of surfaces, the

a�ne geometry, therefore, a�nsphären are as important for a�ne geometry as the

ordinary spheres are for Riemannian geometry.

In this chapter, we will derive the set of equations which describe the Tzitzéica

surface and naturally, we will �nd its equation from the compatibility conditions of

the Gauss equations. The present chapter was composed in the light of the books

of Rogers & Shief [4] and Coley et.al. [16].
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6.1 A�nesphären and Hyperbolic Surfaces

Consider a hyperbolic surface Σ parametrized in terms of orthogonal (F = 0)

asymptotic (e = 0 = g) curves; in this system, the Gauss equations are

rρρ = Γ1
11rρ + Γ2

11r%,

rρ% = Γ1
12rρ + Γ2

12r% + fN, (6.1)

r%% = Γ1
22rρ + Γ2

22r%,

the Mainardi-Codazzi equations are(
f

H

)
ρ

+ 2

(
f

H

)
Γ2

12 = 0,(
f

H

)
%

+ 2

(
f

H

)
Γ1

12 = 0, (6.2)

and �nally, the Gaussian curvature is

κ = − f
2

H2
. (6.3)

From the Mainardi-Codazzi equations, we have

−
(
f

H

)
Γ2

12 =
1

2

(
f

H

)
ρ

⇒ −Γ2
12 =

1

2

(
f

H

)−1(
f

H

)
ρ

⇒ −Γ2
12 =

2

4

[
ln

(
f

H

)]
ρ

⇒ −Γ2
12 =

1

4

[
ln

(
f 2

H2

)]
ρ

=
1

4
[ln (−κ)]ρ

and in the same way for Γ1
12, therefore

Γ2
12 = −1

4
[ln (−κ)]ρ , (6.4)

Γ1
12 = −1

4
[ln (−κ)]% . (6.5)

The cross derivative rρ% can be write now

rρ% = −1

4
[ln (−κ)]% rρ −

1

4
[ln (−κ)]ρ r% + fN. (6.6)

So, the Gauss equation involving the cross derivative was written in terms of the

Gaussian curvature κ. The next step is to consider the distance from origin to a

tangent plane to Σ at a generic point P ; that distance, obviously, is

d = N · r,
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together with the derivatives

dρ = Nρ · r and d% = N% · r.

One could think about these equations as projections of the vector r onto N , Nρ

and N%. Considering the Weingarten equations

Nρ = −fE
H2

r%, (6.7)

N% = −fG
H2

rρ, (6.8)

one has

dρ = Nρ · r = −fE
H2

r% · r ⇒ r% · r = −H
2

fE
dρ,

d% = N% · r = −fG
H2

rρ · r ⇒ rρ · r = −H
2

fG
d%,

which imply

r = −H
2d%
fE

rρ −
H2dρ
fE

r% + Nd.

From the relations, which de�ne the coe�cient f = rρ% ·N of the second fundamental

form and the orthogonality relations rρ ·N = 0 = r% ·N, one concludes that

Nρ · r% = −f = N% · rρ

−fE
H2

= −f = −fG
H2

,

hence E = G = 1. Finally, the vector r is

r = −d%
f
rρ −

dρ
f
r% + Nd. (6.9)

Using this last equation, one can subtract f
d
r from (6.6); then

rρ% −
f

d
r =

(
d%
d
− 1

4
[ln (−κ)]%

)
rρ +

(
dρ
d
− 1

4
[ln (−κ)]ρ

)
r%

= −1

4

[
ln
(
− κ

d4

)]
%
rρ −

1

4

[
ln
(
− κ

d4

)]
ρ
r%.

Using now, the Tzitzéica condition, that is, when we suppose that the Gaussian

curvature κ, is proportional to the fourth power of the distance d, i.e.

− κ

d4
= c2 ∈ R∗+
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one arrives to the equation

rρ% = vr (6.10)

where one de�nes v := f/d.

The compatibility conditions (rρ%)ρ = (rρρ)% and (rρ%)% = (r%%)ρ imply

Γ1
11 =

vρ
v
, Γ2

11 =
a(ρ)

v
, Γ1

22 =
b(%)

v
and Γ2

22 =
v%
v

and the �eld v must satisfy the following equation

(ln v)ρ% = v − ab

v2
.

This is exactly the Tzitzéica equation, when ab = 1. With this parametrization, the

Gauss equations can be presented as

rρρ =
vρ
v
rρ +

a

v
r%,

rρ% = vr, (6.11)

r%% =
v%
v
r% +

a−1

v
rρ.

Summing up We have found here, the Tzitzéica equation from the compatibility

conditions of the Gauss equations. This approach gives some additional information,

because, besides the Tzitzéica equation itself, now we have a system of equations

which describe a hyperbolic surface and it is fundamental for the construction of the

Bäcklund transformation that we are looking for.
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Chapter 7

Transformation of Surfaces

O
ne of the most prominent problems around the Tzitzéica equation

is about its transformations. As we said before, Tzitzéica studied a par-

ticular class of surfaces associated with this equation, that has a negative

Gaussian curvature - hyperbolic surfaces - in R3.

In his work, Tzitzéica found a linear representation of the equations that describe

the surface (that we have already seen) and he has established a transformation that

allowed him to �nd new solutions of the equation, having at least, one trivial solution

as a seed (that we will see now). In a modern point of view, he found the Lax Pair

and the Moutard transformation for his equation.

All along this work, we have cited Bäcklund and Darboux like-transformations,

now, we speak about Tzitzéica and Moutard like-transformations, that we will de�ne

in this chapter. There are a kind of overlap among these transformations, as was

pointed by [29].

In a heuristic mode, Darboux Transformation generates a new solution, that is

expressed via an older solution and the eigenfunction of the Lax operator associ-

ated to the �rst solution; while the Bäcklund Transformation does not require any

solution of the Lax Pair problem associated, however, to the contrary to the Dar-

boux Transformation, the Bäcklund does not represent an explicit solution of the

equation, but a di�erential relationship between the new and older solutions.

Loosely speaking, we can say that these kind of transformations, allow the itera-

tive construction of hyperbolic surfaces. Then, we now use this idea to our problem.

Therefore, in this chapter, the last one, we will show how to reduce the transforma-
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tions that we have found in the �rst part of our work, to the transformation that

Tzitzéica found in his original work.

7.1 On the Tzitzéica Transformation

Analogously to what was done at [30], the Darboux transformation, previously

found at the chapter 3 through the system (3.10) - (3.13), can be written in a

di�erent way, via the following approach:

Explicit calculation shows that the determinant of the Darboux matrix K is

given by

detK =

(
− 1

λ3
+ ξ

)2(
1

λ3
+ ξ

)
.

According to [26, 30, 46], when ξ = 1
λ3 , the detK is equal to zero and the rank of

the Darboux matrix is the unity, that is

detK
∣∣∣
ξ= 1

λ3

= 0.

An arbitrary matrix function J(µ) is said to have a zero at µ0 if det J(µ0) = 0,

then, the inverse matrix J−1(µ) has a singularity at this point, i.e. a pole of �nite

order. If µ0 is a simple pole, then one can expand

J−1(µ) =
A

µ− µ0

+ C + . . . ,

and in the neighborhood of µ0 the function J(µ) can be expanded as

J(µ) = B +D (µ− µ0) + . . .

Consider now the problem with J1(µ) and J2(µ) such that J1(µ)J2(µ) = 1,

J1(∞) = 1 and J2(∞) = 1. Now, let µ0 and ν0 be zeros of J1(µ) and J2(µ)

respectively. As J1(µ)J2(µ) = 1, the zero of J1(µ) is the pole of J2(µ) and vice

versa, thus one can write

J1(µ) = 1 +
A1

µ− ν0

,

J2(µ) = 1 +
A2

µ− µ0

.

Then

J1(µ)J2(µ) =

(
1 +

A1

µ− ν0

)(
1 +

A2

µ− µ0

)
= 1.
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from which one easily concludes that

A1 = −A2

and

A1 −
A1A2

µ0 − ν0

= 0, A2 +
A1A2

µ0 − ν0

= 0.

This system has the following solution

A1 = −(µ0 − ν0)P

and

A2 = (µ0 − ν0)P,

where P 2 = P , it means that P is a projection operator.

Finally, one writes

J1(µ) = 1− µ0 − ν0

µ− ν0

P,

J2(µ) = 1 +
µ0 − ν0

µ− µ0

P,

where

J1(µ0) = 1− P = J1(ν0).

Obviously, one can think of these operators in a N -dimensional linear complex

space V N . In such a space, let there be a linear operator U , then

KerU = {~u0 ∈ V N | U~u0 = ~0},

and

ImU = {~u ∈ V N | U~u = ~w ∈ V N};

i.e. the null space (kernel) and the range (image) of the linear operator U , respec-

tively. Evidently, the null vector ~0 is present in both spaces and if ~u i
0 ∈ KerU and

~u j ∈ ImU , for any i, j ∈ N, then∑
i

ai~u
i

0 ∈ KerU

and ∑
j

bj~u
j ∈ ImU,
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∀ ai, bj ∈ C. It means that KerU and ImU are linear subspaces of V N and

V N = KerU ⊕ ImU.

In the nondegenerate case, i.e. detU 6= 0 ⇒ kerU = 0 and ImU = V N and in a

degenerate case, detU = 0, kerU and ImU are non-trivial.

Now, if U is a projector, i.e. U2 = U , then there are two important properties

to be considered:

1. ∀ ~uI ∈ ImU ⇒ U~uI = ~uI ;

2. As V N = KerU ⊕ ImU one can decompose a vector ~u ∈ V N as ~u = ~u0 + ~uI

where ~u0 ∈ KerU and ~uI ∈ ImU . Then

~uI = U~u

and

~u0 = ~u− U~u = (1− U) ~u.

So, if U is a projector, then, 1− U also will be.

Now, notice that ImU = {~uI} and (1− U) ~uI = ~0, then Ker (1− U) = {~uI},
then

ImU = {~uI} ≡ Ker (1− U) ,

in the same way, one concludes that

KerU = {~u0} ≡ Im (1− U) .

After this long conversation, easily one concludes that the Darboux matrix K at

ξ = 1
λ3 , is a projection matrix. In this situation, the matrix can be written as 1

Ki j|ξ= 1
λ3

= mi nj, (7.1)

which implies the following theorem.

1Although, mathematicians may be familiar with this formula, it can cause a strange reaction

for physicists, but if one writes it as Ki j = |mi〉〈nj |, everything will be �ne. However, the �rst way
to write this expression was chosen, because, the second form is often used for quantum systems

and in present context, is everything classic.
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Theorem 1 The solution of equation (3.8) for ξ = 1
λ3 , can be represented in the

form (7.1), where ~m and ~n are solutions of∣∣∣∣∣ ∂− ~m = −Ā− ~m ∂−~n
† = A†− ~n

†

∂+ ~m = −Ā+ ~m ∂+~n
† = A†+ ~n

† , (7.2)

where

~m =

 m1

m2

m3

 and ~n =
(
n1 n2 n3

)
.

Proof. As K = ~m~n, its derivative will be

∂±K = (∂± ~m)~n+ ~m (∂±~n) = −Ā± ~m~n+ ~m~nA± = KA± − Ā±K.

Using the Lax pair (3.5), the following system of equations is found∣∣∣∣∣∣∣
∂−n1 = −∂−v

v
n1 − i

λ
n2 ∂+n1 = λ

v2n3

∂−n2 = − i
λ
n3 ∂+n2 = −i λ v n1

∂−n3 = ∂−v
v
n3 − 1

λ
n1 ∂+n3 = −iλ v n2

. (7.3)

Considering the cross derivative in this system and eliminating n1 and n3, the

following equation appears

∂2n2 : = ∂−∂+n2

= iλ(∂−v)n1 + iλv∂−n1

= iλ(∂−v)n1 + iλv

(
−∂−v

v
n1 +

i

λ
n2

)
= −v n2 ≡ ∂+∂−n2. (7.4)

Also, the following relations are available

∂2
−n2 =

∂−v∂−n2

v
− 1

λ3 v
∂+n2 (7.5)

∂2
+n2 =

∂+v∂+n2

v
+
λ3

v
∂−n2. (7.6)

From the equation (7.1) and β := γ/v̄, the following relations are invoked

K13

K12

≡ n3

n2

=
ξ (α + ξ)

αβ

1
3
√
ξ

K12

K11

≡ n2

n1

=
2ξ

αβ
3
√
ξ2, (7.7)
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from which follows

n3

n2

=
ξ (α + ξ)

αβ

1
3
√
ξ

=
(α + ξ)

3
√
ξ

1

2 3
√
ξ2

n2

n1

,

then, α can be presented as a function of nj, j = 1, 2, 3, i.e.

α = ξ

(
2n1n3

n2
2

− 1

)
; (7.8)

using now, the previously de�nition of α (3.14), the derivatives ∂±n2 from (7.3) and

the following relation

∂+∂− lnh = −∂+h∂−h

h2
+
∂+∂−h

h
, ∀h ≡ h (x+, x−) , (7.9)

�nally the transformation equation is found

v̄ = v + 2∂+∂− (lnn2) . (7.10)

This is the transformation that Tzitzéica has found in his work and it is a

Moutard-type transformation; in modern literature, it is known as Tzitzéica trans-

formation. This equation allows to construct iteratively solutions of the equation

(3.4), that is, this equation gives a new Tzitzéica surface from a previous one, or in

solitonic context, a new Tzitzéica soliton from a previous one. For that realization,

it is enough to solve the equation (7.4).

7.1.1 On the Moutard and the Tzitzéica transformations

Now, one is able to understand the general way of iterative generating of solutions.

Finally, the Moutard and the Tzitzéica transformations will be explained with some

sort of precision.

Theorem 2 (Moutard Transformation) The hyperbolic equation

rρ% = vr (7.11)

is form invariant under the transformation

r→ r′ = r− 2
m

η

v → v′ = v − 2 (ln η)ρ% , (7.12)
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where m is de�ned by

mρ := ηρ r, m% := η r% (7.13)

and η is a particular solution of a scalar version of (7.11) , that means that η satis�es

ηρ% = vη.

Proof. With the aim to proof this theorem, just consider the derivative

r′ρ% =

(
r− 2

m

η

)
ρ%

= rρ% − 2

(
m

η

)
ρ%

= hr− 2

(
m

η

)
%ρ

= vr− 2

(
m%

η
− m

η2
η%

)
ρ

= vr− 2r%ρ + 2

(
m

η2
η%

)
ρ

= −vr + 2

(
mρ

η2
η% +

m

η2
η%ρ

)
− 4

mη%ηρ
η3

= −vr + 2

(
η%ηρ
η2

r +
m

η2
vη − 2

m η%ηρ
η3

)
= r

(
−v + 2

ηρη%
η2

)
+ 2

m

η

(
v − 2

ηρη%
η2

)
=

(
−v + 2

ηρη%
η2

)(
r− 2

m

η

)
,

now, using (7.9)

r′ρ% =
(
v − 2 (ln η)ρ%

)(
r− 2

m

η

)
= v′r′.

Q.E.D.

Suppose now that r satis�es (7.11) and the equations

rρρ =
vρ
v
rρ +

a

v
rρ

r%% =
v%
v
r% +

a−1

v
rρ,

with the real parameter a. Also, consider that the �eld η satis�es a scalar version

of these equations but with the real parameter b.

Choosing the potential m in an appropriate way

m :=
1

a+ b

[
bηr + a

ηρ
v
r% − b

η%
v
rρ

]
,

then, easily one �nds

r′ =
a− b
a+ b

[
r− 2

(a− b)v

(
a
ηρ
η
r% − b

η%
η
rρ

)]
,
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with a−b
a+b

as an irrelevant constant factor. Finally, the Tzitzéica Transformation can

be presented.

Theorem 3 (Tzitzéica Transformation) The Gauss equations

rρρ =
vρ
v
rρ +

a

v
r%

rρ% = vr (7.14)

r%% =
v%
v
r% +

a−1

v
rρ, ,

together with the Tzitzéica equation

(ln v)ρ% = v − 1

v2
, (7.15)

are invariant under the transformation

r→ r′ = r− 2

(a− b)v

(
a
ηρ
η
r% − b

η%
η
rρ

)
v → v′ = v − 2 (ln η)ρ% , (7.16)

where η is a particular solution of the scalar version of (7.14), but with b as a

parameter.

Then, we already know that we can make ρ → −x+ and % → x−, and when we

identify the �eld η with n2, we get the Tzitzéica-Moutard transformation (7.10).

7.1.2 Zero to one soliton - a naive example

As a simple but necessary example, the construction of one soliton solution from

the trivial solution is now considered. When v = 1 (φ ≡ 0), let

n2 = exp

[
i

2

(
ε x+ +

x−
ε

)]
cosh

[√
3

2

(
ε x+ −

x−
ε

)]

be a particular solution of (7.4) with ε an arbitrary constant. Since one puts this

function in (7.10), the following solution arises

v̄ = 1− 3

2 cosh2
[√

3
2

(
ε x+ − x−

ε

)] . (7.17)

63



With a computational help, this last expression can be evaluated as a solution

of equation (3.4), in fact, this is the one soliton solution of the Tzitzéica equation,

as one might expect. The example considered here is the easiest, of course; a second

application of the Tzitzéica transformation will demand to solve the equation (7.4)

with (7.17) as a seed - and it is not so simple. The construction of explicit new

solution through the Tzitzéica procedure has been considered at [31], where those

solutions were expressed in terms of the Weierstrass functions.

Summing up We have shown in this chapter that the Tzitzéica-Moutard trans-

formation is in the heart of the Bäcklund transformation which we have found in

chapter 3. This transformation is so useful, that we have considered a simple exam-

ple as an upshot of this chapter.

64



Chapter 8

Conclusions

A
t the end of each chapter, we have considered a sort of conclusion,

what makes this formal conclusion very friendly. The main objective

of this work was to consider the transformations that allow to �nd a

new solution from a previous one. We have considered these transformations from

di�erent points of view and at the end, we conclude that we have a systematic way

to construct them.

First of all, we found the Darboux and Bäcklund transformation via gauge trans-

formation and after, we saw that from the Lagrangian approach for integrable sys-

tems with jump defects, we could obtain the same set of transformations. In this

way, indirectly we have found that the defect does not spoil the integrability of

the whole system. The integrability of the system would be guaranteed if we had

the conserved quantities, and actually, recently we have found these in�nitely many

conserved charges at [21].

In the second part of this work, we started considering our model from the

geometric aspect and we have shown how to reduce the transformations already

obtained at the �rst part to the transformation that Tzitzéica himself, found. The

advantage of the geometric approach consists in the freedom available to us, that is,

besides the Tzitzéica equation and the Lax pair - available in the solitonic context

-, at the geometric approach, we have equations that describe the surface, then, we

have some additional informations.

As we said before at the beginning of third chapter, there exist some misunder-

standing about the Bäcklund transformation for the model. While some researchers
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say that there are no Bäcklund transformation for Tzitzéica equation, others have

found ine�ective transformations. The transformations that we have dealt here in

this work, were obtained by Borisov [30] and we have shown that his transforma-

tions can be identi�ed as the defect conditions obtained by Corrigan & Zambon

[20]. Also, these transformations were identi�ed with the Moutard-Tzitzéica trans-

formation, where we have an e�ective formula for the generating of solitons. This is

the reason why we think that the transformations considered here in this work, are

better than any other considered after the Tzitzéica original work.
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Part III

Appendices
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Appendix A

Manifolds

T
o avoid to cite too many references along this chapter, it is enough

to say that the approach used here in all these de�nitions were completely

based in the books of James Munkres [49] for topology, Frank W. Warner

for di�erential geometry [50] - two wonderful books, with a clear text and several

interesting examples, as every mathematics book should be. The book of Robert

Wald [51], was also an important reference to us, mainly, because he is a physicist

and has a special (and clever) way to de�ne some mathematical concepts (compare,

for example, the Warner's de�nition and Wald's de�nition of tangent vector on a

manifold). The classnotes of Rui Loja Fernandes [27], Luiz Agostinho Ferreira [52]

and the books of Nakahara [28], Seymour Lipschutz [53], Manfredo Perdigão do

Carmo [54], Luiz San Martin [55], Fuchs [56] and Gilmore [57] were eventually used

and are strongly recommended.

∗ ∗ ∗

By set, we understand a collection of objects, with or without an additional

structure. For example, a set of books, people, points and so on. A set can be �nite

or in�nite. The pattern used in naive set theory is assumed here, for example, the

lowercase usually denote the elements in the set, while uppercase mean the sets by

themselves, i.e. a is an element and A is a set. Relations between element-set and

set-set are denoted respectively by ∈ (read belongs) and ⊂ (read subset) together

with their natural negations /∈ and 6⊂, for example, if a is an element of the set A,

then a ∈ A, if not, a /∈ A. If every element of the set A are in the set B, then A ⊂ B
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and if A 6= B, A is a proper subset of B. Evidently, the empty set is denoted by the

usual symbol ∅.
A typical set usually will be de�ned by the properties of their elements. For

example, a set A of elements a that satisfy the generic property P , in mathematical

terms, this set can be write as A := {a | a satis�esP } where := means �is de�ned as�

and the bar (|) stands �such that�. Others three important symbols are ∃ (exists),
≡ (equivalent) and ∀ (for all).

The expression f : A→ B means the mapping (sometimes said map, function or

application; soon, in a particular way, we will adapt a subtle distinction among them)

of a set A into the set B, or in terms of the respective elements a 7→ f(a), where was

used a special arrow. The set A is called domain of the map f and B is called range

of the map. The image of the map, is the set f(A) = {b ∈ B |b = f(a) ∀ a ∈ A} ⊂ B,

while the inverse image of the element b ∈ B is f−1(b) = {a ∈ A| f(a) = b}. If

f : A→ B and g : B → C are mappings, the composition g ◦ f : A→ C is de�ned

by a 7→ g ◦ f(a) ≡ g(f(a)).

The real importance of the next section is the de�nition of Hausdor� paracompact

topological space. This space, observed as a manifold, admits a Riemannian metric,

it allows to �globalize� many local properties and to de�ne integration over the

manifold [58] (in fact, a simpler explanation would be enough for a physicist, the

spacetime where we live in, is assumed to be Hausdor� paracompact). The manifold,

on the other hand, is important for the de�nition of Lie algebra and the concept

of integrability, that is the heart of this work. Although the most of concepts used

in next two sections will be used just there, this acquaintance is useful to avoid or

solve some eventual pathological problem in our manifolds (see [49]).

Evidently, Lie algebra could be de�ned without any comment about topology or

di�erential geometry, but notice that, the Bäcklund and Darboux transformations

started in the di�erential geometry, and the aim of this work was to consider relations

between them and gauge transformations. So, it is more natural to consider the

present approach, which increases naturally, than another approach, which we would

need to go to a branch math (like algebra) and then return to geometry. Similar

reasons took us to consider integrability through the geometric approach.

69



Concepts on Topology

De�nition 1: Consider A and B two sets, a map f : A → B, is said to be

injective if given two distinct points in A, their images in B under f are distinct, i.e.

if ∀ a, e ∈ A , a 6= e then f(a) 6= f(e), f is called injective. A surjective map is the

one that, each point of B is an image of a point of A under f , i.e. ∀ b ∈ B ∃ a ∈ A

such that f(a) = b. A map that is both injective and surjective is called bijective.

When f is bijective there exists a map from B to A called inverse of f and it is

denoted by f−1.

If these sets have some operation de�ned, as addition or product, and the map

f : A→ B preserves this operation, i.e. ai, aj ∈ A, so ai · aj ∈ A, then, f(ai · aj) ≡
f(ai) ·f(aj) ∈ B, then we say that f is a homomorphism. When the homomorphism

f is bijective, then, we say that f is an isomorphism.

Actually, this is a naive de�nition, because the operation which the set B is

endowed, is not necessarily the same of the set A, so, the concept of homomorphism

is better understood, when we deal with a well de�ned algebraic structure (that

we will de�ne soon), for example, groups, rings, vector spaces and so on. With

this point of view, the concept of homomorphism can be thought as the map that

preserves the algebraic structure and not the operation of a set.

De�nition 2: The topology τ of a set X is a collection of subsets of X with the

following properties:

(i) X and ∅ ∈ τ ;

(ii) Let be Oi a element of τ , the union
⋃
iOi of an arbitrary number i ∈ I ⊂ N is

in τ , i.e.
⋃n
i Oi=1 ⊂ τ , ∀n ∈ N (I is usually called index set);

(ii) Let be Oi an element of τ , the intersection
⋂
iOi of a �nite number i ∈ I ⊂ N

is in τ , i.e.
⋃n
i Oi=1 ⊂ τ , ∀ n (<∞) ∈ N.

A Topological Space, is a set X with a topology τ , usually denoted by (X, τ) or

just X when there is no confusion source in the de�nition of the topology.

A subset U of X is called open set when U an element of τ . Now, one could

think of a topological space as a collection of open sets such that ∅ and X are open,

and an arbitrary union of open sets and a �nite intersection of open sets are open.

De�nition 3: A basis for a topology τ on X is a collection B of subsets of X,

called basis elements, with the properties:

(i) ∀ x ∈ X, ∃ at least one basis element B containing x;
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(ii) If x belongs to the intersection of two basis elements B1 and B2, then there is a

basis element B3 containing x such that B3 ⊂ B1

⋂
B2.

As was de�ned at [49], an open in X, is a subset U of X which, for each x ∈ U ,
there is a basis element B ∈ B, such that x ∈ B and B ⊂ U . A subset V of X is

called closed if the set X\V = X − V := {x ∈ X|x /∈ V } (complement) is open. By

this de�nition, we conclude that X and ∅ are open and closed simultaneously.

De�nition 4: A neighborhood U of a point x, is an open set that contains x.

De�nition 5: A Hausdor� space is a topological space X which, given any

two distinct points a and b, always one can �nd two neighborhoods of a and b

respectively, such that, the intersection between them is empty, in a mathematical

way, a topological space is Hausdor� if: Given a, b ∈ X with a 6= b, then ∃ Ua and
Ub such that a ∈ Ua, b ∈ Ub and Ua

⋂
Ub = ∅. When two sets satisfy A

⋂
B = ∅

one usually says that A and B are disjoints.

De�nition 6: Let X and Y be two topological spaces, a map f : X → Y will

be called continuous if given any open subset V ⊂ Y its inverse image f−1(V ) is an

open subset U ⊂ X.

De�nition 7: Given two topological spaces X and Y the bijective map f : X →
Y will be called homeomorphism if f and f−1 are continuous.

De�nition 8: If X is a topological space.

� (D 8.1) The separation is a pair U and V of disjoint nonempty subspaces of X,

i.e. U
⋂
V = ∅, such that U

⋃
V = X.

� (D 8.2) The topological space X is said to be connected if there is no separation

of X 1.

� (D 8.3) Given two distinct points x and y in the topological space X, a path in

X from x to y is a continuous map f : [a, b] ∈ R → X, such that f(a) = x and

f(b) = y. The topological space x is said to be path (or arcwise) connected, if every

pair of points in X can be joined by a path in X.

� (D 8.4) A loop in a topological space X is a path such that f(a) = f(b). If any

loop in X can me shrunk to a point of X, then X is called simply connected.

De�nition 9: Let X be a topological space

� (D 9.1) A collection {Oi} of subsets of X is a cover of the set Y ⊂ X if Y ⊂
⋃
Oi.

1Actually, this de�nition is a property of the standard de�nition. A topological space X is

connected if, and only if, the only subsets of X simultaneously open and closed are the empty set

∅ and X.
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It is an open cover if each Oi is open. Let {Ōi} be a sub collection of {Oi} that still
covers Y , {Ōi} is called subcover.

� (D 9.2) The set X is compact if every open cover {Oi} of X contains a �nite

subcover (a subcover with a �nite number of elements).

� (D 9.3) A cover {Uj} is a re�nement of {Oi}, if whatever the Uj, always exists
an Oi such that Uj ⊂ Oi. When the sets Uj are open, {Uj} is called open re�nement

of {Oi}. Obviously, when they are closed, {Uj} is called closed re�nement of {Oi}.
� (D 9.4) A collection {Ci} of subsets of X is said to be locally �nite in X if every

point x ∈ X has a neighborhood Wx that intersects a �nite number of elements of

Ci, i.e. Wx

⋂
Ci 6= ∅ for a �nite index i ∈ I ⊂ N.

� (D 9.4) A topological space X is paracompact if every open cover {Oi} has an
open locally �nite re�nement {Uj}.

Basic Mathematical Structures

1. Group:

An abstract group G is a set of elements together with a composition law (◦)
such that if f, g, h are arbitrary elements in G, then

(i) g ◦ h ∈ G;

(ii) f ◦ (g ◦ h) = (f ◦ g) ◦ h;
(iii) ∃ e called identity such that e ◦ g = g = g ◦ e;
(iv) ∃ an inverse such that ḡ ◦ g = e = g ◦ ḡ, ḡ is usually denoted as g−1.

The group is called abelian or commutative when satis�es the extra condition:

(v) g ◦ h = h ◦ g, ∀ g, h ∈ G.

2. Ring:

A set A of elements together with two operations

1. + called addition,

2. · called multiplication,

that satis�es the conditions

(i) A is an abelian group under +;
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(ii.1) ∀ a, b ∈ A, a · b ∈ A Closure;

(ii.2) ∀ a, b, c ∈ A, a · (b · c) = (a · b) · c Associativity;

(ii.3) ∃ I ∈ A, such that I · a = a = a · I, ∀ a ∈ A Identity;

(ii.4) (a+ b) · (c+ d) = a · (c+ d) + b · (c+ d)

= a · c+ a · d+ b · c+ b · d Distributive Law.

A commutative ring is the one which satis�es the extra condition

(ii.5) a · b = b · a, ∀a, b ∈ A.
Now, if for all element a di�erent from zero in the commutative ring, exists

an inverse element a−1 ∈ A, such that, the multiplication a · a−1 is equal to the

neutral element of the multiplication (i.e. the identity), then we shall call this ring

by Körper 2. In mathematical words, A körper K is an commutative ring A together

with the property:

(iii) ∀ a ∈ A− {0}, ∃b ∈ A− {0} such that a · b = I. We denote b ≡ a−1.

Then, a körper A is an abelian group with respect to the addition and the neutral

element of this operation (denoted by 0), is called zero, and A − {0} is an abelian

group with respect to the multiplication, with neutral element of multiplication

(denoted by 1), and called identity. The real numbers R and the complex numbers

C are examples of körper. The elements of a körper are usually called scalars and

the symbol for multiplication (·), will be used just in this section, so along this work,

the scalar multiplication (a · b) will be (a b), with a, b in the körper.

3. Linear Vector Spaces:

It is a collection V, together the körper K (that we assume hereafter R) and two

operations

1. + called vector addition,

2. ∗ called scalar multiplication,

such that, the following properties hold

(A) V is an abelian group under +:

(A.1) v, u ∈ V, then v + u ∈ R;
2The English word for this set is �eld, however, to avoid confusion with so many de�nitions

to a same word, we preferred, to use the German word körper that means body, and it is used to

denote this commutative ring.
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(A.2) v + (u + w) = (v + u) + w, v u, w ∈ V;

(A.3) v0 + v = v = v + v0, we denote v0 = 0;

(A.4) v + (−v) = 0 = (−v) + v;

(A.5) v + u = u + v.

Together with

(M.1) λ ∈ R and v ∈ V, then λ ∗ v ∈ V;

(M.2) λ, µ ∈ R and v ∈ V, then µ ∗ (λ ∗ v) = (µ · λ) ∗ v;
(M.3) 1 ∗ v = v = v ∗ 1;

(M.4) (λ+ µ) ∗ (v + u) = λ ∗ (v + u) + µ ∗ (v + u)

= λ ∗ v + λ ∗ u + µ ∗ v + µ ∗ u.
A subset W of V, that is itself a vector space with the same algebraic operations of

V, is called a Vector Subspace of V over R.
3.1 Linear Dependence and Basis: Consider the set {v1, · · · ,vk} of k vectors

in V, if the equation

a1 ∗ v1 + · · ·+ ak ∗ vk = 0,

implies that the scalars ai = 0, then we say the set {v1, · · · ,vk} is linearly indepen-

dent ; reciprocally, if these scalars are di�erent from zero, ai 6= 0 then we say they

set{v1, · · · ,vk} is linearly dependent.

A set of linearly independent vectors {e1, · · · , en} is called a basis of V, if any

element v ∈ V can be written in a unique way as a linear combination of {ei}:

v = v1 ∗ e1 + · · ·+ vn ∗ en =
n∑
i=1

vi ∗ ei ≡ vi ∗ ei,

where we call components the real numbers vi. And the number n is called the

dimension of the Vector Space.

3.2 Linear Maps, Image and Kernel: Given two vector spaces V and U, a

map f : V→ U is said to be linear if f(λ∗vi+µ∗vj) = λ∗f(vi)+µ∗f(uj), ∀ vi, vj ∈
V and λ, µ ∈ R. The image is obviously, imf = {f(V)} ⊆ U and the kernel is

the set of elements in V mapped onto 0, i.e. kerf = {v ∈ V|f(v) = 0}. Evidently
0 belongs to imf and kerf , then, they satisfy, independently, the properties of a

linear vector space - they are called linear subspaces - and the dimension N of V is:

N = dimV = dim(kerf) + dim(imf).

Consider now the vector space V and T a linear map T : V → V, we call this

linear map as linear operator . An eigenvalue of T is a scalar α ∈ K, such that,
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there is a non zero vector v ∈ V that satis�es the eigenvalue equation de�ned by

Tv = αv.

If α is the eigenvalue of T , then, any v that satis�es the eigenvalue equation is called

eigenvector .

3.3 Dual Vector Space: Let w : V→ R be a linear map from the vector space

V to R. The set of maps {wi} have a natural structure of linear vector spaces,

because, if wj, wk are linear maps in this set, then

(wj + wk)(λ ∗ v + µ ∗ u) = λ ·wj(v) + µ ·wj(u) + λ ·wk(v) + µ ·wk(u),

where λ, µ ∈ R and v, u ∈ V. Therefore, this set is in fact a linear vector space,

denoted by V∗ = {w | w : V → R}, and it is called Dual Vector Space to V. Its

elements w are called dual vectors .

If {e1, · · · , en} is a basis for V, we can de�ne, without loss of generality, a basis

for V∗ choosing {d1, · · · ,dn} ∈ V, such that:

di(ej) = δij =

{
1 if i = j

0 if i 6= j
.

Therefore, any dual vector w ∈ V∗ can be written as:

w = w1 ∗ d1 + · · ·+ wn ∗ dn =
n∑
i=1

wi ∗ di = wi ∗ di.

The action of w ∈ V∗ over v ∈ V could be thought as a scalar product in V,

since

w(v) = wi ∗ di(vj ∗ ej) = [(wi · vj) ∗ di](ej) = [(wi · vj)] · [di(ej)] = (wi · vj) · δij

then

w(v) = wi · vi ∈ R.

The scalar product can be write as 〈 , 〉 : V∗ × V → R, where the Cartesian

product V∗ ×V is de�ned as all pairs (w,v) ∈ V∗ ×V, where w ∈ V∗ and v ∈ V.

Obviously, this idea of Cartesian product can be extended beyond the linear vector

spaces theory. Using this notation, we can set

w(v) := 〈w,v〉 = wi · vi.
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Let us call all the vectors belonging to V as contravariant vectors and covariant

vectors those ∈ V∗. We use the following notation, if v ∈ V, then v = vi ∗ ei ≡
viei and if u ∈ V∗, then u = ui ∗ di ≡ uid

i. The numbers vi and ui are called

contravariant and covariant components respectively. So, the di�erence between

these vectors can be expressed through their components, upper indices components

to contravariant vectors and lower indices to covariant vectors.

If now we consider a mapping (an example of isomorphism) g : V → V∗, then,

the inner product of two vectors v,u ∈ V

g( , ) : V ×V→ R,

can be expressed by

g(v,u) := 〈g(v),u〉 = 〈v∗,u〉 = viu
i,

we require the symmetry3 of this mapping, then

g(v,u) := g(u,v) = 〈g(u),v〉 = 〈u∗,v〉 = uiv
i.

Also, we require this mapping as nondegenerate, i.e. g(v,u) = 0 ∀ v, then u = 0.

This function is called metric, the reason of this name is that, if we choose its

positivity (the positive de�ned metric is called Riemannian metric), we can recover

the notion of distance between two points, however, we do not expect the positivity

of our metric.

The simplest form of the function g is the following

g :=
n∑

i,j=1

gijd
i ⊗ dj =

n∑
i,j=1

gijd
idj = gijd

idj,

where gij are the components of the metric, and the symbol ⊗, was to indicate an

special multiplication between the basis of V∗, in a most complete treatment, we

could see this function g as a particular type of an object called tensor and this

symbol as an outer product, however, this escapes of the scope of this work.

As we have seen, the action of g on a contravariant vector v leads it to a covariant

vector v∗. So g(v, ·) := v∗, then

g(v, ·) = gijd
i(v)dj := v∗ = vjd

j

3This is not a mandatory requirement, actually, there are some important sorts of mappings

like that [57], which, we do not impose any symmetry property and others that we impose the

antisymmetry property.
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gijd
i(vkek)d

j = vjd
j

gijv
kdi(ek)d

j = gijv
kδikd

j = gijv
idj = vjd

j,

then

gijv
i := vj.

4. Linear Algebra:

Linear Algebra is a vector space V over the körper R (or generically K), together

with three operations

1. + called vector addition,

2. ∗ called scalar multiplication,

3. × called vector multiplication,

such that, besides the Linear Vector properties, the following properties hold

(N.1) v, u ∈ V then v × u ∈ V;

(N.2) (v + u)× (w + x) = v × (w + x) + u× (w + x)

= v ×w + v × x + u×w + u× x.

De�nition: A vector subspace W of an algebra V, which is itself a algebra, i.e. W

is closed under the vector multiplication, is called Subalgebra.

Di�erentiable Manifolds

In this section, by function, one must understand a mapping into the real numbers,

by map the mapping into the Euclidean n-dimensional space (formally de�ned in

the next paragraph) and by application the mapping into a generic manifold M .

Notice that, this classi�cation is very particular and it was adapted for a didactic

purpose, then, in any other text, these terms can be used as synonyms, with a

similar or exactly meaning used here (who knows?), so, the author reiterates that

these criteria must be used carefully and preferably just in this section.

Consider the Euclidean n-dimensional space Rn = {(x1, x2, . . . , xn)| xi ∈ R ∀i ∈
[1, n] ⊂ N} and the canonical coordinate function xi : Rn → R de�ned by:

xi(r) := ri
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where r = (r1, r2, . . . , rn) ∈ Rn. The canonical coordinate function x1 on R will be

denoted by x, then xi(r) := x, ∀ r ∈ R. At the same time, if f : A ⊂ Rn → Rn,

one sets the ith component function of f by

f i := xi ◦ f.

When f : R→ R and t ∈ R, the derivative of f at t is

d

dx

∣∣∣∣
t

(f) =
df

dx

∣∣∣∣
t

.

If f : Rn → R and t = (t1, . . . , tn) ∈ Rn, the partial derivative of f with respect to

xi (1 ≤ i ≤ n) at t is
∂

∂xi

∣∣∣∣
t

(f) =
∂f

∂xi

∣∣∣∣
t

.

Finally, if α = (α1, . . . , αn) is a n-tuple of non-negative numbers, then one sets

[α] =
∑

αi,

and
∂α

∂xα
=

∂x[α]

∂xα1
1 . . . ∂xαnn

.

De�nition 10: Let f : A ⊂ Rn → R be a function, f is called di�erentiable of

class Ck, where k is a non-negative integer, when the partial derivatives ∂αf/∂xα

exist and are continuous on A for [α] ≤ k. If f : A ⊂ Rn → Rn, then f is

di�erentiable of class Ck if each component function f i is Ck. If f is Ck ∀ k ≥ 0,

the f is C∞.

A locally n-dimensional euclidean space M is a Hausdor� Topological Space,

which in each of its points, one can �nd a neighborhood, homeomorphic to an

open subset of Rn, i.e. ∀ m ∈ M, ∃ U ⊂ M such that φ : U → Rn is an

homeomorphism. The homeomorphism φ is called coordinate map, the functions

ϕi := xi ◦ φ : M → R is called coordinate functions and one usually calls the pair

(U, φ) ≡ (U,ϕ1, . . . , ϕn) by coordinate system (or chart, as mathematicians usually

call). Always will be possible to treat xi instead ϕi, so the coordinate system will

be denoted by (U, φ) ≡ (U, x1, x2, . . . , xn). If m ∈ M and φ(p) = 0 the coordinate

system is said centered at p.

De�nition 11: A di�erentiable structure F of class Ck on a locally euclidean

spaceM is a collection of coordinate systems C = {(Ui, φi)|i ∈ I}, that satis�es the
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following properties:

(i)
⋃
i Ui =M;

(ii) Since Ui
⋂
Uj 6= ∅, then φi ◦ φ−1

j is Ck ∀ i, j ∈ I;

(iii) F is maximal with respect to (ii), that is, if (U, φ) is a coordinate system such

that, φi ◦ φ−1 and φ ◦ φ−1
i are Ck ∀ i ∈ I then (U, φ) ∈ F.

The pair (M,F) is called di�erentiable manifold. When k →∞ (that is the case

considered here), one just calls (M,F) as smooth manifold or just manifold.

Figure A.1: A di�erentiable manifoldM.

De�nition 12: LetM and N be smooth manifold, the map f :M→ R is said

to be di�erentiable of class C∞ if f ◦ φ−1 is of class C∞, ∀ (U, φ); An application

Ψ :M→N is said to be a di�erentiable application of class C∞, if θ ◦Ψ ◦ φ−1 is of

class C∞ ∀ (U, φ) ofM and (V, θ) of N . A di�erentiable application Ψ :M→ N
bijective and with di�erentiable inverse is called di�eomorphism.

Tangent Spaces

Tangent Vector

In the euclidean space Rn, there exists an injective correspondence between vectors

and directional derivatives. A generic vector v = (v1, . . . , vn) de�nes a directional

derivative operator
n∑
i=1

vi
∂

∂xi
,
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and vice versa. What we mean is that, if f is a C∞ function on a neighborhood of

a point p ∈ Rn, then, the vector v assigns to f a real number v(f), which is the

directional derivative of f in the direction of v at p, so

v(f)|p = v1 ∂f

∂x1

∣∣∣∣
p

+ · · ·+ vn
∂f

∂xn

∣∣∣∣
p

=
n∑
i=1

vi
∂f

∂xi
:= vi

∂f

∂xi
.

Where, the summation convention for repeated indices has been de�ned. Directional

derivatives are linear and must satisfy the Leibniz rule: v(fg) = g v(f) + f v(g).

Thus, on a manifoldM, let F be the collection of C∞ functions f fromM to

R, i.e. f :M→ R. A tangent vector v at a point m ∈ M is a function v : F → R
that satis�es:

(i) linearity : v(a f + b g) = a v(f) + b v(g), ∀ f, g ∈ F and a, b ∈ R;
(ii) Leibniz rule: v(fg) = g v(f) + f v(g), ∀ f, g ∈ F .

Now, let TMm be the set of tangent vectors to M at m, then, TMm has a

natural structure of a linear vector space, so

(i)(v + w)(f) = v(f) + w(f), ∀ f ∈ F and v, w ∈ TMm;

(ii)v(a f) = av(f), ∀ a ∈ R, f ∈ F and v ∈ TMm.

The vector space TMm is called tangent vector space or just tangent space.

Another important property of the tangent space TMm is that, its dimension is

the same of the manifold M. This proof is far from trivial, but it was made in a

amazing way by [50, 51]. Here, we receive that as a property:

dim(TMm) = dim(M).

De�nition 13: Let (U, φ) be a coordinate system with coordinate functions

(ϕ1, . . . , ϕn) and m ∈ U . For each index i ∈ [1, n] ⊂ N we de�ne a tangent vector

Xi : F → R, as

Xi(f)|m =
∂

∂ϕi

∣∣∣∣
m

(f) =
∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(m)

,

where f ∈ F :M→ R, and f ◦ φ−1 : Rn → R.
If v ∈ TMm, then, the old notion of directional derivative can be invoked, and

we set down the tangent vector onM as

v|m :=
n∑
i=1

v(ϕi)
∂

∂ϕi

∣∣∣∣∣
m

:=
n∑
i=1

v(ϕi)Xi

∣∣∣∣∣
m

,
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Figure A.2: A function from the Euclidean space Rn to the real line R.

so, the set {Xi|m := ∂
∂ϕi

∣∣∣
m
|i = 1, . . . , n} de�nes a basis of TMm.

Consider now two coordinate systems (U, φ) and (U, θ), with coordinate functions

ϕ1, . . . , ϕn and ϑ1, . . . , ϑn, respectively, therefore

Xi|m =
∂

∂ϕi

∣∣∣∣
m

=
n∑
j=1

∂

∂ϕi

∣∣∣∣
m

(ϑj)
∂

∂ϑj

∣∣∣∣
m

:=
n∑
j=1

∂

∂ϕi

∣∣∣∣
m

(ϑj) Yj

∣∣∣∣
m

,

so, by de�nition, we have

Xi|m =
n∑
j=1

∂(ϑj ◦ φ−1)

∂xi

∣∣∣∣
φ(m)

Yj

∣∣∣∣∣
m

:=
n∑
j=1

∂yj

∂xi

∣∣∣∣
φ(m)

Yj

∣∣∣∣∣
m

,

where we have de�ned the coordinate function yj := ϑj ◦ φ−1 : Rn → R. This last
equation express the relation between coordinate basis, while the relation between

components of the vector can be derived from

v|m =
n∑
i=1

v(ϕi) Xi

∣∣∣∣∣
m

=
n∑
j=1

v(ϑj) Yj

∣∣∣∣∣
m

=
n∑
i=1

v(ϕi)

(
n∑
j=1

∂yj

∂xi

∣∣∣∣
θ(m)

Yj

∣∣∣∣∣
m

)
=

n∑
j=1

v(ϑj) Yj

∣∣∣∣∣
m

,

then,

v(yj) =
n∑
i=1

v(xi)
∂yj

∂xi

∣∣∣∣∣
θ(m)

.
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Figure A.3: An example of two di�erent coordinate functions.

This last equation is known as vector transformation law.

A smooth curve γ, on a manifoldM is a C∞ application of R (or an interval S)
into M, i.e. γ : S ⊆ R → M. At each point p ∈ M on the curve γ, the tangent

vector T ∈ TMm to the curve is de�ned as:

T (f) :=
d

dx
(f ◦ γ)

∣∣∣∣
t

=
n∑
i=1

dϕi

dx

∣∣∣∣
γ(t)

∂f

∂ϕi

∣∣∣∣
γ(t)

=
n∑
i=1

dxi

dx

∣∣∣∣
φ(γ(t))

∂f ◦ φ−1

∂xi

∣∣∣∣
φ(γ(t))

then

T (f) =
n∑
i=1

dxi

dx

∣∣∣∣
φ(γ(t))

Xi(f)

∣∣∣∣∣
φ(γ(t))

.

Where, xi = xi(x), f ∈ F , f ◦ γ : R → R, t ∈ S ⊆ R and x is the canonical

coordinate function on R. Hence, the components T i of the tangent vector to the

curve are

T i =
dxi

dx

∣∣∣∣
φ(γ(t))

.
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Figure A.4: A smooth curve γ.

The Di�erential

Let ψ :M→N be C∞ andm ∈M. The di�erential of ψ atm is the application

dψ : TMm → T N ψ(m),

so, if v ∈ TMm, then dψ(v) is a tangent vector at ψ(m) ∈ T Nm. The action of the

tangent vector dψ(v) in a function g ∈ G , that is the set of all C∞ functions from

N to R, is de�ned as:

[dψ(v)](g) := v(g ◦ ψ), (A.1)

where g ∈ G : N → R and g ◦ ψ ∈ F : M→ R. In the special case of a function

f ∈ F , and v ∈ TMm we have

df(v) := v(f)
d

dx

∣∣∣∣
f(m)

. (A.2)

In this case, we usually take df : TMm → R as:

df(v) := v(f),

that is an element of the dual space TM∗
m.
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Let (U, φ) ≡ (U,ϕ1, . . . , ϕn) and (V, ρ) ≡ (V, %1, . . . , %n) be coordinate systems

around m ∈M and φ(m) ∈ N respectively. Then,

dψ(Xi|m) := dψ

(
∂

∂ϕi

∣∣∣∣
m

)
,

and using (A.1),

dψ(Xi|m)(g) := dψ

(
∂

∂ϕi

∣∣∣∣
m

)
(g) =

∂

∂ϕi

∣∣∣∣
m

(g ◦ ψ),

where g ∈ G : N → R and g ◦ ψ ∈ F :M→ R, so

dψ(Xi|m)(g) =

(
n∑
j=1

∂(%j ◦ ψ)

∂ϕi

∣∣∣∣
m

∂

∂%i

∣∣∣∣
ψ(m)

)
(g).

We �nally conclude that

dψ(Xi|m) =
n∑
j=1

∂(%j ◦ ψ)

∂ϕi

∣∣∣∣
m

∂

∂%i

∣∣∣∣
ψ(m)

,

and
{
∂(%j◦ψ)
∂ϕi

∣∣∣
m

}
is called Jacobian of the application ψ :M→N .

Figure A.5: An application ψ between two manifoldsM and N .

If (U,ϕ1, . . . , ϕn) is a coordinate system onM, m ∈ U and
{

∂
∂ϕi

}
is the basis of

TMm, we can de�ne a basis dϕi of the dual space TM∗
m, writing the di�erential of

f ∈ F :M→ R as

dfm :=
n∑
i=1

∂f

∂ϕi

∣∣∣∣
m

dϕi|m.
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The dual vector space TM∗
m ofM at m will be called Cotangent Space and its

elements covectors, i.e., the cotangent space is

TM∗
m := {w : TMm → R| w linear}.

The dual basis {dϕi|m} of
{

∂
∂ϕi

}
, de�ned above can be chosen, without loss of

generality, by

dϕi
∣∣
m

(
∂

∂ϕj

)
:= δij.

Tangent and Cotangent Bundles

LetM be a C∞ manifold, the complete family of tangent and cotangent spaces

atM de�ne the tangent and cotangent bundles respectively, i.e.

TM ≡
⋃
m∈M

TMm,

and

TM∗ ≡
⋃
m∈M

TM∗
m.

There are projections such that, to the vector v ∈ TMm and to the covector

w ∈ TM∗
m, we have

π : TM→M, π(v) = m, if v ∈ TMm,

π∗ : TM∗ →M, π∗(w) = m, if w ∈ TM∗
m.

Vector Fields

A tangent vector �eld along the curve γ : S ⊆ R → M is a mapping X : S ⊆
R→ TM which assigns γ, that is, π ◦X ≡ γ

The vector �eld is called smooth vector �eld along γ if the application X : S ⊆
R→ TM is C∞.

A vector �eld X on a open set U ⊂M is an assignment of U into TM, in other

words, an application X : U → TM, such that π ◦X ≡ identity map on U . Again,

the notion of smooth vectors �elds is obvious.

The set of vector �elds over U forms a vector space over R. If X is a vector �eld

on U and m ∈ U ⊆ M, then X(m) ≡ X|m is an element of TMm. Consider now,
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Figure A.6: A smooth vector �eld along the curve γ.

the function f ∈ F , then, X(f) is the function on U whose value at m is X|m(f).

Loosely speaking, a vector �eld X on a manifoldM is an assignment of a tangent

vector v ∈ TMm to each point m ∈M [51].

Figure A.7: A vector �eld on a generic manifold.

Proposition: Let X be a vector �eld onM. If (U,ϕ1, . . . , ϕn) is a coordinate

system onM and {ai} a collection of C∞ functions on U , then

X :=
n∑
i=1

ai
∂

∂ϕi
.
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If f ∈ F , the composition of two vector �elds X and Y can be evaluated as:

X(Y (f))|m = X

(
b(ϕj)

∂f

∂ϕj

)∣∣∣∣
m

= a(ϕi)
∂

∂ϕi

(
b(ϕj)

∂f

∂ϕj

)∣∣∣∣
m

by Leibniz, we can write

X(Y (f))|m =

(
a(ϕi)

∂b(ϕj)

∂ϕi
∂

∂ϕj

)∣∣∣∣
m

(f) + a(ϕi)b(ϕj)
∂

∂ϕi

(
∂f

∂ϕj

)∣∣∣∣
m

.

Due the second term on the right-hand side, this composition is not a vector �eld,

however if we de�ne

[X, Y ]

∣∣∣∣
m

(f) := X(Y (f))|m− Y (X(f))|m,

then

[X, Y ]

∣∣∣∣
m

(f) =

(
a(ϕi)

∂b(ϕj)

∂ϕi
− a(ϕi)

∂b(ϕj)

∂ϕi

)∣∣∣∣
m

(f).

Thus, [X, Y ] is again a vector �eld and it is called commutator or Lie bracket

(mainly by mathematicians). The commutator satis�es:

(i) [X, Y ] = −[Y,X], (skew-symmetry);

(ii) [aX + bY, Z] = a[X,Z] + b[Y, Z], (bi-linearity);

(iii)[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, ∀a, b ∈ R, (Jacobi Identity);

(iv) [fX, gY ] = fg[X, Y ] + f(X(g))Y − g(Y (f))X, ∀f, g ∈ F , (Derivation).

Evidently, at m ∈ M, the commutator is an operation between two elements of an

vector space TMm and it leads to another element of that vector space. So, the

vector space is endowed with a vector multiplication, and then, forms an algebra.

An algebra which satis�es skew-symmetry and Jacobi Identity is called Lie Algebra.

Let M and N be two smooth manifolds and ψ : M → N a di�erentiable

application. Consider now, the vector X inM and the vector �eld Y in N . We say

that X and Y are ψ-related if

dψ ◦X = Y ◦ ψ.

Proposition Still considering this application we can take the vector �elds X1 and

X2 on M together with Y1 and Y2 on N and consider that X1 is ψ-related to Y1

and X2 is ψ-related to Y2. With these suppositions, we conclude that [X1, X2] is
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ψ-related to [Y1, Y2].

Proof. Since X1 is ψ-related to Y1 and X2 is ψ-related to Y2, then

dψ ◦X1 = Y1 ◦ ψ

and

dψ ◦X2 = Y2 ◦ ψ.

Considering the function g ∈ G : N → R, we can write:

dψ([X1, X2](g) = [X1, X2]|m(g ◦ ψ)

= X1|m(X2(g ◦ ψ))−X2|m(X1(g ◦ ψ))

= X1|m[(dψ ◦X2)(g)]−X2|m[(dψ ◦X1)(g)]

= X1|m[Y2(g) ◦ ψ]−X2|m[Y1(g) ◦ ψ]

= (dψ ◦X1|m)(Y2(g))− (dψ ◦X2|m)(Y1(g))

= Y1|ψ(m)(Y2(g))− Y2|ψ(m)(Y1(g))

= [Y1, Y2]ψ(m)(g), ∀ g ∈ G .

Then, we conclude that,

dψ ◦ [X1, X2] = [Y1, Y2] ◦ ψ.

Q.E.D.

As a last comment about vector �elds, let us talk a bit about an important

concept that mediates the relation between Lie Groups and Lie Algebras, as we

will see soon. The one-parameter group of di�eomorphism ηt is a C∞ application

R ×M → M, such that, if t ∈ R is �xed, then ηt : M →M is a di�eomorphism

and ∀ t, s ∈ R ηt ◦ ηs ≡ ηt+s, with this de�nition, we realize that η0 := e is the

identity. Considering now, m ∈ M �xed, ηt(m) : R→M is a curve called orbit of

ηt which passes through m at t = 0. We associate to m a tangent vector v|m to this

curve and to a one-parameter group, we associate a vector �eld X.
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Appendix B

Lie Groups and Lie Algebras

De�nitions

Lie Groups

A Lie Group is a di�erentiable manifold G which is also, a group such that, the

application G × G → G, de�ned by (σ, τ) 7→ στ−1 is C∞, i.e. its group structure is

a di�erentiable application.

Example1: The euclidean space Rn is a Lie group under vector addition;

Example2: The non-zero real numbers R∗ and complex numbers C∗ are Lie groups
under the multiplication, respectively de�ned;

Example3: The unit circle S1 := {z = a+ ib | ||z|| :=
√
a2 + b2 = 1} ⊂ C∗ is a Lie

group under C multiplication;

Example4: If G and H are Lie groups, the Cartesian product G × H is also a Lie

group. Then a torus-2 T2 := S1 × S1 is a Lie group;

Example5: Let V be a vector space, the group of linear maps T : V → V forms

a Lie group denoted by Gl(V ), and it is called General Linear Group. If V = Rn,

this group can be identi�ed as the n × n matrices and it is a Lie Group under the

matrix multiplication and it is signed by Gl(n,R).

Example6: In the same way, the general linear group Gl(n,C), but now, with n×n
complex matrices.
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Lie Algebras

A Lie algebra g over the körper R is a vector space g endowed with an application

[ , ] : g× g→ g, such that ∀ x, y, z ∈ g this operation satis�es:

1. [x, y] = −[y, x], (anti-commutativity)

2. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0. (Jacobi identity)

Example1: The vector space of all smooth vector �eld on the manifoldM is a Lie

algebra under the Lie bracket on vector �elds;

Example2: The euclidean space Rn is an abelian Lie algebra;

Example3: Let V be a vector space, the set of linear maps T : V→ V forms a Lie

algebra denoted by gl(V), with the algebra structure de�ned by the commutator of

two linear maps A, B ∈ gl(V)

[A,B] := A ◦B −B ◦ A ∈ gl(n,R).

If V = Rn, this algebra is signed by gl(n,R) and can be identi�ed (as proved by [50]

and suggested by the exponential map, that we going to consider soon) as the Lie

algebra of the matrix elements of the group of n× n real matrices in Gl(n,R).

Example4: In the same way, gl(n,R) can be identi�ed as the Lie algebra of the

matrix elements of the group of n× n complex matrices in Gl(n,C).

Example5: The euclidean space R3 with the cross product of vectors ~v × ~u forms

a Lie algebra.

We can de�ne in the Lie algebra g, a derivative map, i.e. a map δ : g→ g, that

satis�es the Leibniz rule

[x, y] ∈ g 7→ δ([x, y]) := [δ(x), y] + [x, δ(y)].

As an example, we can de�ne, for some x ∈ g the derivative map adx : g→ g setting

y 7→ adx(y) := [x, y], ∀ y ∈ g.

Using the Jacobi identity, we can show that the Leibniz rule is valid

adx([y, z]) : = [x, [y, z]]

= −[y, [z, x]]− [z, [x, y]] = [y, [x, z]] + [[x, y], z]

= [adx(y), z] + [y, adx(z)].
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De�nition: Let V be a vector space and gl(V) the Lie algebra of linear maps

T : V→ V. A representation of a Lie algebra g into V is the homomorphism

R : g→ gl(V),

with

[x, y] 7→ R([x, y]) = [R(x),R(y)], ∀ x, y ∈ g.

The importance of this de�nition is too obvious, however, let us be redundant and

reinforce that with this concept in mind, we can easily work and operate with the

group elements.

An important representation that we can consider is the adjoint representation

Rad : g→ gl(g),

which is de�ned by the elements transformation

a 7→ ada.

In this representation, the Lie bracket is de�ned by

[adx, ady] := adx ◦ ady − ady ◦ adx,

with this de�nition, we get

[adx, ady])(z) = (adx ◦ ady)(z)− (ady ◦ adx)(z)

= adx(adyz)− ady(adxz)

= adx([y, z])− ady([x, z])
= [x, [y, z]]− [y, [x, z]]

= −[z, [x, y]] = [[x, y], z] := ad[x,y](z),

for some z ∈ g. We conclude so, that the adjoint representation carries Lie brackets

from g to Lie brackets in gl(g).

We said before in the page (70) that, the concept of homomorphism would be

best understood, when we work with a well de�ned algebraic structure, now we are

work on it, then notice that, a linear map ϕ : g→ h, from the Lie algebra g to the

Lie algebra h, is a homomorphism if it carries the Lie bracket, i.e.

ϕ : [x, y] 7→ ϕ([x, y]) = [ϕ(x), ϕ(y)],
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∀ x, y ∈ g.When the map ϕ is bijective, we say that it is an isomorphism. Evidently,

the adjoint representation Rad is a homomorphism between Lie algebras.

Let σ be an element of the Lie group G. We de�ne the left translation and right

translation as the di�eomorphisms lσ and rσ of G respectively,

lσ(τ) = στ,

rσ(τ) = τσ,

∀τ ∈M. Consider the subset H ⊂ G, the left translation of this complete subset is

lσ(H) = σH, analogously, the right translation is rσ(H) = Hσ.
A left invariant vector �eld X on G is the only one that for each σ ∈ G, X is

lσ-related to itself, that is

dlσ ◦X = X ◦ lσ.

Since a dlσ(X|τ ) is de�ned to be a tangent vector at lσ(τ) ∈ G, where σ, τ ∈ G, we
can consider too, the coordinate systems (U1, φ) around τ ∈ G and (U2, θ) around

lσ(τ) ∈ G. Then we can set

dlσ(X|τ )(g) : = X|τ (g ◦ lσ) = X|τ (f)|lσ(τ)

= a(φi)
∂

∂φi

∣∣∣∣
τ

(f)

∣∣∣∣
lσ(τ)

= a(φi)
∂θj

∂φi
∂

∂θj

∣∣∣∣
τ

(f)

∣∣∣∣
lσ(τ)

,

where ai ≡ a(φi) are C∞ and g ∈ G : G → R. Evidently, this vector does not have
necessarily the same value that the vector �eld X would have at the point τ ∈ G.
When this happen, we say that this vector �eld is left invariant. Last chapter,

when we considered the vector �elds Xi and Yi, i = 1, 2 ψ-related (see page 88),

we have proved that the bracket [X1, X2] is ψ-related to [Y1, Y2]. Naturally we can

use this concept and realize that, since two vector �elds are left invariant, i.e. each

vector �eld is lσ-related to itself, the Lie bracket is also, lσ-related to itself, then if

dlσ ◦X = X ◦ lσ and dlσ ◦ Y = Y ◦ lσ we have

dlσ ◦ [X, Y ] = [X, Y ] ◦ lσ.

The set of all left invariant vector �elds on a Lie group G will be denoted by g and

we easily conclude that g forms a Lie algebra. We de�ne g, to be the Lie algebra of

the Lie group G.
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For any Lie group G, we can take a set of n ≡ dim(G) linearly independent left

invariant vector �elds. This set, that we denote by {Ta| (a = 1 . . . n)}, expand the

tangent space T Gm at any point m ∈ G, then it is a basis of this space and must

satisfy the relation

[Ta,Tb] :=
n∑
c=1

if ca bTc = if ca bTc,

where f ca b are constants and the factor i was chosen because in the case when the

vector �elds satis�es T†a = Ta, the constants f ca b must be real. Evidently, this

relation remains unchanged, whatever the point m ∈ G that we are interested in,

for this reason, the constants f ca b are called structure constants of the Lie algebra g

of G.
We can work with the adjoint representation now,

adTa(Tb) = [Ta,Tb] = if ca bTc.

This last expression shows an amazing result: in terms of the basis, the adjoint

representation is given by the structure constants.

When we were talking about vector spaces, we have considered the metric, that

was a map from the Cartesian product V×V into the körper K, that without loss

of generality we considered the real numbers R, i.e

g( , ) : V ×V→ R.

We de�ne now this metric, that has a special name here, the Cartan-Killing form:

De�nition: The Cartan-Killing form is the linear map κ from the Cartesian

product g× g into the real numbers,

κ : g× g→ R,

de�ned by

(x, y) 7→ κ(x, y) := trace(adx ◦ ady).

We can operate now with the basis {Ta}, so

κab = trace(adTa ◦ adTb).
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Let us consider the case

adTa ◦ adTb(Tc) = adTa(adTb(Tc))

= adTa([Tb,Tc]

= adTa(if
d
bcTd) = adTa(Td)if

d
bc

= [Ta,Td]if
d
bc = −f eadfdbcTe,

we can obtain the trace, doing a summation over c = e, then

κab := trace(adTa ◦ adTb) = −f cadfdbc.

Exponential Map

We call the one-parameter subgroup1 of G the homomorphism between the Lie

groups R and G, the map ϕ : R → G. Since R is an abelian group under scalar

addition, we have

ϕ(t) ◦ ϕ(s) = ϕ(t+ s) = ϕ(s+ t) = ϕ(s) ◦ ϕ(t),

∀ t, s ∈ R, we conclude that the one parameter subgroup is an abelian group, even

when the Lie group G is non-abelian. Besides, we have

ϕ(0) ◦ ϕ(t) = ϕ(0 + t) = ϕ(t),

then ϕ(0) := e ≡ identity element of G and

ϕ(t) ◦ ϕ(−t) = ϕ(t− t) = ϕ(0) = e,

where t, s and 0 are elements of R.
Consider again the Lie group G and its Lie algebra g. Consider too, the vector

�eld X ∈ g, then, we can de�ne a homomorphism between the Lie algebra of R and

g by

λ
d

dx
7→ λX.

1A set H ⊂ G is said to be a subgroup of G if satis�es the group requirements induced by the

multiplication rule of the group G. Evidently, the identity element and the group G itself is a

subgroup, called improper subgroups, any other subgroup is called proper subgroup.
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Also, one could show [50] that there is a unique one-parameter subgroup

ϕX : R→ G

such that

dϕX

(
λ
d

dx

)
= λX,

since dϕX : T Rt → T GϕX(t), i.e. there is a unique one-parameter subgroup, such

that, the tangent vector at t = 0 is X(e):

dϕX

(
λ

d

dx

)∣∣∣∣
t=0

= λX

∣∣∣∣
ϕX(t=0))

.

We are able now, to de�ne the exponential map

exp : g→ G

by

exp(X) := ϕX(1).

Consider the element of the algebra X ∈ g, then

exp(tX) = ϕX(t),

where t ∈ R. As ϕX is a homomorphism between the groups R and G, we have

exp[(t1 + t2)X] = ϕX(t1)ϕX(t2), t1 t2 ∈ R,

exp[tX]|t=0 = ϕX(0) = e, t = 0 ∈ R,

exp[−tX] = (exp[tX])−1, t ∈ R.

Then, we conclude that, the exponential map exp provides a di�eomorphism of a

neighborhood of the zero element of T Ge which belongs to the Lie algebra g at t = 0,

onto a neighborhood of the identity element e of G. Sometimes, this di�eomorphism

can be extended to the entire Lie group G.
As an example, we could consider the exponential map

exp : gl(n,C)→ Gl(n,C),

that is

eA = I + A +
1

2
A2 + · · ·+ 1

n!
An + . . . ∈ Gl(n,C),

95



where A ∈ gl(n,C) and I is the identity element (rather than e) of Gl(n,C). Also

we can show2 that

det(eA) = etrace(A).

Remark Evidently, the algebra element A does not always commute with the el-

ement B, i.e. AB 6= BA, so, the map eA+B is in general di�erent from eAeB and

the equality is valid just when A and B commute.

Generalities on Lie algebras

Up to now, we have seen that a generic element of the Lie algebra g, can be

expanded in terms of a basis

B = {Ta | a = 1, . . . , n = dimG},

and we usually call the elements Ta generators. Also, we know that, the Lie bracket

[ , ] : g× g→ g, can be written in terms of these generators

[Ta,Tb] = if ca bTc,

where f ca b are the structure constants. From the antisymmetry property of the Lie

bracket,

f ca b = −f cb a,

and from the Jacobi identity, we get

f ea df
d
b c + f eb df

d
c a + f ec df

d
c a = 0.

Also, we talked about the exponential map, which allows us to set an element g

of the Lie group G as

g = exp(iT) ≡ eiT

and using the generators B, we have

g = exp(iζaTa),

2Heuristically, we can consider λ1 . . . λi the eigenvalues of the matrixA, since the determinant of

a matrix is the product of its eigenvalues and the trace is the sum of its eigenvalues, the determinant

of eA is eλ1 · · · eλi .
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with the parameters ζa ∈ R. The imaginary unity i is present, because, when the

generators are hermitian, i.e. T†a = Ta, the group element g is unitary. Evidently,

since [Ta,Ta] = 0, then we have

g†g = exp(−iζaT†a)exp(iζaTa) = exp(iζa(−T†a + Ta)) = 1.

De�nition: A vector subspace h of the Lie algebra g, which is itself a Lie algebra,

i.e. [h, h] ⊂ h, is called Lie subalgebra.

De�nition: We say that the Lie subalgebra h of g is an ideal or invariant

subalgebra, when

[g, h] ⊂ h.

The lie algebra g and the neutral element e (let us call this element as zero) are

evidently ideals, they are called improper ideals.

De�nition: The Lie algebra that has only itself and zero as ideals and that has

dimension dim > 1 are called simple Lie algebras3. We can analyze the structure of

the Lie algebra, looking through the ideals. Let us derive a Lie algebra g′ from g

setting

g′ := [g, g].

Naturally, g′ is a Lie subalgebra of g, beside, notice that in a obvious way, g′ is also

an ideal, in fact

[g, g′] = [g, [g, g]] ⊂ g′.

Wisely, we de�ne the sequence

g(1) : = [g, g] = g′

g(2) : = [g(1), g(1)]

...

g(i) : = [g(i−1), g(i−1)].

Each term of this series, called derived series, is an ideal of g,

De�nition: A soluble algebra g is the one that its derivative series vanishes for

some i0 ≥ 1, i.e.

g(i0) = 0.

Evidently, this equality remains for all i ≥ i0.

3This is a requirement that makes simple and semi-simple Lie algebras compatible [55].
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De�nition: The Lie algebra g such that, besides {0} has no soluble ideal is

called semi-simple Lie algebra. Actually, these are the Lie algebras that we are

interested in, then, they are the kind of algebras that we will consider hereafter.

De�nition: When the Cartan-Killing form is positive de�ned4, we say that a

semi-simple Lie algebra is compact.

De�nition: Let g be a semi-simple Lie algebra, the maximal abelian subalgebra

g0 is called Cartan subalgebra5. Also, we de�ne the rank of the Lie algebra g, as

the dimension of the Cartan subalgebra g0. Let us call the elements of the Cartan

subalgebra g0 by Hi, i = 1, . . . , r = rank(g).

Cartan-Weyl basis

We can choose a well de�ned basis for the Lie algebra. In the case of a compact

semi-simple Lie algebra, the best choice is the one called Cartan-Weyl basis. We

already know that the Cartan subalgebra elements can be expanded through

Hi, i = 1, . . . , r = rank(g),

in a way that

[Hi,Hj] = 0. (B.1)

One can show [52, 55, 56] that the semi-simple Lie algebra g can be write6 as

g = h⊕ p,

where the Cartan subalgebra is h and p is the complement of h in g. In fact, we can

set the trace in a given representation by

trace(hp) = 0,

that makes p an orthogonal complement of h.

4Notice that, if we had taken the commutator of the generators without the imaginary factor

i, we would require that the Cartan-Killing form was negative de�ned, compare with [55, 56].
5When we drop the semi-simple requirement, the de�nition of Cartan subalgebra involves some

additional de�nitions that are beyond the scope of this work, see [55] for more informations.
6The symbol ⊕ is a formal summation of the pairs of elements in the algebra, which the precise

de�nition escape of our aim.
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The orthogonal complement p contains all elements of g which are not in h, then

we can evaluate the trace

trace(h[h, p]),

and using the cyclic property of the trace we get

trace(h[h, p]) = trace(p[h, h]) = trace(hp) = 0,

hence, we conclude that

[h, p] ⊂ p.

In this sense, we can chose the remaining generators, that we will denote by

{Eα ∈ p}, and this set satis�es an �eigenvalue equation� such that

[Hi,Eα] := αiEα, i = 1, . . . , r, (B.2)

where we usually call the elements Eα step or ladder operators. The eigenvalues αi
are components of an r-dimensional vector, this vector is called a root of the Lie

algebra g. Let us denote the set of all roots of a semi-simple Lie algebra by Φ.

De�nition: A basis of a compact semi-simple Lie algebra g of the form

B := {Hi | i = 1, . . . , r} ∪ {Eα | α ∈ Φ},

with Hi and Eα satisfying (B.1) and (B.2) respectively, is called Cartan-Weyl basis.

Finally, we can consider the commutator between two elements from the orthog-

onal complement [Eα,Eβ]. Let us evaluate this commutator through the Jacobi

identity, then

[Hi, [Eα,Eβ]] = −[Eα, [Eβ,Hi]]− [Eβ, [Hi,Eα]]

= αi[Eα,Eβ]− βi[Eβ,Eα]

= (αi + βi)[Eα,Eβ].

Since the Lie algebra is closed, there are three possibilities for this expression,

1. α + β root of the Lie algebra, so [Eα,Eβ] ∝ Eα+β;

2. α + β is not a root of the Lie algebra, so [Eα,Eβ] = 0;

3. α + β = 0, so [Eα,Eβ] must be an element of the Cartan subalgebra.
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We can sum up the results of the generators for the semi-simple Lie algebra as

[Hi,Hj] = 0,

[Hi,Eα] = αiEα,

[Eα,Eβ] =


nαβEα+β if α + β is a root

0 if α + β is not a root

Hα if α + β = 0.

Lie Algebra A(2)

The algebra that we are interested in, is the algebra su(3), which is the Lie algebra

of the Lie group SU(3), that is a subgroup of tGl(3,C). Formally, we de�ne this

group as

SU(3) := {A ∈ Gl(3,C) | A†A = I, detA = 1},

where the S stands for special, because the determinant of these matrices is equal

to the unity and U means unitary. Therefore, the group SU(3) is the subgroup of

Gl(3,C) composed by unitary matrices with determinant equal to unity. To this

group corresponds the Lie algebra su(3). Using that, we can write an element of

the Lie group as an exponential of the algebra element, i.e. A = exp(iT), and from

AA† = 1, we conclude that T must be hermitian. Also, one must remember that

det(exp{iT}) = exp{trace(iT)};

but, we know that det(exp{iT}) = 1, then we conclude that trace(T) = 0. There-

fore, the Lie algebra su(3) is generated by the 3 × 3 hermitian traceless matrices.

The Cartan subalgebra of this algebra has rank r = 2, then mathematicians usually

call this algebra A(2).

The usual basis for this algebra is composed by the Gell-Mann matrices ; and

with them, we can write the following matrices. By abuse of terminology, let us call

these matrices as generators of the Lie algebra A(2).

Generators

T3 =

 1 0 0

0 0 0

0 0 −1

 T+ =
√

2 i

 0 1 0

0 0 1

0 0 0

 T− = −
√

2 i

 0 0 0

1 0 0

0 1 0


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L0 =
1√
6

 1 0 0

0 −2 0

0 0 1

 L1 =
i√
2

 0 −1 0

0 0 1

0 0 0

 L−1 =
i√
2

 0 0 0

−1 0 0

0 1 0



L2 =

 0 0 −1

0 0 0

0 0 0

 L−2 =

 0 0 0

0 0 0

−1 0 0


Commutation Relations

[T3,T3] = 0 [T+,T−] = 2T3 [T3,T±] = ±T± [T3,Lk] = kLk

[T±,Lk] =
√

6− k(k ± 1) Lk±1 [Lk,L−k] = (−1)k
k

2
T3

[L0,L±1] = −
√

6

4
T± [L0,L±2] = 0 [L1,L−2] =

1

2
T− [L−1,L2] =

1

2
T+

[L1,L2] = 0 [L−1,L−2] = 0

This particular set of matrices is the best choice to write the Lax pair of the

Tzitzéica model.
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Appendix C

Calculations of the Darboux matrix

elements

We can take the gauge

K =

α1 0 0

0 α2 0

0 0 α3

+

 0 0 β1

β2 0 0

0 β3 0

 1

λ
+

 0 δ1 0

0 0 δ2

δ3 0 0

 1

λ2
+

γ1 0 0

0 γ2 0

0 0 γ3

 1

λ3
.

First Part Consider the equation

∂+K = KA+ − Ā+K,

where A+ involve �elds v and Ā+ with �elds v̄. Therefore, we �nd the system

λ

α1 = v̄
v
α2

α3 = v
v̄
α2

α3 = v2

v̄2α1

λ−3

∂+γ1 = 0⇒ γ1 = constant1

∂+γ2 = 0⇒ γ2 = constant2

∂+γ3 = 0⇒ γ3 = constant3

(C.1)

λ0

∂+α1 − β1

v2 − iv̄β2 = 0

∂+α2 + ivβ2 − iv̄β3 = 0

∂+α3 + β1

v̄2 + ivβ3 = 0

λ−1

∂+β1 + ivδ1 − iv̄δ2 = 0

∂+β2 − δ2
v2 − iv̄δ3 = 0

∂+β3 + δ1
v̄2 + ivδ3 = 0

λ−2

∂+δ1 + ivγ1 − iv̄γ2 = 0

∂+δ2 + ivγ2 − iv̄γ3 = 0

∂+δ3 + γ1

v̄2 − γ3

v2 = 0

In the same way for

∂−K = KA− − Ā−K,
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then

λ0

α1
∂−v
v
− α1

∂−v̄
v̄

+ ∂−α1 = 0

∂+α2 = 0⇒ α2 = constant4 := ξ

−α3
∂−v
v

+ α3
∂−v̄
v̄

+ ∂+α3 = 0

λ−1

∂−β1 + α1 − α3 − β1

(
∂−v
v

+ ∂−v̄
v̄

)
= 0

∂−β2 − iα1 + iα2 + β2
∂−v
v

= 0

∂−β3 − iα2 + iα3 + β3
∂−v̄
v̄

= 0

λ−2

∂−δ1 + iβ1 − β3 − δ1
∂−v̄
v̄

= 0

∂−δ2 − iβ1 + β2 − δ2
∂−v
v

= 0

∂−δ3 − iβ2 + iβ3 + δ3

(
∂−v
v

+ ∂−v̄
v̄

)
= 0

λ−4

γ1 = ν

γ2 = ν

γ3 = ν

(C.2)

λ−3

∂−γ1 + iδ1 − δ3 + γ1

(
∂−v
v
− ∂−v̄

v̄

)
= 0

∂−γ2 − iδ1 + iδ2 = 0

∂−γ3 − iδ2 + δ3 − γ3

(
∂−v
v
− ∂−v̄

v̄

)
= 0

Second Part From equations (C.1; λ) and (C.2; λ0):

α1 := α = ξ v̄
v
, α2 = ξ, α3 = ξ2

α
. (C.3)

From equations (C.1; λ−3) and (C.2; λ−4):

γ1 = γ2 = γ3 = ν. (C.4)

Also, from equation (C.2; λ−3):

δ1 = δ2, iδ1 − δ3 − ν ∂−αα = 0. (C.5)

From (C.1; λ0)

β2 = αβ3

ξ
, ∂+α− β1

v2 − iv̄β2 = 0. (C.6)

Third Part Now we use a little trick, since Borisov [30] have used a Lax pair

without imaginary factor i =
√
−1, naturally, he found a Darboux matrix without

explicit factor i, even that an implicit dependence he doesn't deny, in fact, imaginary

terms can appear in the �elds φ and φ̄. Here, we do the same considerations, then,
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in our Darboux matrix, we allow that the components have imaginary terms just

decoded in the �elds. From equations (C.1; λ−1) and (C.6)

β1 = δ1ξ
αβ3

(α + ξ) δ3 = α
2ξ2β

2
3 (C.7)

Fourth Part Now, consider the equations (C.2; λ0 and λ−2), with some algebraic

manipulations we can write

∂−α + α
δ1

(β2 + β3)− 2iα
δ1
β1 = 0, (C.8)

and using (C.6) and (C.7)

∂−α + α
δ1

(α
ξ

+ 1)β3 − 2iξ
β3

(α + ξ) = 0, (C.9)

which we can compare with (C.5) and �nd

δ1 = 2νξ
αβ3

(α + ξ) = δ2, (C.10)

�nally, we call

β3 := β. (C.11)

We can join every result and write the system of equations

∂+α− i
α γ

ξ
− 2 ν

γ2
(α + ξ )2 = 0 (C.12)

1

v̄
∂+γ −

γ

v̄2
∂+v̄ +

2 ν ξ

α v̄ γ
(α + ξ ) + i

γ2

2 v̄ ξ
= 0 (C.13)

∂−α− i
2 v̄ ξ

γ
(α + ξ ) +

α2γ2

2 ν v̄2 ξ2
= 0 (C.14)

∂−γ

v̄
+ i ξ

(
ξ

α
− 1

)
= 0 (C.15)

where we have de�ned

γ := v̄β. (C.16)
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