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...once or twice she had peeped into the book ...but it had no pictures
or conversations in it, “and what is the use of a book,” thought Alice

“without pictures or conversation?”
Alice’s Adventures in Wonderland (Lewis Carroll)

“Reason must approach nature with the view, indeed of receiving infor-
mation from it, not however in the character of a pupil, who listens to all
that his master chooses to tell him, but in that of a judge, who compels
the witnesses to reply to those questions which he himself thinks fit to

propose.”
Critique of Pure Reason (Kant)

“I think nature’s imagination is so much greater than man’s, she’s never
going to let us relax.”

“But you gotta stop and think about it, about the complexity to really
get the pleasure and it’s all really there, the inconceivable nature of

nature.”

Fun to Imagine (Richard Feynman)
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Resumo

Consideramos dois métodos, chamados transformacoes de Darboux e Backlund,
para geracao de solucoes solitonicas no modelo integravel de Tzitzéica. No contexto
de modelos com defeitos, tratamos essas transformagoes e percebemos que elas estao
escondidas no sistema sob a forma de condicoes sobre o defeito. Por fim, usando as
profundas relacoes entre teorias classicas de superficies e solitons, mostramos que
os métodos de Bécklund e Darboux estao intimimante relacionadas com a classica

transformacao de Tzitzéica.

Palavras Chaves: Solitons; Tzitzéica; Biacklund; Darboux; Invariancia de Calibre.

Areas do conhecimento: Fisica Matematica; Teoria de Campos; Modelos Inte-

graveis.
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Abstract

We consider two methods, called Darboux and Bécklund transformations, for
generating of solitonic solutions in the Tzitzéica integrable model. In the context
of models with defects, we treat these transformations and we realized that they
are hidden under the form of conditions over the defect. At the end, using the
deep relations between classical theories of surfaces and solitons, we show that the
Bécklund and Darboux methods are intimately related with the classical Tzitzéica

transformation.

Key Words: Solitons; Tzitzéica; Backlund; Darboux; Gauge Invariance.

Areas: Mathematical Physics; Field Theory; Integrable Models.
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Chapter 1

Introduction and General Overview

ON-LINEAR THEORIES play an important role in modern science, the phe-

nomena described for some sorts of such theories, are endowed with two

kinds of behaviour which are not mutually exclusive, “chaotic” and “de-
terministic”. We are interested in the second type and Solitons are within this class
of phenomena. Physicists and mathematicians share a deep interest in systems with
regular behaviour, besides, it is not unusual for biologists to apply solitons in their
works.

Therefore, besides several applications in physical phenomena, such as solitary
wave in water and signal 1n optical fibre, in biological systems, such as chemical en-
ergy transport in proteins, solitons provide an effective mathematical lab, for study-
ing of non-linear partial differential equations, differential geometry of surfaces, Lie
theory and so on |1, 2].

A well known story, is that John Scott Russell, in 1834, observing a boat being
drawn by two horses along a channel in Edinburgh, noticed that, after the boat
suddenly stopped, a bow wave, with a shape of a solitary wave continued its motion
forward - without changing its form or velocity. Russell, perhaps because he was a
naval engineer, realized that such a wave was not an ordinary phenomenon and, he
followed that solitary wave, until lost it, two miles later.

The scientist built a tank where he kept studying what he named wave of trans-
lation, and he could notice some of its properties, through several experiments;
however, the length of the tank and consequently, the short duration of the wave,

did not allow the scientist to be able to see the interaction of two solitons [1, 3, 4].



In 1895, Korteweg and de Vries derived the equation, known today as KdV
equation, which describes water waves in shallow channels, however, a less known
fact is that, a pair of equivalent equations had already been found by Boussinesq at
1870, which describe waves propagation in rectangular channels, and independently,
by Rayleigh that studied and explained mathematically the Russell’s observation
1, 4].

Zabusky and Kruskal, via a computational approach, could rediscover the KdV
equation in the continuum limit of an anharmonic lattice model and they could
consider its solutions. By the way, they named these solutions as solitons, to denote
the particle-like behaviour of these solitary waves under interaction, in this sense,
this is just a “parody” of protons, electrons, neutrons and so on [1, 4].

The modern study of theory of solitons began in this context, when the com-
putational tools could be used, and solitons - at this time, still a curiosity - have
become a useful mathematical tool.

But, what really is a soliton? This question does not have a unique answer and
today there are several uses of this term in some different contexts. The solitons
that we are interested in, can be described as localized and stable solutions of a
completely integrable system. By localized and stable, we mean that they look like
solitary waves or lumps, which can be scattered without loss of their characteristics
including, their shape, even when interact with other solitons. The stability of these
solutions are guaranteed by infinitely many dynamical conserved quantities in the
system |5, 6].

Another type of solitons (that we will not deal in this work), are those which have
their stability guaranteed by discrete homotopy invariants, in this sense, they are
topological solitons. Kinks in one dimension, vortices in two dimensions, monopoles,
skyrmions and instantons are some examples of topological solitons which have a

huge value in modern science [5, 7, §|.
LS * *

On the other hand, the relation between theory of surfaces and theory of solitons,
is a well understood subject today, and maybe, due the large “overlap” that exists
between these two areas, sometimes they appear to be the same study under different
perspectives [4, 9, 10, 11, 12].

Differential geometry of curves and surfaces have its origin in the early X7X
century, mainly in the works of Gaspard Monge(1746 — 1818) and Carl Friedrich



Gauss or simply Gauf (1777 — 1855). Monge, whose main work in differential
geometry of surfaces is compiled at Application de ’analyse a la géométrie, published
in 1807 [13|, was responsible for a descriptive study of curves and surfaces. He was
an engineer, and it was an important detail in his work, because, Monge has seen the
surfaces strongly related with the surrounding space and tried to make a relation
between these surfaces and partial differential equations. Most of his work were
generated by this attempt.

One of the greatest scientists of all times, certainly was Gauss. His approach to
surfaces theory started with the attempt to measure quantities, such as distance,
on the surface of the Earth. Thereby, he realized that to study a generic two
dimensional surface, he does not necessarily need to attach the surface to a three
dimensional space, but one may assign to that surface, its own intrinsic geometric
properties |[14]. As we know today, this was a paradigm that grew up and from
which emerged the development of non-Euclidean geometries — that have found
several applications in physics, including the so charming General Relativity. The
fundamental contribution of Gauss in surfaces theory, Disquisitiones generales circa
superficies curvas (General investigations of curved surfaces), published in 1827 [15],
is a mathematical masterpiece still today.

Gauss set down a system of equations, known evidently as Gauss equations, that
are fundamental in the description and analysis of surfaces. Furthermore, from the
symmetries and compatibility of this system of equations — for a special class of
surfaces — arise the remarkable connection between classical differential geometry of
surfaces and solitons theory.

The special surfaces referred in last paragraph are named hyperbolic surfaces:
those with negative Gaussian curvature!. For instance, the celebrated sine-Gordon
equation

Wpo = %sin w,
that was born in the Edmond Bour description of hyperbolic surfaces with constant
curvature £ := —1/a® in 1862, and in this sense, a pseudo-spherical surface [1,
3, 4, 16]. Independently, Bonnet in 1867 and Enneper in 1868, through the same

consideration of pseudo-spherical surfaces, rediscovered the sine-Gordon equation.

Tt is worth remembering that the total curvature of a surface S is given by [ fs KkdS, where Kk
is the Gaussian curvature. As this is an easy formula to remember, we will avoid to use the term

total curvature.



Underlying the hyperbolic surfaces description in terms of differential equations
systems, such as Gauss equations, and its relation with solitons theory, the success
of these two areas — and of the differential geometry as a whole —, are due the
procedures of generating iteratively surfaces of a type, from a previous one of the
same type, called seed [17]. Albert Victor Biacklund (1845 —1922), Gaston Darboux
(1842 — 1917) among others important mathematicians, investigated these mecha-
nism of generating surfaces and the classes of surfaces which admit those kind of
transformations. Moreover, the transformations that bear theirs names are today a
well established subject in differential geometry of hyperbolic surfaces, also, the in-
variance under these transformations seems to be a shared property of the solitonic
equations [4, 9, 16].

In the sine-Gordon case, for example, the iterative procedure comes from a geo-
metric construction of pseudo-spherical surfaces. Furthermore, the new solution of
the sine-Gordon equation is result of the compatibility conditions, that the system of
equations which describe the new surface recently constructed, must satisfy. Rogers

& Schief, at [16], summarize wonderfully this effort as

“..if a point P is taken on an initial pseudo-spherical surface ¥ and
a line segment PP’ of constant length and tangential to X at P is con-
structed in a manner dictated by a Bdcklund transformation ... then the
locus of the points P’ as P traces out X is another pseudo-spherical sur-
face X' with the same total curvature as 3. The procedure may be iterated
to generate a sequence of pseudo-spherical surfaces all with the same total

curvature as the original seed surface 3.7

This procedure yields the well known Bécklund transformation for the sine-Gordon

(w/_w> B | (W/—i_w)
= —sin ,
2 , @ 2
w+w 1 . (W —w
= —sin
2 , Ba 2 ’

where [ is what is known as Bdcklund parameter, a = (—k)

equation

~1/2 is the pseudo-radius

and w, w" are two solutions of the sine-Gordon equation. It is worthwhile to comment
that the Biacklund parameter is far to be a negligible constant. Actually, it has a deep

connection with a non-linear superposition principle, that is embodied in something

4



known as permutability theorem, and has as a consequence, the commutativity of

two successive Backlund transformations.

Sustained by these relations between solitons and surfaces theories, the statement
mission of this work is to consider the transformations of the Tzitzéica equation under
these two perspectives, the solitonic and the geometric. Along this work we will
speak a little more about the historical contribution of the Romanian mathematician
Tzitzéica under these two approaches, pointing some important aspects, the real
motivation and the modern interest in this model.

It is worth commenting that, Tzitzéica started studying a class of hyperbolic

surfaces whose have Gaussian curvature satisfying the condition that bears his name,
K~ —d*,

where d is the distance from the origin to a generic point in the surface. Due its
importance in affine geometry, the Tzitzéica surface is called affinsphdren or affine-
spheres. Remarkably, Tzitzéica set down not only a linear representation of this
surface — equivalent in modern language to the Lax pair — but also, he found a
Bécklund-like transformation that bears his name.

The solitonic Tzitzéica equation

(Inv),, =v—v"2

arises from the compatibility conditions of the Gauss system for the surface, as we
already know, and as example of a physical system which this equation is naturally
adopted, consider the anisentropic gasdynamics system. Also, this last equation

keeps important connections with TODA lattice model, as shown in [4, 16].

The first part of this work, is devoted to the solitonic approach. Then, in the next
chapter, we give the basic framework for the study of integrable models. We present
the notion of integrability, Poisson structure, Lax pair and zero curvature equation
for continuous systems. We chose a non standard way to present these concepts in
view of completeness, however, several good texts discuss the same issues in a more
algebraic fashion |5, 6, 18|.



Chapter 3 is devoted to the Tzitzéica model, the criteria which made us to divide
this text in part I and /I will be clear in that chapter. We discuss the Lax pair
and the zero curvature condition, after, using the gauge invariance, we propose the
Darboux and Béacklund transformation for this beautiful model.

The application of the Bicklund transformation may be realized in the chapter
4. The method of Corrigan & Zambon is dealt here, where we consider an integrable
system built by two domains and its interface is thought as a defect. The conditions
in the defect will determine the behaviour of the whole system and of its conser-
vation laws, including energy and momenta [19, 20]. The key point in this chapter
is that, at the defect position, the Béacklund transformation naturally appears as
conditions over the defect. Parallel to this work, we have found at [21], infinitely
many conserved quantities, which guarantees that the introduction of the defect for
the Tzitzéica model does not spoil its integrability.

The solitonic context is abandoned and a less natural way to deal with these kind
of systems is started in the second part, under the perspective of surfaces. Then, a
new introduction will be necessary now, and we describe in the chapter 5, the basic
theory of surfaces, following the methodology of Monge and Gauss.

In the next chapter, we show the notion of hyperbolic surfaces and affinsphéren.
Also, the prototype of a generalization of the treatment of soliton theory is tasted,
in this sense, we can see that the soliton theory can admit an approach under the
concepts of surface [4, 16].

Finally, in the chapter 7, we show that the Backlund transformation, previously
found in the third chapter, hides the classical Tzitzéica transformation. And we
consider at the end, a naive example of this transformation.

In order to be coherent and self-consistent, we would like to use some mathe-
matical concepts and terms that are not too familiar among most of the physicists.
Then, we offer some mathematical appendices, that are not mandatory but can be
very useful for some readers and evidently to the author itself. Thus, from the main
text together with the appendices, we hope that the whole work can be read, just
based in the work itself.



Part 1

Solitonic Context



Chapter 2

Integrable Models

GO gt

a‘ »
@

NE CAN, IN A HEURISTIC WAY, define the subject that we are interested

in, saying: An integrable model consists of non-linear differential equa-
tions which can be solved analytically, at least “in principle”.

Since mathematicians as well as physicists are quite interested in these models, today
there are several works, looking through their theoretical and experimental aspects.
The formal characteristics of the integrable models, concepts such as infinite dimen-
stonal Lie algebras and their representations and new subjects that were born in
the core of differential geometry as well as in the Sturm-Liouville problem - like
Backlund, Moutard, Darbouz transformations and so on —, are the main interests
shared by mathematicians. Physicists, naturally, are interested in the possibility
of applying these models in physical phenomena, besides, the solitonic solutions
of these models emerge as a good opportunity to test new ideas in the areas of
non-linear optics, hydrodynamics, condensed matter, continuous mechanics, plasma
physics and high energy physics [4, 5, 6]. In fact, solitons are the strongest tools
for non-perturbative approach in various theories, from the hydrodynamics to string
theory.

In this chapter, the goal is to present in a very succinct fashion, the classical
ideas of integrable systems. We start with the general aspects of a Hamiltonian
system and present the Liouville theorem, which states what an integrable system
is. After, we talk a little bit about the geometry of phase space, we point the general
aspects of a symplectic manifold and finally, the Lax pair is presented. It is worth

remembering that we will try in this chapter, give just the fundamental concepts



that we will need to attack the Tzitzéica model, however, for those who are not
familiar with the subject of integrable models, we strongly recommend a reading of
the books [5, 6] for a complete treatment of this topic.

2.1 Hamiltonian System

The evolution of some mechanical systems with n degrees of freedom can be
described by the Hamilton’s equations, in such a case, one says that those systems
are Hamiltonian systems. The motion of such a system can be analyzed in a 2n-
dimensional space, which is spanned by the coordinate functions (¢;, p;), i = 1,...,n,
i.e. the canonical coordinates and the momenta respectively. This space, that one
denotes by M, is called phase space, and it is locally euclidean, it means that in
a neighborhood of a point, this space looks like the R?", but globally, it can be a
non-trivial manifold®.

One can consider differentiable functions (that are called dynamical variables)
f,9: M xR — R such that f = f(¢,p;t) and g = g(q, p;t) ?, where p,q are the
coordinates of the phase space M and t is the evolution parameter, which is usually

called time. Also, one can define now, the famous Poisson bracket as

& [(0fdg g Of
Urgh= Z (3% pi g api>7 (21)

i=1

that satisfies two important properties,

{f.9} =—{9. 1} skew-symmetry
{f, {9, h}} + {9, {h, f}} +{h,{f,9}} =0. Jacobi identity

When {f, g} = 0, one says that f and g are in involution.

'In a mathematical language, the configuration space where the system lives in, is the manifold
N and the points of such a manifold are denoted by ¢. In addition, one knows that the momenta,
in the Lagrangian mechanics, are defined by p := ‘g—s, so the momenta lives in the cotangent space
TN . Thus, the phase space is the cotangent bundle M = TN™ := {(¢,p) | ¢ € N, p € TN}
[22].

2The dependence of a dynamical variable f on the parameter ¢ is usually given through the
coordinate functions ¢ and p, so it is usual to split this dependence, writing f = f(q,p;t) =
f(q(®),p(t)) instead of f = f(q,p,t). This last notation, one often uses when there exists an

explicit dependence on t.



The well known results about Hamiltonian system are summed by: Given a
system with n degrees of freedom, coordinate functions (¢;,p;), i = 1,...,n and a
Hamiltonian H = H(q, p;t), the Hamilton’s equations are

oH . . oH
Op; b= dq; ’

G = (2:2)

since the Poisson bracket of the coordinate functions (g;, p;) satisfies
{gi,4;} = 0= {pi,p;} and {q,p;} =y
Considering again, the function f = f(q,p;t), one can write the total derivative

df ) f of dqz of dp;
Z (6% dt api dt >

E: 8f@H’ of OH
dq; Opi  Op; Oq;

={f. H}, (2.3)

where the Hamilton’s equations of motion have been used and 0f/0t = 0, since the
function f has no explicit dependence on the time.

A function f = f(q, p;t) such that f = 0 when (2.3) is valid, is called a first inte-
gral or as physicists usually call, a constant of motion. Evidently, the Hamiltonian
itself is a constant of motion, since {H, H} = 0. In addition, in the case when the
dynamical variable f is equal the coordinate function p; or g;, one has the Poisson
bracket

¢ ={q, H} and p;={p; H}.

Let us now, enunciate two important theorems,?

Theorem 1 (Liouville) A Hamiltonian system is integrable by the method of qua-
dratures, if and only if, it is a 2n dimensional phase space M with a set of n

functionally independent functions that are in involution, i.e. Ki,..., Ky, such that
{lii,ﬁj}zo, i,jzl,...,n.

so, the functions k; are constants of motion.

3The reader can find the proofs in [5], further references are in |23, 24].

10



Theorem 2 (Arnold-Liouville) Consider now, the integrable system

(M,/@l,...,lﬁn)

and the Hamiltonian H = k4. Also, let

{(p,q) € M | ki(p,q) = constant} i=1,...,n,

M, =
be an n-dimensional level surface of constants of motion.

When M, is compact and connected, this surface is diffeomorphic to the torus

Tm = S x - x 81,

and we can define the coordinates,

]1,...,In;¢1,...,¢n, 0S¢Z§27T7

that are known as action-angle coordinates, respectively. The angle ¢; are coordi-
nates on the level surface M,,, and the actions I; are the constants of motion.

With this construction, the Hamilton’s equations are
).

[,L:O and gﬁi:wi([h..
Integrating these equations, we have

oi(t) = wi(I)t + ¢:(0) and

We can realize that,

that are n circular motions with constant angular velocities.
it 1s always possible to solve an integrable model through a sequence of algebraic

operations and integrations.

2.2 Poisson Structures
The coordinate functions (g;, p;) in a 2n-dimensional manifold M can be written
in a most natural form when one combines the positions ¢; with the momenta p; by:

b= iy 1) ’ 24
y* = (¢i pi) {a—l,...,Qn (2.4)

11



in a way that
y'=q and y*"=p;.

With this definition, the Poisson bracket of the coordinate functions are

{y", "} = €™, (2.5)

where the antisymmetric 2n X 2n matrix

6ab — 0 ann
_ann 0
has been defined.

In the same way, one can evaluate the Poisson bracket of two dynamical functions
by

of 99  0dg Of
{f.9} = Z <a% op; 86]1- api)

SN §s (M ratoy  oyoror o
oy 0q; Op; Oy® Oy Oq; Op; OyY*

a,b=1 i=1
_ i of z”: oy y* Oy oy \ | dg
o dy* |4 Oq; Op;  Oq; Op; ) | Oy°
a
{ % } = €0, f Dyg, (2.6)

where the implicit summation over repeated indices and

have been defined.
Naturally, given the Hamiltonian H : M x R — R, the generalized Hamilton’s

equations are
y' = {y", H} = €O, H. (2.7)

We have seen that, with a little bit of sophistication, we could treat the Poisson
bracket in a very natural way. When we thought in the Hamiltonian structure in
a geometric fashion, the Poisson bracket seems to gain a “cause”. After this little
effort, we are going to consider the classical “road” for the generalization of the

Hamiltonian systems.
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Evidently, we will not to study each “minutia” and definitely, we will not arrive
too far, but in the end of this chapter, we will to know exactly what is enough
to understand the mathematical structure of an integrable model and its geometric
approach, that is what we are really interested. From now on, the aim of this chapter
is to present some geometric ideas of the Hamiltonian systems and their impact over

the integrable models, that is, we are looking to the Lax Pair.

2.2.1 Symplectic Structure

The ideas behind the Poisson bracket provide a generalization of a geometric
approach to the Hamiltonian systems, let us clarify this affirmation with “work”, be-
cause, this is the way that physicists like. Consider, then, a p-dimensional manifold
M with coordinates functions (2!, ..., z?).

Definition: A skew-symmetric matrix w® = w®(z) is called a Poisson structure if
the Poisson bracket, defined by

& af Og
- ab ~J _  ab
{fa g} T abzlw (‘T) axa 8.1Ub w (x)aaf abg7

satisfies the well known skew-symmetry property and the Jacobi identity. Evidently,
one gets

wab(I) — {x“,xb}
when the coordinates functions are used in the Poisson bracket.

In this point of view, the Hamiltonian function is H : M x R — R and the

generalized Hamilton’s equations are

7 = {2*, H} = w02 (2)0,H = w5 "0y H
= “b(m)abH. (28)

Furthermore, everything known about Hamiltonian system can be recovered,
when one sets in the manifold M, the dimension p = 2n and one identifies the
coordinate functions y* € M with the generalized phase space coordinates, i.e.
2% = y*. Whereas the functions y® form a basis of the phase space M, then, w?

must be non-singular, so, the inverse matrix wq, = (w®)~! can be defined by
WPwpe = 6% 1= waw". (2.9)
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In addition, it is known that the Jacobi identity is satisfied, i.e.
{y" A"y 1+ {0 sy + e ') = 0,
and from this identity, follows the Bianchi identity.
Oawpe + Opwea + Ocwap = 0,

In this case, wy, is called a symplectic structure and the space M endowed with
such a structure is called a symplectic manifold. This symplectic structure w,, can
be used in an analogous form to the Riemannian metric* g,,, what we mean is
that, this structure can be used to lower indices and in this sense, is the metric of

ab can be used to

a symplectic manifold. In the same way, the Poisson structure w
raise indices in the same manifold M.

It is worthwhile to comment that, formally, a symplectic manifold M is more
general than we have defined here [25], so, the phase space is just, a special case of
a symplectic manifold [6]. One of the most important features of the phase space of
an integrable model can be summarized, when one realizes that, since we are dealing
with a Hamiltonian system with n degrees of freedom and as it is integrable, we can
think of each conserved quantity x;, ¢ = 1,...,n as a Hamiltonian [18]. We conclude
that, since for an integrable model there are at least two distinct Hamiltonians, in
the symplectic manifold of this model there exist at least two distinct symplectic
structures. Next section, we will start quantifying these last words and the general

features of the phase space of an integrable model will be more evident.

2.3 Phase Space of an Integrable Model

Considering from now that there are two distinct symplectic structures in some
dynamical system, this is equivalent to consider the dynamics generated by two

distinct Hamiltonians, or more basically, two distinct Lagrangians, then

L = 7a(y)y" — H(y) (2.10)

and
L=Tl(y)y" — H(y), (2.11)

4 Appendix A page 76 for details.
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where a = 1,...,2n, the generalized momenta are m and II, and the dot over the
coordinates functions, denotes the evolution parameter derivative, that is naturally,

the time. The Euler-Lagrange equations for this system are

d OL oL b

%aya — aya =0 = (@mb — 8b7ra)y = &lH,
and i0L oL

—— — = I, — 0,11,)y" = 0, H

dtay'a aya 0 = (aa b ab a)y aa 3

and from equations (2.8) and (2.9) one can write

Wab yb = aaI—L
Qup 1° = 0aH, (2.12)

where the symplectic structures
Wap = OaTp — OpTrg

and
Qab = aaHb - abl_Iaa

have been defined, each generating its own Poisson structure |6]. Then, from the

definition of Poisson bracket, one gets

{f.g}r = w™ Ouf Dby
{f.9}r = Q% 0uf Bog. (2.13)

Finally, the Hamilton’s equations are

ya = wababH7
= QPoH,

that describe, naturally, the same dynamic

w“babH = Q“b(?bH.
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2.3.1 The Lax Pair

Firstly, a new quantity in the manifold® must be defined with the symplectic

structure above, then, let
SP = w, NP (2.14)

be such a quantity.
The next step is to consider the cross derivative of the equations (2.12), so, by

consistency

6{1 ab]—[ = ab 8{1H7
which implies
0= aa(wbc Z/C) - ab(ujac yc)
= (aawbc)yc + wbcaayc - (abwac>yc - wacabyc
= (8awbc + abwca)yc + wbcaayc - wacabycy (215)

using now, the Bianchi identity
Oawie + Opwea + Ocwap = 0,
and the following definition
041" = 0 (w0 H) = 0,(QP0,H) :=U,°,
one can write (2.15) as

_8cwab ?f - Z/{a chb + Z/{b cha = 07

or
dwq
:tb = U, “wep + Uy “Wea. (2.16)
In the same way, one finds
dSQ,
dtb = _Z/{aCch +ub CQca- (217)
To consider the expression for the Poisson structure, just take the derivative
d(w®wy,) _0
dt
dw® p AWpe
— he ab e _
ar e

®One could define S? := Q,.w®, that the calculation would be the same.
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then
dwab

dt
d

Wpe = WP (U, “Wee — U, “wep)
multiplying by the inverse w®

dwab

dt

d ab e e cd
Oy = W (U “Wee — U, “wWep )™,

that can be written finally, as

d ab
:t =W U, = WU, (2.18)
in the same way, one finds
anb
= Q*U,® — Q"u.b. (2.19)

When one takes the time derivative of (2.14) and carefully uses (2.16) and (2.19),
will conclude that b
d
8 sl - uss),
dt

which, in the matrix form, is

ds
— = 1s.ul. (2.20)

This last equation is known as Laz equation and the matrices S and U as Lax Pair.

The Lax pair is a powerful tool in the study of integrable models. The basic
idea behind is that, if a non-linear equation is associated to the Hamiltonian system
and one can find such matrices, then, to this dynamical system, a Schrédinger like-
equation can be associated. With this effort, the inverse scattering method® can be
used, which lead to the integrability of the Hamiltonian system:.

Therefore, given the non-linear evolution equation of a system, one would like
to find a linear operator L(t) whose eigenvalues are constant under the non-linear
dynamical evolution. In order to be coherent, the linear operator evolve in the
Heisenberg picture” like

L(t) == Ut)L(0)UT(t),

6This method is used to solve a initial value problem of an integrable system and can be thought
as an analogue of the Fourier transform, but in the non-linear case. We suggest, in crescent order
of difficulty [18, 6, 26] for further reading.

"We are treating with a classical system, however, we allow ourselves to use this abuse of
terminology.
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then

UT(t)L(t)U(t) = L(0), (2.21)
where U(t) is an unitary operator. Then
B oUt(t) ou(t)
Uu) =1 = o U(lt)JrUT(t)7 = 0.

In addition, one assumes that, there exists another operator M, not necessarily

linear, such that

oU(t)
—— =—=M(@)U(t
- (),
which implies
oU'(t) ;
= )M
5 —U'(®)
Taking the derivative of (2.21),
oUT(t) OL(t) oU(t)
———L(U(t () —=—=U(t T L(t)——~ =
SPLOU) + U0 S DU + UL TS =,
and using the derivative of the evolution operator U(t), one concludes that:
OL(t)
—= = [L(t), M (t
ORI

that is naturally, the Lax equation (2.20).
Finally, one would like that the eigenvalue of the linear operator was constant,

in fact, easily this statement can be proven true. Assume firstly, that

L(£)(t) = ()i (1),

in a way that the eigenfunction evolves as

from where follows that
ow(t) oU(t)
dt dt
Taking the derivative of the eigenvalue equation

0 0
SHLOVD) = 5 A6 ()

oP(t) A oY(t)
ot ot ot () + A

o
(%52 - o) v = (52 - o20) v

OLW iy 4 L)
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which implies

OL(t) OA(t)
— = |L(t), M(t —
= =L, M) + 5,
and from the Lax equation one finally concludes that
OA(t)
— =0.
ot

The constant eigenvalue A is usually called spectral parameter.

2.3.2 Continuous Systems

Up to now, we have considered systems with n degrees of freedom, however, the
Poisson structure that we have just seen is useful when we want (or need) to work
in a continuous system. There are a kind of pattern that help us to pass from a

discrete system to a continuous one [5|, we can sum up this scheme as:

o Replace the coordinates 3'(t) from the discrete system to a dynamical variables
u(x,t), in a way that, the discrete index i becomes the continuous variable x € R;
¢ The phase space M is replaced by a space of smooth functions on a line;

¢ The summation over the indices a by integrals in z;

o The functions of the coordinates f(y) by functional F'[u];

¢ The partial derivative by functional derivative.

One can write a functional as
F[u} = / f(u,ug;, Uggy - - - )daj7
R

where the subscript denotes partial derivative, and the functional derivative is given
by
oF _Gf_ﬁﬁf 0? 8f+
Su(r)  Ou  Oxdu, 0720Upe

with
du(z)

du(x)

where ¢ is the Dirac delta. Therefore, the ordinary differential equations, that one

= 5(Z - ﬂf),

used to have, are replaced by partial differential equations.
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By mimicking what was made in the discrete system, a Poisson bracket may be

defined considering two functional through

OF  0G
.G} = /}1@2 w(@,2,u) du(x) ou(z)

where, we require that w(z, z,u) is a Poisson structure. A possible choice (but not

dxdz, (2.22)

the only one) is

10 10
w(z, z) = 5%5@ —z)— 555(1‘ —2).

Now, with this definition, one could work a little bit with (2.22), so

+%éga<x_z>5jé) (aﬁ&if)) dud

= <aﬁ%) 5% 2 (aﬁaém *

1 oF (0 G J +1 oF (0 G J
2 Jr du(z) \ 9z 6u(z) Ty r 0u(z) \ 0z du(z) -

thus, one concludes that

UﬂG}:}ééﬁé)(ﬁzgﬁz)‘h’ (2.23)

from which follows that the Hamilton’s equations are

ou _ [ oulz) (O 5H]u]
i {u, H[u]} = /IRL ou(z) (& 5u(z)) dz
_ 0 bH[]
2 i) (2.24)

2.4 The Zero-Curvature Formulation

Among various integrable models, we are sure that the most interesting and
mathematically richer are those continuous. Naturally, we would like to treat a

large number of these models with only a few mathematical tools, we mean that,
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we would like to have a way to unify a description of a large number of continuous
integrable models. When Zakharov and Shabat were working with one of these
models, namely, non-linear Schrodinger, they have used an approach, that later was
generalized by Ablowitz, Kaup, Newell and Segur, which allows to work with several
others integrable models.

This approach uses a Lax operator that is of first order in a%' Remember that

the Lax equation is

OL(t, x) B
T - [L(t,%),M(t,I)L
that one can write as
[0y + M(t,z), L(t,z)] = 0, (2.25)

where we have denoted the dependence on the continuous variable x. Also, we
already know that

Dub(t, ) = —ME)(t, x) == —A, ¥(t, )

and when one supposes that there exists an operator N (¢, z) such that

L(t, x)ip(t, x) = (0n + N(t, 2))ib(t, ¥) = Mp(t, x),

one gets the equation
Outp(t,x) = =(N = A)p(t, 2) == —Ap Pt ),
finally, from the Lax equation presented in the form (2.25), one has
[0y + Ai(t, ), 0, + Ay(t, )] = 0.
This last equation can be written as
O Ay — 0. A + [Ar, A = 0, (2.26)

that is often called zero-curvature equation®. The origin of this usual name comes
from the differential geometry and even the study of this name would lead us to
a long road in the mathematics realm. Generically this equation means that the
curvature of the connection A := A, dx + A; dt vanishes. Connections, on the other
hand, are necessary structures to lead to a “well defined” notion of derivative in the
manifold®.

8So do zero-curvature condition and Zakharov-Shabat equation.
9We suggest [27, 28] for a succinct reading about this topic.
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Summing up In this chapter we have dealt with the notion of integrable models;
also, with some mathematical rigour, we have presented the Lax pair and the zero-

curvature condition that are the main classical results needed for the following work.
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Chapter 3

The Model and i1ts Transformations

NE OF THE few relativistic integrable models in 1 + 1 dimensions with

! one scalar field, is the Tzitzéica model; and it is what we will consider in

this chapter. This model, as well as sine-Gordon model, first appeared in
the study of hyperbolic surfaces and has been rediscovered in the solitonic context
some years later [4, 16, 29, 30, 31].

This model is a good alternative to extend the developments done in the re-
search of the sine-Gordon model, actually, the Tzitzéica model can be a laboratory
to develop and test new ideas in non-perturbative methods in physics. Besides, this
model awakes interest in its confinement mechanism and the conformal invariance
extension [32]. Therefore, if we take account these cited applications, the phe-
nomenological use in gas-dynamics and the enormous value in the affine differential
geometry [4, 16], we justify any effort done by physicists and mathematicians to a
better understanding of this model.

In this chapter, we try to present the basic aspects of the Tzitéica model, from
its Lagrangian density to the Lax pair, also, we will consider a particular type of
gauge transformation, and we derive a system (of differential equations) that makes
a relation between two Tzitzéica solitons solutions [30], this differential relation in
known as Bécklund transformation.

On one hand, there are in the literature, several Backlund transformations avai-
lable for the Tzitzéica model — for instance |29, 33, 34| — which have a strong non-
linear structure and do not allow effective calculations. On the other hand, there

was a kind of misunderstanding that do not exist Bicklund transformations for the
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Tzitzéica model. What is true in this story is that: It does not exist a transformation
similar to the Bicklund of the sine-Gordon model'. A necessary condition for the

existence of similar transformation |35, 36, 37, 38|, states that:

The non-linear Klein-Gordon equation

has a Bécklund similar to the Bdcklund of the sine-Gordon model, if and
only if F(¢) satisfies the linear condition
d*F(¢)
do?

+ kF(¢) = 0.

The Tzitzéica model does not satisfy this requirement, then, it does not have a
Bécklund similar to the Backlund of the sine-Gordon model. The misunderstand-
ing comes from the belief that this requirement is a little bit stronger: The only
integrable non-linear Klein-Gordon equations, are those which satisfy the linear con-
dition above. Again, what is true is that: This is a sufficient requirement for the
integrability, but not a necessary condition.

Then, the Bécklund transformation that Borisov et. al. has found [30] is not
so simple, indeed, it will depend of an auxiliary field. Besides the relationship with
integrable defects that we are going to explain in the next chapter, the advantage of
this transformation over the previously obtained at [29, 33, 34|, is in the geometric
context, in fact, Borisov et. al. showed how one can reduce his Biacklund trans-
formation to another classical transformation, the Tzitzéica-Moutard, that as the
name suggests, is a Moutard-type transformation that was obtained by Gheorghe
Tzitzéica [39, 40, 41, 42] and we will explain latter.

3.1 The Tzitzéica model

The starting point for this study is the Lagrangian density that was defined in
[32] by
1 1
L= 50,00"0 — 5 (2¢? +e72) (3.1)

'Tn the introduction we have presented such a Bicklund transformation; also, we will often
omit, by simplicity, the word “transformation”.
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which gives the following field equation
0.0 ¢ = 0,00 =0 = —e + e, (3.2)
where, the light-cone coordinates:

Ty = % (t +x), (3.3)

have been defined. From this definition, one gets the following derivatives
0r =0, £0, = 0,0_ =07 — 02,

that will be used exhaustively.
Tsarev noticed that in a series of papers between 1907 and 1910 [39, 40, 41, 42],
the geometer Tzitzéica analyzed surfaces associated with an equation in the form
1
0,0, (Inv) =v — ot

When one defines Inv := ¢, last equation gets a new form
9,0, (¢) = e? — e 2.

that is the field equation (3.2) above considered, with an appropriate global sign.
This sign one can be recovered when one chooses? p — —x, and o — x_, then
1

&r@, (hl U) = —v+ —2, (34)
v
that one can write as
) )

Equations (3.2) and (3.4) are usually called Tzitzéica equation®.

In the second part of this work we will turn to talk about the Tzitzéica model,
but under a different perspective, we will study the Tzitzéica surfaces, that will be
useful to construct transformations; but for while, this is everything what we have
to talk about them.

As a last comment in this section, the argument of the fields has been hidden,

but always keep in mind the dependence

¢E¢<x7t) E¢($+7$—)'

2Evidently, the choice p — x, and ¢ — —2z_ would provide the same sign, however, the

equations considered in the chapter 6, show that this choice is wrong.
3There are in the literature, some people that call (3.2) as Bullough-Dodd equation and (3.4) as

Tzitzéica equation.
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3.2 Lax Pair

In the previous chapter, we have considered the whole theory of integrable models
in a very short version, however, the most remarkable aspect of this chapter is that
we can understand that, if we have the Lax pair of one given model, then such a
model is integrable. Thus, we will avoid any consideration about the integrability
of the Tzitzéica model and we will justify it, giving its Lax pair.

In this short section, the Lax pair considered by [32] is presented and as one would
expect, we will finish this section with the zero curvature equation. Therefore, let
the Lax pair? be:

0 —i\e? 0

2
Ay =— (%_ e¢/\T++e‘2¢)\L_2> = 0 0 —i)e?
e 2¢ 0 0
and

—d_ 0 _1

A_ = 0¢T+\/§1T I i¢ 0 0A
AR S WS N R ’

0 -1 0.¢

where A is the spectral parameter and the pair is living in the Lie Algebra su(3)
with T3, T4, Ly, among its generators®. When one decides to use the field v = €?,

the Lax pair will be presented as

0 —idv 0 —20v 0 -3
Ay = 0 0 —ilv and A_ = -1 0 0 (3.5)
A2 0 0 0 -3 o
Now, taking the system
0.V =—-AU, (3.6)

or yet
(Gi + Ai)\p — Pi\p = 0,

and considering the relation
[P-HP—]\II = [a++A+a8— +A—]\P
= (0+A- —0_AL +[A AU =0,

“Formally, the Lax pair is Py := 04+ + A4, but, without loss of generality, just the connections

A4 can be called as Lax pair.
5 Appendix B, page (100).
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the Zero-curvature condition naturally appears

8+A7 - 87A+ + [A+, A,] == O (37)

Direct substitution of the potentials AL (3.5) in the zero-curvature equation gives

the Tzitzéica equation.

3.3 Gauge Transformations

A new solution of the system (3.6) is considered®, when one defines the gauge

transformation
U=KU,

where K is an element of the Lie group SU(3). Follows from this last system, that

0.0 =0, (KU) = (0. K) U + K (0.0) = (0. K) KT — K A, ¥
= [(0:K) K —KAK | = —A, 7,

then, the system (3.6) is invariant under the gauge transformation

U= ¢=KU
A = Ay =KAK ! — (0.K)K ™,

that yields
(3.8)

0. K=KA, — A, K.
Where we have considered that there exists another solution ¢ = In @ of the Tzitzéica

equation such that, the new lax pair is given by

0 —ixo 0 —0.v 0 —%
A= 0 0  —i\v and A= -1 0 0
A2 0 0 0 -5 200

Choosing the operator K depending on the spectral parameter A\, one can con-

struct the Backlund transformation [1, 4] that can be defined as:

6 Among the variety of works explaining what we are going to start now, we recommend [3].
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Definition:

Consider two non-linear operators P and Q such that Pe(x,t)] = 0 and
Q[I(x,t)] = 0. A Bicklund Transformation is a pair of relations

9‘%(@,19, 9033719:8’ @tﬂ%) - Oa 1= 172

which is integrable for ¢ when Q(¥)) = 0 and the resulting ¢ satisfies
PB(e) = 0, and vice-versa. In the particular case B = Q one calls
MR, 1= 1,2 a self-Béicklund transformation’.

This type of gauge transformation is called Darbouz Transformation and the opera-
tor K, which is called Darboux matrix, must satisfy some requirements, including
the one that fixes its form.

Indeed, the Darboux matrix associated with a Lax pair which is polynomial in

the parameter A and in the inverse A\~!, has its general form given by® [4, 10]
1 — 1
K- —K, K, 3.9
o+ X; % (3.9)

where K, is a constant diagonal matrix, that without loss of generality we will
choose to be the identity matrix I. Since this type of transformation have been
considered along the years [3, 19, 43, 44|, we are going to start now, an extension of
the same problem, but with the degree of the Darboux matrix equal to three, n = 3.

This number has been found by the unglamorous method of trial and error.

3.3.1 Gauge transformation for the Tzitzéica model

Now we use the technology that was used by [30] to construct the Darboux
transformation related to the Lax pair (3.5). When we consider a full matrix K,
relating the matrices A4 and A, with components in the form
1
A3

7As we are interested just in self-Bicklund transformation, we will speak just Bécklund trans-

1 1
kij = auj + BUX + 51;'? + Yij

formation, but keep in mind the terminology
8The positive expansion in )\ is admissible and gives the same result - see in the appendix C the

way that we can use this expansion and convince yourself that, what is really important in this
calculation are the equations; and that their order in A, assumes a place in the organization of the
system, what can be done by positive or negative powers in .
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we find three uncoupled systems of PDE involving the variables

1" —{aq1 = ag; a0 1= ag; gz := as; Bz = Pi; Par = Po; Pz = Ps;
012 1= 015023 = 025 031 1= 035711 := Y13 Vo2 1= V25 Y33 i= 73}7
2nd—{0612; Qi35 313 115 Baz; Bss; 0133 0215 032; Y125 Y235 731}7

rd . . . . . . . . . . .
3 —{041370421,04327512,5237531,5117522,533a713,721a’732}-

As we just said, we work with the first system because the lower order matrix with

n = 3 must be diagonal, then the others terms naturally vanish, hence

(03] 0 0 0 0 61 1 0 51 0 1 71 0 0 1
K= 0 (0%)] 0 + 52 0 0 X + 0 0 52 p + 0 Y2 0 33°
0 0 Q3 0 63 0 53 0 0 0 0 Y3

When we put this Ansatz in (3.8), we will find several coupled PDEs, which
when solved give?:

a+vA 2 (g4 g) A2 S P S

a2,y_2
K=| 2! E+vA? B (a+&) A |,
e A7 2 Ertva?

where £ and v are constants and the fields « and v must satisfy the equations

2
dra—iL L (a4 =0 (3.10)
& 7
1 Yoo 2vE oa
—04y — =0 — — =0 3.11
0.7 — = +“+@m(“+5)“2@5 (3.11)
= 242
8_a—zT(a+§)+m:0 (3.12)
0
4+z’§(§—1>: (3.13)
v a
and -
a="¢ (3.14)
& .
It is worthwhile to say that equations (3.10) to (3.13) also could be called Dar-
boux Transformation, that together with (3.14) may be used to find new solutions

9In the appendix, a kind of sketch for this calculation will be presented, that, although it is
easy, it is annoying too.
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for the Tzitzéica equation through a previous one. Nevertheless, this is not a simple
system to solve, as easily one can notice throughout its cumbersome structure.

We can define two useful functions

_o+o -9
pi=— ¢=— (3.15)

whose definition allows us to write

a=erp(—2q)¢&, (3.16)

from which follow the equations (3.10) to (3.13) given now by

a+q: _1 |:ZZ+% (€q+eq)2] ,

206 7
V€ (€24 — e
01y —704p = — 1 5 ),
__1 '256[) q —q _7_2 —2p
0_q = 5 {z 5 (e +e ) 251/6 ,

O_v=1&eP (e_q — eq) .

As a guess, we set

7= et
thus, the above equations give
1T
0.q= -5 %e/\ +2vEe (e? + e_q)Q} (3.17)
Oy (A —p)=—ve " (21—e29) (3.18)
1 r 62/\—2p
0_q = —3 _2il/§ep_A (eq + e_q) Y } (3.19)
O_N=ife ™ ™MP (e77—e9). (3.20)

Finally, the compatibility condition
(0:0-)q = (9-0,)q,

is satisfied and in order to satisfy (3.9), we choose v = 1.
Again, we remember that a natural question that arises is: What would happen

if we had taken K with positive expansion in A? In other words, if we choose K as

(03] 0 0 0 0 61 0 (51 0 71 0 0
K=]0 a 0|N+]|8 0 0[X+[0 0 6|A+|[0 % 0],
0 0 Q3 0 Bs 0 53 0 0 0 0 Y3
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how would be the Darboux Transformation (DT) now? From what we have said
about the form of the matrix (3.9), we can realize that the DT will not change, and

naturally, the matrix K is

al+u 261}”(&—]—5) 2£2v2u(a+§)

oy
K = ggv EN +v 25“"(a+5)
P % 52 LNy

The Bécklund transformation, could be considered just writing (3.17) and (3.19)

in terms of the fields, so
(0= 5) = - gt 2B et )
- _ 2 _
d_(p—¢)=— [2¢§e—A(e¢ +e?) — Te_d)_d’] : (3.22)
Summing up In this chapter, we have presented the Tzitzéica model through its
Lagrangian density, also, we have presented a particular gauge transformation called
Darboux transformation, which allowed us to define a pair of differential equations,

which make a relation between two known solutions of the Tzitzéica equation.
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Chapter 4

The Tzitzéica Model With Defects

OME YEARS AGO, it was introduced the notion of models that remain

integrable even when there exists an internal boundary condition, or using
=%, the standard nomenclature, a defect or jump defect [19]. In this sense, one
could think of the whole system as the junction of two domains, each one, integrable
by itself.

In this approach, the sine-Gordon and Liouville models have been considered and
the conserved charges required for the integrability of the whole system were found
[19, 45]. Also, from the defect conditions (internal boundary conditions) between
these domains emerge the Bicklund transformation at the defect.

Despite the success in some integrable non-linear Klein-Gordon equations, this
approach does not work with the Tzitzéica model and needed to be generalized.
With this aim, Corrigan & Zambon [20] allowed to the defect a kind of “well defined”
degree of freedom. Therefore, in the first section of this chapter, we will show what
they did in an effective fashion and later, we will apply it in the Tzitzéica model.

After, we easily conclude that exists a deep connection between the formulation
considered here and the gauge formulation considered in the previous chapter, i.e.
there exists a relation between the Darboux transformation and the defect conditions

that emerge from the integrable defects.
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4.1 Introducing Defects

Consider, first of all, the action

Slo, ¢, A] == /dzzc O(—x)Ly(4,0,0) +/d2x 9($)£¢;(g5, 0,0)+
+ / de 5(x)£D(¢7 atqb? gg? atqgv A7 atA>7

where 6(x) is the Heaviside function and 6(z) de Dirac function!.

Making a variation
0S = 0, considering the Gauss theorem and that the variation of the field vanishes

at the boundary of the system, one can write

B 2> oy 9L 0Ly v oL,
O/dmﬁ( x)[&b 8<aau¢>}5¢+/dx9( )0, (88#¢5¢>
ot |53 -0. (555 |90+ [ e tom (5550 +
+/d x 0(z) [ 9 — 0, (88,@5 (5¢+/d x (x)0, 88M¢5¢
aﬁp aﬁp a;CD aﬁD
+ [l o ()] o+ { 33 -0 (503)] ]+
aﬁp aﬁ’p aﬁD
+ [T o gmm)] . f o (mw)
6[@ a»CD
/ o <aat¢5¢) \/Rdtat (aatAéA)’ g

(:0) (:0)

also, one can define the currents

. o oL
j'u:(jt?.]m) . 88(]; ¢7
w
and
OL;
= (Jy, Jy) = 55 i’baqﬁ,
w

!Pay attention here, the Dirac delta J(z) has an argument, while the variation § does not have
Also, as d?x means dxdt, the Heaviside function must be taken, just in the space component
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s0, one finds the expression

0 / 2z 0(—x) {aaff (aaﬂqb)
+ /d% 0(x) {% O ( afj )
/dt { [aﬁp (gﬁ)} "

SA

ILp OLp
- Lo T -0 ()| |
finally

0= /d% 0(—1) [%ﬁf 9, (g(,f‘;)}am/d% 0(z) {88%’ 9, (ggﬁfg)]am
1 1

0
/ dx/ dt [0¢Jr + OrJu] +

Js
}5¢+/ dx/dt 0], + 05 ) +
n

5o (552)] )

+

z=0

OLp <a£D )] . [35@ (&CD >] - }
dt -0 00+ jo+ | —— —0 — || dp — J, +
« L[5 -0 (Gag) Joovie+ |58 - (5ag) |- 4,
0Lp OLp
- L[5 -oam) o
Then, the Euler-Lagrange equations are
oL oL
8—(;—8” aa:; =0 z<0, (1)
% 9, (24) =0 z>0 '
5 On\ 90,9
together with the boundary (z = 0) conditions
OLp (859)__ 0Ly
96 \0() 0(9s)’
OLp OLp 0L
=~ o = = =, 4.2
05 (a <¢t)> 5(0.) (42)
OLp OLp \
o~ (1) =
The Lagrangian of the integrable defect is defined as?
Gb1 — G

2Tt is worthwhile to comment that, this definition of the Lagrangian differs by a minus from the
Lagrangian defined by the original work [20]. The reason of this difference is the consistence with
the notation of the article [32]; if we had decided to use the Lagrangian defined by the first paper,
we would have to change the Lax pair of the second work by A, = A_, to make both articles
work consistently at the same time.
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then, the boundary (or defect) conditions are

- oD
¢x:_¢t+2At+a_¢a
. oD
= b+ 2N, — 43
® O+ 210 9% (4.3)
- 10D
¢t—¢t+§a_A-

Since time translation invariance is not broken, the energy € —D (where & is the
bulk energy of the fields ¢ and ¢) is conserved. On the other hand, the usual total
momentum is not conserved, then, some contribution over the defect must save this

conservation law. Corrigan & Zambon [20] have considered the following momentum

P = /_: dx¢x¢t+/zo Az, d;.

Taking the time derivative and using the Euler-Lagrange equations (4.1) with the

usual Lagrangian densities, one has

. 0 oo L _
P / A2 (dushs + datrs) + / da(Gudi+ )

0 ov

< (o _av<q3>)
‘1‘/0 dr <¢xt¢t+¢z¢tt O 8&

L (e

(62102 —2v(@)|  — 2 (34— 20(h)
2 x=0

N | —

z=0

keeping in mind that this equation is considered at the point x = 0, one can go on,

and uses the defect conditions (4.3), so

. - 0D oD oD 0D 10D
P:_¢t8_¢_¢t8_g5+2/\t <%+8_$+56_A)
1|/oD\*> [oD\? _
+3 <8_¢> - (8_gz_5> ] = V(g) + V(o). (4.5)
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Considering that P is the total derivative of some function —Y such that

oY 0D
- _F
0 0
OT 82)
4.6
o, o LoD 10D
oA dp  0p 20\
for some F' = F(gb gfﬁ, A), one has
oY
P—_th ¢ ¢ta¢ ta_A‘l'
1| /0D oD\’ -
+3 (a—¢) - (8—¢) V() + V(6) + (6 b0F
2
_ - 10D
[ )]—V<¢>+v<¢>—§a—AF
;6 J
and finally
oD\* [0D\’ .
— | — | =] =2(V-V)+D,F. 4.7
(3) - (5) ~2v -+, D
Also, using the functions previously defined
2 ' 2
and with some algebra, one writes (4.6) and (4.7) as
or _op
dp  Op
oY JD
S}
dq dq

oY 9D 0D
ON  OA dp’

Eliminating YT from the previous system, one gets

oD  OF
dgdp  Op
oD 9D
ONOp ~ Op?

oF _op _ o
ON  9q¢dp  Op’
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From these equations, Corrigan & Zambon at [20] found, by a heuristic argument,
that

D=f(p—Aq) +glg,N), (4.8)
together with
F=—-—— and T=f—-g
then, equation (4.7) is
DDy =2(V = V) + (fa + 1) F,

which can be written as
fagn — fage =2(V = V). (4.9)

Remark: Every dependence on A is in the left-hand side. This last equation will
be fundamental in our future considerations about transformations of the Tzitzéica

model.

4.2 Lagrangian approach

We already know that the Lagrangian to be considered is
L=0(—x)Ly+0(x) L5+ 6(x)Lp, (4.10)

where the integrable defect will be given through

Lo=—""0C N (6-0), 4 A (6-5) +D(6.6.4).

with fields implemented by the following Lagrangian densities
1
Lo = 50,60"6 = V(9),
and )
L5 = 50,60°5 - V().
where the field ¢ is taken for < 0 and, obviously, ¢ will be defined for z > 0. The

Tzitzéica potentials are given by

V(9) = 5 (260 e7) = 1 (2570 4 ) (a1)
V(6) =5 (268 + ) = 5 (2070 4 ) (4.12)
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With some algebraic manipulations, from the boundary conditions (4.3) and the

definition (3.15) we can set the following relations

1 (oD 0D
8+q = 5 (a—p + (9_/\) X (4.13)
1 (0D
qg=—= = - 4.14
it (414

Last section, we have shown as Corrigan & Zambon [20], by a heuristic argument,

have proved that D can be set down as
D=f+y,

where the function g depends® on ¢ and A, and f depends on ¢ and p — A. Also,

such functions must satisfy the bracket (4.9), i.e.
Jagn — fage =2 (V_V) )

which, any dependence on A contained in the left hand side of the equation must
cancel out [20]. With the potentials given by (4.11) and (4.12), the most general
Ansatz is

f=A22P L QeP™™ and g=Ze A +10eM, (4.15)

where A, Q, = and II are functions of g. When we put (4.11), (4.12) and (4.15) into
(4.9), we find the constraints

A1 =2 AT1l; =0 =220,
Q(AE)q: (62‘1—6_2‘1); (QH)q:2(eq—e_q),
where the solution can be constructed by
(QI), =2(e?—€e™?) = QI =2(e!+e7),
2(A%), = (¥ —e ) = 2AE= %(qu +e72),

ATI=2AT, = A=xl

3Pay attention that at this point, the function A here is, a priori, a different function from the
previously defined function A at chapter 3. This Greek letter has been chosen just for convenience,
because, in few lines, it will be proved that they are the same function.
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thus, the general solution is

Q:%(eq—i—eq), A=glIl? Z= (eq—i—e’q)Q.

4 k112
Hence,
D=f+g

2
= g I12e2A2P = (e?+e7) ePA 4

e )" e et

Taking this last equation, placing it in (4.13) and (4.14) we arrive at the following

equations
8+q:—§ o © (e"+e )" —Ie|, (4.16)
1 2
0_q = 5 [—2/{H2 e?A2P 4 Wi (" +e79) ep_A} ; (4.17)

that we must compare with the Darboux Transformation, in particular, with equa-
tions (3.17) and (3.19). Now, we can realize that

__t 2_ 1
I1= ¢ and I s
remembering that we have put v = 1, therefore
K=t
1
Finally, the whole Lagrangian is given by
Lo 60v6— L (269 4+ o2 19,6006 — L (269 4 o2
L=0(—x) 58,@5’ ¢—§(2€ +e ) | +6(x) éaugzﬁ@ ¢—§ (26 +e ) +
Sy i ) . )
#0) [0 (0 8), 5 (6 ) 4 e
_ _ N ;
+2i¢ (ew + e’(2¢)> et ¢ <e¢_¢ + e¢_¢> e 2h — %e/‘} : (4.18)

It has been proved so, that from the Lagrangian above constructed, the Darboux
transformation naturally appears. Then, the Lagrangian with this kind of defect
(that was analyzed by [20]), remains integrable and the relation between the solitons

in different domains is given by the Darboux Transformation associated to the linear
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problem, i.e. to the system that arises from the Lax Pair. The Darboux, or even the
Bécklund transformation is a weak criterion to prove the integrability of the whole
system; we need to find the conserved charges. In fact, in our recent work [21], we
have found the infinite number of conserved charges, which prove that this whole

system is integrable, even with the existence of this kind of defect.

Summing up In this chapter, we have considered a method to introduce inte-
grable defects, broad enough to encompass the model important in this work - the
Tzitzéica model. Also, we have found a Lagrangian density which describes the inte-
grable defect in the system. And finally, we have proved that the Darboux transfor-
mation (and hence the Bécklund Transformation) obtained by Borisov agreed with

the defect conditions obtained by Corrigan & Zambon.
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Part 11

Geometric Context
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Chapter 5

Theory of Surfaces

FTER THE GREAT EFFORT that we have done up to now, we arrive at

/ the easiest chapter of this work. Certainly there are non-trivial results
- here, however, theory of curves and surfaces is a topic with a strong
visual appeal and in this sense, the subject is more pleasant. The first section
is devoted to curves and the principal result is the Frenet equations. The second
section, naturally, the ideas of curves are extended and we deal with surfaces. In the
last two sections the Gauss-Weingarten equations as well as the Mainardi-Codazzi
equations are presented.

This chapter represents a sort of training for the next chapter. There, we will
use the technology that we are going to develop here and we will look the Tzitzéica
model through its original point of view, the geometric one. Therefore, the idea of
surface and the equations that describe a generic surfaces must be known, so, in
this chapter, the aim is to present those ideas and, that is the reason why we need
this little introduction to the theory of surfaces. We have created this short chapter,
following the classical books of Do Carmo [47] and Struik [14].

5.1 Curves

Before start studying surfaces itself, let us talk a little about curves in R?, this

is the conventional approach and we will use that. As was pointed by Struik at [14],

One can think curve in space as paths of a point in motion.
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The coordinates (x1,x2, 23) of a point can be expressed as functions of a parameter
uel CR
x; = x;(u) i=1,2,3,
where the evolution parameter v is usually called time. So, the curve C is represented
by the map
r(u) := (21(u), To(u), v3(u)) : I — R

One can define the length of this curve as

“ldr
s = s(u) := / —
wo | du

and from the fundamental theorem of calculus

ds _|dr
du du|’

du,

This equation defines a representation of the curve C in terms of the arc length or

natural representation, so in this representation one writes r = r(s) and

dr|
ds|
thus, % =r is a unit vector, since
2
dr dr dr . . ]
—| =—-—=r-1=1.
ds ds ds

The vector 1 is called unit tangent vector and it is denoted by
t=r.

Now, one can take the derivative of the tangent vector and one defines the curvature

vector,

k =k(s) =t.

The magnitude of this vector is called curvature of the curve C at the point P € x(s)

and it is presented as
k= |k(s)].

Also, one can think of a unit vector n in the direction of the curvature vector

and naturally, perpendicular to the unit tangent vector t, so

k = kn.
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The vector n is called principal normal vector. Finally, since one has the orthogonal
vectors t and n, a new vector, perpendicular to both, called unit binormal vector
can be defined as

b:=t xn.

The triad (t,n,b) is known as mowving trihedron of the curve C.
As b -t =0, taking its derivative
d(b t)=b-t+b-t=0
ds B o

SO
b-t=-b-t=—kb-n=0,
then, b is perpendicular to t, and from b-b = 1 one concludes that b is orthogonal
to b too, since
b-b =0,
one concludes so, that b is proportional to n, what allows one to write
db .
“—b
ds

and one calls 7 the torsion of the curve C at the point P € x(s).

= —Tn,

Evidently, the derivative of the unit vector n is needed. For this deal, it is enough

to notice that one can write this vector as
n=>bxt,
so, its derivative is just
n=bxt+bxt=—mnxt+kbxn=—kt+7b.

One can sum up these last results as

fl—z = kn
I — —ft b (5.1)
b _ —rn
and p
r
— =t. 5.2
o (5.2)

These equations are called Frenet Formulas or Serre-Frenet Formulas and describe

the motion of the moving trihedron along the curve.
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5.2 Surfaces

Heuristically, one can understand a surface ¥ as the set of points in the euclidean
space R? that in certain sense resembles deformed sheets placed together, in a way
that there are no sharp points, cutting, self intersections and so on .

Intelligently, one may mimic what was done in curves and try to extend it for
surfaces. So, a map from a space parameter, that without loss of generality can be
a subset of the plane S C R?, onto a set of points in U C R?, is a representation of
a surface in the euclidean space R3. Expressing the rectangular functions of R? in

terms of two parameters p, ¢ € S, one has
ri=zi(p,0), 1=1,2,3;
and in vector form
r:=r(p,0) = r1€1 + T2es + 7303 : S CR* = U C R®.

Over this surface, one can define a curve C; in other words, on the surface one can
glue a curve, to be determined by functions with a parametric forms p = p(t) and
0 = o(t). In this sense, the functions p and ¢ draw a curve in S C R? and then, z;

draws the curve on the surface,
z;0p, xjop: R — R3 1=1,2,3.

The tangent vector? to this curve on the surface is defined as

dr := ﬁdp—i— r
do

ap do = r,dp +r,dp.

And the distance between two points on the curve is already known

-]

that one would have obtained integrating

Vds? = V/dr - dr,

'Regular surface, but the adjective is hidden, because the curves treated here, are so smooth

dr

— | dt.
dt

and well behaved that the notions of calculus can be extended.
2In the appendix A, page 83, we explain the differential as a map between tangent spaces.
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along the curve. The quantity to be considered now, is
I =ds? =dr-dr = Edp? + 2Fdpdo + Gdo?, (5.3)

where: £ =r,-r,, =1, -1, and G =r, - r,, that one could sum up through

r, | r, | N
r, E|F|O0
r, | F|G|O
N 0|01

The function I = ds? is known as First Fundamental Form and indicates how the
surface inherits the inner product of the euclidean space R3. Also, notice that when
the parametric curves are orthogonal r, L r, then F' = 0. Another important result

is the positivity of

EG — F*? =(r,-1,)(ry-1,) — (v, 1,)(r, 1,),
= ((5j rjrm) (5krkr") — (5j7’jr”) (5’1g Tkrm)

m'p'o n'plo n'plo) \“m"plo
_ j sk sJ k) Jonk,m
= (5m5n olor T Ty

and using

ke, = (Vméﬁ — &gk

n-m?

easily one concludes that
EG—F?=|r, x 1, := H> > 0. (5.4)

Those familiar with special relativity can recognize that when one deals here
with ds, it is doing the same considerations that are usually done there. The only
difference is the coefficients E, F', G that depend of the space structure, which in

the relativity case, is Minkowski space. In relativity, the quantity ds is written as
ds* = —c*dt* + dr - dr,

that is the space-time interval, an invariant quantity as well as the length is an
invariant in the euclidean space. Also, we know that the function ds is enough
to our considerations in the relativity, mainly because the Minkowski space is not

embedded in a space of higher dimension. When we treat spaces embedded in some
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space of higher dimension, we need some information about the normal vector to
the surface in each of its points. This information will be counted when one defines
another invariant quantity, but at this time, besides the tangent vectors to some
curve on this space, the normal vector must be considered. This invariant quantity
is called Second Fundamental Form.

Evidently, a generic two-dimensional surface, that is the goal of this section,
must be thought as a space embedded in the euclidean three-dimensional space.
The second invariant quantity will be considered by setting a normal unit vector to
the surface

N= 2%t (5.5)
Ty X 1|
Considering now the curvature vector of a curve C at the point P, we can decompose

dt
—=r=k=k, +k
ds

where k, is normal and k; is tangent to the surface. Naturally, one can define a
proportionality constant k, such that

K, := k,N, (5.6)

this vector is called normal curvature vector and its component k, is the normal

curvature, by definition. The tangent vector t := r is orthogonal to N, then

d dt dN
—((t-N)=— - N+t.-— =0.
ds ( ) ds + ds
As, the curvature vector is k = %, one has
dr dN
k- N= —— . —
ds ds’

using the natural representation, defined by % =1, finally

dr - dN
" dr-dr (5:7)

Only de numerator is unknown, the denominator is the first fundamental form, then

dN := N,dp + N,dpo and dr :=r,dp+ r,do,
what allows to set down
II = —dr - dN = edp® + 2fdpdo + gdo?, (5.8)
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where e = —r,-N,, f = -4 (r,-N,+1,-N,) and g = —r, - N,.
Now, using

r, N=0=r,-N,

one can write e = r,, - N, f =r,, - N and g = r,, - N. This last function I/, is
what one calls Second Fundamental Form. The general aspects of the surface in the
three-dimensional space can be determined just with these quantities, the first and
second fundamental forms.
Another important result is the Gaussian Curvature,
eg — f?

R = m, (59)

that says the behaviour of the curvature in a given point. Follows from this definition

that each point in the surface is a

Hyperbolic point if: eg— f2<0 = k<0,
Parabolic or planar point if: eg— =0 = k=0,
Elliptic point if: eg—f2>0 = k>0,

since (5.4) sets that FG — F? > 0. The derivation of the expression for the Gaussian
curvature is not complicated, however, it would demand a short deviation of the real

aim of this section, this derivation is made in a wonderful fashion in [14, 48].

Asymptotic Curves

Now, let us talk about asymptotic curves very quickly. Asymptotic directions

occurs when:
k,=0 = II =0 = edp®+ 2fdpdo + gdo* =0,

and curves having these directions are called asymptotic curves. They occurs, for
instance, if there exists a straight line on the surface.
When e = 0 = g, and f # 0, i.e. in a hyperbolic point, the asymptotic curves
are given by
dp=0= p=cy R,
do=0= p=c; €R,

i.e, p and p constants. Therefore,
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In a neighborhood of a hyperbolic point on a surface, there exist two

distinct families of asymptotic lines.

The asymptotic curves in the case of a hyperbolic point are useful parametrizations.
For elliptic points, there are no real curves that satisfy k, = 0.

5.3 The Gauss-Weingarten equations

One can think about the Gauss-Weingarten equations for surfaces analogously
to the Frenet equations for curves. It means that, as in the case of curves that one is
able to express the vectors t, n and b in terms of the orthonormal moving trihedron
for curves t, n and b (5.1) one would like to express r,,, I,y T, and N,, N, in
terms of a new linearly independent (not necessarily orthonormal) moving trihedron

for surfaces, r,, r,, and N. These equations can be defined as

oo =111, + THr, + auN
r,, = Iior, + ['r, + a1aN Gauss equations
o i= I, + 31, + 0N
N, = ﬁllrp + B%rg +1N

N ) Weingarten equations
N, = Bir, + B5r, + 2N

where T, v, B, ~; for i, 7,k = 1,2 must be determined.
Explicit calculations for determination of I' ;k, aj, ﬁij , v; were carefully made by
[48]. This achievement is not complicated, however, demands a little effort. The

key point of this achievement is to consider the orthogonality relations
N-N,=N-N,=0=N-r,=N-r,

and that N is a unit vector.

The Gauss equations associated with a surface ¥ in R3 are

rp, = Iyr, + e, + eN
r, =r, + [, + [N (5.10)
T, = [hor, + 51, + gN.

49



While the Weingarten equations are

 JF —eG el — fE

T EG-F T EG-F? (511
_gF—fG - fF—gE
¢ EG-F2" EG-F27
The coefficients ', , called Christoffel symbols, are given® by
ik g
i _ GE,—2FF,+FE, ., 2EF,—FEE,-FE,
11 2H2 Y 11 2H2 )
GE,— FG EG,— FFE
My = =5 Pl = =4 (5.12)
W 2GE,—GG,—FG, ., _EG,—2FF,+FG,

The compatibility conditions (r,,), = (rp), and (ry,), = (r,,), make arise the
Mainardi-Codazzi equations:
eo— fo= pye + (Ffz - Fh) f—=Thy,
fo—9,= [3pe + (ng - F%z) f+T59. (5.13)

There are several analytical expressions for the Mainardi-Codazzi equation, in this

work, one particularly useful can be obtained considering the derivative

(&

e _ S0 € _ < € )
(7)o =i~ 700 = 0 = (57) B+ g7t

f) oo f <f) /
I7 == — 2o = foo = | 7 H+ 2 Hpyg)
(H p(0) H H? H p(o) H

9 > _ Yplo) g o (g ) g
— == = = = (= H+=H
(H o(0) H 2 te) 9p(o) H o) e

and plugging these equations in (5.13). Hence, one gets another formula for the
Mainardi-Codazzi equations [14]

().~ (£) +5mh-20m%+ et =0,
e p

H H), "H H ™" H
g f e f g
(E)p - (ﬁ) + T = 25T + T =0, (5.14)
e

3We physicists usually write the Christoffel symbols in a particular fashion, for this, consider
the definition g11 = E, go0 = G, g12 = F, see [14, 48] for details.
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Summing up The general aspects of surfaces embedded in the euclidean space
R3 have been considered here. We learn about the Gauss approach for surfaces
including the Gaussian curvature and the Gauss-Weingarten equations, also from
the compatibility conditions for these equations, emerge the Mainardi-Codazzi equa-

tions.
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Chapter 6

From geometry to Tzitzéica equation

N THIS BRIEF CHAPTER, the focus are surfaces with negative Gaussian

curvature, or hyperbolic surfaces, in particular, surfaces whose the Gaus-

sian curvature at a generic point, is proportional to the fourth power of
the distance from origin to this point. There are a particular interest in these sur-
faces called affine spheres or affinsphdren, because, from the compatibility condition
of the equations which describe this surface, emerge the equation that we know as
Tzitzéica equation. This was the approach used by Tzitzéica in his work, which
culminated in the origin of a new branch of differential geometry of surfaces, the
affine geometry, therefore, affinsphéren are as important for affine geometry as the
ordinary spheres are for Riemannian geometry.

In this chapter, we will derive the set of equations which describe the Tzitzéica
surface and naturally, we will find its equation from the compatibility conditions of
the Gauss equations. The present chapter was composed in the light of the books
of Rogers & Shief [4] and Coley et.al. [16].
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6.1 Affinespharen and Hyperbolic Surfaces

Consider a hyperbolic surface ¥ parametrized in terms of orthogonal (F = 0)

asymptotic (e = 0 = g) curves; in this system, the Gauss equations are

Tpp = F%lrp + P?Irw
rpp = oty + Tty + fN, (6.1)

7l 2
rpo = Door, + o1y,

the Mainardi-Codazzi equations are
(), (F)ro
P

<£) +2 (%) I, =0, (6:2)

and finally, the Gaussian curvature is
f?
T2

From the Mainardi-Codazzi equations, we have

AT » LI\ (S ., _2[ (f
()= (), = rema(m) (), =i (5],

=15, =3[ (1{[_)} = £ (-),

and in the same way for I'l,, therefore

R =

1
12, =~ (=), (64)
1
Il = = I (-»)],. (6.5)
The cross derivative r,, can be write now
1 1
tpo = — [ (=#)], 1, — 1 [ (=w)], o + /N, (6.6)

So, the Gauss equation involving the cross derivative was written in terms of the
Gaussian curvature x. The next step is to consider the distance from origin to a

tangent plane to X at a generic point P; that distance, obviously, is

d=N"-r,
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together with the derivatives
d,=N,-r and d, =N, r.

One could think about these equations as projections of the vector r onto N , N,

and N,. Considering the Weingarten equations

JE

)= =T, (6.7)
L= —%rm (6.8)
one has IE H2
p =Ny r=—"gr,r = rg-rz—f—Edm
dQ:Ng~r=—§I‘p'r = rp.r:—f—;dg,
which imply

From the relations, which define the coefficient f = r,,-IN of the second fundamental

form and the orthogonality relations r,- N = 0 =r, - N, one concludes that

Ny-r,=—f=N,r,

JE fG
T s
hence ¥ = G = 1. Finally, the vector r is
d d
r= —TQrp - 7prg + INd. (6.9)

Using this last equation, one can subtract gr from (6.6); then

v, - gr _ (% _ % n (—H)]Q) v+ (% - i [m(—m)]p) r,

) )

Using now, the Tzitzéica condition, that is, when we suppose that the Gaussian

curvature k, is proportional to the fourth power of the distance d, i.e.

K 2
—ﬁzc ERi
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one arrives to the equation
Iy = Ur (6.10)
where one defines v := f/d.

The compatibility conditions (r,,), = (r,,), and (r,,), = (), imply

F%l = %7 F%l = @» 1—%2 = —= and F§2 =

and the field v must satisfy the following equation

ab
(Inv),, =v— ot
This is exactly the Tzitzéica equation, when ab = 1. With this parametrization, the

Gauss equations can be presented as

r,, = %r + -r

PP P e
Iy, = UT, (6.11)
Iy = ﬁr + ;lr

o0 — " Te v P

Summing up We have found here, the Tzitzéica equation from the compatibility
conditions of the Gauss equations. This approach gives some additional information,
because, besides the Tzitzéica equation itself, now we have a system of equations
which describe a hyperbolic surface and it is fundamental for the construction of the

Bécklund transformation that we are looking for.
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Chapter 7
Transformation of Surfaces

GO gt

a‘ »
@

NE OF THE MOST PROMINENT PROBLEMS around the Tzitzéica equation

is about its transformations. As we said before, Tzitzéica studied a par-
ticular class of surfaces associated with this equation, that has a negative
Gaussian curvature - hyperbolic surfaces - in R3.

In his work, Tzitzéica found a linear representation of the equations that describe
the surface (that we have already seen) and he has established a transformation that
allowed him to find new solutions of the equation, having at least, one trivial solution
as a seed (that we will see now). In a modern point of view, he found the Lax Pair
and the Moutard transformation for his equation.

All along this work, we have cited Bdcklund and Darboux like-transformations,
now, we speak about Tzitzéica and Moutard like-transformations, that we will define
in this chapter. There are a kind of overlap among these transformations, as was
pointed by [29].

In a heuristic mode, Darboux Transformation generates a new solution, that is
expressed via an older solution and the eigenfunction of the Lax operator associ-
ated to the first solution; while the Biacklund Transformation does not require any
solution of the Lax Pair problem associated, however, to the contrary to the Dar-
boux Transformation, the Backlund does not represent an explicit solution of the
equation, but a differential relationship between the new and older solutions.

Loosely speaking, we can say that these kind of transformations, allow the itera-
tive construction of hyperbolic surfaces. Then, we now use this idea to our problem.

Therefore, in this chapter, the last one, we will show how to reduce the transforma-
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tions that we have found in the first part of our work, to the transformation that

Tzitzéica found in his original work.

7.1 On the Tzitzéica Transformation

Analogously to what was done at [30], the Darboux transformation, previously
found at the chapter 3 through the system (3.10) - (3.13), can be written in a
different way, via the following approach:

Explicit calculation shows that the determinant of the Darboux matrix K is

2
det K = (—%4—5) <)\13 +§)

According to [26, 30, 46], when & = 35,

the Darboux matrix is the unity, that is

given by

the det K is equal to zero and the rank of

det K‘ = 0.
t=3%

An arbitrary matrix function J(u) is said to have a zero at pg if det J(uo) = 0,
then, the inverse matrix J~!(u) has a singularity at this point, i.e. a pole of finite

order. If yq is a simple pole, then one can expand

J N (p) = +C+...,

K= Ho
and in the neighborhood of 1 the function J(u) can be expanded as

J(p) =B+ D(p—po) + ..

Consider now the problem with Jy(p) and Jo(p) such that Jy(p)Jo(p) =
Ji(oo) = 1 and Jy(oco) = 1. Now, let ug and vy be zeros of Jy(u) and Jo(p )
respectively. As Jy(u)Jo(p) = 1, the zero of Ji(u) is the pole of Jo(u) and vice

versa, thus one can write

Then




from which one easily concludes that
Ay = -4,

and AA AA
Al— ! 2 :0, A2+ ! 2
Mo — Vo Ho — o

This system has the following solution

Ay = —(po — o) P
and
Ay = (#0 - VO)P>

where P? = P, it means that P is a projection operator.

Finally, one writes

S =1-H""p
®—="1r
— U

Do) =1+2""p
K=o

where

Jl(,LL()) =1-P= Jl(Vo).

Obviously, one can think of these operators in a N-dimensional linear complex

space V. In such a space, let there be a linear operator U, then
KerU = {iy € VN | Uiy = 6}7
and
ImU={a eVN|Ui=w € VV};

i.e. the null space (kernel) and the range (image) of the linear operator U, respec-
tively. Evidently, the null vector 0 is present in both spaces and if ij € KerU and
@’/ € ImU, for any i,j € N, then

Z ajiy € KerlU
i
and

> bjii? € ImU,

J
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V a;, b; € C. It means that KerU and ImU are linear subspaces of VN and
VN = KerU @ ImU.

In the nondegenerate case, i.e. detU # 0 = kerU = 0 and ImU = V¥ and in a
degenerate case, det U = 0, kerU and I'mU are non-trivial.
Now, if U is a projector, i.e. U? = U, then there are two important properties

to be considered:
1. Vﬁ[ e ImU = Uﬁ[:ﬁ[7

2. As V¥ = KerU @ ImU one can decompose a vector 4 € V¥ as @ = iy + iy
where iy € KerU and u; € ImU. Then

and

So, if U is a projector, then, 1 — U also will be.

Now, notice that ImU = {u;} and (1 —U)w; = 0, then Ker (1 —U) = {i;},
then
ImU = {u;} = Ker (1-0U),

in the same way, one concludes that
KerU ={ip} =Im(1-U).

After this long conversation, easily one concludes that the Darboux matrix K at

&= A—lg,, is a projection matrix. In this situation, the matrix can be written as !
-1 =M;n;, (71)

which implies the following theorem.

L Although, mathematicians may be familiar with this formula, it can cause a strange reaction
for physicists, but if one writes it as K; ; = |m;)(n;|, everything will be fine. However, the first way
to write this expression was chosen, because, the second form is often used for quantum systems

and in present context, is everything classic.

29



Theorem 1 The solution of equation (3.8) for £ = %, can be represented in the

form (7.1), where m and 7 are solutions of

o_m=—A_m o_it = Al it 79)
oo = —A.m oyt = Al at ‘
where
my
m=\| ms and ﬁz(nl N n3>.
mg
Proof. As K = m, its derivative will be
02K = (0om) it +m (0.7) = —Axmia+mi AL = KA — AL K.
[
Using the Lax pair (3.5), the following system of equations is found
8,n1 = —%nl — %ng 8+n1 = 3\—2713
d_ny = —<ny Oyng = —iAvng . (7.3)
O_n3 = %ng — %nl Jynz = —iAvng

Considering the cross derivative in this system and eliminating n; and ng, the
following equation appears

82712 .= 8_8+n2

= iA(0_v)ny + iAv0_ny

= iA0_v)ny +ilv (—%nl + ing>

A
= —vng = 0,0 _ns. (7.4)
Also, the following relations are available
0_vo_n 1
2 o 2

a_ng = v — )\31}8+n2 (75)
04v0 A3

aing = +Uv+n2 —8_n2 (76)

From the equation (7.1) and /5 := ~/v, the following relations are invoked

Kiz _ng _ {(a+§ 1

K12_n2_ af \3/5
Kip _n2_ 26 55
K. =n aﬂf_ , (7.7)
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from which follows

@:f(a‘i‘f)iz(@‘i‘f) L ng
No af V€ Ve 23/ ny’

then, o can be presented as a function of n;, j = 1,2, 3, i.e.

a=¢ (2n12ng - 1> ; (7.8)

using now, the previously definition of o (3.14), the derivatives d1ns from (7.3) and

the following relation

0uho_h | 9,0.h

0;0_Inh = — 72 . Vh=h(zy,z), (7.9)
finally the transformation equation is found
0 =0v+20,0- (Inny). (7.10)

This is the transformation that Tzitzéica has found in his work and it is a
Moutard-type transformation; in modern literature, it is known as Tzitzéica trans-
formation. This equation allows to construct iteratively solutions of the equation
(3.4), that is, this equation gives a new Tzitzéica surface from a previous one, or in
solitonic context, a new Tzitzéica soliton from a previous one. For that realization,

it is enough to solve the equation (7.4).

7.1.1 On the Moutard and the Tzitzéica transformations

Now, one is able to understand the general way of iterative generating of solutions.
Finally, the Moutard and the Tzitzéica transformations will be explained with some

sort of precision.
Theorem 2 (Moutard Transformation) The hyperbolic equation

I, = UT (7.11)

pe

s form invariant under the transformation
, m
r—r =r—2—
n

v—=v' =v-—2(nn) (7.12)

pe’
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where m is defined by
m, :=1,r, m, :=1r, (7.13)

and n is a particular solution of a scalar version of (7.11) , that means that n satisfies

Npo = V7]

Proof. With the aim to proof this theorem, just consider the derivative

r’pg:(r—29>

"7 pe
:rpQ—Q(E) :hr—Q(m) —UI‘—Z(E—%HQ)
17 po K

m m, m
=ur — 2r,, + 2 (—27] ) = —ur+2 (—2 21799) —4 77?9)77p
n n
C r a2 <W7pr B — mmmp)
n? U]

= ( v+2n”n‘-’) +2—( —QW'Q> (—v+2"”7279> (r—QE),
U n n

now, using (7.9)

Q.E.D.

p
T = —r + —-r
PP v P v P
U, -1
r = —r + —7T
ee v ¢ (% .

with the real parameter a. Also, consider that the field 7 satisfies a scalar version
of these equations but with the real parameter b.

Choosing the potential m in an appropriate way

1 n
m = — 0 [bnr + a—prg b—rp] ,

then, easily one finds

r’—a_b r—L aly, —pley
Ca+b (a—bw\ n° n’)]’
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with Z—;Z as an irrelevant constant factor. Finally, the Tzitzéica Transformation can

be presented.

Theorem 3 (Tzitzéica Transformation) The Gauss equations

r,,=—r,+—-r
pp v P
ryp =vr (714)
U, -1
Foo = ;rg + v Toss

together with the Tzitzéica equation

1
(lnv)pgzv—ﬁ, (7.15)
are invariant under the transformation
2 n 7
N = e _ b_‘g
B <a—b>v(anr@ n”p)
v—=v'=v-2(nn),, (7.16)

where 1 is a particular solution of the scalar version of (7.14), but with b as a

parameter.

Then, we already know that we can make p — —z, and ¢ — z_, and when we

identify the field n with ny, we get the Tzitzéica-Moutard transformation (7.10).

7.1.2 Zero to one soliton - a naive example

As a simple but necessary example, the construction of one soliton solution from

the trivial solution is now considered. When v =1 (¢ = 0), let

= eap[§ (e )] o [“; (o _)]

be a particular solution of (7.4) with € an arbitrary constant. Since one puts this

function in (7.10), the following solution arises

v=1-— > . (7.17)

2 cosh? [\/_g (exy — "B—‘)]

2 €
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With a computational help, this last expression can be evaluated as a solution
of equation (3.4), in fact, this is the one soliton solution of the Tzitzéica equation,
as one might expect. The example considered here is the easiest, of course; a second
application of the Tzitzéica transformation will demand to solve the equation (7.4)
with (7.17) as a seed - and it is not so simple. The construction of explicit new
solution through the Tzitzéica procedure has been considered at [31], where those

solutions were expressed in terms of the Weierstrass functions.

Summing up We have shown in this chapter that the Tzitzéica-Moutard trans-
formation is in the heart of the Bécklund transformation which we have found in
chapter 3. This transformation is so useful, that we have considered a simple exam-

ple as an upshot of this chapter.
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Chapter 8

Conclusions

T THE END OF EACH CHAPTER, we have considered a sort of conclusion,

? what makes this formal conclusion very friendly. The main objective

- of this work was to consider the transformations that allow to find a
new solution from a previous one. We have considered these transformations from
different points of view and at the end, we conclude that we have a systematic way
to construct them.

First of all, we found the Darboux and Backlund transformation via gauge trans-
formation and after, we saw that from the Lagrangian approach for integrable sys-
tems with jump defects, we could obtain the same set of transformations. In this
way, indirectly we have found that the defect does not spoil the integrability of
the whole system. The integrability of the system would be guaranteed if we had
the conserved quantities, and actually, recently we have found these infinitely many
conserved charges at [21].

In the second part of this work, we started considering our model from the
geometric aspect and we have shown how to reduce the transformations already
obtained at the first part to the transformation that Tzitzéica himself, found. The
advantage of the geometric approach consists in the freedom available to us, that is,
besides the Tzitzéica equation and the Lax pair - available in the solitonic context
-, at the geometric approach, we have equations that describe the surface, then, we
have some additional informations.

As we said before at the beginning of third chapter, there exist some misunder-

standing about the Bécklund transformation for the model. While some researchers
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say that there are no Bécklund transformation for Tzitzéica equation, others have
found ineffective transformations. The transformations that we have dealt here in
this work, were obtained by Borisov [30] and we have shown that his transforma-
tions can be identified as the defect conditions obtained by Corrigan & Zambon
[20]. Also, these transformations were identified with the Moutard-Tzitzéica trans-
formation, where we have an effective formula for the generating of solitons. This is
the reason why we think that the transformations considered here in this work, are

better than any other considered after the Tzitzéica original work.
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Appendix A

Manifolds

O AVOID TO CITE TOO MANY references along this chapter, it is enough

to say that the approach used here in all these definitions were completely
5 based in the books of James Munkres [49] for topology, Frank W. Warner
for differential geometry [50]| - two wonderful books, with a clear text and several
interesting examples, as every mathematics book should be. The book of Robert
Wald [51], was also an important reference to us, mainly, because he is a physicist
and has a special (and clever) way to define some mathematical concepts (compare,
for example, the Warner’s definition and Wald’s definition of tangent vector on a
manifold). The classnotes of Rui Loja Fernandes [27], Luiz Agostinho Ferreira [52]
and the books of Nakahara |28], Seymour Lipschutz [53|, Manfredo Perdigao do
Carmo [54], Luiz San Martin [55|, Fuchs [56] and Gilmore [57] were eventually used

and are strongly recommended.

* * *

By set, we understand a collection of objects, with or without an additional
structure. For example, a set of books, people, points and so on. A set can be finite
or infinite. The pattern used in naive set theory is assumed here, for example, the
lowercase usually denote the elements in the set, while uppercase mean the sets by
themselves, i.e. a is an element and A is a set. Relations between element-set and
set-set are denoted respectively by € (read belongs) and C (read subset) together
with their natural negations ¢ and ¢, for example, if a is an element of the set A,
then a € A, if not, a ¢ A. If every element of the set A are in the set B, then A C B
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and if A # B, A is a proper subset of B. Evidently, the empty set is denoted by the
usual symbol &.

A typical set usually will be defined by the properties of their elements. For
example, a set A of elements a that satisfy the generic property P, in mathematical
terms, this set can be write as A := {a | asatisfies P } where := means “is defined as”
and the bar (]) stands “such that”. Others three important symbols are 3 (exists),
= (equivalent) and V (for all).

The expression f : A — B means the mapping (sometimes said map, function or
application; soon, in a particular way, we will adapt a subtle distinction among them)
of a set A into the set B, or in terms of the respective elements a — f(a), where was
used a special arrow. The set A is called domain of the map f and B is called range
of the map. The image of the map, is the set f(A) ={be€ B|b= f(a)Va € A} C B,
while the inverse image of the element b € B is f~'(b) = {a € A| f(a) = b}. If
f:A— Band g: B— C are mappings, the composition go f : A — C' is defined
by a — go f(a) = g(f(a)).

The real importance of the next section is the definition of Hausdorff paracompact
topological space. This space, observed as a manifold, admits a Riemannian metric,
it allows to “globalize” many local properties and to define integration over the
manifold [58| (in fact, a simpler explanation would be enough for a physicist, the
spacetime where we live in, is assumed to be Hausdorff paracompact). The manifold,
on the other hand, is important for the definition of Lie algebra and the concept
of integrability, that is the heart of this work. Although the most of concepts used
in next two sections will be used just there, this acquaintance is useful to avoid or
solve some eventual pathological problem in our manifolds (see [49]).

Evidently, Lie algebra could be defined without any comment about topology or
differential geometry, but notice that, the Béacklund and Darboux transformations
started in the differential geometry, and the aim of this work was to consider relations
between them and gauge transformations. So, it is more natural to consider the
present approach, which increases naturally, than another approach, which we would
need to go to a branch math (like algebra) and then return to geometry. Similar

reasons took us to consider integrability through the geometric approach.
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Concepts on Topology

Definition 1: Consider A and B two sets, a map f : A — B, is said to be
ingective if given two distinct points in A, their images in B under f are distinct, i.e.
if Vaee A a#ethen f(a)# f(e), f is called injective. A surjective map is the
one that, each point of B is an image of a point of A under f,ie. Vb € Bdae A
such that f(a) = b. A map that is both injective and surjective is called bijective.
When f is bijective there exists a map from B to A called inverse of f and it is
denoted by L.

If these sets have some operation defined, as addition or product, and the map
f A — B preserves this operation, i.e. a;, a; € A, so a;-a; € A, then, f(a;-a;) =
f(a;)- f(a;) € B, then we say that f is a homomorphism. When the homomorphism
f is bijective, then, we say that f is an isomorphism.

Actually, this is a naive definition, because the operation which the set B is
endowed, is not necessarily the same of the set A, so, the concept of homomorphism
is better understood, when we deal with a well defined algebraic structure (that
we will define soon), for example, groups, rings, vector spaces and so on. With
this point of view, the concept of homomorphism can be thought as the map that
preserves the algebraic structure and not the operation of a set.

Definition 2: The topology 7 of a set X is a collection of subsets of X with the
following properties:

i) X and @ € T

(ii) Let be O; a element of 7, the union | J, O; of an arbitrary number ¢ € I C N is
in 7, 1ie (J! O;=1 C 7, ¥n € N (I is usually called index set);

(ii) Let be O; an element of 7, the intersection (), O; of a finite number i € / C N
isin 7, ie |J; Oz C 7,V 0 (<o0) €N

A Topological Space, is a set X with a topology 7, usually denoted by (X, 7) or
just X when there is no confusion source in the definition of the topology.

A subset U of X is called open set when U an element of 7. Now, one could
think of a topological space as a collection of open sets such that @ and X are open,
and an arbitrary union of open sets and a finite intersection of open sets are open.

Definition 3: A basis for a topology 7 on X is a collection B of subsets of X,
called basis elements, with the properties:

(i) Vo € X, 3 at least one basis element B containing x;
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(ii) If « belongs to the intersection of two basis elements By and Bs, then there is a
basis element Bj containing x such that Bs C By [ Bs.

As was defined at [49], an open in X, is a subset U of X which, for each z € U,
there is a basis element B € B, such that x € B and B C U. A subset V of X is
called closed if the set X\V = X —V :={z € X|x ¢ V} (complement) is open. By
this definition, we conclude that X and @ are open and closed simultaneously.

Definition 4: A neighborhood U of a point x, is an open set that contains x.

Definition 5: A Hausdorff space is a topological space X which, given any
two distinct points a and b, always one can find two neighborhoods of a and b
respectively, such that, the intersection between them is empty, in a mathematical
way, a topological space is Hausdorff if: Given a,b € X with a # b, then 3 U, and
Uy such that a € U,, b€ U, and U, (U, = @. When two sets satisfy A(\B = &
one usually says that A and B are disjoints.

Definition 6: Let X and Y be two topological spaces, a map f : X — Y will
be called continuous if given any open subset V' C Y its inverse image f~!(V) is an
open subset U C X.

Definition 7: Given two topological spaces X and Y the bijective map f : X —
Y will be called homeomorphism if f and f~! are continuous.

Definition 8: If X is a topological space.

o (D 8.1) The separation is a pair U and V' of disjoint nonempty subspaces of X,
ie. UNV =0, such that UJV = X.

o (D 8.2) The topological space X is said to be connected if there is no separation
of X 1.

o (D 8.3) Given two distinct points x and y in the topological space X, a path in
X from x to y is a continuous map f : [a,b] € R — X, such that f(a) = = and
f(b) = y. The topological space z is said to be path (or arcwise) connected, if every
pair of points in X can be joined by a path in X.

o (D 8.4) A loop in a topological space X is a path such that f(a) = f(b). If any
loop in X can me shrunk to a point of X, then X is called simply connected.

Definition 9: Let X be a topological space
o (D 9.1) A collection {O;} of subsets of X is a cover of theset Y C X if Y C JO;.

! Actually, this definition is a property of the standard definition. A topological space X is
connected if, and only if, the only subsets of X simultaneously open and closed are the empty set
@ and X.
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It is an open cover if each O; is open. Let {O;} be a sub collection of {O;} that still
covers Y, {O;} is called subcover.

o (D 9.2) The set X is compact if every open cover {O;} of X contains a finite
subcover (a subcover with a finite number of elements).

o (D 9.3) A cover {U,} is a refinement of {O;}, if whatever the U;, always exists
an O; such that U; C O,. When the sets U; are open, {U,} is called open refinement
of {O;}. Obviously, when they are closed, {U;} is called closed refinement of {O;}.
o (D 9.4) A collection {C;} of subsets of X is said to be locally finite in X if every
point x € X has a neighborhood W, that intersects a finite number of elements of
C;, i.e. W, C; # @ for a finite index ¢ € I C N.

o (D 9.4) A topological space X is paracompact if every open cover {O;} has an
open locally finite refinement {U;}.

Basic Mathematical Structures

1. Group:

An abstract group G is a set of elements together with a composition law (o)
such that if f, g, h are arbitrary elements in G, then
(i) goh € G;
(ii) fo(goh)=(fog)oh;
(iii) 3 e called identity such that eog =g = goe;
(iv) 3 an inverse such that gog =e = gog, gis usually denoted as g—*.
The group is called abeltan or commutative when satisfies the extra condition:

(v) goh=hog, Vg,h €G.
2. Ring:
A set A of elements together with two operations

1. 4 called addition,

2. - called multiplication,

that satisfies the conditions

(1) A is an abelian group under +;
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(til)Va,be Aja-b € A Closure;
(i.2)Va,b,ce Aja-(b-¢c)=(a-b)-c Associativity;
(7i.3) 31 € A, such that [-a=a=a-1I, Va€ A  Identity;
(74) (a+b)-(c+d)=a-(c+d)+b-(c+d)

=a-c+a-d+b-c+b-d Distributive Law.
A commutative ring is the one which satisfies the extra condition
(ti.5)a-b=b-a, Va,b e A.
Now, if for all element a different from zero in the commutative ring, exists

l'is equal to the

an inverse element a=! € A, such that, the multiplication a - a~
neutral element of the multiplication (i.e. the identity), then we shall call this ring
by Kérper?. In mathematical words, A kérper K is an commutative ring A together
with the property:

(iii) Vae A—{0}, 3b € A—{0} such that a-b =1 We denote b=a""'.

Then, a korper A is an abelian group with respect to the addition and the neutral
element of this operation (denoted by 0), is called zero, and A — {0} is an abelian
group with respect to the multiplication, with neutral element of multiplication
(denoted by 1), and called identity. The real numbers R and the complex numbers
C are examples of korper. The elements of a korper are usually called scalars and
the symbol for multiplication (-), will be used just in this section, so along this work,

the scalar multiplication (a - b) will be (a b), with a, b in the korper.

3. Linear Vector Spaces:

It is a collection V, together the korper K (that we assume hereafter R) and two

operations
1. + called vector addition,
2. * called scalar multiplication,

such that, the following properties hold
(A) V is an abelian group under +:
(Al) vu eV, thenv+4+u € R;

2The English word for this set is field, however, to avoid confusion with so many definitions
to a same word, we preferred, to use the German word kérper that means body, and it is used to

denote this commutative ring.
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(A2) v+ (u+w)=(Vv+u)+w, vu,weV,;
(A3) vo+v=v=v+vy wedenote vy=0;
(Ad) v+ (—v)=0=(—V) +v;
(AS)v+u=u+v

(M.1
(M.2)
(M3) 1xv=v=vxl;
(M) A+ p)x(v+u)=Ax(v+u)+pux*(v+u)
=AkVA+Axu+pu*xv—+puxu.
A subset W of V|, that is itself a vector space with the same algebraic operations of
V, is called a Vector Subspace of V over R.
3.1 Linear Dependence and Basis: Consider the set {vy,--- , v, } of k vectors
in V, if the equation

0l s vy 4t v =0,

implies that the scalars a* = 0, then we say the set {vy,--- , vy} is linearly indepen-
dent; reciprocally, if these scalars are different from zero, a' # 0 then we say they
set{vy, -+, vy} is linearly dependent.

A set of linearly independent vectors {ej,--- ,e,} is called a basis of V, if any

element v € V can be written in a unique way as a linear combination of {e;}:
Vzvl*e1+---+v”*en:Zvi*eiEvi*ei,
i=1
where we call components the real numbers v*. And the number n is called the
dimension of the Vector Space.

3.2 Linear Maps, Image and Kernel: Given two vector spaces V and U, a
map f: V — Uissaid to be linear if f(Axvi+pxvy) = s f(vi)+p* f(u;), ¥V vi, vj €
V and A\, p € R. The image is obviously, imf = {f(V)} C U and the kernel is
the set of elements in V mapped onto 0, i.e. kerf = {v € V|f(v) = 0}. Evidently
0 belongs to imf and kerf, then, they satisfy, independently, the properties of a

linear vector space - they are called linear subspaces - and the dimension N of V is:
N =dimV = dim(kerf) + dim(imf).

Consider now the vector space V and T a linear map 7' : V — V, we call this

linear map as linear operator. An eigenvalue of T is a scalar o € K, such that,
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there is a non zero vector v € V that satisfies the eigenvalue equation defined by
Tv = av.

If « is the eigenvalue of T', then, any v that satisfies the eigenvalue equation is called
etgenvector.

3.3 Dual Vector Space: Let w : V — R be a linear map from the vector space
V to R. The set of maps {w;} have a natural structure of linear vector spaces,

because, if w;, wy, are linear maps in this set, then
(Wy + W)k v+ 1) = A= wy(v) + - wi () + A wel(v) + - wi (1),

where A\, © € R and v, u € V. Therefore, this set is in fact a linear vector space,
denoted by V* = {w | w : V — R}, and it is called Dual Vector Space to V. Its
elements w are called dual vectors .

If {e1, - ,e,} is a basis for V, we can define, without loss of generality, a basis
for V* choosing {d',--- ,d"} € V, such that:

. . 1 if i—
vr-s {1805
if 15#£7

Therefore, any dual vector w € V* can be written as:

n
w:wl*d1+'--+wn*d":Zwi*di:wi*di.
i=1
The action of w € V* over v € V could be thought as a scalar product in 'V,
since

w(v) = w;+ d'(v/ xe;) = [(w; - v7) x d')(e;) = [(w; - v))] - [d'(e;)] = (w; - ") - 0

j
then
w(v) = w; -v' € R.

The scalar product can be write as ( , ) : V* x V. — R, where the Cartesian
product V* x 'V is defined as all pairs (w,v) € V* x V, where w € V* and v € V.
Obviously, this idea of Cartesian product can be extended beyond the linear vector

spaces theory. Using this notation, we can set

w(v) = (w,v) = w; - v".
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Let us call all the vectors belonging to V as contravariant vectors and covariant
vectors those € V*. We use the following notation, if v € V, then v = v’ xe; =
vie; and if u € V*, then u = u; * d* = u;d’. The numbers v’ and u; are called
contravariant and covariant components respectively. So, the difference between
these vectors can be expressed through their components, upper indices components
to contravariant vectors and lower indices to covariant vectors.

If now we consider a mapping (an example of isomorphism) ¢g : V. — V* then,

the inner product of two vectors v,u € V
g(,): VXV =R

can be expressed by

i

g(v,u) = <g(v),u) = <V*7u> = vu,

we require the symmetry?® of this mapping, then

g(v,u) := g(u,v) = (g(u),v) = (u*,v) = y;v'.

Also, we require this mapping as nondegenerate, i.e. g(v,u) =0 V v, then u = 0.
This function is called metric, the reason of this name is that, if we choose its
positivity (the positive defined metric is called Riemannian metric), we can recover
the notion of distance between two points, however, we do not expect the positivity
of our metric.

The simplest form of the function g is the following

n n
gi=> gyd@d =) g;dd =g;dd,
ij=1 ij=1

where g;; are the components of the metric, and the symbol ®, was to indicate an
special multiplication between the basis of V*, in a most complete treatment, we
could see this function ¢ as a particular type of an object called tensor and this
symbol as an outer product, however, this escapes of the scope of this work.

As we have seen, the action of g on a contravariant vector v leads it to a covariant

vector v*. So g(v,-) := v*, then

g(v,:) = gijdi(v)dj =V = vjdj

3This is not a mandatory requirement, actually, there are some important sorts of mappings
like that [57], which, we do not impose any symmetry property and others that we impose the

antisymmetry property.
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gijdi(vkek)dj = Ujdj
gijvkdi(ewdj = gz’jvkﬁslicdj = gijvidj = Ujdj’
then

1.
gij U 1= Uy.

4. Linear Algebra:

Linear Algebra is a vector space V over the korper R (or generically K'), together
with three operations

1. 4 called vector addition,
2. * called scalar multiplication,
3. x called vector multiplication,

such that, besides the Linear Vector properties, the following properties hold

(N.1) v, u € V then vxu €V,

(N2) (v4+u) x (W+x)=vX (W+xX)+ux (w+x)
=VXW+VXX+UXW+uX X.

Definition: A vector subspace W of an algebra V, which is itself a algebra, i.e. W

is closed under the vector multiplication, is called Subalgebra.

Differentiable Manifolds

In this section, by function, one must understand a mapping into the real numbers,
by map the mapping into the Euclidean n-dimensional space (formally defined in
the next paragraph) and by application the mapping into a generic manifold M.
Notice that, this classification is very particular and it was adapted for a didactic
purpose, then, in any other text, these terms can be used as synonyms, with a
similar or exactly meaning used here (who knows?), so, the author reiterates that
these criteria must be used carefully and preferably just in this section.

Consider the Euclidean n-dimensional space R™ = {(z', 2% ... 2")| 2 e R Vi €
[1,n] C N} and the canonical coordinate function x' : R" — R defined by:



where r = (r!,r% ... r") € R™. The canonical coordinate function z' on R will be
denoted by x, then z'(r) := z, Vr € R. At the same time, if f: A C R" — R",
one sets the ith component function of f by
fli=2a'of.
When f: R — R and t € R, the derivative of f at t is

_ 4
- dx

a4
dx

(f)

t t

If f:R* - Randt=(t,...,t") € R", the partial derivative of f with respect to
' (1<i<n)attis

=2
ozt |, ozt |,
Finally, if & = (a1, ..., ) is a n-tuple of non-negative numbers, then one sets
[a] = Z s
and
o Oxle]

Oz Ox§t .. Owon

Definition 10: Let f : A C R®™ — R be a function, f is called differentiable of
class C*, where k is a non-negative integer, when the partial derivatives 9 f/0z®
exist and are continuous on A for [o] < k. If f : A C R* — R", then f is
differentiable of class C* if each component function f?is C*. If fis C*¥V k > 0,
the fis C'°.

A locally n-dimensional euclidean space M is a Hausdorff Topological Space,
which in each of its points, one can find a neighborhood, homeomorphic to an
open subset of R", iie. Vm € M, 3 U C M such that ¢ : U — R" is an
homeomorphism. The homeomorphism ¢ is called coordinate map, the functions
0 =a2'0¢: M — Ris called coordinate functions and one usually calls the pair
(U,¢) = (U, ¢, ..., 0" by coordinate system (or chart, as mathematicians usually
call). Always will be possible to treat z* instead ¢°, so the coordinate system will
be denoted by (U, ¢) = (U, z',2%,...,2"). If m € M and ¢(p) = 0 the coordinate
system is said centered at p.

Definition 11: A differentiable structure § of class C* on a locally euclidean
space M is a collection of coordinate systems € = {(U;, ¢;)|i € I}, that satisfies the
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following properties:
1) U, Ui = M;
(ii) Since U; U; # @, then ¢;0 ¢ ' is C* Vi, j € I
(iii) § is maximal with respect to (ii), that is, if (U, ¢) is a coordinate system such
that, ¢; 0 ¢! and ¢po ¢; ' are C¥ Vi € I then (U, ¢) € 3.
The pair (M, §) is called differentiable manifold. When k — oo (that is the case

considered here), one just calls (M, §) as smooth manifold or just manifold.

Figure A.1: A differentiable manifold M.

Definition 12: Let M and N be smooth manifold, the map f : M — R is said
to be differentiable of class C™ if fo ¢! is of class C, V (U, ¢); An application
U : M — N is said to be a differentiable application of class C*, if o Wo ¢~ is of
class C* V (U, ¢) of M and (V,6) of N. A differentiable application ¥ : M — N
bijective and with differentiable inverse is called diffeomorphism.

Tangent Spaces

Tangent Vector

In the euclidean space R", there exists an injective correspondence between vectors

and directional derivatives. A generic vector v = (v!,... v") defines a directional

derivative operator

;U&ﬂ’
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and vice versa. What we mean is that, if f is a C'*° function on a neighborhood of
a point p € R™, then, the vector v assigns to f a real number v(f), which is the

directional derivative of f in the direction of v at p, so

Wl =¥ g A A

p

p =

Where, the summation convention for repeated indices has been defined. Directional
derivatives are linear and must satisfy the Leibniz rule: v(fg) = gv(f) + fv(g).
Thus, on a manifold M, let .# be the collection of C'*° functions f from M to
R, ie. f: M — R. A tangent vector v at a point m € M is a function v : % — R
that satisfies:
(i) linearity: v(a f+bg) =av(f)+bv(g), Vf, g € Fanda, b € R;
(ii) Leibniz rule: v(fg) = gv(f)+ fv(g), V f, g € Z.
Now, let 7 M,, be the set of tangent vectors to M at m, then, T M,, has a
natural structure of a linear vector space, so
(O)(v+w)(f)=v(f)+w(f), VfeFand v,w € TMy;
(tiv(a f) =av(f), VaeR, fe€.F and v € TM,,.
The vector space TM,, is called tangent vector space or just tangent space.
Another important property of the tangent space 7.M,, is that, its dimension is
the same of the manifold M. This proof is far from trivial, but it was made in a

amazing way by |50, 51|. Here, we receive that as a property:
dim(7M,,) = dim(M).

Definition 13: Let (U,¢) be a coordinate system with coordinate functions

(o', ..., ¢") and m € U. For each index i € [1,n] C N we define a tangent vector
X;: % — R, as
9 (foo™)
Xi(f)], = = =408 )
D= 58], =255

where f € Z : M — R, and fog ! :R* - R.
If v € TM,,, then, the old notion of directional derivative can be invoked, and

we set down the tangent vector on M as

n

O = D v(e)

i=1

n

v(")X;

Y

0
0yt

m i=1 m
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Figure A.2: A function from the Euclidean space R" to the real line R.

so, the set { X;| = 22| |i=1,...,n} defines a basis of T M,y,.

Ot
Consider now two coordinate systems (U, ¢) and (U, #), with coordinate functions

ol .. " and 91, ..., 9", respectively, therefore
0 "0 0 "0 .
Xi|, = | = (W) =—| = | (W) Y|,
|m 8@’ - Jz_; (‘3@ m( ) i . ; aQOZ m( ) J .
so, by definition, we have
D D i L R SE- I
= L om) |, =1 9V lem) |,

where we have defined the coordinate function ¢’ := 17 o ¢! : R™ — R. This last
equation express the relation between coordinate basis, while the relation between

components of the vector can be derived from

i=1 m =1 m
=y (2] vl )=y
i=1 j=1 6(m) m j=1 m
then,
7y — i
i) = Y v
=1 0(m)



Figure A.3: An example of two different coordinate functions.

This last equation is known as wvector transformation law.

A smooth curve 7, on a manifold M is a C* application of R (or an interval S)
into M, ie. v:S C R — M. At each point p € M on the curve ~, the tangent
vector T' € T M,, to the curve is defined as:

d "L dyt of " dxt Of ot
T(f):: d_(fo'y) :Zd_ o = d_ T
L t =1 Mo 9% e i1 M gyt z d(v(1))
then
"L dxt
(=3, — X
i=1 d(v(1)) o(7(t))

Where, ' = 2'(z), f € #, foy: R - R, t € S C R and x is the canonical
coordinate function on R. Hence, the components T° of the tangent vector to the

curve are

dx’

T =
dx

P(v(1))
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Figure A.4: A smooth curve 7.

The Differential
Let ¢ : M — N be C* and m € M. The differential of ¥ at m is the application
dlﬁ : TMm — TN¢(m),

so, if v € TM,,, then di)(v) is a tangent vector at ¢»(m) € TN,,. The action of the
tangent vector di(v) in a function g € ¢4, that is the set of all C* functions from
N to R, is defined as:

[dy(v)](g) = v(g o ¥), (A1)

where g € 9 : N — Rand govy € . : M — R. In the special case of a function
feZ, and v e TM,, we have

af ) = o(f) —| . (A.2)

In this case, we usually take df : TM,, — R as:

df (v) == v(f),

that is an element of the dual space T M. .
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Let (U,¢) = (U, ..., ¢") and (V,p) = (V,0',...,0") be coordinate systems
around m € M and ¢(m) € N respectively. Then,

9,
0t

o) = o

and using (A.1),

A0’ o) 0
j=1 ¥ m 9€ ly(m)
and {%‘ } is called Jacobian of the application ¢ : M — N.

Figure A.5: An application 1) between two manifolds M and N.

If (U, o' ...,¢") is a coordinate system on M, m € U and {a%i} is the basis of

T M,,, we can define a basis dy’ of the dual space TM? | writing the differential of
feZ  M—=Ras

df, = Z gf

%
=1

A |-

m
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The dual vector space T M of M at m will be called Cotangent Space and its

elements covectors, i.e., the cotangent space is
TM: ={w:TM,, — R| w linear}.

The dual basis {d¢'|,,} of {a%i}v defined above can be chosen, without loss of
generality, by
i 0 i
61, (55) =

Tangent and Cotangent Bundles

Let M be a C** manifold, the complete family of tangent and cotangent spaces

at M define the tangent and cotangent bundles respectively, i.e.

TM= | TM,,

meM

and
TM = | TM;,
meM
There are projections such that, to the vector v € T M,, and to the covector
w € TM;,, we have

T:TM—=>M, n(v)=m, if veTM,,

T TM = M, 78 (w) =m, if weTM,.

Vector Fields

A tangent vector field along the curve v : S C R — M is a mapping X : S C
R — T M which assigns ~, that is, 1o X =~

The vector field is called smooth vector field along ~ if the application X : S C
R —TMis C™.

A vector field X on a open set U C M is an assignment of U into T M, in other
words, an application X : U — T M, such that 7o X = identity map on U. Again,
the notion of smooth vectors fields is obvious.

The set of vector fields over U forms a vector space over R. If X is a vector field
on U and m € U C M, then X(m) = X|,, is an element of 7 M,,. Consider now,
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Figure A.6: A smooth vector field along the curve ~.

the function f € %, then, X(f) is the function on U whose value at m is X|,,(f).
Loosely speaking, a vector field X on a manifold M is an assignment of a tangent
vector v € T M,, to each point m € M [51].

Figure A.7: A vector field on a generic manifold.

Proposition: Let X be a vector field on M. If (U, ', ..., ") is a coordinate

system on M and {a'} a collection of C*° functions on U, then

X::Za a5

i=1
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If f e %, the composition of two vector fields X and Y can be evaluated as:

-t (M35 )|

XM= (b5 )|

by Leibniz, we can write

dpt Ol 0pi

Xl = (ate) 55 52

(1) + ol - (ﬁ) )

Due the second term on the right-hand side, this composition is not a vector field,

however if we define

XY]| () = X))l — Y (X)),
then o (i
xy] ()= (o) 2 = ) )| ()

Thus, [X,Y] is again a vector field and it is called commutator or Lie bracket

(mainly by mathematicians). The commutator satisfies:

(i) [X,Y] = -1V, X], (skew-symmetry);

(ii) [aX +bY, Z] = a[X, Z] + b]Y, Z], (bi-linearity);

() [X, [V, Z]] + [V, [Z, X]]| + [Z,[X,Y]] =0, Va,be R, (Jacobi Identity);
(iv) [/ X, gV] = f9X, Y]+ F(X (@)Y — g(Y(/)X, Vf,g € F, (Derivation).

Evidently, at m € M, the commutator is an operation between two elements of an
vector space T M,, and it leads to another element of that vector space. So, the
vector space is endowed with a vector multiplication, and then, forms an algebra.
An algebra which satisfies skew-symmetry and Jacobi Identity is called Lie Algebra.

Let M and N be two smooth manifolds and ¢y : M — N a differentiable
application. Consider now, the vector X in M and the vector field Y in N'. We say
that X and Y are v-related if

dpoX =Y o).

Proposition Still considering this application we can take the vector fields X; and
X, on M together with Y; and Y5 on N and consider that X is 1-related to Y;
and X, is ¢-related to Y. With these suppositions, we conclude that [X;, X5] is

87



Y-related to [Y7, Ysl.
Proof. Since X is ¢-related to Y, and X is ¢-related to Ys, then

dpoXy=Yi09

and
dip o Xg=Ys01.

Considering the function g € 4 : N' — R, we can write:

dy([X1, Xo](g) = [X1, Xo][m(g 0 ¥)
= Xi|m(Xa(g0¥)) — Xo|m(Xi(g o 9))
= Xi|m[(dip 0 X2)(g)] — Xa|m[(dy) o X1)(g)]
= Xi|m[Y2(g) 0 ¥] — Xa|m[Yi(g) 0 ¢
= (dp o Xi[;n)(Ya(g)) — (dip © Xo|m)(Y1(g))
= Yilyom) (Y2(9)) — Yalyn) (Yi(9))
= V1, Yalyom)(9), Vg€ 9.

Then, we conclude that,

d¢ © [leXQ] = [}/'17}/2] © w

As a last comment about vector fields, let us talk a bit about an important

concept that mediates the relation between Lie Groups and Lie Algebras, as we

will see soon. The one-parameter group of diffeomorphism ny is a C* application
R x M — M, such that, if ¢t € R is fixed, then 7, : M — M is a diffeomorphism
and Vi, s € R n; ong, = nm4s, with this definition, we realize that 7y := e is the

identity. Considering now, m € M fixed, n,(m) : R — M is a curve called orbit of

n; which passes through m at ¢ = 0. We associate to m a tangent vector v/, to this

curve and to a one-parameter group, we associate a vector field X.
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Appendix B

Lie Groups and Lie Algebras

Definitions

Lie Groups

A Lie Group is a differentiable manifold G which is also, a group such that, the

Lis C®°, i.e. its group structure is

application G x G — G, defined by (0,7) — o7~
a differentiable application.

Example;: The euclidean space R" is a Lie group under vector addition;
Examples: The non-zero real numbers R* and complex numbers C* are Lie groups
under the multiplication, respectively defined;

Examples: The unit circle S' := {z =a +ib | ||2|| := Va®> + 02 =1} C C* is a Lie
group under C multiplication;

Exampley: If G and H are Lie groups, the Cartesian product G x H is also a Lie
group. Then a torus-2 T? := S! x S! is a Lie group;

Examples: Let V be a vector space, the group of linear maps 7' : V — V forms
a Lie group denoted by GI(V), and it is called General Linear Group. If V.= R",
this group can be identified as the n x n matrices and it is a Lie Group under the
matrix multiplication and it is signed by Gi(n,R).

Exampleg: In the same way, the general linear group Gl(n,C), but now, with nxn

complex matrices.
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Lie Algebras

A Lie algebra g over the korper R is a vector space g endowed with an application
[, ]:9xg— g, such that V z,y, 2 € g this operation satisfies:

1. [z,y] = —[y, ], (anti-commutativity)

2. [[x,y], z] + [[y, 2], =] + [[2, 2], y] = 0. (Jacobi identity)
Example;: The vector space of all smooth vector field on the manifold M is a Lie
algebra under the Lie bracket on vector fields;
Examples: The euclidean space R" is an abelian Lie algebra;
Examplejs: Let V be a vector space, the set of linear maps T : V — V forms a Lie
algebra denoted by gl(V), with the algebra structure defined by the commutator of
two linear maps A, B € gl(V)

[A,B] . =AoB—BoA €gl(n,R).

If V = RR", this algebra is signed by gl(n, R) and can be identified (as proved by [50]
and suggested by the exponential map, that we going to consider soon) as the Lie
algebra of the matrix elements of the group of n x n real matrices in Gl(n,R).
Example,: In the same way, gl(n,R) can be identified as the Lie algebra of the
matrix elements of the group of n x n complex matrices in Gl(n,C).

Examples: The euclidean space R? with the cross product of vectors ¥ x @ forms

a Lie algebra.

We can define in the Lie algebra g, a derivative map, i.e. a map 0 : g — g, that

satisfies the Leibniz rule
[z, y] € g = 0([z,y]) := [6(2),y] + [z,0(y)]-
As an example, we can define, for some = € g the derivative map ad,, : g — g setting
y = ady(y) = [z,y], Vyeg.

Using the Jacobi identity, we can show that the Leibniz rule is valid

adm([yv Z]) P = [[E, [yv z“
==y [z,2]] = [z, [2, 9] = [y, [z, 2]] + [[2, 4], 2]
= lad,(y), 2] + |y, ad.(2)].
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Definition: Let V be a vector space and gl(V) the Lie algebra of linear maps
T :V — V. A representation of a Lie algebra g into V is the homomorphism

Z:g— gl(V),
with
[z, y] = Z([z,y]) = [%(2), Z(y)], Vz,y€g.

The importance of this definition is too obvious, however, let us be redundant and
reinforce that with this concept in mind, we can easily work and operate with the
group elements.

An important representation that we can consider is the adjoint representation

Haa : 9 — 9l(g),
which is defined by the elements transformation
a— ad,.
In this representation, the Lie bracket is defined by
lad,, ad,] := ad, o ad, — ad, o ad,,
with this definition, we get
lad,, ady])(z) = (ad, o ad,)(z) — (ady o ad,)(z)
= ad,(adyz) — ady(ad,z)
= ady([y, 2]) — ady([z, z])

= [z, [y, 2]] = [y, [z, ]]
= _[27 ['T?yH = quy]uz] = ad[%y](z)7

for some z € g. We conclude so, that the adjoint representation carries Lie brackets
from g to Lie brackets in gl(g).

We said before in the page (70) that, the concept of homomorphism would be
best understood, when we work with a well defined algebraic structure, now we are
work on it, then notice that, a linear map ¢ : g — b, from the Lie algebra g to the

Lie algebra b, is a homomorphism if it carries the Lie bracket, i.e.

@ [, y] = o([r,y]) = [p(2), o(W)],
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YV z,y € g. When the map ¢ is bijective, we say that it is an isomorphism. Evidently,

the adjoint representation %,, is a homomorphism between Lie algebras.

Let o be an element of the Lie group G. We define the left translation and right

translation as the diffeomorphisms [, and r, of G respectively,
lo(T) =0T,

ro(T) = TO,

V1 € M. Consider the subset H C G, the left translation of this complete subset is
l,(H) = o'H, analogously, the right translation is r,(H) = Ho.
A left invariant vector field X on G is the only one that for each ¢ € G, X is
l,-related to itself, that is
dl, o X = X ol,.

Since a dl,(X]|,) is defined to be a tangent vector at I,(7) € G, where o, T € G, we
can consider too, the coordinate systems (Uy, ¢) around 7 € G and (Us, 6) around
l,(T) € G. Then we can set

dlU<X|T>(g) - = X“r(g © la) = X’T(f)’lg(T)

= a(@) 55| ) =)

o o
D¢ 063

(f)

T

where a’ = a(¢") are C* and g € 4 : G — R. Evidently, this vector does not have
necessarily the same value that the vector field X would have at the point 7 € G.
When this happen, we say that this vector field is left invariant. Last chapter,
when we considered the vector fields X; and Y;, i = 1,2 t-related (see page 88),
we have proved that the bracket [X;, Xs] is ¢-related to [Y;, Ys]. Naturally we can
use this concept and realize that, since two vector fields are left invariant, i.e. each
vector field is [ -related to itself, the Lie bracket is also, [ -related to itself, then if
dl;joX =Xol,and dl, oY =Y ol, we have

dl, o [X, Y] =[X,Y]ol,.

The set of all left invariant vector fields on a Lie group G will be denoted by g and
we easily conclude that g forms a Lie algebra. We define g, to be the Lie algebra of
the Lie group G.
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For any Lie group G, we can take a set of n = dim(G) linearly independent left
invariant vector fields. This set, that we denote by {T,| (e =1...n)}, expand the
tangent space 7G,, at any point m € G, then it is a basis of this space and must

satisfy the relation
n

[T, Ty) := > ife,Te=ifs,Te,

=1
where f¢, are constants and the factor i was chosen because in the case when the
vector fields satisfies T = T,, the constants f¢, must be real. Evidently, this
relation remains unchanged, whatever the point m € G that we are interested in,
for this reason, the constants f¢, are called structure constants of the Lie algebra g
of G.

We can work with the adjoint representation now,
CLdTa (Tb) = {Ta, Tb] =1 ngc.

This last expression shows an amazing result: in terms of the basis, the adjoint
representation is given by the structure constants.

When we were talking about vector spaces, we have considered the metric, that
was a map from the Cartesian product V x V into the korper K, that without loss

of generality we considered the real numbers R, i.e
g(, ): VXV =R

We define now this metric, that has a special name here, the Cartan-Killing form:
Definition: The Cartan-Killing form is the linear map x from the Cartesian

product g X g into the real numbers,
k:gxg—R,

defined by
(x,y) — K(z,y) := trace(ad, o ad,).

We can operate now with the basis {T,}, so

Kap = trace(adr, o adr,).
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Let us consider the case

adr, o adr,(T.) = adr,(adr,(T,.))

adr, ([T, T]

= adr, (if§.Ta) = ady, (Ta)ify,
= [T, Talifye = —faafsTe,

we can obtain the trace, doing a summation over ¢ = e, then

L _ c pd
Kab = trace(adTa S CLdTb) = “JadJbe:

Exponential Map

We call the one-parameter subgroup' of G the homomorphism between the Lie
groups R and G, the map ¢ : R — G. Since R is an abelian group under scalar

addition, we have

p(t) op(s) = @(t+s) = p(s +1) = ¢(s) o p(t),

Vt, s € R, we conclude that the one parameter subgroup is an abelian group, even

when the Lie group G is non-abelian. Besides, we have

©(0) o p(t) = p(0 +1t) = (1),

then ¢(0) := ¢ = identity element of G and

p(t)op(=t) = p(t —t) = p(0) =¢,

where ¢, s and 0 are elements of R.
Consider again the Lie group G and its Lie algebra g. Consider too, the vector

field X € g, then, we can define a homomorphism between the Lie algebra of R and

g by
Vo
dx '

LA set H C G is said to be a subgroup of G if satisfies the group requirements induced by the
multiplication rule of the group G. Evidently, the identity element and the group G itself is a
subgroup, called improper subgroups, any other subgroup is called proper subgroup.
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Also, one could show [50] that there is a unique one-parameter subgroup

ox :R—=G

such that

dox ()\i) = \X,
dx

since dpx : TRy — TG,y ), i.e. there is a unique one-parameter subgroup, such
that, the tangent vector at ¢t = 0 is X (e):

d

We are able now, to define the exponential map

t=0

exp:g—¢G

by

exp(X) = px(1).

Consider the element of the algebra X € g, then

exp(tX) = px(t),

where t € R. As px is a homomorphism between the groups R and G, we have
exp[(t + t2) X] = ox(t1)px (t2), itz €R,
expltX]li—o = ¢x(0) =¢, t=0 €R,
exp[—tX] = (exp[tX])~!, tER.

Then, we conclude that, the exponential map exp provides a diffeomorphism of a
neighborhood of the zero element of 7 G, which belongs to the Lie algebra g at ¢t = 0,
onto a neighborhood of the identity element ¢ of G. Sometimes, this diffeomorphism
can be extended to the entire Lie group G.

As an example, we could consider the exponential map
exp : gl(n,C) — Gl(n,C),

that is | .
eA:]I+A+§A2—0—-~~+—‘A"+... € Gl(n,C),
n:
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where A € gl(n,C) and I is the identity element (rather than e) of Gl(n,C). Also
we can show? that

det(eA) _ etrace(A)'

Remark Evidently, the algebra element A does not always commute with the el-
A_B
e

ement B, i.e. AB # BA, so, the map e**B is in general different from e and

the equality is valid just when A and B commute.

Generalities on Lie algebras

Up to now, we have seen that a generic element of the Lie algebra g, can be

expanded in terms of a basis
B={T,|a=1,...,n=dimG},

and we usually call the elements T, generators. Also, we know that, the Lie bracket

[, ]:9xg— g, can be written in terms of these generators
[Taa Tb] = 7/ ;cha

where f$, are the structure constants. From the antisymmetry property of the Lie
bracket,

fcfb - _fbcaﬂ
and from the Jacobi identity, we get

d d d
;dfbc+fl)€d ca+fced ca — 0.

Also, we talked about the exponential map, which allows us to set an element g

of the Lie group G as

g = exp(iT) = T

and using the generators B, we have

g = exp(i¢"Ty),

2Heuristically, we can consider )i ... ); the eigenvalues of the matrix A, since the determinant of

a matrix is the product of its eigenvalues and the trace is the sum of its eigenvalues, the determinant

of e ig e ... et
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with the parameters (* € R. The imaginary unity ¢ is present, because, when the
generators are hermitian, i.e. T! = T,, the group element g is unitary. Evidently,

since [T,, T,] = 0, then we have
g'g= exp(—iCaTL)exp(iCaTa) = exp(i(“(—Tl +T,))=1.

Definition: A vector subspace ) of the Lie algebra g, which is itself a Lie algebra,
ie. [h,b] C b, is called Lie subalgebra.

Definition: We say that the Lie subalgebra b of g is an ideal or invariant
subalgebra, when

[g,b] Cb.

The lie algebra g and the neutral element ¢ (let us call this element as zero) are
evidently ideals, they are called improper ideals.

Definition: The Lie algebra that has only itself and zero as ideals and that has
dimension dim > 1 are called simple Lie algebras®. We can analyze the structure of
the Lie algebra, looking through the ideals. Let us derive a Lie algebra g’ from g
setting

g = [g,9].
Naturally, g’ is a Lie subalgebra of g, beside, notice that in a obvious way, g’ is also

an ideal, in fact
lg.9'] =1[g9,[0.0]] C g

Wisely, we define the sequence

gV =g gl =g¢
g(2) - [9(1)79(1)]

g =[g D, g M.

Each term of this series, called derived series, is an ideal of g,
Definition: A soluble algebra g is the one that its derivative series vanishes for
some 79 > 1, i.e.
g(io) —0.

Evidently, this equality remains for all 7 > .

3This is a requirement that makes simple and semi-simple Lie algebras compatible [55].
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Definition: The Lie algebra g such that, besides {0} has no soluble ideal is
called semi-simple Lie algebra. Actually, these are the Lie algebras that we are
interested in, then, they are the kind of algebras that we will consider hereafter.

Definition: When the Cartan-Killing form is positive defined*, we say that a
semi-simple Lie algebra is compact.

Definition: Let g be a semi-simple Lie algebra, the maximal abelian subalgebra
go is called Cartan subalgebra®. Also, we define the rank of the Lie algebra g, as
the dimension of the Cartan subalgebra gy. Let us call the elements of the Cartan

subalgebra go by H;, i =1,...,r = rank(g).

Cartan-Weyl basis

We can choose a well defined basis for the Lie algebra. In the case of a compact
semi-simple Lie algebra, the best choice is the one called Cartan-Weyl basis. We

already know that the Cartan subalgebra elements can be expanded through
H;, i=1,...,r =rank(g),

in a way that
H,;,H,] =0. (B.1)

One can show [52, 55, 56| that the semi-simple Lie algebra g can be write® as
g=bDp,

where the Cartan subalgebra is fh and p is the complement of h in g. In fact, we can

set the trace in a given representation by
trace(hp) =0,

that makes p an orthogonal complement of §.

4Notice that, if we had taken the commutator of the generators without the imaginary factor
i, we would require that the Cartan-Killing form was negative defined, compare with [55, 56].
5When we drop the semi-simple requirement, the definition of Cartan subalgebra involves some

additional definitions that are beyond the scope of this work, see [55] for more informations.
6The symbol @ is a formal summation of the pairs of elements in the algebra, which the precise

definition escape of our aim.
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The orthogonal complement p contains all elements of g which are not in b, then

we can evaluate the trace

trace(b[h, p]),

and using the cyclic property of the trace we get

trace(b[h, p]) = trace(p[h, b]) = trace(hp) = 0,

hence, we conclude that
[b,p] C p.

In this sense, we can chose the remaining generators, that we will denote by

Ea cp and this set satisfies an “eigenvalue equation” such that
{ ) g q
[Hqua] = Oéinoé7 1= 1,...,7, (B2)

where we usually call the elements E,, step or ladder operators. The eigenvalues «;
are components of an r-dimensional vector, this vector is called a root of the Lie
algebra g. Let us denote the set of all roots of a semi-simple Lie algebra by ®.

Definition: A basis of a compact semi-simple Lie algebra g of the form
B:={H;|i=1,....,r} U{E, | a € O},

with H; and E,, satisfying (B.1) and (B.2) respectively, is called Cartan- Weyl basis.
Finally, we can consider the commutator between two elements from the orthog-
onal complement [E,, Eg]. Let us evaluate this commutator through the Jacobi

identity, then

[H;, [Eo, Eg]] = —[Eq, [Eg, Hi]] — [Eg, [H;, Eo]]
= ai[Em Eﬁ] - 62 [Eﬁa Ea]
= (i + Bi)[Eq, Eg].

Since the Lie algebra is closed, there are three possibilities for this expression,
1. a+ B root of the Lie algebra, so [E,, Eg] x Eq3;
2. o+ f is not a root of the Lie algebra, so [E,, Eg] = 0;

3. a+ =0, so0 [E,, Eg] must be an element of the Cartan subalgebra.
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We can sum up the results of the generators for the semi-simple Lie algebra as

[Hi7 Hj} =0,
[Hia EOL} = aiEaa
NosBatp if a+ [ is aroot
Eq.,Esl=4¢ 0 if o+ 1is not a root
H, if a+p5=0.

Lie Algebra A%

The algebra that we are interested in, is the algebra su(3), which is the Lie algebra
of the Lie group SU(3), that is a subgroup of tGI(3,C). Formally, we define this
group as

SU3):={AcGI3,C) | ATA=T, det A =1},

where the S stands for special, because the determinant of these matrices is equal
to the unity and U means unitary. Therefore, the group SU(3) is the subgroup of
Gl(3,C) composed by unitary matrices with determinant equal to unity. To this
group corresponds the Lie algebra su(3). Using that, we can write an element of
the Lie group as an exponential of the algebra element, i.e. A = exp(iT), and from

AAT =1, we conclude that T must be hermitian. Also, one must remember that
det(exp{iT}) = exp{trace(iT)};

but, we know that det(exp{iT}) = 1, then we conclude that trace(T) = 0. There-
fore, the Lie algebra su(3) is generated by the 3 x 3 hermitian traceless matrices.
The Cartan subalgebra of this algebra has rank r = 2, then mathematicians usually
call this algebra A®).

The usual basis for this algebra is composed by the Gell-Mann matrices; and
with them, we can write the following matrices. By abuse of terminology, let us call

these matrices as generators of the Lie algebra A,

Generators
10 0 010 00 0
Ts=| 00 0 T.=+v2i| 0 0 1 T =—vV2i|l 100
00 —1 00 0 010
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1 _ 0 -1 0 _ 0 00
? 0
Lo =— -2 0 Li=—&—1]10 0 1 Li=—] -1 0
2 2
VG 0 0 1 V2 0 0 0 V2 0 10
00 —1 0 00
L= 00 0 L,= 0 00
00 O -1 0 0

Commutation Relations

[T3, T3] = O [r]:‘Jr7 T,] = 2T3 [T3, Ti] == :i:Ti [T3, Lk] - kLk

[Ty, Ly] = /6 — k(k £1) Ly Ly, L] = (—1)* §T3

o3

I |
Lo.Lia] =~ To [LoLia)=0 [LyLoo=; T [LyLo)=T,

[L17 Lz] - 0 [L_l, L_2] - O

This particular set of matrices is the best choice to write the Lax pair of the
Tzitzéica model.
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Appendix C

Calculations of the Darboux matrix

elements

We can take the gauge
0 51 0 1 71 0 0

ap 0 0 0 0 B 1

First Part Consider the equation

6+K - KA+ - A+K,

where A, involve fields v and A, with fields ©. Therefore, we find the system

A AP
ay %Oég dyv1 = 0= 7 = constant, (C.l)
as = %az 0ive = 0 = 79 = constanty
s = Z-;Oél 013 = 0= ~3 = constants

/\—2
8+51 + Z"U’Yl - Z"TJ’YQ =0
8+52 + iU’YQ - iQ_J’}/g =0
3+53 + g_é - Z_g - 0

)\—1
8+61 + iU(Sl — 217(52 =0
Difr— B —iv63 =0
8+63 + g—% +Z.U(53 =0

)\O
&roq - % - 21_162 =0
a_:,_OZg + iUﬁQ - il_}53 =0
8+013 + % + ivﬁg = O

In the same way for
O_K=KA_ - A_K,
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then

)\0
o_v
v —a1—+8_a1 =0
Oy = O = ag = constant4 =¢

a7

)\—1

0_P1+a; —ag— (
0_fy —iaq + tag + 52

=0 0_f3 — iay + iy + 53
A2 A4
5—(51+Zﬂ1—53—51856 = "=V
8752—i51+52—528;v:0 Yo =V
08y — ifl+ifly+ 0y (52 +25) =0 |y5=v
)\—3

D1 + 06y — 63+, (8;” _ 8;") —0

8_72 - 251 + 152 =0
0_7y3 — 103 + 03 — 73 (8;U — agﬁ) =0

Second Part From equations (C.1; A) and (C.2; \%):

al :==a=¢2, =¢, 043:%.

From equations (C.1; A~

3) and (C.2; A71):

”71:72:’73:%‘
Also, from equation (C.2; A73):
01 = 09, 151—63—V—:0.
From (C.1; \°)
Bo =22 Oa—% —ivh=0.

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

Third Part Now we use a little trick, since Borisov 30| have used a Lax pair

without imaginary factor ¢ = /—1, naturally, he found a Darboux matrix without

explicit factor ¢, even that an implicit dependence he doesn’t deny, in fact, imaginary

terms can appear in the fields ¢ and ¢. Here, we do the same considerations, then,
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in our Darboux matrix, we allow that the components have imaginary terms just
decoded in the fields. From equations (C.1; A™!) and (C.6)

b= (%3(04 +€) 3= 530

(C.7)

Fourth Part Now, consider the equations (C.2; \° and A=2), with some algebraic

manipulations we can write

O_a+ 5 (B2 +B3) — %51 =0,

and using (C.6) and (C.7)

O o+ £(§+1)8— F(a+8) =0,

which we can compare with (C.5) and find

finally, we call

0 = 25 (a4 &) = b,

B3 = .

We can join every result and write the system of equations

where we have defined
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(C.12)
(C.13)
(C.14)

(C.15)

(C.16)
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