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Abstract. We present results of a recent study of the structure of excited pions within a chiral
holographic model for QCD. In particular, we prove that the leptonic decay constants of the
excited states of the pion vanish in the chiral limit when chiral symmetry is dynamically broken.
Comparisons are made with corresponding results obtained in light-front holography.

1. Introduction
There is a remarkable prediction of QCD [1] that the leptonic decay constants of the excited
states of the pion are dramatically suppressed relative to the decay constant of the ground-state
pion — in the chiral limit, the decay constants of the excited pions are exactly zero. Although
within a quark model perspective a suppression of a leptonic decay constant for excited states is
expected, as it is proportional to the wave-function at the origin, there is, however, no a priori
reason, within such a perspective, for the dramatic suppression predicted by QCD. Our work [2]
is partially motivated by the failure of light-front holography (LFH) [3, 4] in this matter: while
the experimental values of the masses of the lowest radially and orbitally excited states of the
pion are well reproduced, the leptonic decay constants of the excited states do not vanish in
the chiral limit [5]. Like in other instances of hadron structure, in particular regarding chiral
corrections of hadron properties [6, 7, 8, 9, 10, 11], dynamical chiral symmetry breaking (DCSB)
in QCD along with the (pseudo) Goldstone boson nature of the ground-state pion is the key
feature behind the suppression of the decay constants of the excited states.

The quark mass dependence of the leptonic decay constants of the pion has been studied
with lattice simulations. Ref. [12] finds for the pion’s first radial excitation fπ1/fπ0 ∼ 0.08
when extrapolated to the chiral limit; the experimental value extracted in Ref. [13] gives
fπ1/fπ0 < 0.064 — we denote the decay constant of the n−th excited state by fπn and that of
the ground state by fπ0 . Another lattice collaboration [14] finds a value consistent with zero
for fπ1 when extrapolated to the chiral limit. A very recent [15] lattice simulation reports for
the three lowest excited states the following results: fπ1 shows almost no suppression, fπ2 is
significantly suppressed, and fπ3 ' fπ1 .

In the next section, we present a brief discussion on the role of DCSB in QCD in the vanishing
of the leptonic decay constants of the excited states of the pion. In Section 3, we present some
details of our study [2] in the context of a hard wall holographic chiral model [16, 17]. Our
numerical results are presented in Section 4 and Section 5 contains our Conclusions.
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2. The QCD prediction
In QCD, the vanishing of the leptonic decay constants of the excited states of the pion in the
chiral limit follows from a generalized GOR relationship [1]:

fπn m2
πn = 2mq ρπn , (1)

where mπn is the mass of the pion’s n-th excited state, mq = mu = md (we work in
the approximation of isospin symmetry) and ρπn is the gauge-invariant residue at the pole
P 2 = −m2

πn in the pseudoscalar vertex function. The vertex function is related to the matrix-
valued Bethe-Salpeter wavefunction χaπn(P, q) via

iρπnδab :=

∫
d4k

(2π)4
Tr
[
taγ5χ

b
πn(q, P )

]
, (2)

with the SU(2) generators ta, a = 1, 2, 3, normalized as 2 Tr
(
tatb

)
= δab. It is important to

note that while mq and ρπn are scale dependent, the product mq ρπn is renormalization group
invariant. For the ground-state pion, DCSB implies [18]

ρπ0 = − 1

fπ0

〈q̄q〉, (3)

where 〈q̄q〉 = 〈ūu〉 = 〈d̄d〉 is the quark condensate. When Eq. (3) is used in Eq. (1), one obtains
the well known GOR relationship

f2
π0 m2

π0 = 2mq |〈q̄q〉|. (4)

Now, the key result follows via the following sequence of arguments [1]:

(i) The existence of excited states entails finite matrix-valued χπn(P, q) wavefunctions;

(ii) The ultraviolet behavior of the QCD quark-antiquark scattering kernel [19] guarantees that
the integral in Eq. (2) is finite;

(iii) Then,
ρ0
πn := lim

mq→0
ρπn = finite, (5)

(iv) Since, by hypothesis, m2
πn 6= 0 in the chiral limit, Eq. (1) implies fπn = 0 for mq = 0.

While the GOR relationship, Eq. (4), which is a key result of DCSB, is obtained in holographic
QCD in a rather straightforward way, the vanishing of fπn , n > 0, is more subtle, as we discuss
in the following.

3. The calculation in holographic QCD
The hard-wall model is defined on a slice of 5-d Anti-de-Sitter spacetime (with unit radius)

ds2 =
1

z2

(
ηµνdx

µdxν − dz2
)
, 0 < z ≤ z0, (6)

where ηµν = diag(1,−1,−1,−1) is the metric of 4-d flat spacetime, and z0 = 1/ΛQCD

corresponds to an infrared mass gap in the 4-d gauge theory. The AdS/CFT correspondence
maps 4-d field theory operators O(x) to 5-d fields φ (x, z); in the present case the relevant
operators for describing DCSB are the left and right handed currents JaLµ = q̄Lγµt

aqL,
JaRµ = q̄Rγµt

aqR, corresponding to the SU(Nf )L × SU(Nf )R chiral flavor symmetry and the
quark bilinear operator q̄RqL related to DCSB. In the dual theory, these 4-d operators correspond
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to 5-d gauge fields Lam(x, z), Ram(x, z) and a 5-d bifundamental scalar field X(x, z), both living
in an AdS slice described by Eq. (6).

DCSB was first implemented in holographic QCD in Refs. [16, 17]; here we follow the
conventions and notation of Ref. [16]. The action for the fields Lam(x, z), Ram(x, z) and X(x, z)
is given by

S =

∫
d5x

√
|g|Tr

[
(DmX)†(DmX) + 3|X|2 − 1

4g2
5

(LmnLmn +RmnRmn)

]
, (7)

where

DmX := ∂mX − iLmX + iXRm, (8)

Lmn := ∂mLn − ∂nLm − i [Lm, Ln] , (9)

Rmn := ∂mRn − ∂nRm − i [Rm, Rn] . (10)

We restrict the discussion to the quark flavors u and d. The classical solution that describes
chiral symmetry breaking is given by

L0
m = R0

m = 0 , 2X0 = ζMz + Σ
ζ z

3, (11)

with ζ =
√
Nc/2π, and

M =

(
mu 0
0 md

)
, Σ =

(
σu 0
0 σd

)
. (12)

The AdS/CFT dictionary leads to identification of the coefficients M and Σ with the 4-d quark
mass and chiral condensate terms responsible for the explicit and dynamical breaking of chiral
symmetry.

One can obtain the meson spectrum from the kinetic part of the action in Eq. (7). This
action is obtained by expanding up to quadratic order in the fields Vm = V a

m t
a, Am = Aa ta and

the fluctuation πa [2]:

SKin =

∫
d4x

∫
dz

z

{
v2

2z2

[
− (∂zπ

a)2 + (∂µ̂π
a − ∂µ̂φa)2 +

(
A⊥,aµ̂

)2]
− 1

4g2
5

[
− 2

(
∂zV

a
µ̂

)2
+
(
vaµ̂ν̂

)2
− 2

(
∂zA

a
µ̂

)2
− 2 (∂z∂µ̂φ

a)2 +
(
a⊥,aµ̂ν̂

)2 ]}
, (13)

where
vamn := ∂mV

a
n − ∂nV a

m, aamn := ∂mA
a
n − ∂nAam, (14)

and

v(z) := ζmqz +
σq
ζ
z3. (15)

We distinguish vectorial Minkowski indices µ̂ and vectorial AdS indices µ = (µ̂, z). To obtain

the Lagrangian of Eq. (13), the vector field Aaµ̂ was decomposed into Aaµ̂ = A⊥,aµ̂ + ∂µ̂φ
a, with

∂µ̂A
µ̂
⊥,a = 0, and gauge invariance was used to fix the gauge to V a

z = Aaz = 0.
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Next, we make a Kaluza-Klein expansion of the fields, in that the 5-d fields are expanded in
an infinite discrete set of modes, each mode being the product of a wave function in the radial
coordinate z and a meson field depending on the Minkowski coordinates x:

V a
µ̂ (x, z) = g5

∞∑
n=0

va,n(z)V̂ a,n
µ̂ (x), (16)

A⊥,aµ̂ (x, z) = g5

∞∑
n=0

aa,n(z)Âa,nµ̂ (x), (17)

πa(x, z) = g5

∞∑
n=0

πa,n(z)π̂a,n(x), (18)

φa(x, z) = g5

∞∑
n=0

φa,n(z)π̂a,n(x). (19)

The wave functions φa,n(z) and πa,n(z) are not independent; the relation between them can be
obtained from the 5-d field equations —for details, see Ref. [2]. Replacing these into the action
of Eq. (13), one obtains the following 4-d action:

SKin =
∞∑
n=0

∫
d4x

{
1

2
[∂µ̂π̂

a,n(x)]2 − 1

2
m2
πa,n [π̂a,n(x)]2 − 1

4

[
v̂a,nµ̂ν̂ (x)

]2
+

1

2
m2
V a,n

[
V̂ a,n
µ̂ (x)

]2
−1

4

[
âa,nµ̂ν̂ (x)

]2
+

1

2
m2
Aa,n

[
Âa,nµ̂ (x)

]2}
, (20)

where appropriate normalization conditions have been used for the wave functions va,n(z),
aa,n(z), πa,n(z) and φa,n(z), and the masses are obtained from the following equations

β(z)

z
[πa,n(z)− φa,n(z)] = −∂z

[
1

z
∂zφ

a,n(z)

]
, (21)

β(z) ∂zπ
a,n(z) = m2

πa,n∂zφ
a,n(z), (22)

−∂z
[

1

z
∂zv

a,n(z)

]
=
m2
V a,n

z
va,n(z) , (23)

[
−∂z

(
1

z
∂z

)
+

1

z
β(z)

]
aa,n(z) =

m2
Aa,n

z
aa,n(z), (24)

where β(z) is given by

β(z) :=
g2

5

z2
v(z)2 = g2

5

(
ζmq +

σq
ζ
z2
)2

. (25)

We solve the above equations imposing Dirichlet boundary conditions at z = ε:

πa,n|z=ε = va,n|z=ε = aa,n|z=ε = 0, (26)

and Neumann boundary conditions at z = z0:

∂zπ
a,n|z=z0 = ∂zv

a,n|z=z0 = ∂za
a,n|z=z0 = 0. (27)

Note that one can omit the flavor index a, as there is no flavor mixing implied by the equations
and boundary conditions.
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The leptonic decay constants can be extracted by considering the holographic currents.
The currents can be identified from boundary terms at z = ε of the variation of the action.
Specifically, after using the Kaluza-Klein expansions in the boundary terms, the currents are
given by (omitting the flavor index a) [2]:

〈J µ̂V (x)〉 =
∞∑
n=0

[
1

g5z
∂zv

n(z)

]
z=ε

V̂ µ̂
n (x), (28)

〈J µ̂A(x)〉 =
∞∑
n=0

[
1

g5z
∂za

n(z)

]
z=ε

Âµ̂n(x) +
∞∑
n=0

[
1

g5z
∂zφ

n(z)

]
z=ε

∂µ̂π̂n(x), (29)

∂µ̂〈J µ̂A(x)〉 = −
∞∑
n=0

[
β(z)

g5z
∂zπ

n(z)

]
z=ε

π̂n(x). (30)

From these, one can read off the decay constants for the vector mesons (gV n), the axial-vector
mesons (gAn), and the pions (fπn):

gV n =

[
1

g5z
∂zv

n(z)

]
z=ε

, gAn =

[
1

g5z
∂za

n(z)

]
z=ε

, fπn =

[
− 1

g5z
∂zφ

n(z)

]
z=ε

. (31)

Now, taking the divergence of (29), one obtains

fπnm2
πn = − 1

g5

[
β(z)

z
∂zπ

n(z)

]
z=ε

, (32)

where we made use of the on-shell equation for the pion field, ∂2π̂n(x) = −m2
πn π̂n(x). Moreover,

using this result into Eq. (30), the divergence of the axial current takes the form of an extended
PCAC relation

∂µ〈J µ̂A(x)〉 =
∞∑
n=0

fπnm2
πn π̂n(x). (33)

Now, using Eq. (32) one obtains a generalized GOR relationship in the form of Eq. (1), when
making the identification

2mqρπn := − 1

g5

[
β(z)

z
∂zπ

n(z)

]
z=ε

. (34)

As will be shown in the next section, the function ρπn is finite a mq → 0, independently of the
mode number n. This, like in QCD, allows to predict the behavior of fπn close to the chiral
limit.

4. Numerical Results
The free parameters of the model are z0, mq, and σq. The hard-wall cutoff z0 can be fixed (in
the limit of exact isospin symmetry) by the mass of the ρ meson, namely z0 = (322.5 MeV)−1,
and this essentially sets the scale of all hadronic masses. The values of the other parameters
are fixed by fitting the ground-state pion mass mπ0 = 139.6 MeV and leptonic decay constant
fπ0 = 92.4 MeV, which leads to mq = 8.31 MeV and σq = (213.7 MeV)3.

Fig. 1 displays the results for the mq dependence of the masses of the ground-state pion and
its excitations up to n = 3 —for the solutions for n > 3 up to n = 6, the mq dependence is
similar to that shown in Fig. 1. We note that the mass of the ground-state pion can be fitted

as mπ0 ∼ m
1/2
q near the chiral limit, which is consistent with the GOR (4). The masses of
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Figure 1. Quark mass dependence of the pion masses.
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Figure 2. Left Panel: Quark mass dependence of ρπn . Right panel: The function ρ0
πn for the

first six excited states; the dashed line is a fit to the discrete eigenvalues.

the excited states, on the other hand, can be fitted as mπn = m0
πn + anmq, where m0

πn are the
corresponding masses in the chiral limit.

In the left panel of Fig. 2 we display the quark mass dependence of the function ρπn . Clearly,
the curves show that ρπn is finite as mq → 0, a very important feature for establishing that
fπn = 0 for n > 0. In addition, one can see that ρπn is approximately independent of mq for
0 ≤ mq ≤ 30 MeV for all the values of n investigated. On the right panel of Fig. 2, we display
the chiral limit of ρπn , ρ0

πn , defined in Eq. (5), as a function of the masses of the excited pions
in the chiral limit, m0

πn . While, as remarked, the ρπn are approximately independent of mq, the

XIII International Workshop on Hadron Physics IOP Publishing
Journal of Physics: Conference Series 706 (2016) 042004 doi:10.1088/1742-6596/706/4/042004

6



masses mπn present a slight dependence on mq. In particular, one can fit the function ρ0
πn as

ρ0
πn = γ

(
m0
πn

)3/2
, n ≥ 1, (35)

with γ = 4.375 MeV1/2. Eq. (32) then implies that the generalized GOR relationship takes the
form

f0
πn := lim

mq→0
fπn = γ

2mq√
m0
πn

, n ≥ 1. (36)

0.0

1.5

3.0

4.5

6.0

7.5

9.0

f π
n
[M

eV
]

0 6 12 18 24 30

mq [MeV]

fπ0/15

n
=
1

n =
2

n = 3

Figure 3. Quark mass dependence of fπn .

The quark mass dependence of the pion decay constants fπn near the chiral limit as displayed
in Fig. 3. The results siplayed clearly show that, while the ground-state pion possesses a
finite leptonic decay constant fπ0 , the excited states have leptonic decay constants fπn that
vanish in the chiral limit. The ground-state decay constant is fitted to its experimental
value, fπ0 = 92.4 MeV, and for the first three excited states we obtained fπ1 = 1.68 MeV,
fπ2 = 1.34 MeV and fπ3 = 1.16 MeV. There is an experimental bound on fπ1 extracted from B
decays [13], which is fπ1 < 0.064 fπ0 . Our result, fπ1 = 1.68 MeV, is perfectly compatible with
this bound but, compared to the lattice result of Ref. [12], it is five times smaller.

We also note that the curves for the excited states can be fitted with a linear quark mass
dependence. Such a linear mq scaling of fπn for n ≥ 1 is precisely the one predicted in QCD [1]
through the generalized GOR relationship (1):

fπn =
2mqρπn

m2
πn

∼ mq, n ≥ 1, (37)

as m2
πn ∼ (mq)

0 and ρπn ∼ (mq)
0.

5. Conclusions
We have presented results of a recent investigation [2] on the quark mass dependence of the
leptonic decay constants of the pion and its excitations in a five-dimensional holographic hard
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wall model for QCD. The model is able to reproduce the QCD prediction of the vanishing of
the decay constants of the excited states in the chiral limit.

The results shed light on the failure of light-front holography (LFH) in this matter. A key
QCD feature captured by our approach is the obtention of the generalized GOR relationship,
Eq. (1), first derived in QCD in Ref. [1]. On the other hand, in LFH the pion comes out massless
in the chiral limit from the cancellation of the light-front kinetic energy and light-front quadratic
confinement potential in a Schrödinger-like equation [20]. While similar cancellations occur in
chiral models of QCD in Coulomb gauge as a result of DCSB — see Refs. [21, 22, 23, 24, 25]
for detailed discussions on this feature —, in LFH this is not the case. In the calculation of the
pion leptonic decay constants in LFH [5], the Fock-space decomposition of the light-front wave
function is truncated to its lowest quark-antiquark valence component, an approximation that
seems not capturing the full chiral dynamics of the pion bound state.
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