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“The book of nature is written in the language of mathematics.”

- GALILEU GALILEI

“If people do not believe that mathematics is simple, it is only be-

cause they do not realize how complicated life is.”

- JOHN VON NEUMANN

“Science is much more than a body of knowledge. It is a way of

thinking.”

-CARL SAGAN



ii

Abstract

In this work, we present an introduction to the quantum information theory.

Before dealing with quantum information we develop some necessary tools, the clas-

sical information theory and some important concepts in quantum dynamics. We

define measures of quantum correlations, concurrence and quantum discord, and

study their dynamical evolution when the coupling between the system and envi-

ronment is considered random. We conclude that a random environment imposes

permanent loss of correlations to the system.

Key words: Entanglement; quantum discord; random coupling constant.

Areas: Quantum information theory, quantum correlations.
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Resumo

Neste trabalho, apresentamos uma introdução à teoria da informação quântica.

Antes de lidarmos com a informação quântica propriamente dita, desenvolvemos al-

guns assuntos preliminares, a teoria clássica da informação e conceitos relevantes em

dinâmica de sistemas quânticos. Depois, definimos medidas de correlações quânticas,

concorrência e discórdia quântica, e estudamos sua evolução dinâmica quando o

acoplamento do sistema com o ambiente é modelado como aleatório. Conclúımos

que um ambiente aleatório impõe uma perda permanente nas correlações do sistema.

Palavras-chave: Emaranhamento, discórdia quântica, acoplamento randômico.

Campos: Teoria quântica da informação ; correlações quânticas.
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Chapter 1

Introduction

Since the advent of quantum mechanics there has been a huge progress in techno-

logy. Quantum mechanics underpins our modern society in many ways, from all

kinds of electronic devices to how some economic sectors are structured. One of

the new paradigms of technological development is the idea of construct a quantum

computer. A computer which exploits in a fundamental way the unique quantum

behavior. All computers use quantum mechanics in the sense of using quantum

mechanical devices such as the transistor. Nevertheless, when it comes to store and

process the information, our current computers use binary language, for example, ei-

ther with or without electrical current flowing through the transistors. It is precisely

this point that quantum computers intend to extend, by exploiting the superposition

property of quantum systems. This story of quantum computers brings us to an-

other field greatly developed in the past century, the theory of communication. We

will say a few words about information theory in the next chapter. For the moment,

let us comment briefly some chain of events that were important for the realization

that taking into account quantum mechanics in the way we transmit information

can provide more efficient algorithms to some tasks.

Entanglement has been a major concept in modern physics. It is accepted that

the first discussion of this property in a scientific article was in the seminal paper

written by Einstein, Podolsky and Rosen (also known as EPR article) in 1935 [1].

They questioned if the quantum theory was complete or not. As they were prone

to the incompleteness, because in their work this was a consequence if the locality

of quantum theory is assumed, they suggested that it might exist hidden variables

which would make the quantum theory complete. This means that they have pro-

vided an example that seemed to show that quantum mechanics does not respect

1



Chapter 1. Introduction 2

locality. The next important step in this story may be considered the work of John

S. Bell published in 1964 [2]. Bell set up the discussion to the experimental level.

He derived an inequality (called Bell’s inequality) which the supposed (local) hidden

variable theory should satisfy. Even though it might have been unclear up to now,

all these discussions were raised because since the beginning, with the EPR article,

they were dealing with entangled states, those states that seemed to violate locality.

Nobody was able to grasp what was really going on at the time. In 1972 John Clauser

and Stuart Freedman carried out the first experimental test that Bell’s inequality

(and also the Clauser-Horne-Shimony-Holt inequality∗) were, in fact, violated by

quantum mechanics. Since then, there has been a myriad of experimental confirma-

tion of this feature. The violation of Bell-like inequalities by quantum mechanics

means that there is something fundamentally different that cannot be substituted by

the local hidden variable theories, which are the most general notion which preserves

both locality and reality (as defined by EPR). It was then that a careful study of

such states (those which violate the inequalities) began to grow.

In the early 1980s arose the interest in whether it might be possible to use such

quantum effects to signal faster than light. Wootters, Zurek and Dieks [3,4] showed

that this is not possible and it turns out that this is prevented by the no-cloning

theorem, which says that an arbitrary unknown quantum state cannot be perfectly

copied (we will see this in more detail later). This was the first result in quantum

mechanics which had a striking distinct characteristic when contrasted with classical

information, where bits can be easily copied. In fact, the copying availability is

everywhere used in error-correction schemes in classical communication. After that,

the field of quantum information began to grow increasingly faster. Right after the

discovery of the no-cloning theorem, Bennett and Brassard [5] discovered the first

quantum cryptographic protocol, in 1984, representing the beginning of interest in

using quantum systems for security of communication. This naturally leads to the

will to use quantum mechanics to explore other communication concepts, such as

codification, data compression, transmission of information and computation.

With the development of these studies entanglement have found its place. Until

recently, it was believed that entanglement was a necessary resource for a quantum

∗The CHSH inequality is a Bell-like inequality whose violation by quantum mechanics also

means that quantum mechanics cannot be described by local hidden variable theories.
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protocol be more efficient, if that is even the case, than a similar classical protocol

which solves the same task. Some quantum protocols will be discussed later in this

work, some of which are the quantum teleportation and the super dense coding.

Nevertheless, there has been an increasing interest in what is called mixed-state

computation. In this computation there is no entanglement, or a negligible amount

of entanglement such that it is not the resource that promote the efficiency of the

algorithm. These resources are still somewhat fundamentally quantum, although

there is much more research ahead for clarification of this issue. One example

of another resource, other than entanglement, is quantum discord, which we are

also going to discuss and show an efficient quantum algorithm to solve a task that

there is no known classical algorithm that does so. These quantum correlations are

indeed playing the role of potential resources for speedup computation, justifying

the interest on studying them.

This work has two aims. First, it is structured to provide an introduction to

quantum information theory, beginning with a review of the major concepts of

classical information theory and quantum mechanics, although there were some

issues that were just commented and an appropriate explanation was left behind.

Second, it serves to present an analysis about the behavior of some measures of

quantum correlations when the coupling constant between system and environment

is random.

This work is organized as follows. In Ch. 2 we introduce the classical informa-

tion theory. We begin with a discussion about the concept of information and, from

that, we introduce and study the measure of information of a informational source,

the Shannon entropy. This comprises the Secs. 2.1, 2.2 and 2.3. Then we develop

the other measures of information for two or more sources, the mutual information,

conditional entropy and relative entropy in Sec. 2.4. In Ch. 3 we review the basic

formalism and dynamics of quantum systems, Secs. 3.1 and 3.2, as well as we provide

an introduction to more advanced topics such as open system dynamics, Sec. 3.3,

and measurement dynamics, in Sec. 3.4. In Sec. 3.5 we present a general description

of the quantum dynamics through the so-called quantum operations. Finally, in Sec.

3.6, we discuss two related phenomena, decoherence and environment-induced su-

perselection, using the tools developed in the previous sections. With the basic tools

of classical information theory and quantum mechanics we focus on the quantum
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information theory in Ch. 4. We begin introducing the von Neumann entropy, the

Shannon-like measure of information for quantum systems, and discuss the infor-

mation at the two basic interfaces of communication, the preparation of quantum

systems and their measurement, thus, comprising Secs. 4.1 and 4.2. In Sec. 4.3

we discuss correlations in quantum mechanics and then, in Sec. 4.4, we develop

some measures of correlations such as entropy of entanglement, for pure states, con-

currence and quantum discord for mixed states. We end the chapter, in Sec. 4.5,

with some notable applications in quantum information theory, the no-cloning the-

orem, quantum teleportation, entanglement swapping, quantum dense coding and

mixed-state quantum computation. In Ch. 5 we study the dynamics of quantum

correlations when the interaction between system and environment is governed by a

random coupling constant. There, we discuss three situations. The first where the

coupling constants are actually constant, the homogeneous environment, and then

two random interactions, one of which with a uniform distribution and the other

with a normal distribution. Finally, we end this work with the conclusions in Ch.

6.



Chapter 2

Classical Information Theory

Information theory is a broad field of science which comprises applied mathe-

matics, electrical engineering and computer science [6]. The landmark work that

may be considered as the starting point of the information theory is the article en-

titled “A Mathematical Theory of Communication”, written by Claude E. Shannon

in 1948 [8]. Shannon was a researcher at the Math Center at the Bell Laboratories,

a division created by the American Telephone and Telegraph (AT&T) specifically

for conducting research and development of communication systems. From a fairly

reasonable set of properties that an appropriate measure of information should have,

he arrived at a function, which he himself recognized as being similar to the sta-

tistical entropy, that properly measures information, choice and uncertainty. This

function is the so-called Shannon entropy.

Information theory is not concerned with the meaning of the information sent,

but with practical issues such as how to send efficiently and reliably a signal through

a noisy channel such that it can be recovered faithfully. The development of this

field enabled the invention of the Internet, which certainly is one of the technolog-

ical achievements that most shaped, and still is powerfully capable of shaping, our

modern society.

The aim of this chapter is to present an introduction to the classical information

theory, going through its fundamental concepts, all of which will be of key impor-

tance when we turn into the quantum information theory. We will not be concerned

with actual applications.

The structure of this chapter is the following. In Sec. 2.1 we will discuss the

concept of information, making the meaning of the word clear when we use it.

Following this, we will reach at an objective meaning of information, thus enabling

5



Chapter 2. Classical Information Theory 6

us to quantify it and use it operationally. Encouraged by this meaning, in Section

2.2, we will study a measure of information supported by it. In Section 2.3 we

will explore the fundamental concept of information theory, the Shannon entropy.

Instead of being concerned with the actual derivation given by Shannon, we will

present it as a definition and work with it in some examples to understand its

meaning. In Section 2.4 we will begin to explore the correlations between two or

more messages. In order to do so we will use other entropies, namely, the joint

entropy, the conditional entropy, the mutual information and the relative entropy.

These entropies rest upon the Shannon entropy and are as important as the Shannon

entropy itself. The quantum analogous of some of these entropies will give us a

measure of quantum correlations.

The presentation is intended to be pedagogical, as a solid understanding of the

concepts of information theory in the classical case is important when one goes to

the quantum case.

This chapter is heavily based on the Ref. [7].

2.1 What is information?

If we wonder about the concept of information for while it is not difficult to realize

that it has many facets. In fact, it is not such a rare insight to realize that define

any abstract noun as precise as possible is by no means an easy task. Semantics,

the field of Linguistics that studies the meaning of words, phrases, et cetera, is a

very interesting subject. Studying how we acquire the meaning of words shows us

that from our early days we learn based on our experience. Our brain is biologically

adapted to learn languages. We observe the behavior of those around us, listen to

those mysterious sounds they make and by simply being there our brain is able to

connect those sounds with the present situation and, even though it is an extremely

complex process, after two or three years we are able to produce, identify precisely

and understand those sounds and their meanings [9]. Based on this phenomenon

the present author believes the best way to define a concept, mainly an abstract

one, is heuristically. We will go through a couple of situations where the idea of

information is applied and then reflect about its different meanings.

Suppose Alice and Bob want to secretly communicate with each other. They are
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neighbors and live side by side in such a way that from Alice’s bedroom window

she can see Bob’s bedroom window and vice versa. They have established a secret

code using a lantern. If Alice flashes once, it means that her parents have left

home. If Alice flashes twice, it means that her parents have decided not to go out

anymore. Without minding why they would like to communicate with each other,

this situation brings us the opportunity to explore the concept of information. We

say that after Alice flashed once or twice, Bob has received information from her. So,

one property of informatioin is that it can be transmitted. The code they established

must be known a priori to both Alice and Bob. If Bob didn’t know about the code,

he would have not been able to read the message properly. He simply would not

have understood it. The abstract message, either parents at home or not, had to be

coded in a physical system. In the present case, the flashes of light. Moreover, if it

was not a problem, Alice could have just yelled at him. The very same information

would have been transmitted through another physical system, namely, the sound

waves in the air. Thus, the same information can be stored in different physical

systems.

Suppose now that Alice and Bob have met in the street near their houses and

started a conversation. Alice tells Bob that in a street nearby there was a car which

crashed into a post. We say naturally that Alice had this information and gave

it to Bob. So, now Bob has this information too. Alice neither forgot nor lost

this information in any way, both of them have the information now. Therefore,

one additional and very important property of information is that it can be copied.

Consider now that they have not seen each other for, say, a week. When they meet

again Alice tells Bob the very same story. Alice didn’t forget the information about

the accident; instead, she simply has forgotten she told Bob. But Bob already knew

the story and it was not a new information for him. This is a subtle and fundamental

point now. Suppose that, in this situation, Alice did not tell him the very same story,

instead she told a couple of details she haven’t told him before, and therefore he did

not know about. We would say that he acquired a little amount of information but

not as much as he would have if she had told him from the very beginning, in the

first encounter, the standard story plus the details. Of course at the end we would

agree that he had the same amount of information about the story. The subtlety

here is that we implicitly are measuring the amount of information. One could
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even say that he had been listening inattentively or uninterestedly until the moment

when Alice told him something new, unexpected. He, then, might have turned his

attention on her to listen carefully the details which were new to him. This is the key.

We measure information as how unexpected, uncertain, unpredictable something is.

The more uncertain, unexpected, unpredictable something is the more information

we will gain when we acquire that knowledge. We will make these concepts more

precise in the sections to follow.

With this sense, we have a proper lead to an objective (and hence scientifically

useful) definition of information because in order to use it we must have an opera-

tional definition. Something we can manipulate and calculate mathematically.

To summarize this section, we concluded that information is something that can

be coded, transmitted, copied and stored in different ways. The scientific concept

which we will develop from now on will not be concerned with the meaning of the

words or symbols, because this is a subjective property from which we can not make

science. Instead, we will measure information based on unexpectancy, uncertainty

and unpredictability.

2.2 Measuring Information

The focus of this section is to develop a measure of the amount of information.

We concluded the last section realizing that we measure information qualitatively

relating the knowledge of some event as how much unexpected or unpredictable it

is. The most unexpected the event is the more surprised we will be while acquiring

that knowledge and consequently more information we gain.

Suppose that Alice plays the lotto and she is searching for the information of

the lotto’s results. When she gets the information she reads it and it says: The

winning combination is 5, 38, 4, 22. What is important in this sentence is the set

of numbers. After she compared these numbers with the ones in her tickets the two

important events are: W = she has won or L = she has lost. There is a probability

associated with each of these events. From experience we know that the odds of

winning are quite small, and the odds of losing are, therefore, substantially high.
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We may assume, for instance, that

p (W ) = 0.000001, (2.1)

p (L) = 0.999999. (2.2)

Now the question is, how much information does Alice get when actually knowing

the lotto result? As we know from our experience that the odds of winning are

small, so does Alice. Therefore she has not much expectation of winning, she will

not learn much upon realizing that she has, indeed, lost. But on the contrary case,

if she wins, it would be quite a surprise for her (as it would be for us). There is a lot

of information in the winning event, to the same extent there is little information in

the losing event. Now we have to find a proper mathematical function to measure

the information. This function must obey some conditions. This function, call it

I (x) , should approach zero for events closed to absolute certainty, and infinity for

events reaching the impossibility. It must also satisfy that I (x1) > I (x2) if the two

events satisfy p (x1) < p (x2), meaning that the less likely event is associated with the

greater information. An information measure that satisfies all these requirements is

the following

I (x) = −K log [p (x)] , (2.3)

where log(x) is the base two logarithm and K is a dimensionless constant which we

will set up to 1 for the moment and later we shall see why this is appropriate. In

our lotto example we have

I (W ) = − log [0.000001] = 19.9315686, (2.4)

I (L) = − log [0.999999] = 1.0× 10−6. (2.5)

As expected by construction, the winning event has more information because it is

more unexpected.

By convention we set the symbol log(x) to stand for base two logarithm. We

could have used any basis for the logarithmic function, though. This would just have

changed the scale of the measure or, in other words, its units. This measure is di-

mensionless and the unit we use is the bit∗. But why would we use the bit instead of

other units? The smallest nontrivial set of events from which we may speak of infor-

mation is the set composed of two symbols, or events. For example, a coin. If we toss

∗If we have chosen a three based logarithm it would be a trit, a four based a quad and so on.



Chapter 2. Classical Information Theory 10

an unbiased coin there is a probability of one half to get either heads or tails. Hence

p (heads) = p (tails) = 1/2. The information associated with each of these events

is I (heads) = I (tails) = 1 bit. Therefore what a bit means is the exact amount of

information necessary to describe the outcome of a coin tossing. This is why we had

set up, by convention, the constant K in Eq. (2.3) to 1: to match up the scale of the

measure with the simplest case. The logarithmic function can again be seen to be

appropriate as it fits our intuition that if we had two coins the amount of information

needed to describe the outcome of both coins would be doubled. For instance, we

would have p (heads,heads) = p (heads,tails) = p (tails,heads) = p (tails,tails) = 1/4

and therefore I (heads,heads) = I (heads,tails) = I (tails,heads) = I (tails,tails) = 2

bits.

Let us now apply this measure in another situation. Consider an unbiased dice.

The possible outcomes of rolling a dice are X = {1, 2, 3, 4, 5, 6}. The probability of

each event is p (x = 1) = · · · = p (x = 6) = 1/6. The amount of information in each

outcome is, therefore,

I (X) = − log (1/6) ≈ 2.584 bits. (2.6)

The above result may seem confusing at first sight. How do we interpret a real

amount of information? The meaning of this result is that we need a string of at

least 3 symbols to code all possible outcomes unambiguously. Using a string of

length 3 we can code the outcomes as: 1 = 001, 2 = 010, 3 = 011, 4 = 100, 5 = 101

and 6 = 110. Note that we are also left with two possible blocks: 000 and 111. Even

though the coding is arbitrary, for any coding of length three, there will remain two

blocks unused.

There is an alternative interpretation for the amount of information measured

in bits: an operationally one. The logical truth values YES and NO can be thought

of as a binary alphabet. This alphabet may be interpreted as the answer (outcome)

of a YES-or-NO question. How many questions do we need to ask in order to know

the outcome of a coin tossing? One question may be: is the result 0? If yes, then we

already know the result. If no, by complementarity we know that the result was 1†.

Therefore, there exists exactly one YES-or-NO question such that when answered

†We could have asked about the outcome 1, i.e., it might exist more than one appropriate

question.
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we know the result unambiguously. The existence of exactly one question is directly

associated with the amount of information which is, in this case, 1 bit. In the dice

rolling we have 6 equiprobable outcomes. How many questions do we need to ask

in order to know the outcome of a dice rolling? The first question which comes to

mind is, like before: is the result 3 (or any other)? If the answer is yes then we know

the result. If it is no we don’t. This is a difference between the coin tossing and the

dice rolling. In the coin tossing example, there are only two possible outcomes. So,

one such question is enough to know the outcome with certainty. But this is not

the case in the dice rolling because it does not have only 1 bit of information. Only

with questions of the kind “is the outcome of the dice rolling x ?” we would need

six questions to know the outcome with certainty. Let us try to find a small set of

questions which unambiguously gives the result when answered. Consider the three

following questions:

1. Is the result x even? If YES, then x ∈ {2, 4, 6} = U1, if NO,

then x ∈ {1, 3, 5} = U2.

2. Is the result x strictly greater than 3? If YES, then x ∈ {4, 5, 6} = V1, if NO,

then x ∈ {1, 2, 3} = V2.

3. Is the result x divisible by 3? If YES, then x ∈ {3, 6} = W1, if NO,

then x ∈ {1, 2, 4, 6} = W2.

When these questions are answered they yield precisely the value of x:

• {1} = U2 ∩ V2 ∩W2 ,i.e., 1 = NO/NO/NO;

• {2} = U1 ∩ V2 ∩W2 ,i.e., 1 = YES/NO/NO;

• {3} = U2 ∩ V2 ∩W1 ,i.e., 1 = NO/NO/YES;

• {4} = U1 ∩ V1 ∩W2 ,i.e., 1 = YES/YES/NO;

• {5} = U2 ∩ V1 ∩W2 ,i.e., 1 = NO/YES/NO;

• {6} = U2 ∩ V2 ∩W2 ,i.e., 1 = YES/YES/YES.

Note again that there are two combinations that are not used, YES/NO/YES (U1∩

V2 ∩W1 = ∅ ) and NO/YES/YES (U2 ∩V1 ∩W1 = ∅ ). So we used six combinations



Chapter 2. Classical Information Theory 12

of the binary symbols YES and NO out of eight possible ones. This is why the

informational content of the dice rolling is between 2 and 3. If the source was given

by eight equiprobable symbols Y = {1, 2, 3, 4, 5, 6, 7, 8} = X∪{7, 8} we would have 3

bits of information because each symbol would have probability 1/8. What does the

difference I (Y )−I (X) = 0.416 mean? Well, it is exactly the amount of information

which we gain from source Y when it is no longer equiprobable because its two

last symbols have now (from the point of view of the source X) zero probability

of occurrence. This excess of probability are redistributed among the other six

symbols to form a new source of equiprobable six symbols, namely, X. Each of

these six symbols will have their probabilities increased by 8/6 which in terms of

information means I (∆Y ) = − log (8/6) = −0.416. After this re-arrangement the

new source has information I (X) = I (Y ) + I (∆Y ) = 3− 0.416 = 2.584 bits. This

supports the interpretation of information as being related to certainty. If there

are two symbols that do not show up anymore then we are more certain about the

possible outcomes (because we have eliminated two possibilities) and therefore less

information is associated.

Summarizing this section, we have seen that the simplest alphabet is composed

by the binary digits (bits) 0 and 1 (or YES and NO, or whichever). The measure

of information I (x) is dimensionless and its common unit is the bit. The amount

of information of a given event, as measured by I (x), is a positive real number. In

terms of coding the information in bits, the shortest string of bits to code an event,

or a message, of information I (x) is given by the smallest n such that n ≥ I (x).

2.3 Shannon Entropy

We have seen how to measure the amount of information of some events. Even

though it may seem that this is the central concept in information theory the fact is

that it is not. The central concept is entropy, more precisely the Shannon entropy.

In his landmark paper [8], Shannon was interested mainly in two situations. Given

a source of information, what is the efficient way of encoding this information in

order to transmit it through a channel. The second was, given a noisy channel (one

that may produce error in the transmission), what is the largest rate of information

that can be sent through the channel such that the information can be recovered
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reliably after the transmission. These motivated him to seek an improved measure

of information. From a small set of hypotheses that this measure should obey he

deduced mathematically a function which he called entropy. We are not going to

discuss the hypotheses made by Shannon or how he arrived at the expression of this

entropy. Instead, we are going to define it and apply it to some examples in order

to grasp its meaning because this is what is important when we turn our attention

to quantum information theory in Ch. 4.

It turns out that the Shannon entropy (also called source entropy∗) is given by

the average of the information measure we have been studying so far, i.e.,

H (X) = 〈I (x)〉 = −
∑
x∈X

p (x) log p (x) . (2.7)

The entropy of a source is, therefore, the average amount of information per source

symbol. If the source is equiprobable then the source entropy reduces to the infor-

mation, i.e.,

H (X) = −
∑
x∈X

p (x) log p (x) = −
N∑
i=1

1

N
log

1

N
= logN. (2.8)

This means that we have been working with the Shannon entropy all along but in

a special case. If we use the base two logarithm then the unit of the entropy is

bit/symbol.

The entropy of a dice roll is

H (X) = log 6 = 2.584 bit/symbols, (2.9)

which is the same as the amount of information found in Eq. (2.6) because of

the equiprobability of the events, as stated above. Let us consider that we throw

two dices in a row and we want to study the sum of the two outcomes. Hence

the outcomes of this new source are X = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Table 2.1

accounts for the probabilities of each of these events. With the data of the table we

can evaluate the source entropy, which is found to be H (X) = 3.274 bits/symbol.

This means that, on average, each event can be described through a number of bits

between 3 and 4, which is expected since we have 11 symbols to represent and 4

bits ↔ 24 = 16 > 11 > 8 = 23 ↔ 3 bits. As physically there is no such thing of

∗The concept of a source is going to be addressed later on. For now it is enough to say that a

source is a set of events (or symbols) with a probability distribution for them.
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Sum of the dices Probability p (x) −p (x) log p (x)

2 = 1 + 1 0.027 777 778 0.143 609 03

3 = 1 + 2 = 2 + 1 0.055 555 556 0.231 662 5

4 = 2 + 2 = 3 + 1 = 1 + 3 0.083 333 333 0.298 746 88

5 = 4 + 1 = 1 + 4 = 3 + 2 = 2 + 3 0.111 111 111 0.352 213 89

6 = 5 + 1 = 1 + 5 = 4 + 2 = 2 + 4 = 3 + 3 0.138 888 889 0.395 555 13

7 = 6 + 1 = 1 + 6 = 5 + 2 = 2 + 5 = 4 + 3 = 3 + 4 0.166 666 667 0.430 827 08

8 = 6 + 2 = 2 + 6 = 5 + 3 = 3 + 5 = 4 + 4 0.138 888 889 0.395 555 13

9 = 6 + 3 = 3 + 6 = 5 + 4 = 4 + 5 0.111 111 111 0.352 213 89

10 = 6 + 4 = 4 + 6 = 5 + 5 0.083 333 333 0.298 746 88

11 = 6 + 5 = 5 + 6 0.055 555 556 0.231 662 5

12 = 6 + 6 0.027 777 778 0.143 609 03

Table 2.1: Probabilities of the summation of the outcomes of rolling two dices. This

table was trascripted from Ref. [7].

rational binary symbols we need four bits to code the outcomes of this source. As

in the case considered in Sec. 2.2 we will be left with possible coding blocks unused

whichever coding we perform.

There is a nice operational interpretation of the Shannon entropy which we will

address in the following [10], but a small reflection at this point is worthy.

As we have discussed in Sec. 2.1, for all practical purposes we don’t have interest

in the meaning of the messages. We want to study the properties of messages in

an objective way. In fact, we have already been doing this when we treated the

coin tossing and the dice rolling. Let us think about the kinds of messages we are

used to in daily life. Texts in any human language are a complex structure made

of sentences, words, letters, syntactic rules, et cetera. Furthermore, exactly because

of this complex structure, the probability of a given letter occur within a string of

letters (and spaces) depends on the word it finds itself in. Therefore, in order to

measure the information that a new letter would have if it filled in the next position

in the string we would need to consider too many joint and conditional probabilities.

Let us forget that these complications exist and study a relatively simple source and

see what we can learn from it.

Suppose we have an alphabet with N letters (or, abstractly, a set with N sym-

bols). Let us consider a machine that prints out letters in a sheet of paper in a
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sequential manner. The probability pi of the letter xi occur in a given position of

the sequence is completely uncorrelated with what has already been written or will

be written. This machine is called a signal source without memory and the set

{xi, pi} is called signal ensemble† (see Fig. 2.1). From now on a message is going to

be a definite sequence of n letters generated by this kind of machine.

Figure 2.1: Representation of the signal source with signal ensemble {xi, pi}. This

figure was copied from Ref. [10]

Alice uses this printing machine to send messages to Bob. She doesn’t send the

message as a whole but letter by letter. Therefore, Bob does not know what letter

may come next but he does know the signal ensemble. Remember our discussion in

Sec. 2.1, Bob did know the code.

Consider that Alice prints out a sequence of n letters. If the alphabet contains N

different letters, then there are Nn such sequences. The relative frequency of a letter

xi to appear in these sequences is of the order npi. With a large enough sequence the

frequency of a letter xi may be considered ni = npi. A sequence such as xixi . . . xi is

not excluded but has a probability pni , which is very small since 0 ≤ pi ≤ 1 and n is

large. So, when n is sufficiently large, Bob may assume that he will only receive the

sequences which contain the letters xi’s with the frequencies ni’s. These sequences

are called typical sequences. A fairly reasonable question is: how many of these

sequences are there? Well, there are n! ways to arrange the n letters. Permutations

of the same letter in a sequence does not change it. As there are ni occurrences of

the letter xi we need to remove the ni! possible permutations. Hence the number of

typical sequences is

Zn =
n!

n1!n2! . . . nN !
. (2.10)

†This set is equivalently represented by a random variable X.
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Using the Stirling’s formula log (n!) ≈ n log n−n, which is valid when n is large, we

obtain for the logarithm of Zn

logZn ≈ n log n− n−
N∑
i=1

(ni log ni − ni) = −n
N∑
i=1

pi log pi. (2.11)

If we divide this by n and take the limit n→∞ we obtain the Shannon entropy

H (X) := lim
n→∞

1

n
logZn = −

N∑
i=1

pi log pi. (2.12)

Or equivalently

Zn = 2nH(X)(asymptotically). (2.13)

Since many (few) possibilities reflect a large (small) measure of a priori uncer-

tainty for Bob, H (X) from Eq. (2.12) is a measure of the mean a priori uncertainty

of a character which is received by Bob. Then H is at the same time the average

information which Bob receives per transmitted character. This result is a simplified

way of stating the Shannon’s source coding theorem.

As we said previously the simplest source is composed by two bits. Let us

calculate the Shannon entropy for this source. The Shannon entropy is simply

H (X) = −p log p− (1− p) log (1− p) , (2.14)

where p is the probability to get the bit 0, for example. This function is also called

binary entropy function and it is plotted in Fig. 2.2.

We see that the Shannon entropy has a maximum, when the two bits have the

same probability of occurrence, namely, 1/2, and it has two minima, when one of

the bits has certainty of occurrence. The maximum situation is the one which we

are more uncertain about the next symbol given by the source. Exactly because

there is the same probability to occur either 0 or 1, there is no way to discriminate.

As the probability of one symbol is increasing, the entropy is reduced because we

know that one symbol occurs more frequently than the other. The extreme case is

when the source just prints out one symbol. In this case we are completely certain

of the next symbol and therefore the entropy reaches zero.

In this section we studied the central concept of information theory, the Shannon

entropy. The Shannon entropy is interpreted as the average amount of information

per symbol associated with a given source. Next we are going to extend this no-

tion and define entropies that enable the study of correlation between two or more

sources.
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Figure 2.2: Shannon entropy for a 1-bit source.

2.4 Mutual Information and Other Entropies

We have been discussing about events, messages, random variables, information

and entropy. Both information and entropy are quantities which depend on one

message (or one random variable). In this chapter we shall deal with other entropies,

all of which tell us about the correlations between two (or more) messages. We

shall answer questions like: How much information do these two messages share in

common? How much information do I gain reading this message given I’ve read

the other? As we shall see in Ch. 4 these entropies play a central role in quantum

information theory. We will consider a concrete example and define these entropies

as we go through.

Consider two event sources related with a public company [7]. The first event

source is about three possible conclusions for the quarterly sales report, namely

x ∈ X = {good, same, bad} = {x1, x2, x3}, meaning that the results are in excess

of the predictions (good), or on target (same), or under target (bad). The second

event source is the company’s stock value, as reflected by the stock exchange, with

y ∈ Y = {up, steady, down} = {y1, y2, y3}. Then assume that there exists some form

of correlation between the company’s result (x ∈ X) and its stock value (y ∈ Y ). A
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y1 (up) y2 (steady) y3 (down)

p(xi, yj) p 0.300 0.500 0.200
∑

=

x1 (good) 0.160 0.075 0.075 0.010 0.160

x2 (same) 0.750 0.210 0.400 0.140 0.750

x3 (bad) 0.090 0.015 0.025 0.050 0.090∑
= 0.300 0.500 0.200 1.000

y1 (up) p(y1, xi) y2 (steady) p(y2, xi) y3 (down) p(y3, xi)

p(yj, xi) p 0.300 = p(y1|xi)p(xi) 0.500 = p(y2|xi)p(xi) 0.200 = p(y3|xi)p(xi)

x1 (good) 0.160 0.469 0.075 0.469 0.075 0.063 0.010

x2 (same) 0.750 0.280 0.210 0.533 0.400 0.187 0.140

x3 (bad) 0.090 0.167 0.015 0.278 0.025 0.556 0.050∑
= 0.300 0.500 0.200 1.000

x1 (good) p(x1, yj) x2 (same) p(x2, yj) x3 (bad) p(x3, yj)

p(xi, yj) p 0.160 = p(x1|yj)p(yj) 0.750 = p(x2|yj)p(yj) 0.090 = p(x3|yj)p(yj)

y1 (up) 0.300 0.250 0.075 0.700 0.210 0.050 0.015

y2 (steady) 0.500 0.150 0.210 0.800 0.400 0.050 0.025

y3 (down) 0.200 0.010 0.015 0.700 0.100 0.250 0.050∑
= 0.300 0.750 0.090 1.000

Table 2.2: Numerical example of the quarterly sales report and the company’s stock

value sources. This table was trascripted from Ref. [7].

numerical example of joint and conditional probability data, p (xi, yj) , p (xi|yj) and

p (yj|xi) is shown in Table 2.2.

The first group of numerical data, shown at the top of Table 2.2, corresponds to

the joint probabilities p (xi, yj). Summing up the data by rows (i) or by columns (j)

yields the probabilities p (xi) or p (yj), respectively. The double checksum (bottom

and right) which yields unity through summing by row or by column is also shown for

consistency. The two other groups of numerical data in Table 2.2 correspond to the

conditional probabilities p (xi|yj) and p (yj|xi). These are calculated through Bayes’

rule p (xi|yj) = p (xi, yj) /p (yj) and p (yj|xi) = p (xi, yj) /p (xi). The intermediate

columns providing the data p (xi|yj) p (yj) = p (yj|xi) p (xi) = p (xi, yj) and their

checksums by column are shown in the table for consistency.

We define the joint entropy H (X, Y ) associated with the joint distribution

p (x, y) ,with x ∈ X and y ∈ Y , as

H (X, Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log p (x, y) . (2.15)

It is easily recognizable to be a natural extension of the Shannon entropy for a joint
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probability distribution. This entropy represents the average information derived

from joint events occurring from two sources X and Y . The unit of H (X, Y ) is

bit/symbol.

We then define the conditional entropy H (X|Y ) through

H (X|Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log p (x|y) . (2.16)

The conditional entropy H (X|Y ) corresponds to the average information conveyed

by the conditional probability distribution p (x|y). Put simply, H (X|Y ) represents

the information we learn from source X given the information we have from source

Y . Its unit is also bit/symbol.

Note that in the joint and conditional entropy definitions the two-dimensional

averaging over the event space {X, Y } consistently involves the joint distribution

p (x, y).

The conditional entropy H (Y |X) is defined in the same way, namely,

H (Y |X) = −
∑
x∈X

∑
y∈Y

p (x, y) log p (y|x) . (2.17)

As the conditional probabilities p (x|y) and p (y|x) are in general different, the two

conditional entropies will also be different.

If the two sources are statistically independent then p (x, y) = p (x) p (y). Con-

sequently, this implies that

H (X, Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log p (x, y)

= −
∑
x∈X

p (x) log p (x)−
∑
y∈Y

p (y) log p (y) = H (X) +H (Y ) . (2.18)

Moreover p (x|y) = p (x), then

H (X|Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log p (x|y)

= −
∑
x∈X

p (x) log p (x)

(∑
y∈Y

p (y)

)
= H (X) (2.19)

and

H (Y |X) = −
∑
x∈X

∑
y∈Y

p (x, y) log p (y|x)

= −
∑
y∈Y

p (y) log p (y)

(∑
x∈X

p (x)

)
= H (Y ) . (2.20)
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These results match with our intuition that if the two sources are statistically in-

dependent the knowledge of one of them does not provide any advance knowledge

about the other.

In the general case where the sources are not necessarily statistically independent

we find a relation between the joint and conditional entropies given by

H (X, Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log p (x, y)

= −
∑
x∈X

∑
y∈Y

p (x, y) log p (x|y)−
∑
y∈Y

p (y) log p (y)

= H (X|Y ) +H (Y ) , (2.21)

or equivalently,

H (X, Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log p (x, y)

= −
∑
x∈X

∑
y∈Y

p (x, y) log p (y|x)−
∑
x∈X

p (x) log p (x)

= H (Y |X) +H (X) . (2.22)

These expressions may be easier to memorize under the forms

H (X|Y ) =H (X, Y )−H (Y ) , (2.23)

H (Y |X) =H (X, Y )−H (X) , (2.24)

which state that, given a source X (Y ), any advance knowledge from the other

source Y (X) reduces the joint entropy H (X, Y ) by the net amount H (Y ) (H (X)),

respectively. It will be shown in Sec. 2.4.1 that all these quantities are positive. In

other words, the prior information one may gain from a given source is made at

the expense of the information available from the other source, unless the two are

statistically independent.

We can illustrate the above properties through our stock-exchange probability

distributions’ data from Table 2.2. We want, here, to determine how the average in-

formation from the company’s sales, H (X), is affected by that concerning the stocks,

H (Y ), and vice versa. The computations of H (X) , H (Y ) , H (X, Y ) , H (X|Y ) and

H (Y |X) are detailed in Fig. 2.3. It is seen from the table that the results and

stock entropies compute to H (X) = 1.046 and H (Y ) = 1.485, respectively (for
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ui = p(xi)

vj = p(yj)

ui −ui log ui vj −vj log vj

x1(good) 0.160 0.423 y1(up) 0.300 0.521

x2(same) 0.750 0.311 y2(steady) 0.500 0.500

x3(bad) 0.090 0.313 y3(down) 0.200 0.464

H (X) = 1.0469 H (Y ) = 1.4855

H (X) + H (Y ) = 2.5324

uij = p(xi, yj)

ui1 −ui1 log ui1 ui2 −ui2 log ui2 ui3 −ui3 log ui3

x1 0.075 0.280 0.075 0.280 0.010 0.066

x2 0.210 0.473 0.400 0.529 0.140 0.397

x3 0.015 0.091 0.025 0.133 0.050 0.216∑
= 0.844

∑
= 0.942

∑
= 0.680

H (X, Y ) = 2.4657

vji = p(yj|xi)

v1i ui1 −ui1 log v1i v2i ui2 −ui2 log v2i v3i ui3 −ui3 log v3i

x1 0.469 0.075 0.082 0.469 0.075 0.082 0.063 0.010 0.040

x2 0.280 0.210 0.386 0.533 0.400 0.363 0.187 0.140 0.339

x3 0.167 0.015 0.039 0.278 0.025 0.046 0.556 0.050 0.042∑
= 0.506

∑
= 0.491

∑
= 0.421

H (Y |X) = 1.4188

wij = p(xi|yj)

w1j u1j −ui1 logw1j w2j u2j −ui2 logw12 w3j u3j −u31 logw3j

y1 0.250 0.075 0.150 0.700 0.210 0.108 0.050 0.015 0.065

y2 0.150 0.075 0.205 0.800 0.400 0.129 0.050 0.025 0.108

y3 0.050 0.010 0.043 0.700 0.140 0.072 0.250 0.050 0.100∑
= 0.398

∑
= 0.309

∑
= 0.421

H (X|Y ) = 0.9802

H (X, Y ) = H(Y |X) + H (X)

2.4657 = 1.4188+ 1.0469

= H (X|Y ) + H (Y )

= 0.9802+ 1.4855

qwe

Table 2.3: Entropies for stock-exchange example. This table was trascripted from

Ref. [7].
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easier reading, we omit here the bit/symbol units). The joint entropy is found to be

H (X, Y ) = 2.466, which is lower than the sum H (X)+H (Y ) = 2.532. This proves

that the two sources are not independent, namely, that they have some information

in common. We find that the conditional entropies satisfy

H (Y |X) = 1.418 < H (Y ) = 1.485, (2.25)

H (X|Y ) = 0.980 < H (X) = 1.046, (2.26)

or equivalently, using four decimal places, for accuracy (see Fig. 2.3)

H (Y )−H (Y |X) = 1.4855− 1.4188 = 0.0667, (2.27)

H (X)−H (X|Y ) = 1.0469− 0.9802 = 0.0667. (2.28)

These two results mean that the prior knowledge of the company’s stocks contain

an average of 0.0667 bit/symbol of information on the company’s quarterly result,

and vice versa. As we shall see below, the two differences above are always equal

and they are called mutual information. Simply put, the mutual information is the

average information that two sources share in common.

We can define the mutual information of two sources X and Y as the bit/symbol

quantity

H (X;Y ) =
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

p (x) p (y)
. (2.29)

We may note the absence of a minus sign in the above definition, unlike in H (X, Y ),

H (Y |X) and H (X|Y ). Also note the “;” separation, which distinguishes mutual

information from joint entropy H (X, Y ). Mutual information is also often referred

to in the literature as I (X;Y ) instead of H (X;Y ).

Since the logarithm argument is unity when the two sources are statistically

independent, we immediately observe that the mutual information is equal to zero in

this case. This reflects the fact that independent sources do not have any information

in common.

It is pertinent, now, to derive some formulas which relate these different en-

tropies. Using the properties of the logarithmic function, the Bayes’ rule and the

relations
∑

x p (x, y) = p (y) and
∑

y p (x, y) = p (x) for the joint probability distri-
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bution, the mutual information can be written in the following ways

H (X;Y ) =
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

p (x) p (y)

= −
∑
x∈X

p (x) log p (x) +
∑
x∈X

∑
y∈Y

p (x, y) log p (x|y)

= H (X)−H (X|Y ) , (2.30)

H (X;Y ) =
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

p (x) p (y)

= −
∑
y∈Y

p (y) log p (y) +
∑
x∈X

∑
y∈Y

p (x, y) log p (y|x)

= H (Y )−H (Y |X) (2.31)

and

H (X;Y ) = H (X) +H (Y )−H (X, Y ) , (2.32)

where in the last formula one can use either Eq. (2.30) or Eq. (2.31) together with

Eqs. (2.23). The first two equalities above confirm the observation derived from

our previous numerical example. They can be interpreted according to the following

statement: mutual information is the reduction of uncertainty in X that we get from

the knowledge of Y (and vice versa).

The last equality, as rewritten under the form

H (X, Y ) = H (X) +H (Y )−H (X;Y ) , (2.33)

shows that the joint entropy of two sources is generally less than the sum of the

source entropies. The difference is the mutual information that the sources have in

common, which reduces the net uncertainty or joint entropy.

Finally, we note from the Eqs. (2.30), (2.31) and (2.32) that the mutual infor-

mation is symmetrical with respect to its arguments, namely, H(X;Y ) = H(Y ;X),

as is expected from its very meaning.

The different entropies introduced up to this point may seem a bit abstract

and their different relations apparently is not very practical to memorize. But the

situation becomes different after we draw an analogy with the property of ensembles.

Consider, indeed, two ensembles, called A and B. The two ensembles may be

united to form a whole, which is denoted as F = A ∪ B (A union B). The two
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ensembles may or may not have elements in common. The set of common elements is

called G = A∩B (A intersection B). The same definitions of union and intersection

apply to any three ensembles A, B, and C. Fig. 2.3 shows the Venn diagram

representations of such ensemble combinations. In the case of two ensembles, there

exist four subset possibilities, as defined by their elements’s properties:

• Elements common to A or B: A ∪B,

• Elements common to A and B: A ∩B,

• Elements from A and not B: A ∩ ¬B,

• Elements from B and not A: B ∩ ¬A.

Figure 2.3: Venn diagram representation of two (top) and three (bottom) ensem-

bles.This figure has been taken from Ref. [7].

In the conventional notations shown at right, we see that the symbol ∪ stands for

a logical OR, the symbol ∩ stands for a logical AND, and the symbol ¬ stands for a
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logical NO. These three different symbols, which are also called Boolean operators∗,

make it possible to perform various mathematical computations in the field called

Boolean logic. In the case of three ensembles A, B, C, we observe that there exist

many more subset possibilities (e.g., A∩B∩C, A∩B∩¬C). The interest of the above

visual description with the Venn diagrams is the straightforward correspondence

with the various entropies that have been introduced. Based on Eqs. (2.18), (2.19),

(2.20), (2.23), (2.30), (2.31) and (2.32) we can draw a Venn diagram which respects

them and see that the following equivalences hold (compare Fig. 2.3 with Fig. 2.4):

H (X, Y )↔ H (X ∪ Y )

H (X;Y )↔ H (X ∩ Y )

H (X|Y )↔ H (X ∩ ¬Y )

H (Y |X)↔ H (¬X ∩ Y )

(2.34)

The first equivalence in Eq. (2.34) means that the joint entropy of two sources is

the entropy of the source defined by their combined events. The second equivalence

in Eq. (2.34) means that the mutual information of two sources is the entropy of

the source containing the events they have in common. The last two equivalences

in Eq. (2.34) provide the relationship with the conditional entropy. For the case

of the conditional entropy of a source X given the information on a source Y ,

the conditional entropy is given by the contributions of all the events belonging

to X but not to Y . Fig. 2.4 illustrates all the above logical equivalences through

Venn diagrams, using up to three sources. Considering the two-source case, we

can immediately visualize from Fig. 2.4 to which subsets the differences H (X) −

H (X;Y ) and H (Y )−H (X;Y ) actually correspond. Given the identities listed in

Eq. (2.34), we can call these two subsets H (X|Y ) and H (Y |X), respectively, which

proves the previous point. We also observe from the Venn diagram that H (X|Y ) ≤

H (X) and H (Y |X) ≤ H (Y ), with equality if the sources are independent.

The above property can be summarized by the statement according to which

conditioning reduces entropy. A formal demonstration, using the concept of “relative

entropy” is provided later.

The three-source case, as illustrated in Fig. 2.4, is somewhat more tricky because

∗These are not exactly the symbols which usually represent the Boolean operators but this is

not relevant to us.
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Figure 2.4: Venn diagram representation for the different entropies.This figure has

been taken from Ref. [7].

it generates more complex entropy definitions with three arguments X, Y , and

Z. Conceptually, defining joint or conditional entropies and mutual information

with three (or more) sources is not that difficult. Considering the joint probability

p (x, y, z) for the three sources, we can indeed generalize the previous two-source

definitions according to the following:

H (X, Y, Z) = −
∑
x∈X

∑
y∈Y

∑
z∈Z

p (x, y, z) log p (x, y, z) , (2.35)

H (X;Y ;Z) = +
∑
x∈X

∑
y∈Y

∑
z∈Z

p (x, y, z) log
p (x, y, z)

p (x) p (y) p (z)
, (2.36)

H (Z|X, Y ) = −
∑
x∈X

∑
y∈Y

∑
z∈Z

p (x, y, z) log p (z|x, y) , (2.37)

H (X, Y |Z) = −
∑
x∈X

∑
y∈Y

∑
z∈Z

p (x, y, z) log p (x, y|z) . (2.38)

These four definitions correspond to the joint entropy of the three sources X, Y , Z

(Eq. (2.35)), the mutual information of the three sources X, Y , Z (Eq.(2.36)), the
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entropy of source Z given the known entropy of X, Y (Eq. (2.37)), and the joint

entropy of X, Y given the known entropy of Z (Eq. (2.38)). The last two definitions

are seen to involve conditional probabilities of higher orders, namely, p (z|x, y) and

p (x, y|z), which are easily determined from the generalization of Bayes’ rule †. Other

entropies of the type H (X;Y |Z) and H (X|Y ;Z) are more tricky to determine

from the above definitions. But we can resort in all confidence to the equivalence

relations and the corresponding two-source or three-source Venn diagrams shown

in Fig. 2.4. Indeed, a straightforward observation of the diagrams leads to the

following correspondences:

H (X;Y |Z) = H (X;Y )−H (Z) , (2.39)

H (X|Y ;Z) = H (X)−H (Y ;Z) . (2.40)

Finally, the Venn diagrams (with the help of Eq. (2.34)) make it possible to establish

the following properties for H (X, Y |Z) and H (X|Y, Z). The first is

H (X, Y |Z) = H (X|Z) +H (Y |X,Z) , (2.41)

which is easy to memorize if a condition |Z is applied to both sides of the definition

of joint entropy, H (X, Y ) = H (X) +H (Y |X). The second is

H (X, Y |Z) = H (Y |Z) +H (X|Y, Z) , (2.42)

comes from the permutation in Eq. (2.41) of the sources X, Y , since the joint

entropy H (X, Y ) is symmetrical with respect to its arguments. The lesson learned

from using Venn diagrams is that there is, in fact, little to memorize, as long as we

are allowed to make drawings. The only general rule to remember is:

H (U |Z) is equal to the entropy H (U) defined by the source U (for instance,

U = X, Y or U = X;Y ) minus the entropy H (Z) defined by the source Z, the

reverse being true for H (Z|U). But the use of Venn diagrams require us not to

forget the unique correspondence between the ensemble or Boolean operators (∪ ∩

¬) and the separators (, ; |) in the entropy-function arguments.

†As we have

p (x, y, z) = p (z|x, y) p (x) p (y)→ p (z|x, y) = p (x, y, z) / [p (x) p (y)]

and

p (x, y, z) = p (x, y|z) p (z)→ p (x, y|z) = p (x, y, z) /p (z) .
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2.4.1 Relative Entropy

Relative entropy is our last word on the different kinds of (classical) entropy in

this work. It is related to the concept of distance between two probability distribu-

tions. It is not strictly a distance because it is not symmetrical, for instance‡. The

actual usefulness of this entropy can only be appreciated when one studies advanced

topics in information theory. For us it is going to be useful as a preparation for the

quantum relative entropy in Ch. 4 and to prove some inequalities about the other

entropies.

We shall introduce the relative entropy between two probability distribution

functions, which is also called the Kullback-Leibler (KL) divergence. Consider two

probability distribution functions, p (x) and q (x), where the argument x belongs to

a single source X. The relative entropy is denoted by D [p (x) ||q (x)] and is defined

as follows:

D [p (x) ||q (x)] =

〈
log

p (x)

q (x)

〉
p

=
∑
x∈X

p (x) log
p (x)

q (x)
. (2.43)

To show that the relative entropy is nonnegative we will need the following

inequality for logarithmic functions log (x) ln (2) = ln (x) ≤ x − 1, or in a more

convenient way

− log (x) ≥ 1− x
ln 2

. (2.44)

Hence it follows

H (p||q) = −
∑
x∈X

p (x) log
q (x)

p (x)

≥ 1

ln 2

∑
x∈X

p (x)

(
1− q (x)

p (x)

)
=

1

ln 2

∑
x∈X

(p (x)− q (x)) = 0. (2.45)

This inequality is called Gibbs’ inequality. The equality only holds when the two

distributions are the same, i.e., p (x) = q (x).

An important particular case occurs when the distribution q (x) is a uniform

distribution. If the source X has N events, the uniform probability distribution is

‡It also does not satisfy the triangle inequality. But it does satisfy the non-negativity as we

shall show.
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thus given by q (x) = 1/N . Replacing this definition in Eq. (2.43) yields

D [p (x) ||q (x)] =
∑
x∈X

p (x) log
p (x)

1/N

= logN
∑
x∈X

p (x) +
∑
x∈X

p (x) log p (x) = logN −H (X) . (2.46)

Since the distance D [p||q] is always nonnegative, it follows from the above that

H (X) ≤ logN . This result shows that the entropy of a source X with N elements

has logN for its upper bound, which (in the absence of any other constraint) rep-

resents the entropy maximum. Assume next that p and q are joint distributions of

two variables x, y. Similarly to the definition in Eq. (2.43), the relative entropy

between the two joint distributions is

D [p (x, y) ||q (x, y)] =

〈
log

p (x, y)

q (x, y)

〉
p

=
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

q (x, y)
. (2.47)

The relative entropy is also related to the mutual information. Indeed, recalling

the definition of mutual information (cf. Eq. (2.29)) we get

H (X;Y ) =
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

p (x) p (y)
= D [p (x, y) ||p (x) p (y)] , (2.48)

which shows that the mutual information between two sources X, Y is the relative

entropy (or KL divergence) between the joint distribution p (x, y) and the distribu-

tion product p (x) p (y). Since the relative entropy is always nonnegative, it follows

that mutual information is always nonnegative. Indeed, recalling the Eqs. (2.30)

and (2.31) together with the Gibbs’ inequality yields

H (X;Y ) = H (X)−H (X|Y ) = H (Y )−H (Y |X) ≥ 0, (2.49)

which thus implies the two inequalities

H (X|Y ) ≤H (X) , (2.50)

H (Y |X) ≤H (Y ) . (2.51)

The above result can be summarized under the fundamental conclusion, which has

already been established: conditioning reduces entropy. Thus, given two sources X

and Y , the information we obtain from source X, given the prior knowledge of the

information from Y , is less than or equal to that available from X alone, meaning

that entropy has been reduced by the fact of conditioning. The strict inequality
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applies in the case where the two sources have nonzero mutual information. If the

two sources are disjoint, or made of independent events, then the equality applies,

and conditioning from Y has no effect on the information of X.

Even though we are not going to reach the actual interpretation of the relative

entropy we are going to state it [11]: The relative entropyD [p (x) ||q (x)] is a measure

of the information lost when the probability distribution q is used to approximate

the distribution p.



Chapter 3

Quantum Dynamics

Quantum mechanics is one of the greatest theoretical developments ever made

by human beings. It dictates how our subworld behaves. By subworld we mean

the world beneath our world, the world of invisible (to the naked eye) entities,

the world which goes beyond our senses. The study of this invisible subworld has

brought almost every kind of technology we use today and any which might be in

ongoing process of development.

Since the beginning of quantum mechanics until nowadays there are some re-

searchers who are interested in its interpretation. There are many interpretations

that have been put forth, the most famous being the Copenhagen interpretation for-

mulated by Bohr and Heisenberg. Among these interpretations there is one that can

be viewed as minimal, in the sense that it provides a concrete-based interpretation

for the mathematical objects of the theory. This is the statistical (or ensemble) in-

terpretation [12] which takes the Born’s rule to its fullest extent. The wavefunction

is viewed as a mathematical tool to describe statistically the possible outcomes of

an identically prepared ensemble of quantum systems. This interpretation is older

than of what we may call today the operational interpretations. An operational

interpretation attempts to interpret the properties of quantum systems and math-

ematical objects of the theory in terms of their practical results, in the same way

as in the statistical interpretation. The statistical interpretation touches basically

the interpretational problem of the wavefunction but, on the other hand, does not

say a word with respect to other fundamental concepts of the theory such as entan-

glement. From this foundational point of view, quantum information theory sheds

light on new ways to understand such concepts. Quantum entanglement is seen

as a resource which enables some efficient algorithms to solve tasks in a quantum

31
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computer.

In Ref. [13] one may find a recent poll carried out in a 2011 conference on quan-

tum foundations presenting the viewpoint of the participants about foundational

issues in quantum theory. In this poll, it can be seen how quantum informational

concepts merged with quantum mechanics. Some questions asked to the partici-

pants that manifest this are: “What about quantum information?”, whose most

voted answer was “It’s a breath of fresh air for quantum foundations”; “When will

we have a working and useful quantum computer?”, whose most voted answer was

“In 10 to 25 years”; “What interpretation of quantum states do you prefer?”, where

the epistemic/informational interpretation is one that received considerable votes;

and finally “What is your favorite interpretation of quantum mechanics”, with the

information-based/information-theoretical as the second most voted, behind only

by the traditional Copenhagen interpretation.

The aim of this chapter is to provide a unified way to describe all possible quan-

tum dynamics; from time evolution to measurement. In Sec. 3.1, we will present

the dynamics of closed systems. We will study the pure and mixed states and then

as an example the dynamics of a qubit. In Sec. 3.2, we will set up the mathe-

matical language to describe systems of many particles (subsystems), introducing

fundamental concepts such as entanglement and partial trace. In Sec. 3.3, we will

study, in a fairly general way, the dynamics of open quantum systems. We will study

the properties of general dynamical maps and derive a differential equation for the

density operator [10,14]. In Sec. 3.4, we will study the generalized description of

measurement dynamics. Following this, in Sec. 3.5, we will conclude our purpose

showing an unified picture of quantum dynamics in terms of quantum operations.

As an application of the formalism developed in the previous sections, we will ad-

dress the phenomenon of decoherence in Sec. 3.6 and see that it is intimately related

with another phenomenon called environment-induced superselection. Most of this

chapter was based on Ref. [10].

3.1 Dynamics of Closed Quantum Systems

In order to discuss the dynamics of closed quantum systems we have to know what

a closed system is. For the moment we consider that the universe is everything that
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exists ∗ and we can divide it into two distinct parts, the system and the environment.

The system is that part of the universe in which we are interested to describe. For

example, a collection of atoms or molecules. The environment is all that is in the

universe and which doesn’t fit into the system. Being established these concepts, a

closed system is a system that, for all practical purposes, we can neglect all spoiler

effects of the environment over the system. So for example, we are interested in

studying the kinematics of a marble rolling freely † in a flat table, say, to verify

Newton’s laws. In this example the system would be the marble. The environment,

consisted of the table and everything else, does affect the system dynamics, namely,

the table exerts a normal force which balances the weight of the marble. But this

effect is necessary to maintain the marble’s movement constrained to the plane,

which is the region where we are interest to study the movement. Therefore this

influence does not spoil the experiment. On the other hand, the friction with the

local atmosphere or with the table could spoil our attempt to verify Newton’s law, as

they would affect the movement in the plane. If these effects can be made negligible

by an appropriate experimental setup then the marble is considered a closed system

and we will verify Newton’s laws. Let us begin to study the quantum dynamics of

such a systems.

3.1.1 Dynamics of Pure and Mixed States

When we begin to learn the mathematical formulation of quantum mechanics

we put the Schrödinger equation as a postulate. The Schrödinger equation is a

differential equation which gives the dynamics of a state vector |ψ0〉. The equation

is ih̄
d
dt
|ψ (t)〉 = H (t) |ψ (t)〉 ,

|ψ (0)〉 = |ψ0〉 .

(3.1)

For the sake of completeness let us establish a common language and notation at

this point. The symbol i stands for the imaginary unit and h̄ for the Planck’s

constant. The state vector |ψ (t)〉 stands for the mathematical representation, within

the theory, of a pure state. A state vector is a vector in some Hilbert space H,

∗We are not concerned with philosophical problems which may be raised with these concepts

but just setting up a common conceptual ground to understand the concept of closed systems.
†Freely means that we could set up an experiment such that the dynamical friction coefficient

between the marble and the table is negligible.
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also hereafter referred to as state space‡. The object H (t) is the Hamiltonian of

the system. It provides the structure of the dynamical evolution of a quantum

system. The Hamiltonian is an operator over the state space H. It lives in another

Hilbert space denoted by L (H), the space of linear operators over H. All state

vectors must be normalized in order to preserve the probabilistic characteristics

of quantum mechanics. The normalization condition is mathematically stated as

〈ψ, ψ〉 = 〈ψ |ψ〉 = 1, where 〈· | ·〉 is the inner product of the Hilbert space H. As we

shall see later on the Schrödinger equation preserves the normalization condition as

the time goes by.

From the Schrödinger equation we can deduce an algebraic equation for the

time evolution of the state vector. To deduce this equation we first rewrite the

Schrödinger equation in its integral form,

|ψ (t)〉 = |ψ0〉+
1

ih̄

∫ t

0

dt′H (t′) |ψ (t′)〉 . (3.2)

Now we substitute this equation on itself, leading us to

|ψ (t)〉 = |ψ0〉+
1

ih̄

∫ t

0

dt1H (t1) |ψ0〉

+

(
1

ih̄

)2 ∫ t

0

dt1H (t1)

∫ t1

0

dt2H (t2) |ψ (t2)〉 . (3.3)

Observe the time ordering t ≥ t1 ≥ t2 ≥ 0 in the second integral. The integrals∫ t
0
dt1
∫ t1

0
dt2 can be written as 1

2

∫ t
0
dt1
∫ t

0
dt2. With this relation the above equation

can be rewritten as

|ψ (t)〉 =

[
1 +

(
− i
h̄

)∫ t

0

dt1H (t1) +

(
− i
h̄

)2
1

2!

∫ t

0

dt1

∫ t

0

dt2H (t1)H (t2)

]
|ψ0〉

+O

(
1

h̄3

)
. (3.4)

Performing some more steps one can convince itself that we can write Eq. (3.2)

algebraically as

|ψ (t)〉 = U (t) |ψ0〉 , (3.5)

where U (t) is the time evolution operator

U (t) = T←

{
exp

(
− i
h̄

∫ t

0

dt′H (t′)

)}
. (3.6)

‡We will tacitly assume throughout this work that the state space is finite dimensional.
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The exponential function of an operator must be interpreted, by definition, as its

Taylor’s series. The symbol T← {. . . } denotes the antichronological-ordering, i.e., the

operators inside it must be ordered in the following way: T← {H (t1)H (t2) · · ·H (tn)}

= H (t1)H (t2) · · ·H (tn) for t1 ≥ t2 ≥ · · · ≥ tn.

In general, the Hamiltonian of the system does not depend explicitly on time.

When this is the case the expression for the time evolution operator reduces to the

usual form

U (t) = exp

(
−itH

h̄

)
. (3.7)

One can see easily that the time evolution operator is unitary, i.e., U (t)U † (t) =

U † (t)U (t) = I, where I is the identity operator in L (H). Physically the time evolu-

tion operator being unitary means that the norm of the state vector doesn’t change

with time. We can see this simply calculating the inner product of the evolved

state vector: 〈ψ (t) |ψ (t)〉 = 〈ψ0|U † (t)U (t) |ψ0〉 = 〈ψ0 |ψ0〉. As this algebraic ap-

proach for the time evolution of the state vector is completely equivalent to that

of the Schrödinger equation it follows that the Schrödinger equation also preserves

the normalization condition. We refer to this evolution to be a continuous unitary

evolution (or dynamics). This contrasts with the other possible evolution to which

a state vector may be subjected, the measurement. Within a dynamical point of

view, the measurement is a discontinuous evolution in which the state vector, at a

particular instant of time, suddenly changes to another. Moreover, the measurement

dynamics is non-unitary because once a state has changed there is no way to know

which original state it was, there is no inverse. This time evolution is referred in

the literature as discontinuous non-unitary evolution (dynamics) or measurement

dynamics of the state vector. How can it exist, in such a fundamental theory like

quantum mechanics, two diametrically opposed dynamics? One that is continuous

and unitary and another which is discontinuous and non-unitary§? For some re-

searchers this may be enough to claim that there must exist some other quantum

theory, or some underlying theory.

The usual measurement studied in quantum mechanics is the projective measure-

ment or von Neumann measurement. It is mathematically characterized by a set of

mutually orthogonal projection operators. Given an observable this set of projection

§The non-unitarity is not the problem, in fact. As we shall see, open systems undergo non-

unitary evolutions.
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operators is constructed with its eigenvectors¶. Consider some observable A and its

set of orthogonal eigenvectors {|ak〉}. From them we construct the orthogonal set

of projection operators {Pk = |ak〉 〈ak|}. They satisfy the properties of orthogona-

lity and idempotency through PkPl = Pkδkl and completeness,
∑

k Pk = I. The

probability of obtaining an outcome ak is given by the Born’s rule

p (ak) = 〈Pk〉|ψ〉 = 〈ψ| (|ak〉 〈ak|) |ψ〉 = |〈ak |ψ〉|2 . (3.8)

After the measurement the system is found to be in the state

˜|ψ′〉 = Pk |ψ〉 , (3.9)

which is a non normalized state‖. Normalizing it we obtain

|ψ′〉 =
1√
p (ak)

Pk |ψ〉 . (3.10)

We see that this state vector is normalized after a simple calculation,

〈ψ′ |ψ′〉 =
1

p (ak)
〈ψ|P 2

k |ψ〉 =
1

p (ak)
〈ψ|Pk |ψ〉

=
1

p (ak)
〈Pk〉|ψ〉 =

1

p (ak)
p (ak) = 1. (3.11)

So far we have studied the two standard dynamics, the unitary and a particular

measurement dynamics of the state vector. Let us turn now to another possible

representation of a pure state. This representation is going to be of fundamental

importance for what follows. It will enable us to treat the dynamics of open systems.

Consider a state vector |ψ0〉 ∈ H associated with a pure state. From it we can

build a projection operator called the (pure) density operator ρ = |ψ0〉 〈ψ0|. Using

Eq. (3.5) it is straightforward to find the time evolution of the density operator to

be

ρ (t) = U (t) ρ (0)U † (t) . (3.12)

Suppose {|ak〉} is an arbitrary orthonormal basis for H. Then the normalization

condition is translated to

〈ψ0 |ψ0〉 = 〈ψ0|

(∑
k

|ak〉 〈ak|

)
|ψ0〉 =

∑
k

〈ak |ψ0〉 〈ψ0 | ak〉 = Tr (ρ) = 1. (3.13)

¶An observable is a self-adjoint operator over H. The possible outcomes one may find measuring

this observable are its eigenvalues.
‖The tilde symbol ˜ will always stand for a non normalized state.
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As the density operator is a projection operator it is obvious that

Tr
(
ρ2
)

= 1. (3.14)

Let us find what is the equation that gives the dynamics of the density operator.

From Eq. (3.12) take the time derivative to obtain

d

dt
ρ (t) =

(
d

dt
U (t)

)
ρ (0)U † (t) + U (t) ρ (0)

(
d

dt
U † (t)

)
, (3.15)

which can be further evaluated to, by means of Eq. (3.7),

d

dt
ρ (t) =

(
− i
h̄
HU (t)

)
ρ (0)U † (t) + U (t) ρ (0)

(
U † (t)

i

h̄
H

)
=− i

h̄
[H, ρ (t)] . (3.16)

This equation is called the Liouville-von Neumann equation. Plus some initial con-

dition ρ (0) = ρ0 it gives the time evolution of the density operator, ρ (t). Up to this

point, these two different ways of describing a pure state are completely equivalent,

as it should be. In this way, a equation with this structure provides a unitary evolu-

tion. But this latter representation, namely in terms of the density operators, gives

us the opportunity to extend our description of physical systems. Let us pause for

a moment and briefly discuss an operational view of quantum mechanics [15].

A quantum system in a given quantum state may be always thought to be the

result of a preparation procedure. In other words, any quantum state is, at least

in principle, the result of some preparation procedure. A preparation procedure

is a sequence of steps performed in the laboratory such that at the end of the

process a quantum system emerges and the experiment indeed begins. In this way,

we say that the quantum system was prepared in the state, say, ρ. Consider the

following realistic situation. Our experimental device prepares a pure state with a

reliability of 90%, i.e., in 10% of the preparations it prepares some other pure state.

The question is: what is the appropriate object in the theory that describes this

particular situation? This preparation can be thought to be as composed by the

weighted distribution of the preparations of the two pure states. Each one of these

pure states are described by the density operators ρ1 and ρ2, respectively. Therefore

the appropriate weighted distribution is given by

ρ = p1ρ1 + p2ρ2, (3.17)
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where p1 = 0.9 and p2 = 0.1. This means exactly that in 90% of the cases we have

one pure state, ρ1, and in 10% the other, ρ2, and we are taking this into account

in ρ when describing the statistical predictions of this peculiar preparation. This

object still is an operator over H and furthermore its trace is one,

Tr (ρ) = p1Tr (ρ1) + p2Tr (ρ2) = p1 + p2 = 1, (3.18)

where we used the fact that both ρ1 and ρ2 are pure density operators. Thus, this

operator guarantees the normalization condition and it describes a possible physical

preparation. In other words, this operator is also a density operator and it is called

a mixed density operator. We say that this is a mixed density operator because this

preparation involves a statistical mixture between two pure states with probability

distribution {pk}. Notwithstanding this argumentation, in 1957 Gleason mathema-

tically showed that for any probability measure µ on a state space of dimension at

least 3, i.e., any way to define probabilities mathematically, implies the existence of

a trace class-one positive semidefinite operator∗∗ ρ (our density operator) such that

µ (A) = Tr [ρPA] . (3.19)

A is a closed subset of the state space and PA is its orthogonal projection. This is

exactly the Born’s rule for the density operators, as we shall see in a moment [16].

This means that the density operator is the most general object compatible with

a probability structure over Hilbert spaces. Observe that in this way we eliminate

altogether the description involving vectors inH because both observables and states

are described by operators overH. All dynamics and predictions are mathematically

stated in the space of operators over H. Even though this will not be important for

this work, it is, nevertheless, noteworthy that the observables and density operators

do not live in the same Hilbert space. This is so because the definition of a Hilbert

space involves an inner product and the space of density operators and observables

possess different inner products.

Considering what we have seen, the most general density operator is given by

ρ =
∑
k

pkρk, (3.20)

∗∗A positive semidefinite operator is an operator that for any vector of the Hilbert space its

average value is non-negative, 〈ρ〉|ψ〉 ≥ 0 ∀ |ψ〉 ∈ H. In other words all its eigenvalues are non-

negative and therefore positivity implies self-adjointness.
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where pk is the probability of the system to be in the pure state associated with ρk
††

and moreover
∑

k pk = 1 to maintain the normalization condition. In other words,

quantum mechanics says that any preparation procedure leads to a state described

by a density operator of the above form. The natural question which may be asked

here is: is there a mathematical criterion to distinguish a pure from a mixed density

operator? The answer is yes. As the density operator is self-adjoint we can always

diagonalize it and rewrite it as ρ =
∑

k p
′
k |k〉 〈k|, where p′k is a new probability

distribution. Take the trace of the squared density operator to give us

Tr
(
ρ2
)

=Tr

(∑
k,l

p′kp
′
l |k〉 〈k | l〉 〈l|

)
=
∑
k,l

pkplδklTr (|k〉 〈l|)

=
∑
k

p2
kTr (|k〉 〈k|) =

∑
k

p2
k ≤ 1. (3.21)

We used the fact that all the probabilities are smaller than one. If the density oper-

ator is associated with a pure state, the inequality is indeed an equality, Tr (ρ2) = 1,

as we have already concluded previously (cf. Eq. (3.14)). If this is not the case, then

necessarily the strict inequality holds, i.e., for mixed density operators Tr (ρ2) < 1.

In fact this quantity has a name. It is the purity of the density operator. Just to

formalize, the purity is defined as

ξ = Tr
(
ρ2
)

(3.22)

and from this we can assert thatξ = 1 , for pure density operators and

ξ < 1 , for mixed density operators.

(3.23)

We shall see why this quantity is important when we study how to measure the

entanglement between two pure states. The purity measures the degree of mixedness

of a quantum state. Consider the density operator of a two-level system given by

ρ1 = 1
2
|0〉 〈0| + 1

2
|1〉 〈1|. We are equally unacquainted with which state we are

dealing, because they have exactly the same probability to be prepared. On the

other hand, if the mixed state is given by ρ2 = 1
4
|0〉 〈0|+ 3

4
|1〉 〈1|, then we are more

confident that the state which we may be dealing with is, in this case, the state |1〉.

In this way we say that the density operator ρ1 is more mixed than ρ2. Furthermore

††The density operators ρk may also be mixed density operators, even though we can always

write them in terms of pure density operators.



Chapter 3. Quantum Dynamics 40

ρ1 is a maximally mixed density operator because its distribution is uniform and this

gives complete ignorance about which pure state we are dealing with. The purity of

these states are

ξ1 =

(
1

2

)2

+

(
1

2

)2

=
1

2
(3.24)

and

ξ2 =

(
1

4

)2

+

(
3

4

)2

=
5

8
, (3.25)

respectively. The state ρ2 is less mixed because its purity is close to the purity of

pure states, ξ1 ≤ ξ2 ≤ 1. For an N -dimensional Hilbert space the maximally mixed

state is given by the equiprobable distribution of a basis of pure states and therefore

the purity is bounded as 1/N ≤ ξ ≤ 1.

The last question to be addressed in this section is related to the mathematical

formulation to study the time evolution of these newly introduced mixed density

operators. Answering in advance, it will be the same used previously, but let us

check this out.

We want to find the proper differential equation which describes the time evolu-

tion of the most general density operator (3.20). Let ρk (0) be the initial (pure) den-

sity operator of each of the states which compose this mixed preparation. Therefore,

the initial mixed density operator is ρ (0) =
∑

k pkρk (0). We know from Eq. (3.12)

how each of the ρk’s evolve. Thus

ρ (t) =
∑
k

pk
(
U (t) ρk (0)U † (t)

)
=U (t)

(∑
k

pkρk (0)

)
U † (t) = U (t) ρ (0)U † (t) . (3.26)

As this expression is formally the same as Eq. (3.12), it follows that the derivation

for its time evolution is the same. So, the time evolution of any density operator is

given by

d

dt
ρ (t) = − i

h̄
[H, ρ (t)] . (3.27)

Therefore, this equation describes the most general dynamics of a closed system.

The measurement dynamics is expressed in this approach as follows. The pro-
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bability to find an outcome ak of an observable A is given by the Born’s rule

p (ak) =Tr [ρPk] =
∑
k

pkTr [ρk |ak〉 〈ak|] =
∑
k

pk 〈ak |ψk〉 〈ψk | ak〉

=
∑
k

pk |〈ak |ψk〉|2 =
∑
k

pkpk (ak) , (3.28)

which reflects that the probability is the weighted sum of the probabilities to measure

the outcome ak with respect to the pure states ρk. The normalized post-measurement

state is given by

ρ′ =
1

p (ak)
PkρPk =

1

p (ak)
|ak〉 〈ak| ρ |ak〉 〈ak|

=
1

p (ak)
p (ak) |ak〉 〈ak| = |ak〉 〈ak| . (3.29)

In this section we described the dynamics of pure and mixed states, their unitary

and measurement dynamics, in terms of projective measurements. We will see other

measurements in Sec. (3.4). In the next section we will study the dynamics of the

system that is the building block of quantum information, the qubit.

3.1.2 Dynamics of One Qubit

In this section we will apply the concepts developed in the previous section to

a simple quantum system. The simplest non-trivial quantum mechanical system is

a system composed of just one isolated spin-1/2 particle. Its state space is a two-

dimensional Hilbert space H2. A single spin-1/2 is just one physical system which

has such a state space. A system which can be described by the Hilbert space H2

is called a qubit. In the next chapter, when we address the quantum information

theory, we shall see why this system is important. Briefly stated, it plays the role

somehow analogous to the binary alphabet in classical information theory. There

may be several physical systems which can be said to be a qubit. Some examples

are:

• Atoms, ions, molecules which under specific conditions of the experimental

setup can be described effectively by a two-dimensional Hilbert space. One

standard example is that of atoms interacting resonantly with the radiation

field (Jaynes-Cummings model [17]);

• Spin-1/2 particles;
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• Polarization states of single photons;

• Quantum dots.

With that being said, let us turn to the theoretical description of a qubit. The most

general qubit state is

|ψ〉 = c0 |0〉+ c1 |1〉 , (3.30)

where {|0〉 , |1〉} are usually taken to be the eigenstates of the Pauli matrix σ3,

corresponding to the eigenvalues {+1,−1}, respectively. This basis is referred to

as the computational basis or the standard basis. Moreover, the coefficients must

satisfy the normalization condition |c0|2 + |c1|2 = 1. We saw in the previous section

that a more general description of quantum systems is in terms of density operators.

Therefore let us study the operators over the state space of a qubit.

An operator which acts on H2 is represented by a two by two matrix. Therefore,

the space of operator over H2, represented by L (H2), is the space of all two by two

matrices. A basis in this space is given by {I, σ1, σ2, σ3}, where I is the identity

matrix and the σk are the three Pauli matrices. This space of operators can be a

Hilbert space itself if endowed with the Hilbert-Schmidt inner product

〈A,B〉 = Tr
(
A†B

)
, ∀A,B ∈ L (H2) . (3.31)

Regarding this inner product the previous basis can become an orthonormal basis if

taken to be
{

1√
2
I, 1√

2
σk

}
. A general operator A ∈ L (H2) can, then, be written as

A =

〈
1√
2
I, A

〉
1√
2
I +

3∑
k=1

〈
1√
2
σk, A

〉
1√
2
σk

=
1

2
Tr [A] I +

1

2

3∑
k=1

Tr [Aσk]σk. (3.32)

The density operators representing one qubit are nothing but operators in L (H2)

with unit trace. Using the operator expansion above the most general density oper-

ator is given by

ρ =
1

2

(
I +

3∑
k=1

Tr [ρσk]σk

)
:=

1

2
(I + ~r · ~σ) , (3.33)

where

~r := Tr [ρ~σ] (3.34)
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is a three dimensional real vector. With Eq. (3.33), and the property of Pauli

matrices (~σ · ~a)
(
~σ ·~b

)
=
(
~a ·~b

)
I + i~σ ·

(
~a×~b

)
, we obtain

Tr
[
ρ2
]

=
1

4
Tr [I + 2~r · ~σ + (~r · ~σ) (~r · ~σ)] =

1

4
Tr [I + 2~r · ~σ + (~r · ~r) I + i~σ · (~r × ~r)]

=
1

4

(
1 + |r|2

)
Tr [I] + 2~σ · Tr [~σ] =

1

2

(
1 + |~r|2

)
. (3.35)

Consider, for example, a pure density operator ρ = |ψ〉 〈ψ|. As we saw in the

previous section, this implies that Tr [ρ2] = 1 and, therefore, the above equation

implies |~r| = 1. Now let us pause for a moment to parametrize the state vector of

Eq. (3.30) in a more convenient way.

The constants c0 and c1 are two complex numbers, which means that the state

vector would need four real numbers to be specified uniquely. If we write both

complex numbers in their polar representation, c0 = |c0| eiϕ1 and c1 = |c1| eiϕ2 , the

state vector may be written as

|ψ〉 = |c0| eiϕ0 |0〉+ |c1| eiϕ1 |1〉 = eiϕ0
(
|c0| |0〉+ |c1| eiϕ |1〉

)
, (3.36)

where ϕ = ϕ1 − ϕ0, and consider that ϕ ∈ [0, 2π) as the complex exponential is

2π-periodic. As the global phase can be completely forgotten because physically

we cannot measure it, we are left with three real parameters. The normalization

condition suggests to parametrize the two real numbers |c0| and |c1| as cos (θ/2) and

sin (θ/2), respectively, with θ ∈ [0, π]. Thus

|ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiϕ |1〉 . (3.37)

In conclusion, we need two real numbers θ and ϕ taking values in the intervals

above to represent an arbitrary pure qubit state. This parametrization is the same

parametrization of a point in a sphere centered at the origin of a three-dimensional

real space.

We have seen that an arbitrary qubit state is parametrized as a point in a

three-dimensional sphere and, at the same time, represented by a vector in a three-

dimensional space with constant norm, i.e., a sphere. Therefore, all pure density

operators lie in a sphere of radius one, called the Bloch sphere (see Fig. 3.1).

The vector ~r is called the Bloch vector. If ρ were a mixed density operator, then

Tr [ρ2] < 1 and consequently |r| < 1. Therefore, a mixed density operator lies inside
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the Bloch sphere. Thus, the Bloch sphere is a convex set‡‡ which represents all pure

and mixed states of a qubit, the pure states are represented by the boundary of the

sphere and the mixed states are represented by all the interior of the sphere.

Figure 3.1: The Bloch sphere with the vectors associated to the eigenvalues of the

Pauli operators. Also two arbitrary orthonormal qubit states |ψ〉 and |ξ〉, showing

that they lie in opposite points on the sphere’s surface. This figure was copied from

Ref. [10]

Let us visualize the measurement and unitary dynamics of a qubit in a pure state

in the Bloch sphere. For an arbitrary pure state, ~r = Tr [ρ~σ] can be written as

~r = Tr [|ψ〉 〈ψ|~σ] = 〈ψ|~σ |ψ〉 . (3.38)

Therefore ~r ·~r = 1 = 〈ψ|~r ·~σ |ψ〉 implies that ~r ·~σ |ψ〉 = |ψ〉. So, |ψ〉 is an eigenvector

with eigenvalue +1. As ~r · ~σ is a self-adjoint matrix with zero trace, it must have

another eigenvector with eigenvalue −1, ~r ·~σ |χ〉 = − |χ〉. Consider the inner product

〈ψ |χ〉 = 〈ψ|~r · ~σ |χ〉 , (3.39)

‡‡Simply stated a convex set is a set such that every two elements in it can be connected by a

straight line which is also inside the set. All polygons are convex but a boomerang is not.
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using that 〈ψ| = 〈ψ|~r · ~σ. Considering that |χ〉 is the eigenvector of ~r · ~σ with

negative eigenvalue, one has

〈ψ |χ〉 = −〈ψ |χ〉 =⇒ 〈ψ |χ〉 = 0. (3.40)

Moreover,

〈χ|~r · ~σ |χ〉 = ~rψ · 〈χ|~σ |χ〉 = ~rψ · ~rχ = −1 =⇒ ~rψ = −~rχ. (3.41)

Therefore, any two orthogonal vectors on the Bloch sphere are necessarily diamet-

rically opposed (cf. Fig. (3.1)).

Any observable has two eigenvectors which are opposed in the Bloch sphere

as described above. We set the Cartesian coordinates such that the observable

eigenvectors are |0〉 and |1〉. An arbitrary qubit state can be expanded in this basis

as

|ψ〉 = c0 |0〉+ c1 |1〉 . (3.42)

The rz projection of the Bloch vector is

rz = cos (θ) = cos2

(
θ

2

)
− sin2

(
θ

2

)
= |c0|2 − |c1|2 . (3.43)

Since |c0|2 + |c1|2 = 1, it follows that

|c0|2 =
1 + rz

2
, (3.44)

and

|c1|2 =
1− rz

2
. (3.45)

Therefore, the probability to find the outcome associated with one of the eigenvectors

of the observable in question is proportional to the projection of the Bloch vector

associated with the qubit onto the axis defined by the two eigenvectors.

To visualize the unitary dynamics in the Bloch sphere, we will need a parametriza-

tion for an arbitrary unitary matrix U ∈ SU (2). It can be shown that a parametriza-

tion of U is given by

U = eiκ

e−iλ/2 cos (µ/2) e−iν/2 −e−iλ/2 sin (µ/2) eiν/2

eiλ/2 sin (µ/2) e−iν/2 eiλ/2 cos (µ/2) eiν/2

 (3.46)

or, as an operator product,

U = eiκe−
i
2
λσ3e−

i
2
µσ2e−

i
2
νσ3 . (3.47)
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We can define a new unitary operator Û := e−iκU without the global phase. De-

composing Û in terms of the basis
{

1√
2
I, 1√

2
σk

}
according to Eq. (3.32) we find

Û = v0I − i~v · ~σ, (3.48)

where

v0 =
1

2
Tr
[
Û
]

and ~v =
i

2
Tr
[
Û~σ
]
. (3.49)

Observing Eq. (3.46), we can read off the following properties

Û00 = Û∗11, (3.50)

Û10 = −Û∗01, (3.51)

Û00Û11 − Û01Û10 = 1. (3.52)

With these properties one can show that v0, v1, v2, v3 ∈ R. The unitarity condition

implies that

v2
0 + v2 = 1. (3.53)

We can define

v0 := cos

(
φ

2

)
, ~v := sin

(
φ

2

)
~e, (3.54)

with ~e being a unit vector in R3. For a given Û , the quantities φ and ~e are determined

by Eq. (3.48). With this parametrization we can write

Û = e−i
φ
2
~e·~σ. (3.55)

Therefore, every unitary transformation over a qubit can be written uniquely in this

form up to a global phase eiκ.

Finally, we want to explain the effect of Û on the Bloch vector. Without any loss

of generality we can choose ~e to be the direction of ~ez. Hence, Eq. (3.55) reduces to

Û = e−i
φ
2 |0〉 〈0|+ e+iφ

2 |1〉 〈1| . (3.56)

Using the parametrization of Eq. (3.37) we find that

Û |ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiϕ+φ |1〉 . (3.57)

Therefore, the effect of a unitary operator U on the Bloch vector of some state vector

|ψ〉 is to rotate it by an angle φ over the axis ~e.

In this section we have seen the measurement and unitary dynamics of a qubit.

In the next section we will begin to consider quantum systems composed of many

subsystems.
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3.2 Composite Quantum Systems

In this section we will set up the mathematical ground to study quantum sys-

tems composed of two or more subsystems. The idea of subsystems is well posed

in classical mechanics where we deal with distinguishable objects. For instance, the

solar system can be treated as being composed by nine subsystems, one star (the

Sun) and eight planets. As they are macroscopical objects they are easily distin-

guishable. But now imagine a fluid and a small ball within it. The ball is easily seen

to be a subsystem but the individual molecules whose compound the fluid are not

easily distinguishable (by the naked eye) and therefore not easily classifiable as sub-

systems. In classical physics there is the idea that in principle we could paint these

individual molecules with different colors and therefore be able to distinguish them

somewhat easily. As we go more deeply into matter we learn that the elementary

particles are not distinguishable∗. Then, how can we treat them as subsystems if we

cannot even distinguish them? From the point of view of quantum mechanics, each

particle is described by its own state space. Therefore, the state space of a system

of particles will be given by an appropriate composition of the Hilbert spaces of the

individual particles (also called factor spaces). A closely related issue is the notion

of localization. In classical mechanics it is completely natural to talk about subsys-

tems because each subsystem is well localized in space. When we measure one of

two subsystems which are separated far apart we know that this measurement does

not disturb the other subsystem (besides negligible effects such as the gravitational

force). But in quantum mechanics this is not the case because quantum correlations

come in. We will define two important concepts in this section, entanglement and

the partial trace map.

As we said in the beginning of this section, the Hilbert space which describes

the properties of a system of particles is going to be an appropriate composition of

the Hilbert spaces of each individual particles. Two possible constructions are the

direct sum and the tensor product of the Hilbert spaces. Suppose that we have two

two-level systems; for example, two spins. Each spin is described by a Hilbert space

which is two-dimensional. If we construct a Hilbert space which is the direct sum

∗At least two elementary particles relatively close to each other or which had interacted in the

past. Of course an electron created on Earth and another created in the Sun may be distinguished.
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of the two Hilbert spaces we will end with a space four-dimensional† (2 + 2). If we

construct a Hilbert space which is the tensor product of the two Hilbert spaces we will

end with a space which is also four-dimensional‡ (2× 2). The conclusion is that two

spins are not enough (at least in this superficial discussion) to discriminate between

the two possible constructions. So let us consider three spins, instead. In this case if

we take the direct sum we obtain a six-dimensional space (2 + 2 + 2) and if we take

the tensor product we obtain an eight-dimensional space (2×2×2). Now we have to

think what properties we expect the composed space to have. Physically, a system

of three spins is expected to have the following degrees of freedom: |up, up, up〉,

|up, up, down〉, |up, down, up〉, |down, up, up〉, |up, down, down〉, |down, up, down〉,

|down, down, up〉 and |down, down, down〉. Hence 8 degrees of freedom. Therefore

the appropriate way to construct the Hilbert space of three spins is taking the tensor

product of each of the Hilbert spaces of the individual systems. That being said, we

conclude that the right way to construct the Hilbert space of a system of particles is

to take the tensor product of the Hilbert spaces of each of the particles, because this

is the way to account correctly for the degrees of freedom of the composite system.

First let us establish notations, conventions and definitions which we shall use

throughout this dissertation. As we have seen the (tensor) product of Hilbert spaces

is the appropriate tool to construct the Hilbert space of many-body quantum sys-

tems. Consider that HA is the state space associated with the subsystem SA and

HB is the state space associated with the system SB. The product Hilbert space is

denoted by HAB = HA ⊗ HB. If
∣∣ϕA〉 ∈ HA and

∣∣χB〉 ∈ HB, there is a product

vector in HAB which can be written in the following way

∣∣ϕA〉⊗ ∣∣χB〉 =
∣∣ϕA〉 ∣∣χB〉 =

∣∣ϕA, χB〉 = |ϕ, χ〉 . (3.58)

The map ⊗ : HA ×HB → HAB is bilinear, i.e.,

∣∣ϕA〉⊗ (λ1

∣∣χB1 〉+ λ2

∣∣χB2 〉) = λ1

∣∣ϕA〉⊗ ∣∣χB1 〉+ λ2

∣∣ϕA〉⊗ ∣∣χB2 〉 (3.59)

and

(
λ1

∣∣ϕA1 〉+ λ2

∣∣ϕA2 〉)⊗ ∣∣χB〉 = λ1

∣∣ϕA1 〉⊗ ∣∣χB〉+ λ2

∣∣ϕA2 〉⊗ ∣∣χB〉 . (3.60)

†The dimension of the direct sum space is the sum of the dimensions of its factor spaces.
‡The dimension of the tensor product space is the product of the dimensions of its factor spaces.
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If
{∣∣nA〉} is a basis of HA and

{∣∣iB〉} is a basis of HB, then
{∣∣nA, iB〉} is a

basis for the product Hilbert space HAB. From this we conclude that dim HAB =(
dim HA

)
·
(
dim HB

)
. Moreover, as a direct consequence, an arbitrary vector

∣∣ψAB〉
in HAB can be expanded in this basis

∣∣ψAB〉 =
∑
n,i

αni
∣∣nA, iB〉 . (3.61)

These same properties hold for a product Hilbert space constructed from a finite

number of Hilbert spaces, larger than 2.

The linear functionals over the product Hilbert space are easily generalized from

the Dirac notation. To represent a linear functional one may write any of the forms

〈
ϕA
∣∣⊗ 〈χB∣∣ =

〈
ϕA
∣∣ 〈χB∣∣ =

〈
ϕA, χB

∣∣ = 〈ϕ, χ| . (3.62)

The inner product in HAB is generalized to be

〈
ϕA, χB

∣∣ ξA, ζB〉 =
〈
ϕA
∣∣ ξA〉 〈χB ∣∣ ζB〉 . (3.63)

Now one can verify that
{∣∣nA, iB〉} is an orthonormal basis in HAB provided

{∣∣nA〉}
and

{∣∣iB〉} are orthonormal bases in HA and HB, respectively. One can see this

just using the definition given above for the inner product,

〈
nA, iB

∣∣n′A, i′B〉 =
〈
nA
∣∣n′A〉 〈iB ∣∣ i′B〉 = δnn′δii′ . (3.64)

We can already define mathematically what an entangled state is. Pick a state

of the product Hilbert space of two subsystems SA and SB, say,
∣∣ψAB〉. If in some

cleverly chosen basis this state can be written as a product state, i.e.,
∣∣ψAB〉 =∣∣ϕA〉⊗ ∣∣χB〉, then we say that this state is not entangled. If there is no basis such

that this decomposition is possible then we say that the state
∣∣ψAB〉 is entangled.

This tells us that an entangled state is a synonym for superposition of product

states. The most famous entangled states of two qubits are the so-called Bell states.

They are 
∣∣ΦAB
±
〉

= 1√
2

(∣∣0A, 0B〉± ∣∣1A, 1B〉) ,∣∣ΨAB
±
〉

= 1√
2

(∣∣0A, 1B〉± ∣∣1A, 0B〉) . (3.65)

As we shall see in Ch. 4, these states are maximally entangled. Moreover, they form

an orthonormal basis in HAB. Considering the computational basis to be the basis
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of the spin operator in the z direction, one may recognize the singlet state of two

spins to be
∣∣ΨAB
−
〉
.

In Sec. 3.1.1 we realized that the general description of quantum systems must be

in terms of density operators because state vectors do not account for a description

of mixtures. Therefore we turn our attention to the description of linear operators

over a product Hilbert space HAB. We will represent a product operator by the

following notation

CA ⊗DB = CADB. (3.66)

The action of such an operator on a state is given by

[
CA ⊗DB

] ∣∣ϕA, χB〉 =
(
CA
∣∣ϕA〉)⊗ (DB

∣∣χB〉) =
∣∣CAϕA, DBχB

〉
. (3.67)

The operator is linear, meaning that

[
CA ⊗DB

](∑
n,i

αni
∣∣nA, iB〉) =

∑
n,i

αni
∣∣CAnA, DBiB

〉
. (3.68)

One important concept is that of an extended operator (or subsystem operator,

or local operator). If CA is an operator of the system SA and we embed it in

a larger system we begin to interpret SA as a subsystem. The operator must be

appropriately extended to the larger space of operators. This is done by inserting as

many identities as we need. For example, in a tripartite system SABC the operator

CA must become

ĈABC = ĈA = CA ⊗ IB ⊗ IC . (3.69)

Two extended operators associated with different factor Hilbert spaces commute

as they obey the relation

ĈABD̂AB =
(
CA ⊗ IB

) (
IA ⊗DB

)
= CAIA ⊗ IBDB = CA ⊗DB. (3.70)

The identity in the product Hilbert space may be expanded in terms of an

orthonormal basis as

IAB =
∑
n,i

∣∣nA, iB〉 〈nA, iB∣∣
=

(∑
n

∣∣nA〉 〈nA∣∣)⊗(∑
i

∣∣iB〉 〈iB∣∣) = IA ⊗ IB. (3.71)
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Therefore, in the same way that we can decompose an arbitrary vector in a basis of

states we can decompose an arbitrary operator in a basis of operators as

ZAB =IABZABIAB

=
∑
n,m

∑
i,j

〈
nA, iB

∣∣ZAB
∣∣mA, jB

〉 (∣∣nA〉 〈mA
∣∣)⊗ (∣∣iB〉 〈jB∣∣) , (3.72)

where the coefficients of this expansion are the matrix elements of ZAB.

The trace is defined in the usual way as

Tr
(
ZAB

)
= TrAB

(
ZAB

)
=
∑
n,i

〈
nA, iB

∣∣ZAB
∣∣nA, iB〉 . (3.73)

For product operators it follows that

TrAB
(
CA ⊗DB

)
=
∑
n,i

〈
nA, iB

∣∣ (CADB
) ∣∣nA, iB〉

=

(∑
n

〈
nA
∣∣CA

∣∣nA〉)(∑
i

〈
iB
∣∣DB

∣∣iB〉)
=TrA

(
CA
)

TrB
(
DB
)
. (3.74)

The next concept is of fundamental importance. It is the partial trace. Partial

trace is a map from the composite state space to a set of factor spaces. We only

take the trace on one or more subsystems. For example,

TrB
(
ZAB

)
=
∑
i

〈
iB
∣∣ZAB

∣∣iB〉 . (3.75)

The overall trace may be seen as a series of partial traces

TrAB
(
ZAB

)
= TrA

[
TrB

(
ZAB

)]
= TrB

[
TrA

(
ZAB

)]
. (3.76)

At the beginning of this section we discussed composite systems and how describe

them in quantum mechanics. The conclusion was that we construct the state space

of the system of particles in a bottom-up fashion, i.e., the state space of the whole

system is constructed putting together, in an appropriate way, the state space which

would describe the individual particles. This leaves room for a natural description of

a subsystem taking into account the influence of the disconsidered part. The strategy

is simply to use the concept of partial trace described above to trace out the degrees

of freedom we are not mainly interested in the density operator of the composite

system. The dynamics of subsystems will be addressed in the next section. Here we
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will discuss some elementary properties and comparisons of the subsystems and the

whole system.

We shall consider a system composed of two subsystems SA and SB, but the

conclusions can be easily generalized for an arbitrary number of subsystems. Sup-

pose ρAB is a density operator which describes all the statistical properties of the

system SAB. We define the reduced density operator for the subsystem SA to be

ρA := TrB
[
ρAB

]
. (3.77)

And analogously for the subsystem SB. A physical operation made by, say, Alice on

her subsystem is represented by a local operator (cf. Eq. (3.69)) CA. If {cn} is the

set of eigenvalues of the observable CA then the probability to find an outcome is

p (cn) = TrAB

[
ρABP̂A

n

]
= TrA

[
ρAPA

n

]
, (3.78)

where PA
n =

∣∣cAn 〉 〈cAn ∣∣ is a local projection operator. Moreover, the average value of

the observable is

〈
CA
〉
ρA

= TrAB

[
ρABĈA

]
= TrA

[
ρACA

]
. (3.79)

These two relations show that the reduced density operator is the appropriate

object to treat the statistical properties of the subsystems, as they satisfy the ex-

pected properties of general density operators.

Let us evaluate the reduced density operators for some pure state. Consider the

Bell state
∣∣ΨAB
−
〉

= 1√
2

(∣∣0A, 1B〉− ∣∣1A, 0B〉). Its density operator is

ρAB =
∣∣ΨAB
−
〉 〈

ΨAB
−
∣∣ =

1

2

(∣∣0A, 1B〉 〈0A, 1B∣∣− ∣∣0A, 1B〉 〈1A, 0B∣∣
−
∣∣1A, 0B〉 〈0A, 1B∣∣+

∣∣1A, 0B〉 〈1A, 0B∣∣) . (3.80)

The reduced density operator for the subsystem SA is

ρA = TrB
[
ρAB

]
=
〈
0B
∣∣ ρAB ∣∣0B〉+

〈
1B
∣∣ ρAB ∣∣1B〉 (3.81)

=
1

2

(∣∣0A〉 〈0A∣∣+
∣∣1A〉 〈1A∣∣) =

1

2
IA. (3.82)

And the reduced density operator for the subsystem SB is

ρB = TrA
[
ρAB

]
=
〈
0A
∣∣ ρAB ∣∣0A〉+

〈
1A
∣∣ ρAB ∣∣1A〉 (3.83)
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=
1

2

(∣∣0B〉 〈0B∣∣+
∣∣1B〉 〈1B∣∣) =

1

2
IB. (3.84)

The conclusion of these results is that locally, i.e., for both Alice and Bob’s labora-

tories, their subsystems exhibit the statistical behavior, under local operations, of

mixed states. One can show that all four Bell states lead to this same result. As

we have said before the Bell states are maximally entangled. These results show

that the reduced density operators of a maximally entangled pure bipartite state

are maximally mixed. This is not a coincidence as we shall see in Ch. 4. In fact,

this provides a clue to measure entanglement of a pure bipartite state, namely, as

how mixed their reduced density operators are. This will be made mathematically

precise in Sec. (4.4.1) in terms of a quantum entropy.

3.3 Dynamics of Open Quantum Systems

We have described the dynamics of closed systems in Sec. 3.1. In this section we

will turn our attention to the problem of open dynamics. Recalling the distinction

of system and environment made in the beginning of the Sec. 3.1, we supposed that

the universe is everything that exists. As we also have seen, the environment may

interact and yet the system will be isolated, since the environment does not spoil

what we are trying to describe or study. In order to describe the open dynamics

we need a description, within the theory, of the environment. Therefore it would

be unrealistic to consider the universe as everything because we could not ever

account mathematically all different physical scales contained in the environment.

The environment is, thus, composed by some other systems which influence the

system. In the example of the marble rolling in a plane, the environment is the

flat surface and the local atmosphere, for instance. The purpose of the theory of

open systems is to describe the behavior of the systems when their environment

affects them. So we have to consider, at some degree of precision, the dynamics

of the environment. The classical example of the description of an open system

dynamics is the Brownian motion. One paradigmatic example of the Brownian

motion consists of a very tiny particle yet macroscopic, a grain of pollen, representing

the system and a fluid that surrounds the particle, which represents the environment.

Macroscopically the Brownian particle seems to just jiggle around. But the fact is

that there is a precise mathematical description of this phenomenon in terms of
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stochastic processes. We are able to know how the average velocity changes with

the temperature of the environment, for example.

From the point of view of quantum mechanics we have a composite system. One

subsystem is called system . This is the subsystem which we actually are interested

to describe the behavior. The other subsystem is called the environment and this is

the subsystem which is going to affect the dynamics of the system. Therefore the

state space of the composite system is given by HSE = HS ⊗HE. The dynamics of

the system plus environment (henceforth referred to SSE) seen as a closed system

is given by the Eq. (3.12)

ρSE (t) = U (t) ρSE (0)U † (t) , (3.85)

with

U (t) = exp

(
−itH

SE

h̄

)
. (3.86)

We consider the most general time-independent Hamiltonian

HSE = HS ⊗ IE + IS ⊗HE +HI . (3.87)

If we trace out the environment we obtain the algebraic time evolution equation for

the reduced density operator of the system

ρS (t) = TrE
[
U (t) ρSE (0)U † (t)

]
. (3.88)

We will consider that at the initial time the system and environment are in a

separable state, i.e., ρSE (0) = ρS (0) ⊗ ρE. In fact it is a fairly reasonable hy-

pothesis that ρSE (t) ≈ ρS (t)⊗ ρE, i.e., that the system-environment state remains

approximately separable for all times and that the state of the environment does

not change. This hypothesis is called Born approximation and it says that the

system-environment coupling is sufficiently weak and the environment is reasonably

large such that changes of the density operator of the environment are negligible. It

is an a posteriori verification that such hypotheses are extremely compatible with

most open systems. Nowadays, with the increasing control on quantum systems, it

is known that there exist various important physical systems which do not respect

these hypotheses, though. One example is low-temperature solid-state systems. Un-

derstand the dynamics when the initial state is not separable is still an open problem.

Thus,

ρS (t) = TrE
[
U (t) ρS (0) ρEU † (t)

]
. (3.89)
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The expression above suggests the definition of a dynamical map, Φ (t, 0), that maps

the initial state into the state at time t,

Φ (t, 0) : S
(
HS
)
→ S

(
HS
)
,

ρS (t) = Φ (t, 0) ρS (0) = Φt

(
ρS (0)

)
.

(3.90)

S (H) is defined as the space of density operator associated with the Hilbert space

H.

As this dynamical map maps density operators into density operators, it is also

called a superoperator. Considering the existence of this map for every t ≥ 0 and

maintaining ρE fixed, we obtain a family of dynamical maps {Φt|t ≥ 0}. These

dynamical maps are linear, trace-preserving and completely positive. We will go

through each of these properties. Linearity is a natural and necessary property for

dynamical maps as it implies that the time evolution of mixed density operator is

the statistical mixture of the time evolution of its pure states,

Φt

(
p1ρ

S
1 + p2ρ

S
2

)
=TrE

[
U (t)

(
p1ρ

S
1 + p2ρ

S
2

)
ρEU † (t)

]
=p1TrE

[
U (t) ρS1 ρ

EU † (t)
]

+ p2TrE
[
U (t) ρS2 ρ

EU † (t)
]

=p1Φt

(
ρS1
)

+ p2Φt

(
ρS2
)
. (3.91)

The dynamical map is trace-preserving meaning that, assuming ρE normalized,

TrS
[
ρS (t)

]
=TrS

[
Φt

(
ρS (0)

)]
= TrS

[
TrE

{
U (t) ρS (0) ρEU † (t)

}]
=TrSE

[
ρS (0) ρE

]
= TrS

[
ρS (0)

]
. (3.92)

This property is expected because it says that the local dynamics preserves the

probability characteristics of quantum mechanics. We emphasize that this does

not mean that the dynamical map is unitary. Usually the dynamical map is not

unitary because it has no inverse. This can be easily understood if we observe that

the partial trace of different density operators can give the same reduced density

operator, therefore having no inverse.

The last property will not be fully demonstrated since it is equal to the second

part of the proof presented in App. B. We will only explain the terms used there

and point out the only subtle difference.

An operator A is called positive (semi-definite) if its average value with respect

to any state is always non-negative, 〈A〉ψ ≥ 0 for every |ψ〉. This also means
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that its eigenvalues are non-negative. Therefore, positive operators are a subclass

of self-adjoint operators, namely, those with non-negative eigenvalues. A positive

map is a map which preserves positivity, i.e., maps positive operators into positive

operators. It is natural to understand that the dynamical maps should be positive

maps because, after all, for any time t we expect to have a well-defined density

operator irrespective the detail of interactions or initial conditions. Consider an

operator A and the mapped operator Φt (A). Then

[Φt (A)]† =
[
TrE

{
U (t)AρEU † (t)

}]†
= TrE

{
U (t)A†ρEU † (t)

}
= Φt

(
A†
)
. (3.93)

Hence if A is self-adjoint then Φt (A) is also self-adjoint. As self-adjointness is a more

general property than positiveness we can restrict the conclusion to if A is positive

implies Φt (A) being positive and therefore Φt is a positive map. Consider that

we couple the system SA under this evolution with other arbitrary system SB and

consider the transformation ΦA
t ⊗ IB. Complete positivity means that whichever

system SB coupled to SA the map ΦA
t ⊗ IB must be a positive map, now over

S
(
HA ⊗HB

)
. Physically, this means that we cannot exclude that the system SA

under consideration is open and hence is a subsystem of a larger system SAB. In

this case, via the effect ΦA
t on SA, the composite system SAB could be influenced

and therefore the extended dynamical map should transform an initial composite

density operator (positive) ρAB to another ρ′AB. The proof of the complete positivity

of Φt (A) is similar to the second part of the theorem in App. B. The only difference

is that there we are assuming the map EA(ρ) ⊗ IB to be positive, which is exactly

what we want to show. Examining carefully, the assumption is only used to write

the ensemble decomposition of CAB (cf. Eq. (B.13)). But this is guaranteed by

the fact that the map ΦA
t ⊗ IB preserves the self-adjointness because both ΦA

t and

IB preserve. Therefore, the demonstration is the same, showing that the dynamical

map admits a Kraus decomposition and so it is complete positive.

If we now consider that the family of dynamical maps {Φt|t ≥ 0} satisfy the

additional property

Φ (t, 0) ◦ Φ (s, 0) = Φ (t+ s, 0) ∀t, s ≥ 0, (3.94)

where ◦ stands for the composition of maps, this set of dynamical maps acquires the

property of a semigroup. Being a semigroup means that there exists a generator L
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such that

Φ (t, 0) = eLt, (3.95)

where L: S (H)→ S (H). We can write

ρS (t) = Φ (t, 0) ρS (0) = eLtρS (0) . (3.96)

Differentiating with respect to time we obtain

d

dt
ρS (t) = L

[
ρS (t)

]
. (3.97)

The complete positivity of the semigroup leads to important statements on the

general structure of the generator. The famous Gorini-Kossakowski-Sudarshan-

Lindblad theorem [18,19] states that L is the generator of a semigroup of completely

positive quantum dynamical maps if and only if

L
[
ρS
]

= −i
[
HS, ρS

]
+
∑
i

γi

[
Aiρ

SA†i −




{
A†iAi, ρ

S
}]
, (3.98)

where HS is an effective Hamiltonian (i.e., it need not coincide with the microscopic

Hamiltonian in the original HSE), Ai are arbitrary system operators, often called

Lindblad operators, describing the various decay modes of the system and γi are the

corresponding decay rates. We will present a rather simple demonstration of the

theorem [10].

Suppose that

ρ (t+ dt) = ρ (t) +O (dt) , (3.99)

with dt very small. This hypothesis is connected with the Markov approximation,

where the dynamics at an instant of time depends only on the previous instant of

time, in our case infinitely close. Using the Kraus representation (cf. App. B) we

can write

ρ (t+ dt) =
∑
i

Ki (dt) ρ (t)K†i (dt) . (3.100)

From our Markovian hypothesis one of the Kraus operators, say, the operator K1

must be of the form

K1 = I +O (dt) = I + (R− iH) dt, (3.101)

where we used the fact that any linear operator may be written as a complex com-

bination of two self-adjoint operators. Thus, R† = R and H† = H. The remaining
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Kraus operators must be of order
√
dt. Hence consider

Ki = Li
√
dt (3.102)

for i 6= 1. The completeness relation gives us

∑
i

K†iKi =I = (I +Rdt+ iHdt) (I +Rdt− iHdt) +
∑
i>1

L†iLi

=I +

(
2R +

∑
i>1

L†iLi

)
dt+O

(
dt2
)

(3.103)

From this equation we obtain

R = −1

2

∑
i

L†iLi +O
(
dt2
)
. (3.104)

From the Kraus decomposition in Eq. (3.100) we find

ρ (t+ dt) = (I +Rdt+ iHdt) ρ (t) (I +Rdt+ iHdt) +
∑
i>1

Liρ (t)L†idt

=ρ (t)− i [H, ρ (t)] dt+
∑
i

Liρ (t)L†idt+ {R, ρ} dt. (3.105)

With R given by the formula above we can write

ρ (t+ dt)− ρ (t)

dt
= −i [H, ρ (t)] +

∑
i

(
Liρ (t)L†i −

1

2

{
L†iLi, ρ (t)

})
. (3.106)

Taking the limit dt→ 0 we obtain the differential equation

dρ

dt
= −i [H, ρ (t)] +

∑
i

(
Liρ (t)L†i −

1

2

{
L†iLi, ρ (t)

})
= L (ρ) , (3.107)

which proves the theorem. We can make the following identification between the

operators: Li = Ai
√
γi.

In this section we have studied the properties of dynamical maps, which govern

the continuous dynamics of open quantum systems. In the next section we will see

in more detail the measurement dynamics of a quantum system.

3.4 Measurement Dynamics

Measurement is a fundamental concept in science. It alludes to the idea of exper-

imentation. A measurement is performed by a physical system which is composed

of particles and therefore obeys, in principle, the same physics we are describing the
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system. In classical mechanics reigns the idea that a measurement does not disturb

the system. Even without quantum mechanics we could think that this could rea-

sonably be not true for the fundamental particles of our world. This is so because

in order to measure some quantity of some system we necessarily have to interact

with it. If nothing interacted with the system we would not perceive the existence

of it and the concept would not be scientific. As in the microscopic world we are

dealing with the fundamental objects of nature it is natural that a measurement will

in general disturb the state of the system. We are not invoking any quantum me-

chanical uncertainty relation but nevertheless arguing that this could be expected.

Quantum mechanics validates this intuition. But this is not the unique difference

of measurement in quantum mechanics. There are also non intuitive characteristics,

one of which is the fact that the statistical properties of a system are affected by

the measurement of another distant system. This is related with entanglement and

will be discussed in the next chapter. In this section we will study the measurement

dynamics of quantum states. We divide the measurements into two main categories,

the selective and non-selective measurements. Within these categories there ex-

ist different measurements such as the projective measurements, already studied in

Sec. (3.1), and generalized measurements, which can describe the imperfection of

the measurement apparatus.

We will exemplify the selective and non-selective measurements using the double-

slit experiment. The experimental apparatus consists of a beam, which is able to

emit one particle at each time: a plate, which contains two rectangular slits in the

middle, and an observation screen behind the slits to detect the position of the

particle. Besides these apparatuses, which belong to the preparation procedure,

we will, moreover, consider four distinguished preparation procedures through the

following criteria. If the second slit is closed (cover it with any material which

prohibits the passage of the particles) then we have a preparation procedure Ŝ1. If

we close the slit one we have the preparation procedure Ŝ2. The third preparation

procedure consists in flipping a coin and if we get heads then we close the first slit,

if we get tails we close the second slit. This preparation procedure is represented by

Ŝm (1, 2)∗. The fourth preparation procedure is just leave the two slits opened and it

∗The index m stands for mixture as the distribution is a weighted sum of the distribution

associated with Ŝ1 and Ŝ2.
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is represented by Ŝp (1, 2)†. The distribution patterns on the screen are respectively,

a gaussian behind slit one, a gaussian behind slit two, the addition of two gaussians,

one of which behind slit one and the other behind slit two, and an interference

pattern. All these preparation procedures have a density operator associated with

them which describe these statistical properties within the theory. We will turn to

the mathematical representation in a moment.

Consider now that we want to know which slit the particle has passed by. In order

to do so we use a light beam which can be scattered by the particles directly behind

only one of the two slits. In this way we observe that a light flash, corresponding to a

scattering event, is always seen behind only one of the two slits. This reproduces the

measurement as desired. Target the light beam, say, to behind slit one and consider

just the preparations Ŝm (1, 2) and Ŝp (1, 2). Considering what has been said, if we

now keep only the data associated with the particles which have passed the slit

one, we know this because we are measuring it, we will end up with a distribution

equal to that of Ŝ1 irrespective of the preparations being Ŝm (1, 2) or Ŝp (1, 2). We

have thus performed a selective measurement because we indeed selected one path

rather than another. But this is a pure state and therefore a selective measurement

always results in a pure state. This pure state is, in general, different from the pure

state associated with the preparation procedure, in our example Ŝp (1, 2). If we keep

track of the whole data, still measuring which particles passed slit one, we obtain a

distribution which is equal to Ŝm (1, 2). This second case we did not select the post

measured state but instead we measured and continued considering the whole data.

This measurement is called a non-selective measurement. As we can infer from this

experimentation, a non-selective measurement always results in a mixed state. Let

us represent this mathematically.

The ket associated with “passing through slit one” is denoted by |1〉 and the ket

associated with “passing through slit two” is denoted by |2〉. The four preparation

procedures give rise to the four density operators

ρ1 = |1〉 〈1| (3.108)

ρ2 = |2〉 〈2| (3.109)

†The index p stands for pure.
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ρm12 =
1

2
(ρ1 + ρ2) (3.110)

ρp12 = |ψ12〉 〈ψ12| , (3.111)

where |ψ12〉 = 1√
2

(|1〉+ |2〉). The selective measurement presented in this example

is represented by a projective measurementAs we discussed briefly previously (cf.

Sec. (3.1)) the projective measurements are characterized by a complete set of

mutually orthogonal states. In this case {Pk = |k〉 〈k| , k ∈ {1, 2}}. Our selective

measurement is such that it selects the particles which pass the first slit, therefore

the final normalized state is

ρ′ =
1

p (1)
P1ρP1. (3.112)

The two (recall we are only considering Ŝm (1, 2)and Ŝp (1, 2)) possible post selected

states are

ρm
′

12 = ρp
′

12 = |1〉 〈1| , (3.113)

which are pure states.

As the non-selective measurement does not select a particular state, but at the

same time distinguishes the particles which pass through the slits, the final density

operator is

ρ′ = P1ρP1 + P2ρP2. (3.114)

In our cases the non-selective measurement results in the following density operators

ρm
′

12 = ρp
′

12 =
1

2
|1〉 〈1|+ 1

2
|2〉 〈2| , (3.115)

which are statistical mixtures.

We will study now generalized measurements and at the final of the section

provide an unified picture for any measurement on quantum states.

There are some discontinuous dynamics that are not associated with a projective

measurement and yet may occur. Three examples are the following. Suppose we

have a composite system with two subsystems, and they interact in such a way that

the unitary evolution UAB is able to produce an entangled state, say, at a time T . If

a local selective measurement is performed on the subsystem SB, then the reduced

state of the subsystem SA is also going to evolve discontinuously. Regarding just

the different possible states of the subsystem SA after the measurement, the set

of operators which would describe the different probabilities for SA to end in such
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states do not form a mutually orthogonal set of projectors. Thus, a projective

measurement on SB does not induce a discontinuous evolution on SA which can

be described by projection operators. Another example is the case where, for some

reason, the measurement apparatus is noisy, i.e., with a probability p it actually

measures the system and with probability 1 − p it simply gives a random state

completely uncorrelated with the system. It describes a reasonably realistic situation

where the measurement apparatus possess a probability of error. This discontinuous

dynamics does not fit in the contest of projective measurements and we need a

generalized notion to describe it. The last example is the case where, because of

the conditions of the experiment, the measurement apparatus is not able to reliably

distinguish which state is being measured and therefore it is also not possible to fit

this situation in a projective measurement, as the projective measurement always

distinguishes between two orthogonal states. Let us study the third situation.

We will base our discussion on the Stern-Gerlach experiment. The experimental

setup consists of a source of spin-1/2 particles, an inhomogeneous magnetic field

~B and a screen. The arrangement is such that the particles acquire a trajectory

in the z+ direction of the screen if they have the z-component of spin given by

+1/2 and acquire a direction in the z− direction if they have the z-component of

spin given by −1/2. At the screen what we see are two gaussian distributions,

one in the z+ region and another in the z− region. Usually we consider that the

two gaussian distributions on the screen do not overlap considerably, by putting the

screen sufficiently distant from the magnetic field, in order to know that the particles

which arrive at z+ are indeed the particles with spin polarization +1/2 and equally

for the other polarization. Consider now a non-optimal Stern-Gerlach experiment.

In this case the two gaussian distributions do overlap in a way that we cannot quite

differentiate if the particle which arrived at the z+ region is necessarily a particle

with polarization +1/2. We will model this in the following way.

The +1/2 and −1/2 spin polarizations in the z-direction are going to be re-

presented by the kets |↑〉 and |↓〉, respectively. The detector is modeled quantum

mechanically and its states are |+〉 and |−〉. The |+〉 state characterizes the detector

being triggered at the z+ region and the |−〉 being triggered at the z− region. In

the optimal situation the evolution can be modeled by a unitary operator which
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completely characterizes the preparation state, i.e.,

|↑〉 |i〉 U−→ |↑〉 |+〉 (3.116)

|↓〉 |i〉 U−→ |↓〉 |−〉 , (3.117)

where |i〉 is some initial state of the detector. Therefore, an arbitrary spin state

|ϕ〉 = c↑ |↑〉+ c↓ |↓〉 ends in the pre-measured state

|ϕ〉 |i〉 U−→ c↑ |↑〉 |+〉+ c↓ |↓〉 |−〉 . (3.118)

A projective measurement on the basis {|+〉 , |−〉} of the detector gives p+ = |c↑|2 as

the probability for the detector be triggered in the z+ region and p− = |c↓|2 as the

probability for the detector be triggered in the z− region. The state final state of the

spin is |↑〉 and |↓〉, respectively. Therefore, in the optimal experiment a projective

measurement of the detector leads to an indirect projective measurement of the spin

polarization.

In a real Stern-Gerlach experiment the gaussians may overlap and thus the |+〉

state of the detector can be triggered by the |↓〉 spin state. This situation can be

modeled by the following unitary evolution

|↑〉 |i〉 U−→ |↑〉
(√

1− p0 |+〉+
√
p0 |−〉

)
, (3.119)

|↓〉 |i〉 U−→ |↓〉
(√

p1 |+〉+
√

1− p1 |−〉
)
, (3.120)

where p0 (p1) is the probability of the detector being triggered by the state |↓〉 (|↑〉).

In the optimal case p0 = p1 = 0. A general spin state undergoing this evolution

results in

|ϕ〉 |i〉 U−→
(√

1− p0c↑ |↑〉+
√
p1c↓ |↓〉

)
|+〉

+
(√

p0c↑ |↑〉+
√

1− p1c↓ |↓〉
)
|−〉 . (3.121)

Define the measurement operators

M+ :=
√

1− p0 |↑〉 〈↑|+
√
p1 |↓〉 〈↓| , (3.122)

M− :=
√
p0 |↑〉 〈↑|+

√
1− p1 |↓〉 〈↓| . (3.123)

They obey the completeness relation

M †
+M+ +M †

−M− = I. (3.124)
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The state after the interaction is then

|ψ〉 = M+ |ϕ〉 |+〉+M− |ϕ〉 |−〉 . (3.125)

Measuring the detector in the {|+〉 , |−〉} basis, the system undergoes a discontinu-

ous dynamics ending in the normalized state As a generalization of the projective

measurement (cf. Eq. (3.8))

|ϕ〉 −→ |ϕ+〉 = M+ |ϕ〉 ·
1

Norm
, (3.126)

with probability

p+ = Tr [(I ⊗ |+〉 〈+|) |ψ〉 〈ψ|] = 〈ϕ|M †
+M+ |ϕ〉 = (1− p0) |c↑|2 + p1 |c↓|2 , (3.127)

or the state

|ϕ〉 −→ |ϕ−〉 = M− |ϕ〉 ·
1

Norm
, (3.128)

with probability

p− = Tr [(I ⊗ |−〉 〈−|) |ψ〉 〈ψ|] = 〈ϕ|M †
−M− |ϕ〉 = p0 |c↑|2 + (1− p1) |c↓|2 . (3.129)

The probabilities p± are thus the probabilities of the detector being triggered in the

z+, z− region, respectively. From the point of view of the system, it undergoes a

discontinuous dynamics governed by the two measurement operators, which are not

orthogonal, and the probability of ending in the state |ϕ+〉 (|ϕ−〉) is p+ (p−).

From this example we see that there are situations that the common projective

measurement does not account for. A generalized selective measurement is defined

by a set of linear operators {Mk} called measurement operators. The two condi-

tions over these operators are that M †
kMk is a positive operator to assure that the

probabilities are positive and ∑
k

M †
kMk = I, (3.130)

to ensure the normalization of probability. The probability of the outcome k is given

by

p (k) = 〈ψ|M †
kMk |ψ〉 , (3.131)

and the normalized state vector after the meaurement is given by

|ψ′〉 =
1√
p (k)

Mk |ψ〉 . (3.132)
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In terms of density operators, these relations change to

p (k) = Tr
[
MkρM

†
k

]
, (3.133)

and

ρ′k =
1

p(k)
MkρM

†
k . (3.134)

And finally, if we perform a non-selective measurement, the post measurement state

is going to be

ρ′n.s. =
∑
k

MkρM
†
k . (3.135)

Again, it is a sum of selective measurements, i.e., we measure but do not select and

therefore one must account for all possibilities.

For future references we define here what is a Bell measurement. As any orthogo-

nal basis defines a projective measurement, just by defining the projection operators

to be the projections over each state of the basis, a Bell measurement is a projective

measurement on two subsystems, SA and SB, given by the four projection opera-

tors
{∣∣ΨAB

±
〉
,
∣∣ΦAB
±
〉}

, where the two-qubit states are the four Bell states (cf. Eq.

3.65). This measurement plays an important role in quantum protocols in the same

amount entangled states do. This is because this measurement projects the state

vector onto one out of four maximal entangled states. We will use this measurement

in Sec. (4.5) for the quantum teleportation and entanglement swapping protocols.

This comprises the most general measurement dynamics of a quantum system.

From this perspective, the projective measurements are just a particular case when

the measurement operators satisfy the mutually orthogonal relation. In the next

section we will put together in a same framework the generalized measurements and

the continuous dynamics of quantum systems.

3.5 Generalized Quantum Dynamics

In the previous sections we have studied the most general dynamical evolution

and the most general measurement dynamics of a quantum state. The properties

derived in Sec. (3.3) for the dynamical maps are quite general and the only thing

to change in order to encompass the generalized measurements is to change the

trace-preserving condition to a trace-non-increasing condition, as the measurement
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usually reduces to a pure state which is not normalized. A quantum operation is a

mapping E : S (H)→ S (H) such that

• E is a linear map;

• E is trace-non-increasing, i.e., Tr [E (ρ)] ≤ Tr [ρ] (a contraction);

• E is a completely positive map.

In this way we accomplish the purpose of this chapter which was to provide a unified

picture of the most general dynamics of a quantum system. There are only two final

remarks. One is that in order to work always with a normalized density operator

one must normalize it after the quantum operation by

ρ′ =
E (ρ)

Tr [E (ρ)]
. (3.136)

The other is that, again, we call attention to the fact that we did not consider initial

correlations between the system and environment in the dynamical maps studied.

In App. B we prove a representation for quantum operations which is called the

Kraus representation. A map E is a quantum operation if and only if there exists a

set of operators, called Kraus operators, such that

E(ρ) =
∑
i

K†i ρKi, (3.137)

where Ki are linear operators which fulfill the condition

∑
i

K†iKi ≤ I. (3.138)

The equality applies for trace-preserving quantum operations. We will apply this

representation in a simple case which is going to be useful in the next section.

We will find the Kraus operators, i.e. the quantum operation, for a system SA

which undergoes a dynamics with another system SB through the unitary operator

UAB. Suppose the initial state is separable, i.e., ρAB = ρA ⊗
∣∣iB〉 〈iB∣∣. This state

undergoes a unitary evolution to another state ρ′AB. This induces a mapping ρA −→

ρ̃′A which is the quantum operation we are interested in. The final state is

ρ′AB = UAB
∣∣iB〉 ρA 〈iB∣∣UAB†. (3.139)
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The final state for the system SA is given by

ρ′A = TrB
[
ρ′AB

]
=
∑
n

〈
eBn
∣∣UAB

∣∣iB〉 ρA 〈iB∣∣UAB† ∣∣eBn 〉 , (3.140)

where
{∣∣eBn 〉} is an orthonormal basis of HB. Define

KA
n :=

〈
eBn
∣∣UAB

∣∣iB〉 , (3.141)

and

KA†
n :=

〈
iB
∣∣ (UAB

)† ∣∣eBn 〉 . (3.142)

From the unitarity of UAB ∑
n

KA†
n KA

n = IA. (3.143)

We can rewrite Eq. (3.140) as

ρ′A =
∑
n

KA
n ρ

AKA†
n , (3.144)

and therefore we found the Kraus operators.

In this section we presented the general picture of quantum dynamics and its

relation with Kraus representation. In the last section we will use some tools we

have discussed to study the phenomenon of decoherence and environment-induced

superselection, both of which are intimately related.

3.6 Decoherence and Environment-Induced Superselection

Decoherence is the phenomenon by which several superposition states are su-

pressed dynamically when interacting with an environment. This means that sev-

eral initial pure states are transformed into (possibly different) mixed states, losing

the coherence between the relative phases they had at the beginning. In general,

we cannot control all environment degrees of freedom and thus decoherence is seen

as a ubiquitous process outside the laboratory. For quantum computers, decoher-

ence may be a difficult problem to deal with since many processing protocols are

based on maximally entanglement states, which are pure states. In 1980s Zurek

introduced the concepts of pointer basis [20] and environment-induced superselec-

tion [21], where the environment selects dynamically a basis of states of the system

which do not suffer decoherence. Decoherence occurs in any superposition of such

states. From this point of view, decoherence arises simply because the interaction
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of environmental particles with the system creates correlations between the system

and the environment, and this process tends to transform the original pure quan-

tum state into a statistical mixture. This correlation created with the environmental

particles carries information (coherence) away and consequently spoils the capacity

of the system to be used to perform the desirable tasks. In this section we will

present a simple model for decoherence. This model is very simple but captures the

underlying idea of the decoherence process.

Consider a scatterer system SA on which another quantum system SB is scat-

tered. The scatterer center is supposed to have two orthonormal states
∣∣0A〉 and∣∣1A〉 which are not modified by the scattering (stable states). The scattered system

SB arrives with the state
∣∣iB〉 and is transformed asymptotically into the state

∣∣0B〉
(
∣∣1B〉) if scattered by the state

∣∣0A〉 (
∣∣1A〉). The three states are supposed to for an

orthonormal basis in HB
 as they are all mutually distinguishable in the laboratory.

One can consider
∣∣0A〉 and

∣∣1A〉 to be two energy levels and
∣∣iB〉, ∣∣0B〉 and

∣∣1B〉 to

be three momentum states.

The scattering process is a unitary process of the composite system SAB. The

unitary operator has the following effect on initial states

ÛAB
∣∣0A, iB〉 =

√
1− p

∣∣0A, iB〉+
√
p
∣∣0A, 0B〉 , (3.145)

ÛAB
∣∣1A, iB〉 =

√
1− p

∣∣1A, iB〉+
√
p
∣∣1A, 1B〉 , (3.146)

where p is the scattering probability. Based in this process we can write a unitary

operator responsable for the scattering process as

UAB =
√

1− p
(∣∣0A, iB〉 〈0A, iB∣∣+

∣∣1A, iB〉 〈1A, iB∣∣)
+
√
p
(∣∣0A, 0B〉 〈0A, iB∣∣+

∣∣1A, 1B〉 〈1A, iB∣∣+H.C.
)
. (3.147)

Using Eqs. (3.141) and (3.142) we find the Kraus operators of the quantum

operation that acts on the subsystem SA to be

KA
i =

〈
iB
∣∣UAB

∣∣iB〉 =
√

1− pIA =
√

1− p

1 0

0 1

 , (3.148)

KA
0 =

〈
0B
∣∣UAB

∣∣iB〉 =
√
p
∣∣0A〉 〈0A∣∣ =

√
p

1 0

0 0

 , (3.149)
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KA
1 =

〈
1B
∣∣UAB

∣∣iB〉 =
√
p
∣∣1A〉 〈1A∣∣ =

√
p

0 0

0 1

 . (3.150)

The condition

KA†
i KA

i +KA†
0 KA

0 +KA†
1 KA

1 = IA, (3.151)

for the Kraus operators can be easily seen to be fulfilled. If the system SA was in

the state ρA before the scattering then the quantum operation which gives the state

ρ′A after the scattering is given by

ρ′A = EA
(
ρA
)

= KA
i ρ

AKA†
i +KA

 ρ
AKA†

 +KA
 ρ

AKA†
 , (3.152)

or, in the computational basis

ρ′A =

 ρA00 (1− p) ρA01

(1− p) ρA10 ρA11

 . (3.153)

If scattering occurs with certainty (p = 1), the non-diagonal elements of the density

operator of SA vanish in the computational basis. For 0 ≤ p < 1, the non-diagonal

elements decrease by the factor (1− p). Scattering causes decoherence.

In the limiting case of perfect scattering, one scattering process produces an

entangled state,

(
c0

∣∣0A〉+ c1

∣∣1A〉) ∣∣iB〉 U(p=1)−→ c0

∣∣0A, 0B〉+ c1

∣∣1A, 1B〉 , (3.154)

and therefore the previous pure (coherent in the computational basis) state of SA

becomes a statistical mixture under any local operations performed on it.

We will also use this toy model of decoherence to discuss the environment-induced

superselection [22,23] or simply einselection.

At the beginning of quantum mechanics or the old quantum theory, the attempts

to understand quantum phenomena were mainly based on classical concepts. For

instance, the planetary model of the atom put forward by Rutherford [24]. Not

long after that, physicists realized that a quantum theory could not be built upon

classical concepts. De Broglie’s idea of wave-particle duality and matter (phase)

wave set the stage for the development of a wave mechanics by Schrödinger. At

this time the new quantum theory was born. A theory which barely hinged on our

classical reality or perception of the world. A theory which still today is capable
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of striking physicists’ mind. The reductionist idea which revolve around physics

(or even science in general) asserts that a phenomenon can be fully understood if

we understand the parts contained in it. Within this philosophy a natural query is:

How can we understand the classical world (physics) from quantum mechanics? The

point we will address here is an attempt to understand why we don’t see macroscopic

superpositions of position eigenstates. Even though we are motivating einselection

from a philosophical perspective this phenomenon is important for controlling the

dynamics of quantum systems [25]. We will see that decoherence and extracting

information about the system are synonyms.

The quantum operation of scattering used above is associated with a one-event

scattering. In the practical world a reasonably large molecule is embedded in an

environment full of particles which scatter it off. In general there are a lot of par-

ticles colliding randomly and we would need a huge state space for the system-

environment. Instead, we will consider that one particle scatters at each time and

this situation simplifies the discussion because it is enough to consider just a com-

position of quantum operations. The qualitative information is maintained, though.

Suppose N particles scatter the system and the scattering probability is given by

p. Therefore, with Eq. (3.153) the final density operator of the system after N

scatterings is

ρ′A =

 ρA00 (1− p)N ρA01

(1− p)N ρA10 ρA11

 , (3.155)

where ρA is an arbitrary initial density operator. We have seen in Sec. (3.1) that

the purity measures the mixedness of a quantum state, ξ = 1 for a pure state and

ξ → 0 for a complete mixture. In our situation the purity of the final state is given

by

ξf = (1− p)2N ξi, (3.156)

where ξi is the purity of the initial state. In addition suppose the initial state is a

pure (coherent) state. The first thing to note is that for a sufficient large number of

scattering particles N , the diagonal terms of the density operator of the system get

arbitrarily small for p 6= 0. From Eq. (3.156) this means that the system becomes

more mixed and in the limit of N → ∞ it becomes maximally mixed. Another

point is that it does get mixed in this particular basis, namely
{∣∣0A〉 , ∣∣1A〉}. Let us

understand physically why this happens.
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The manner which we defined the interaction between the two systems, the

system SB, after the scattering, may carry information about the state of SA. If SA

was in the state
∣∣0A〉 with probability p the final state is

∣∣0A〉⊗∣∣0B〉 and therefore by

measuring the system SB we are able to know the state of the system SA. The same

happens if
∣∣1A〉 was the initial state of SA. In this sense the system SB monitors the

states
∣∣0A〉 and

∣∣1A〉 of SA. From the point of view of a multi-particle scattering, the

environment, composed of N particles, contains information about the state of SA.

On the other hand, from the point of view of the whole system SAB they may get

in a pure entangled state of the form given in Eq. (3.154). Summarily if the system

SA is either in
∣∣0A〉 or

∣∣1A〉 with or without scattering the final state is separable.

If scattering happens, the system SB (environment) monitors the state of SA and

we can obtain this information by measuring it. On the other hand, if SA is in a

superposition state then the whole system SAB may get entangled and the system

SA gets mixed. Thus, the interpretation of the first observation is that the more

mixed the system becomes (decoherence process) the more entangled it is with its

environment, and consequently this means that the environment carries information

about the system. In other words, our loss of local information about the system

(information which may be acquired by local operations on SA) is due to the fact

that the environment carried away this information. This may be good or bad. In

practice the environment is composed by an enormous amount of particles which

we are not able to control and this leads to the loss of coherence of the quantum

system under study. On the other hand, under a controlled way we could exploit

this to obtain information about the system, implementing interactions with a few

environment subsystems.

The second observation is that the statistical mixture ends up in a combination of{∣∣0A〉 , ∣∣1A〉} and not other states. This is due to the specific form of the interaction.

The way we modeled the interaction the environment carries information about the

system being in these states, and not in others. The form of the interaction defines

this preferred states (or preferred basis). In other words, the decoherence occurs in

this basis, i.e., the superposition of this basis is suppressed. As a consequence there

are a few superpositions which are allowed, these being any superposition which
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results in either the state
∣∣0A〉 or

∣∣1A〉. For instance, the superpositions given by

1√
2

(∣∣0Ax 〉± ∣∣1Ax 〉) , (3.157)

where
∣∣0Ax 〉 and

∣∣1Ax 〉 are the eigenvectors of the operator σAx . These two superpo-

sitions remain intact because a direct calculation of them gives the two preferred

states
∣∣0A〉 and

∣∣1A〉, respectively. The conclusion here is that not all quantum su-

perpositions are treated equally by decoherence. The superpositions which remain

allowed are exactly those which give as a result the preferred states. Physically, the

interaction of the system with the environment selects a set of preferred states which

are not affected by decoherence but nonetheless the superpositions of these states

are suppressed. This set of states which are robust against decoherence are defined

by the interaction. This interaction is such that the environment can be seen to be

monitoring the preferred states. As the environment (plus interaction) selects these

robust states this phenomenon is called environment-induced superselection.

With this phenomenon in mind we can understand, by extrapolation, why we

don’t see superposition of macroscopic objects. In general the classical interactions,

gravitational and electromagnetic, are position dependent. This means that the en-

vironmental particles possess information of the position of the system particles, or

that the environment monitors the position of the system. Therefore the superposi-

tion states of the system are the preferred states and any superposition of them are

rapidly suppressed by decoherence. A more realistic model using actual scattering

theory can be found in chapter 3 of the reference [26].



Chapter 4

Quantum Information Theory

Quantum information is a relatively recent field of science. Its main scope is

generally the same as the classical information but now taking into account, in a

fundamental way, the properties of quantum mechanics. Our current computers

are fundamentally based on transistors. As of 2012, the highest transistor count

in a commercially available CPU is over 2.5 billion transistors [27]. A transistor is

a semiconductor device, and hence, it is based on quantum mechanics. But this

does not necessarily mean that quantum mechanics plays a role in the processing of

information in a computer. In fact, nowadays, it does not. The way the transistors

are used they process information in a purely classical manner, i.e., in terms of two

binary digits 0 and 1. On the other hand, quantum information uses a qubit as its

fundamental system to process information. This means that 0 and 1 are now two

orthogonal states of a qubit, namely, |0〉 and |1〉. But in quantum mechanics these

are just two out of infinitely many different possible states of a qubit. It is precisely

this feature that quantum information intends to explore. For this purpose quantum

information is intimately connected with quantum computation. At the end of this

chapter we shall give some applications of quantum information theory.

At the same time not only quantum information is contributing to potentially

new applications but it has also been contributing for the foundations of quantum

mechanics itself. Quantum information has provided a new language to talk about

quantum mechanics and therefore to understand other fields of physics. As the

development of quantum information has shown the importance of entanglement,

physicists have been studying this property of quantum systems in different con-

texts. These studies show how broadly applicable the concept of entanglement can

be. Entanglement is a resource which can help in such tasks as the reduction of

73
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classical communication complexity and clock synchronization. It has also given

new insights for understanding many physical phenomena including super-radiance,

disordered systems and emergence of classicality. As a final example, it was also

used to characterize phase transitions: divergence of correlations at critical point

is always accompanied by divergence of a suitably defined entanglement length -

see [28] and references therein.

This chapter is organized as follows. In Sec. 4.1 we define the von Neumann

entropy and show its relationship with the Shannon entropy. In Sec. 4.2 we evaluate

and discuss the von Neumann entropy of two important steps in the processing of

information, the preparation, which is related with the coding, and the measurement,

which is related with the readout of the information. In Sec. 4.3 we discuss when

a quantum system is correlated or not as well as if its correlations are classical or

quantum. In Sec. 4.4 we study different measures of correlations, such as entropy

of entanglement, concurrence and quantum discord. In Sec. 4.5 we show some

interesting applications and phenomena using the concepts developed in the present

chapter, some of which are the quantum dense coding and quantum teleportation.

This chapter is heavily based on Ref. [10].

4.1 The von Neumann Entropy

In Ch. 2 we studied the classical theory of information and we saw that the

concept of entropy has a close relationship with the amount of information. With

the example in Sec. 2.3 we have seen that the Shannon entropy is a measure of

the average information per source symbol, or that the minimum number of bits

needed to characterize a given source is given by the nearest integer greater than

the Shannon entropy. In this section we will study the counterpart of this entropy

in quantum mechanics.

As we have seen, a classical signal source generates the letters of an alphabet,

one after another. This signal source can be described by an ensemble {xi,, pi} with

i = 1, . . . , N . Suppose we want to send a message through a quantum channel, i.e.,

the system in which we will encode the symbols of our source is a quantum system,

e.g., atoms of the same type with spin 1/2 , or photons. Therefore, these quantum

systems take on the role of carriers of the letters of the message. For each letter
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xi, an apparatus with the index i prepares a quantum system in the signal state

|ψi〉 and transmits it. The relationship between the letter xi and the state |ψi〉 is

unambiguous. The entire setup is called the quantum signal source. By means of

the preparation procedure, the classical information is thus coded in terms of pure

quantum states. This procedure produces a statistical mixture of signal states with

the density operator

ρ =
N∑
i=1

pi |ψi〉 〈ψi| (4.1)

which acts over a Hilbert space Hd of dimension d. The associated ensemble is the

quantum signal ensemble {|ψi〉 , pi} (cf. Fig. 4.1 and compare with Fig. 2.1).

Figure 4.1: Representation of the quantum signal source with signal ensemble

{|ψi〉 , pi}. This figure was copied from Ref. [10].

It is important that we do not require, in general, that the normalized state

vectors |ψi〉 to be orthogonal and, furthermore, the dimension d need not be the

same as N . The quantum channel should be free of disturbances and isolated from

outside influences, making the quantum signal ensemble to remain unchanged during

the transmission.

At a given moment there would be an attempt to read out the information which

was originally input into the signal source via projective measurements. For this

purpose, a detector which measures some observable D is used. The orthonormal

eigenstates of the observable D are

D |dm〉 = dm |dm〉 , (4.2)

and they form an orthonormal basis of Hd. The associated eigenvalues dm are

assumed to be nondegenerate. Then the correspondence between the measured



Chapter 4. Quantum Information Theory 76

values dm and the states |dm〉 after the measurement procedure is unambiguous.

The occurrence probability of a measured value dm in a measurement performed on

ρ is denoted by p (dm). Transmission of a signal via a quantum channel reflects the

underlying scheme of quantum theory, i.e., at the beginning stands the preparation

of a state and at the end, a measurement. The input consists of a sequence of

classical signals with the Shannon entropy H (p̃), and the output is a sequence of

measured values with the Shannon entropy H (p̃ (d)).

To complete the description, consider the spectral decomposition of the density

operator ρ,

ρ =
d∑

m=1

λm |m〉 〈m| , 〈m |m〉 = δmm′ (4.3)

with the eigenvectors |m〉 and the eigenvalues λm. The {|m〉 ,m = 1, . . . , d} form an

orthonormal basis of Hd.

We first consider a special situation, in which the classical information that

is being input can again be read out without losses. The quantum system is, to

this end, chosen so that the dimension d of Hd is the same as the number N of

characters in the classical signal ensemble. By a suitable choice of the preparation

procedure, corresponding to the character xi, an eigenstate |di〉 of some observable

D is generated (i.e. |ψi〉 = |di〉)

ρ =
N∑
i

pi |di〉 〈di| =
N∑
i

λi |i〉 〈i| . (4.4)

In this case, we thus have pi = λi and |di〉 = |i〉. The quantum signal source

becomes a quasi-classical source due to the distinguishability of the signal states.

Subsequently, the observable D is measured. The occurrence of the value di gives

a unique indication of the original input of the signal character xi, owing to their

distinguishability. All of the probability distributions involved are the same, p (di) =

pi = λi. Correspondingly, we obtain for Shannon’s entropy of the signal ensembles

and of the ensemble of the measured values the value H (p̃) = H (p̃ (d)).

The unique relation between the ensembles {xi, pi}, {|ψi〉 , pi} and {di, p (di)}

in this particular quasi-classical situation and the corresponding agreement of the

three probability distributions suggest that we associate to the statistical mixture,

with the density operator ρ of Eq. (4.4), a quantum entropy S ˜(λ) which has the
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same value as Shannon’s entropy, S ˜(λ) = H (p̃), given by

S ˜(λ) = −
d∑
i=1

λi log λi ≥ 0. (4.5)

Using the spectral decomposition of ρ in Eq. (4.3), S ˜(λ) can be written as a function

of the density operator ρ

S (ρ) := S ˜(λ) = −Tr [ρ log ρ] . (4.6)

This quantum entropy S (ρ) is also called the von Neumann entropy of the density

operator ρ. The unit of this entropy is a quantum bit by symbol or a qubit.

Since S (ρ) is unambiguously determined when ρ is fixed, we can generalize from

this special procedure described above and associate formally a von Neumann en-

tropy S (ρ) as in Eq. (4.6) to every density operator ρ and thus to every quantum

state, even in physical situations in which there is no signal transmission or proces-

sing. S (ρ) characterizes a density operator ρ independently of how the correspond-

ing state was prepared physically. ρ can also be a reduced density operator, which

describes the state of a subsystem of a multipartite system. A state ρ with a spectral

decomposition (4.3) cannot be distinguished from a statistical mixture of the states

of the eigenbasis with the ensemble {|m〉 , λm}. The state ρ can thus be completely

simulated in this way. With this statistical mixture, if it is generated as a signal

source, the classical information H ˜(λ) = S (ρ) will, on the average, be transmitted

per signal state. This route of producing a physical situation in which the Shannon

and von Neumann entropies are equal and then extends the von Neumann entropy as

a measure of information in the quantum realm is one possible procedure. There is

another suggestion that the von Neumann entropy is really the quantum analogue

of the Shannon entropy. This work was carried out by Schumacher in 1995 [29].

We will not go through his derivation, but its main conclusion is that: “The von

Neumann entropy S (ρ) of a signal ensemble of pure states can be interpreted as

the number of qubits per signal necessary to transpose it with near-perfect fidelity.”

The signal ensemble referred in the quotation is the same notion discussed in this

section. Transposition is a process that maps the quantum state of a system SA to

the system SB, at the cost of destroying the original state in SA, i.e.,

∣∣ψA〉⊗ ∣∣0B〉→ ∣∣0A〉⊗ ∣∣ψB〉 . (4.7)
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Fidelity is a measure which indicates how distinguishable two quantum states are.

The greater the fidelity the more similar the two quantum states are. For pure states

the fidelity is given simply by F (|ψ〉 , |φ〉) = |〈ψ |φ〉|. An ideal encoder-decoder

system should provide the maximum fidelity, meaning that the original state at the

sender (source) is the same state recovered at the destination. In the same way

as the Shannon entropy represents the minimum amount of binary digits necessary

to code a source such that error at the decoder is arbitrarily small (source coding

theorem), the Schumacher’s theorem states that the von Neumann entropy gives

the minimum amount of two-state systems (physical qubits) necessary to encode a

quantum signal (density operator) such that the recovered quantum signal is almost

exactly to the original after the transmission (transposition).

Being established the relationship between the von Neuman entropy and the

Shannon entropy let us explore some properties of this quantum entropy. If ρ is a

pure density operator, then it is a projection operator ρ = |ψ〉 〈ψ|. Therefore its

eigenvalues are 0 and 1. Hence the von Neumann entropy is S (ρ) = 0 (we define

0 log 0 = 0). As the eigenvalues of the density operator are non-negative, the von

Neumann entropy is also non-negative. The minimum value being zero and as it

was shown above it occurs for every pure quantum state. What is the maximum

value that S (ρ) can take? In order to determine it we need to extremize the von

Neumann entropy using the Lagrange multiplier method, as the values of λi’s of the

spectral decomposition of ρ satisfy the constraint
∑

k λk = 1. We need to extremize

the function F = S + α (1−
∑

k λk). Hence

∂F

∂λi
=
∂S

∂λi
− α = −

∑
k

∂λk
∂λi

[1 + log λk]− α = 0. (4.8)

Isolating α,

α = − (1 + log λi) , (4.9)

and then λi gives us

λi = 2−(1+α). (4.10)

Applying the constraint on λi’s we obtain∑
k

λk =
N∑
k

2−(1+α) = N2−(1+α) = Nλk = 1⇒ λk =
1

N
. (4.11)

This means that the extremum value of S (ρ) is achieved by the maximally mixed

state inHN . Substituting this in the von Neumann entropy we obtain S (ρ) = logN .
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As this is greater than zero this extremum is a maximum. The von Neumann entropy

for a density operator over a finite dimensional Hilbert space HN is bounded as

0 ≤ S (ρ) ≤ logN. (4.12)

Moreover, zero is achieved only for pure states and logN for maximally mixed

states. Therefore, the von Neumann entropy can be used to measure the mixedness

of density operators.

To derive further properties we need to define the quantum relative entropy.

Recalling the classical definition in Eq. (2.43) the quantum analogue is simply

extended to be

S (ρ||σ) := Tr [ρ log ρ]− Tr [ρ log σ] = −S (ρ)− Tr [ρ log σ] . (4.13)

As we derived the Gibbs’ inequality in the classical case, here the analogue is called

the Klein’s inequality. To prove it consider the decomposition of ρ and σ to be

ρ =
d∑

m=1

λm |φm〉 〈φm| , σ =
d∑

m=1

κm |ξm〉 〈ξm| . (4.14)

Then,

S (ρ||σ) =
∑
m

λm log λm −
∑
m

〈φm| (ρ log σ) |φm〉

=
∑
m

λm

(
log λm −

∑
m

〈φm| log σ |φm〉

)
. (4.15)

Evaluating the second part,

〈φm| log σ |φm〉 = 〈φm| log σ

(∑
m′

|ξm′〉 〈ξm′ |

)
|φm〉

=
∑
m′

log κm′ 〈φm | ξm′〉 〈ξm′ |φm〉 =
∑
m′

Pmm′ log κm′ , (4.16)

where Pmm′ ≥ 0 and
∑

m Pmm′ =
∑

m′ Pmm′ = 1. Therefore we can write

S (ρ||σ) =
∑
m

λm

(
log λm −

∑
m′

Pmm′ log κm′

)
. (4.17)

The logarithm function is a concave function
(
f

′′
(x) < 0

)
, thus

∑
m′ Pmm′ log κm′ ≤

log (
∑

m′ Pmm′κm′) or −
∑

m′ Pmm′ log κm′ ≥ − log (µm), thus

S (ρ||σ) =
∑
m

λm log

(
λm
µm

)
= D [λ||µ] ≥ 0, (4.18)
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where one recognizes the classical relative entropy.

With Klein’s inequality one may easily show that the von Neumann entropy is

subadditive. Consider ρ = ρAB and σ = ρA ⊗ ρB, therefore

S (ρ||σ) =− S
(
ρAB

)
− TrAB

[
ρAB log

(
ρA ⊗ ρB

)]
=− S

(
ρAB

)
− TrAB

[
ρAB log

(
ρA
)]
− TrAB

[
ρAB log

(
ρB
)]

=− S
(
ρAB

)
+ S

(
ρA
)

+ S
(
ρB
)
≥ 0, (4.19)

or,

S
(
ρAB

)
≤ S

(
ρA
)

+ S
(
ρB
)
. (4.20)

This means that the information, or uncertainty, contained in a composite state

cannot be greater than the addition uncertainty of the subsystems. This already

contrasts with the classical case where the joint entropy is always greater or equal

to the Shannon entropy of the independent sources. This means that, unlike the

classical case, if the subsystems are not independent the information of knowing

the whole is reduced when compared with the addition of the information of the

individual parts. As we will see later on, this is related to the possibility of stor-

ing information nonlocally in a quantum state, via quantum correlations such as

entanglement.

Concavity can also be easily proved using Klein’s inequality. Consider two den-

sity operators ρ1 and ρ2. Moreover, consider a convex combination of them to be a

new density operator ρ = λρ1 + (1− λ) ρ2, with 0 < λ < 1. By Klein’s inequality

λS (ρ1||ρ) + (1− λ)S (ρ2||ρ) ≥ 0. (4.21)

From Eq. (4.13) we can expand this expression as

λ (−S (ρ1)− Tr [ρ1 log ρ]) + (1− λ) (−S (ρ2)− Tr [ρ2 log ρ])

=− λS (ρ1)− (1− λ)S (ρ2)− Tr [(λρ1 + (1− λ) ρ2) log ρ] ≥ 0, (4.22)

or equivalently,

−λS (ρ1)− (1− λ)S (ρ2) + S (ρ) ≥ 0

⇒S (λρ1 + (1− λ) ρ2) ≥ λρ1 + (1− λ) ρ2. (4.23)

This means that given two states and their informational content, a statistical mix-

ture built with them always gives a state with increased uncertainty. The equality

only holds if λ = 0 or λ = 1.
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As the von Neumann entropy depends on the eigenvalues of the density operator

ρ it is invariant under unitary transformation, i.e.,

S
(
UρU †

)
= S (ρ) . (4.24)

This means that our information about the state does not change under unitary

dynamic evolution. In the same spirit it changes with a measurement dynamics as

we shall see now.

4.2 Entropy at the Interfaces: Preparation and Measure-

ment

When we structured the relationship between Shannon and von Neumann en-

tropies in the previous section we had to suppose that both the preparation and

measurement procedures were particularly special. In this section we will discuss

the behavior of the entropy at these two interfaces. The measurement is related

with how we read out information, and the preparation says how we code informa-

tion. These two situations do not play a fundamental role in classical information

theory but in the quantum case, as we may have non-orthogonal states, this may

lead to fundamental losses of information. We will begin studying the measurement

process.

4.2.1 The Entropy of Projective Measurements

We will describe the production of entropy through a projective measurement.

In a quantum channel the states are described by a density operator, say ρ, and

therefore possess a quantum entropy S (ρ). A non-selective measurement, associated

with a decoding observable D leads to a probability distribution {p (dm)} of the

possible values which can be measured, {dm}. After a non-selective measurement

the post-measured state is given by

ρ′ =
d∑

m=1

p (dm) |dm〉 〈dm| =
d∑

m=1

PmρPm. (4.25)

In turn, this new state has a quantum entropy S (ρ′). This also consitutes a Shannon

entropy of a signal ensemble {dm, p (dm)}, denoted as H (p̃ (dm)). As the set of

projectors of a projetive measurements are mutually orthogonal, the Shannon and
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von Neumann entropies are equal, i.e.,

S (ρ′) = H (p̃ (dm)) . (4.26)

The non-selective measurement through projective measurement generates a new

quasi-classical signal. We want to compare the entropy after and before the measure-

ment, S (ρ′) and S (ρ). Klein’s inequality permits us to do so.

We start with

0 ≤ S (ρ||ρ′) = −S (ρ)− Tr [ρ log ρ′] , (4.27)

and consider the second term more carefully. We have

Tr [ρ log ρ′] = Tr

[(∑
l

Pl

)
ρ log ρ′

]
= Tr

[∑
l

Plρ log (ρ′)Pl

]
, (4.28)

where we used the properties of the projection operators and permuted the terms

within the trace. From Eq. (4.25) we see that Plρ
′ = PlρPl = ρ′Pl holds. Therefore,

Pl also commutes with the operator function log ρ′. Using this we find

Tr [ρ log ρ′] = Tr

[∑
m

PmρPm log ρ′

]
= Tr [ρ′ log ρ′] = −S (ρ′) . (4.29)

Thus, after inserting this into Eq. (4.27), we obtain the overall result

S (ρ′) ≥ S (ρ) . (4.30)

In a non-selective projective measurement, the von Neumann entropy of the state

ρ′ after the measurement is the same as the von Neumann entropy of the state ρ

before the measurement if and only if the measurement takes place in the eigenbasis

of ρ; otherwise, it is greater. A non-selective measurement, therefore, transforms

the system into a new signal ensemble with a, in general, greater entropy and in this

manner it destroys information. The a priori uncertainty has increased as a result

of the non-selective measurement.

This can be verified with a very simple example. The pure state

|ψ〉 =
1√
2

(|0〉+ |1〉) (4.31)

has a vanishing entropy. Non-selective measurement in the computational basis

leads to the maximally mixed state

ρ =
1

2
I, (4.32)

with maximum entropy, S (ρ) = 1.
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4.2.2 The entropy of preparation

In quantum coding the classical signal source with the ensemble {xi, pi} is coded

into the quantum ensemble {|ψi〉 , pi}, described by the density operator ρ. The

maximum value of the quantum entropy is given by Eq. (4.12), i.e., it is bounded

by the logarithm of the dimension of the Hilbert space of the quantum system we are

using to code. The maximum value of the Shannon entropy H (p̃) is proportional to

the number N of characters in the classical alphabet xi through the same functional

form logN . In the quantum case N is the number of pure states which we are

going to code the letters, i.e., |ψi〉 ↔ xi. Since the quantum states |ψi〉 need not

be orthogonal the dimension d of the Hilbert space of the quantum channel may be

smaller than the number N of states used. As we are coding classical distinguishable

letters in non-orthogonal states, which possess redundant information, it is expected

that we are losing information. Therefore we expect a relation of the form

H (p̃) ≥ S (ρ) . (4.33)

The equality only holds if the states |ψi〉 are mutually orthogonal. This inequality

is demonstrated in App C.

Therefore, if the states are not orthogonal, there is no decoding observable with

which the full information content of the coded classical message could be read

out again. ρ transmits less information than was contained in the original classical

signal. Even with an optimally-matched final measurement, the information can no

longer be completely recalled.

4.3 Correlations

We live in a, fairly reasonable to be considered, causal world. Causality implies

correlation but the reverse is not true. Following the Macmillan Dictionary [30]

the definition of correlation is: “a connection or relationship between two or more

things that is not caused by chance”. If A causes B then they are correlated in

the sense that if A happens then we know that B is going to happen too. On the

other hand, if we know that the two events A and B have a probability to occur

together, this does not imply causality neither from A to B nor from B to A. In

general, everyday life events are so complex that we certainly are disregarding many
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potentially influential factors. What we can say is that two events are correlated, or

not. Correlation is a statistical concept. Two events are correlated if their outcomes

(or the appropriate notion for them) are statistically dependent, or in other words,

they are not statistically independent. From probability theory there are at least

two ways of classifying independence events. If the joint probability distribution

is separable, p (x, y) = p (x) p (y), or if the conditional probability is independent

of the previous event, p (x|y) = p (x) and p (y|x) = p (y). These two conditions

are synonyms as joint and conditional probabilities are connected by Bayes’ rule

p (x, y) = p (x|y) p (y) = p (y|x) p (x). Using two random variables we can also state

the independence through the Shannon entropy studied in Ch. 2. Two random

variables are uncorrelated if and only if the mutual information is zero. With this

criterion we may begin to interpret the correlation as a consequence of information

sharing between the two random variables. In the quantum realm the probability

measure is associated with the density operator of the quantum state, i.e., the density

operator of a quantum system is the object that we use as a probability distribution

to calculate probabilities of outcomes and averages. What we are going to show now

is the condition over a density operator of two systems SA and SB, ρAB, that makes

them uncorrelated.

Within a fully probabilistic perspective, the joint probability distribution of two

outcomes a and b associated with two observables A and B, where A is an observable

of the system SA and B is an observable of the system SB, is given by

p (a, b) = TrAB
[
ρAB |a〉 〈a| ⊗ |b〉 〈b|

]
. (4.34)

Based on what we stated before the two systems are statistically independent, or

uncorrelated, if and only if p (a, b) = p (a) p (b), where p (a) = TrA
[
ρA |a〉 〈a|

]
and

p (b) = TrB
[
ρB |b〉 〈b|

]
. As usual, ρA and ρB stand for the reduced density operators

of the system SA and SB. The only way to satisfy this condition is if the composite

state is a product state, i.e.,

ρAB = ρA ⊗ ρB. (4.35)

We see that the separability condition is transfered from the probabilities to the

density operators.

Entanglement is one type of quantum correlation whereas correlations may ap-

pear as classical or quantum, local or nonlocal. Usually, local and nonlocal correla-
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tions are measured by Bell-like inequalities and classical and quantum correlations

are measured by an appropriate measure which is based on a notion of nonclassica-

lity. It is known that not all entangled states violate the Bell inequalities, meaning

that quantum correlations may exhibit local or nonlocal character [31]. This re-

veals the complex structure of correlations. In this work we will only focus on the

classical-quantum character of correlations.

When considering just pure states a relevant question for this matter is whether

the state is entangled or not. We have already defined an entangled state as a su-

perposition of product states (cf. Sec. (3.2)). A non-entangled state is necessarily a

product state which is nothing but a separable state. So separability is a reasonably

good criterion to characterize entangled states. A state is either entangled or sepa-

rable. Even though the state given by Eq. (4.35) is separable the class of separable

states for density operator is more general than that. An arbitrary density operator

is called to be separable if and only if

ρAB =
∑
i

piρ
A
i ⊗ ρBi , (4.36)

where {pi} is a normalized probability distribution, i.e., pi ≥ 0 and
∑

i pi = 1. We

shall see that there is a definite way to prepare a state like this and we will only use

classical concepts for this, and therefore, interpretationally, we should not expect

any entanglement. Mathematically stated a separable state is a convex combination

of product states.

Figure 4.2: Preparation of a separable state from local operations and classical

communication (LOCC).

Consider Fig. 4.2, Alice has access to a classical probability distribution {pi}

and she has already established with Bob that if the outcome is i she prepares



Chapter 4. Quantum Information Theory 86

the state ρAi in the system SA and Bob prepares the state ρBi in the system SB.

The states ρAi and ρBi are in general different. Then, whenever an outcome of

the probability distribution results, she uses a classical channel to communicate

to Bob which outcome occurred so that he can prepare the corresponding state.

After preparing both states they send both systems to a third party where someone

can perform measurements with both systems. The correct density operator for

this third person to use in order to describe the outcomes of measurements is the

separable state given by Eq. (4.36). Therefore, any separable state can, in principle,

be prepared by local operations and classical communication (LOCC). A natural

question is: how can we know if a given state is separable or entangled? For pure

states the strategy can be reduced to finding a basis such that the product nature

of the state is explicitly shown. For an arbitrary density operator one should seek

that it can (or can not) be written in the form given by Eq. (4.36). This is a

non-trivial task which has been solved explicitly only for a few cases. This problem

is called the separability criterion problem and we will not be concerned with it in

this work. Rather, we just say for completeness that there are some methods of

identifying the separability of a density operator and some of them are: the Peres-

Horodecki (positive partial transpose, PPT) criterion, which says that the partial

transposition∗ is a necessary condition for separability [32] and in some particular

cases even sufficient [33], the reduction criterion and the majorization criterion [34].

There is at least another way to look at correlations which is through the cor-

relations of measurements. If we are given, sequentially, a pair of boxes with one

ball in each of them and we are asked to “measure” the color of them, after a suffi-

ciently large number of measurements we would be able to infer the probability of

ball one be blue when ball two is red, et cetera. This set of probabilities of joint

measurements gives us the information of the correlation between the two balls. Let

us interpret this with some examples.

Suppose the balls can be in any of two states, blue or red. As these states are

macroscopically distinguishable, it is possible to represent them quantum mecha-

nically as two orthogonal states |Bi〉 and |Ri〉, where i is the labeling of the boxes.

∗Partial transposition of some party, say Alice, is the transposition of the indices of that party

in the density operator. With a density operator of two parties the partial transposition maps

ρmµ,nν →
(
ρTA

)
nµ,mν

.
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Therefore, if the ensemble of boxes are described by a density operator

ρ = |B1〉 〈B1| ⊗ |R2〉 〈R2| (4.37)

we will always find ball one to be blue and ball two to be red. It seems that this

state is perfectly correlated but in fact this high precision means that they are on

their own and therefore independent. Now suppose the state

ρ =
1

3
|B1〉 〈B1| ⊗ |R2〉 〈R2|+

2

3
|R1〉 〈R1| ⊗ |B2〉 〈B2| . (4.38)

This state tells us that there is a probability of one-third to find the combination

B1R2 and two-thirds to find the R1B2. This state is a convex-sum of product states

and therefore is a separable state. As this state is completely classical, despite our

Dirac notation, it is said to be classically correlated. As this state is separable,

one might be tempted to think that all separable states are classically correlated,

but this is not true. There are notions of classicality, such as that provided by

quantum discord, that show that separable states can be quantum correlated even

though we presented the class of separable states as being reasonably connected

with classical preparation ways, classical communication and local measurements.

Quantum correlations can arise in separable states because the states being prepared

by LOCC may not be distinguishable, a property exclusivelly quantum.

These two states (blue and red) were based on classical ideas but to deepen the

discussion we will inevitably have to consider really quantum states, exploiting the

non-distinguishablity. The two balls now are replaced by two spins, blue color is

the up state |0〉 and red color is the down state |1〉 in a conventionally established

z-direction. Now there is the possibility to have x-polarized spin states which share

information about the z-polarized ones, i.e., that are not orthogonal. We represent

by |+〉 and |−〉 the x+-polarization and x−-polarization, respectively. Consider the

state

ρ =
1

3
|0〉 〈0| ⊗ |+〉 〈+|+ 2

3
|1〉 〈1| ⊗ |−〉 〈−| . (4.39)

Comparing the states of Eqs. (4.38) and (4.39), in the first situation, classical-

like, we are dealing with only just one property of the particle (ball), its color.

Whereas in the second situation, quantum-like, we have two different measurable

properties, z- and x-polarized spin directions. Would we get a state like that of

Eq. (4.39) if we tried to extend the classically correlated state considering two
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properties of the balls? The answer is no, precisely because quantum states may

not be distinguishable. Classically, if we considered another property of the ball,

like dyeing a small black dot on them or not, this property will necessarily be

distinguishable from the previous one. This will classically always happen because

of the way nature is at that level. Being always distinguishable may be roughly

stated as, the ball may always possess the two properties at the same time. This

is sharply contrasted with quantum mechanics because, in our example, a particle

cannot have well-defined polarizations in the two directions. This gives rise to the

non-orthogonality and indistinguishability. The state given by Eq. (4.39) surely

possesses correlations but are neither classical nor entanglement. These correlations

are called quantum correlations.

The last situation occurs when we have entangled states. Consider the singlet

state
∣∣ΨAB
−
〉

= 1√
2

(|01〉 − |10〉). Its density operator is given by

ρ =
1

2
[|01〉 〈01| − |01〉 〈10| − |10〉 〈01|+ |10〉 〈10|] . (4.40)

This state is also possess quantum correlations but from a particular type, entan-

glement.

In this section we discussed the various types of correlations, classical, quantum

and entanglement. In the next section our goal will be to provide tools to measure

these different correlations.

4.4 Measuring Correlations

Quantum correlations have been experimentally verified in optical [35,36,37,38,39]

[40] and nuclear magnetic ressonance (NMR) [42,43,44,45,46] systems. With three

particles [38] and continuous degree of freedom [39]. In this section we will study

some measures of correlation for bipartite quantum systems. As we emphasized

previously, a pure state can be entangled or not. There is no room for classical cor-

relations in a pure state because a pure state, as it says, is purely quantum. In order

to have classical correlations we necessarily need mixed states. Therefore, we will

separate the measuring of correlations into two parts. In the first part we will study

how we measure the amount of entanglement in pure states and in the second part

we will see how to measure quantum and classical correlations in general density

operators, taking into account the mixed states. As we shall see in the next section,



Chapter 4. Quantum Information Theory 89

knowing how to measure quantum correlations is of paramount importance in quan-

tum information theory. It is widely accepted nowadays that for a specific protocol

on a quantum computer surpass a similar protocol in a classical computer we must

use quantum correlations as a resource in the computation. For instance, in a work

by Brukner, et al. [47] they showed that: “there always exists a communication

complexity problem, for which a protocol assisted by states which violate the [Bell]

inequality is more efficient than any classical protocol.” It still is an open problem

to know if an arbitrary multipartite state is entangled, classically correlated or if it

possess quantum correlations. For the bipartite case there are several measures of

correlations and some of those we will study in this section.

4.4.1 Correlations in Pure States; Entanglement

As we concluded previously, a pure state which is correlated is necessarily en-

tangled. Moreover, we also established that for a pure quantum state be entangled

it must be a superposition of product states or, in other words, it must not be a

product state.

One way to identify if a pure state is entangled or not is using the Schmidt

decomposition (cf. App. A). The Schmidt decomposition is nothing but a theorem in

linear algebra applied to the quantum states. This theorem is called Singular Value

Decomposition and its demonstration can be found in the App. A. In the context

of quantum mechanics it states the following. Consider two Hilbert spaces HA and

HB with dimensions nA and nB, respectively, and an arbitrary composite pure state∣∣ψAB〉. Moreover, suppose
{∣∣iA〉 , i ∈ {1, . . . , nA}} and

{∣∣jB〉 , j ∈ {1, . . . , nB}} are

two orthonormal basis for HA and HB, respectively. This state may be written as

∣∣ψAB〉 =

nA∑
i=1

nB∑
j=1

αij
∣∣iA, jB〉 . (4.41)

The Schmidt decomposition guarantees that such an arbitrary state may always be

rewritten as ∣∣ψAB〉 =
k∑

n=1

√
pn
∣∣nA, nB〉 , (4.42)

where k = min (nA, nB) is the Schmidt rank, pn ≥ 0 for every n and
{∣∣nA〉} and{∣∣nB〉} are orthonormalized eigenvectors of ρA and ρB, respectively. The Schmidt

number is defined to be NS =
∑k

n p
2
n. We can observe directly from the Eq. (4.42)
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that if the state is not entangled it means that both Schmidt rank and Schmidt

number are equal to one. If the state is maximally entangled, then pn = 1/k for

every n and therefore the Schmidt number assumes the value NS = 1/k. The

Schmidt rank can be used to identify if the state is separable and therefore not

entangled. The Schmidt number can be used as a measure of entanglement, as it

may vary in the range 1/k ≤ NS ≤ 1.

Comparing the Schmidt number and the purity (cf. Eq. (3.22)) for bipartite

systems we see that they are the same. Therefore, the purity is also a measure of

the amount of entanglement.

The von Neumann entropy of a pure state is always zero as we have already

discussed in Sec. (4.1). Notwithstanding we can use it to measure the entanglement

of a bipartite state. The protocol consists in evaluate the reduced density operator

for the system SA and calculate the von Neumann entropy for it. Or the same for

the system SB. As we already said, the entanglement in a system is connected with

the mixedness of its subsystems. The von Neumann entropy for a bipartite system

of dimension N is bounded by 0 ≤ S (ρ) ≤ logN . Zero is achieved when ρ is a

pure state and the upper bound is achieved when ρ is completely mixed. The von

Neumann entropy for any pure bipartite quantum state is therefore always zero,

S
(
ρAB

)
= 0. If the state is a product state then S

(
ρA
)

= S
(
ρB
)

= 0. But for a

maximally entangled state, such as the four Bell states, we find S
(
ρA
)

= S
(
ρB
)

= 1,

which means that locally we lost information about the system altogether. The

information about the composite system is contained exclusively in the correlations

between the subsystems. Therefore we define the entropy of entanglement for a

bipartite pure state as

E (ψ) = S
(
ρA
)

= S
(
ρB
)

= −
k∑
i=1

pi log pi. (4.43)

This entropy is bounded by 0 ≤ E (ψ) ≤ 1. Observe that we claimed that S
(
ρA
)

=

S
(
ρB
)

in the expression above. We can see this from the Schmidt decomposition

as ρA and ρB have the same eigenvalues (cf. App. A).

We see that these three measures are closely connected. The conclusion is that

for pure bipartite states, entanglement is directly proportional to the mixedness of

the reduced states. This means that the information about the composite system is

stored in the quantum correlations, entanglement, i.e., locally we can not distinguish
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a system prepared in a maximally mixed state from a system which is maximally en-

tangled with a distant system, the last of which is sometimes referred to an improper

mixture. Let us calculate the entropy of entanglement for a given state.

Consider the following state

∣∣ψAB〉 =
√
λ |00〉+

√
(1− λ) |11〉 , (4.44)

where 0 ≤ λ ≤ 1. Observe that λ is a parameter which measures the weight of the

states in the superposition. If λ is zero or one then we have a product state. If λ

is 1/2 we have a Bell state, which we are finally going to show that it is maximally

entangled. Thus, by varying λ, we vary the amount of entanglement in the state.

In order to calculate the entropy of entanglement we must obtain the reduced

density operator of one of the subsystems. Let us obtain the reduced state for the

system SA. The composite density operator is given by

ρAB =λ2 |00〉 〈00|+
√
λ (1− λ) |00〉 〈11|

+
√
λ (1− λ) |11〉 〈00|+ (1− λ) |11〉 〈11| . (4.45)

The reduced density operator for the system SA is

ρA = TrB
[
ρAB

]
=
〈
0B
∣∣ ρAB ∣∣0B〉+

〈
1B
∣∣ ρAB ∣∣1B〉

=λ
∣∣0A〉 〈0A∣∣+ (1− λ)

∣∣1A〉 〈1A∣∣ . (4.46)

The reduced state is already diagonalized, therefore the entropy of entanglement is

given by

E
(
ψAB

)
= −λ log λ− (1− λ) log (1− λ) . (4.47)

A plot of this quantity is presented in Fig. 4.3. As we claimed the entanglement

achieves its maximum for the Bell state, when λ = 1/2, and it is zero when λ = 0, 1.

4.4.2 Correlations in Arbitrary Bipartite States; Accounting for Mixed

States

In this section we will discuss other measures of correlations. We will be able

to distinguish, in some measure, the quantum from the classical correlations and,

moreover, see that entanglement is not the only quantum correlation that exists.

When we studied the correlations of two messages in Ch. 2 we interpreted the

mutual information I (X;Y ) as the amount of information shared by the two sources,
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Figure 4.3: Entropy of entanglement as a function of λ.

i.e., they are correlated or not. The two sources have no information in common

if and only if they are uncorrelated, p (x, y) = p (x) p (y). Therefore, the mutual

information can be seen to measure the total amount of correlation between the

two sources X and Y . We will now extend the concept of mutual information to

the quantum level in terms of the von Neumann entropy. This quantum mutual

information is commonly interpreted to measure the total amount of correlation

between two subsystems.

In order to define mutual information recall that we needed the definition of joint

entropy. Given a system SAB which is composed by two subsystems SA and SB

they can be in an arbitrary state given by the density operator ρAB. The quantum

analogue of the joint entropy is just the von Neumann entropy for this density

operator,

S
(
ρAB

)
= S (AB) = −Tr

[
ρAB log ρAB

]
. (4.48)

If the two subsystems are uncorrelated, ρAB = ρA⊗ρB, then S
(
ρA ⊗ ρB

)
= S

(
ρA
)
+

S
(
ρB
)

which is an expected property for the joint entropy to satisfy. The quantum

mutual information is defined analogously to the classical counterpart as

I
(
ρAB

)
= I (A : B) = S

(
ρA
)

+ S
(
ρB
)
− S

(
ρAB

)
. (4.49)
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Let us evaluate the quantum mutual information for some states.

Firstly consider two uncorrelated qubits

ρAB =
1

4
IAB =

(
1

2
IA
)
⊗
(

1

2
IB
)

= ρA ⊗ ρB. (4.50)

The joint entropy is S (AB) = 2. The two reduced states are both maximally

mixed and therefore S (A) = S (B) = 1. Thus the quantum mutual information is

I (A : B) = 0. Observe that the Venn diagram interpretation given in Sec. 2.4 is

valid.

In the second example consider a classically correlated state

ρAB =
1

2

(∣∣0A〉 〈0A∣∣⊗ ∣∣1B〉 〈1B∣∣+
∣∣1A〉 〈1A∣∣⊗ ∣∣0B〉 〈0B∣∣) . (4.51)

In the computational basis, ρAB = diag
(
0, 1

2
, 1

2
, 0
)
. Therefore, S (AB) = 1. The

reduced density operators are again maximally mixed and therefore S (A) = S (B) =

1. The quantum mutual information takes the value I (A : B) = 1. For this situation

the Venn diagram interpretation is still valid.

The last example assumes an entangled state

ρAB =
∣∣ΦAB

+

〉 〈
ΦAB

+

∣∣ . (4.52)

This state is pure, S (AB) = 0. The reduced states are again maximally mixed,

S (A) = S (B) = 1. Therefore I (A : B) = 2. The noteworthy aspect is that with

these values for the quantum entropies, the Venn diagram interpretation collapses.

This is a fundamental consequence of quantum mechanics, of entanglement. Classi-

cally it is impossible for the mutual information be greater than the joint entropy,

as happened here. This suggests that entanglement is a property fundamentally

different from any classical counterpart. Other inequalities between entropies are

violated, e.g., H (X) ≥ I (X;Y ).

Let us now study a proposed measure of entanglement for bipartite mixtures. We

have seen that the entropy of entanglement is given by E
(
ψAB

)
= S

(
ρA
)

= S
(
ρB
)
.

So let us calculate the entropy of entanglement for an arbitrary two qubits state

∣∣ψAB〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 . (4.53)

This provides a density operator which in the basis {|00〉 , |01〉 , |10〉 , |11〉} can be
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written as

ρAB =


|a|2 ab∗ ac∗ ad∗

ba∗ |b|2 bc∗ bd∗

ca∗ cb∗ |c|2 cd∗

da∗ db∗ dc∗ |d|2

 . (4.54)

The reduced density operator for the system SA can be evaluated given us

ρA =

|a|2 + |b|2 ac∗ + bd∗

ca ∗+db∗ |c|2 + |d|2

 . (4.55)

In order to evaluate the von Neumann entropy of this state we must diagonalize it.

The eigenvalues of a two-by-two matrix A are easily shown to be

λ± =
Tr [A]±

√
(Tr [A])2 − 4Det [A]

2
. (4.56)

The trace is trivially given by Tr
[
ρA
]

= 1, by normalization. The determinant is

Det
[
ρA
]

=
(
|a|2 +

∣∣b2
∣∣) (|c|2 + |d|2

)
− (ac∗ + bd∗) (ca∗ + db∗)

= |a|2 |c|2 + |a|2 |d|2 + |b|2 |c|2 + |b|2 |d|2 − |a|2 |c|2 − adc∗b∗ − cbd∗a∗ − |b|2 |d|2

= |a|2 |d|2 − 2Re [adb∗c∗] + |b|2 |c|2 = (ad− bc) (ad− bc)∗ = |ad− bc|2 . (4.57)

Concurrence [48] is defined as

C
(
ψAB

)
:= 2 |ad− bc| . (4.58)

The eigenvalues of ρA can be written as

ξ± =
1±

√
1− [C (ψAB)]2

2
. (4.59)

The entropy of entanglement is given by

E
(
ψAB

)
= −ξ+ log ξ+ − ξ− log ξ− =−

(
1 +
√

1− C2

2

)
log

(
1 +
√

1− C2

2

)
−
(

1−
√

1− C2

2

)
log

(
1−
√

1− C2

2

)
=h

(
1 +
√

1− C2

2

)
, (4.60)

where the newly introduced function is defined as

h (x) = − (x log x+ (1− x) log (1− x)) . (4.61)
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As the entropy of entanglement is a monotonic function of the concurrence, the

concurrence is also used as a measure of entanglement. If C = 0, the state is

separable and if C = 1, the state is maximally entangled. Until now we just found

another measure for bipartite pure states. But we claimed that this measure is valid

for mixtures. We will write the concurrence as a function of the density operator

elements and then we will be able to extend the measure for mixtures.

The concurrence can also be written as

C
(
ψAB

)
=
∣∣〈ψAB ∣∣ ψ̄AB〉∣∣ . (4.62)

The state vector
∣∣ψ̄AB〉 is obtained from

∣∣ψAB〉, by first taking the complex conjugate

of the coefficients in the computational basis, from Eq. (4.53)∣∣ψAB〉∗ = a∗ |00〉+ b∗ |01〉+ c∗ |10〉+ d∗ |11〉 , (4.63)

and then applying the following operator∣∣ψ̄AB〉 = σA2 ⊗ σB2
∣∣ψAB〉∗ . (4.64)

The effect of σ2
∗ is to change the states of the computational basis and to insert the

relative phase ±i. In the basis {|00〉 , |01〉 , |10〉 , |11〉} we find

σA2 ⊗ σB2 =

 0 −iσ2

iσ2 0

 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 . (4.65)

The resulting state vector is∣∣ψ̄AB〉 = −d∗ |00〉+ c∗ |01〉+ b∗ |10〉 − a∗ |11〉 . (4.66)

The inner product is, thus,〈
ψAB

∣∣ ψ̄AB〉 = −a∗d∗ + b∗c∗ + c∗b∗ − d∗a∗ = −2 (a∗d∗ − b∗c∗) , (4.67)

and finally √∣∣〈ψAB ∣∣ ψ̄AB〉∣∣2 =
√

4 (a∗d∗ − b∗c∗) (ad− bc)

=

√
4 |ad− bc|2 = 2 |ad− bc| = C

(
ψAB

)
. (4.68)

∗σ2 = −i |0〉 〈1|+ i |1〉 〈0| is a Pauli matrix.
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The next step is to write this expression in terms of density operators. Begin

with

C2
(
ψAB

)
=
∣∣〈ψAB ∣∣ ψ̄AB〉∣∣2 =

〈
ψAB

∣∣ ψ̄AB〉 〈ψ̄AB ∣∣ψAB〉
=Tr

[(∣∣ψAB〉 〈ψAB∣∣) (∣∣ψ̄AB〉 〈ψ̄AB∣∣)]
=Tr

[
ρABρ̄AB

]
= Tr

[
RAB

]
, (4.69)

where ρAB =
∣∣ψAB〉 〈ψAB∣∣, ρ̄AB =

∣∣ψ̄AB〉 〈ψ̄AB∣∣ and RAB = ρABρ̄AB. The density

operator ρ̄AB is naturally constructed as

ρ̄AB =
∣∣ψ̄AB〉 〈ψ̄AB∣∣ =

(
σA2 ⊗ σB2

)
ρ∗AB

(
σA2 ⊗ σB2

)
, (4.70)

where ρ∗AB is generated by writing ρAB as a matrix in terms of the computational

basis and taking the complex conjugate of the matrix elements.

For any density operator ρAB we can now find the concurrence C
(
ρAB

)
using

Eq. (4.69). Wootters has shown that the concurrence can also be written explicitly

in the form [48]

C
(
ρAB

)
= max {0, λ1 − λ2 − λ3 − λ4} , (4.71)

where λ1, λ2, λ3 and λ4 are the square roots of the eigenvalues of the matrix

RAB = ρABρ̄AB. They are non-negative real numbers and λ1 is the largest eigenvalue.

The question which remains is that if this measure of entanglement for mixtures is

satisfactory physically. Wootters also showed this and we will discuss this next.

Any mixture can be written as an ensemble of pure states

ρAB =
∑
i

pi
∣∣ψABi 〉 〈

ψABi
∣∣ . (4.72)

The mean entanglement of the state ρAB is found as the mean value of the entropy

of entanglement E
(
ψABi

)
of the pure states, i.e.

∑
i piE

(
ψABi

)
. The entanglement

of formation of ρAB is defined as the minimum value of the mean entanglement if

one considers all the possible ensemble decompositions of ρAB, i.e.,

Ef
(
ρAB

)
= min

∑
i

piE
(
ψABi

)
. (4.73)

This means that if we prepare a quantum system with the density operator ρAB as

a mixture, then at least the entanglement Ef
(
ρAB

)
must be produced on average.

Wootters also showed that the entanglement of formation, which is a physically
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reasonable measure of entanglement for mixtures, is a function of concurrence as

given by

Ef
(
ρAB

)
= h

(
1 +

√
1− C2 (ρAB)

2

)
, (4.74)

where h is given by Eq. (4.61). As the function h is monotonic, the concurrence can

also be considered a measure of entanglement for mixtures, even without a direct

interpretation. As an example of the calculation we refer to Ch. 5 where we use the

concurrence as a measure for the toy model studied in this work and experimental

determination of concurrence can be found in Refs. [35,36,37].

We studied two measures of entanglement for arbitrary bipartite states, entan-

glement of formation and concurrence. Now we are going to study a measure of

correlations in a density operator. This approach is fundamentally based on the

classical two message entropies, mutual information, conditional entropy and joint

entropy. We will begin recalling briefly some relations. For a more detailed expla-

nation see Ch. 2.

We have seen that, in the classical theory of information, the Shannon entropy

H (X) is the appropriate measure of information of a random variable X. The

extension to two random variables is straightforward just replacing the probabilities

by the joint probability distribution. This entropy is the joint entropy H (X, Y ) and

it measures the total amount of non redundant information in the two messages.

The mutual information I (X;Y ) measures the amount of common information or,

the total amount of correlations between the two random variables. There is also

the conditional entropy H (X|Y ) which measures the amount of information we will

receive from X given that we know Y . The mutual information is related with the

other entropies through two different expressions, namely

I (X;Y ) = H (X) +H (Y )−H (X, Y ) (4.75)

and

I (X;Y ) = H (X)−H (X|Y ) = H (Y )−H (Y |X) . (4.76)

In the context of quantum mechanics, the Shannon entropy is associated with

the von Neumann entropy S (ρ). The analogous of the joint entropy is just the von

Neumann entropy of a bipartite system, i.e., S
(
ρAB

)
. This is somewhat natural

because this density operator characterizes all the statistical prediction of measure-

ments over the composite system SAB. From Eq. (4.75) we define the quantum
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mutual information as

I
(
ρAB

)
= S

(
ρA
)

+ S
(
ρB
)
− S

(
ρAB

)
. (4.77)

This expression resembles directly the classical mutual information. Because of

this we interpret this quantity as a measure of the total amount of correlations

between SA and SB. Remember the beginning of this section where we explored

the quantum mutual information in some examples and it is at least reasonable to

interpret it like that. The turning point here is that there exists another classical

way to write the mutual information. That is given by the Eq. (4.76). How can we

extend this equation to the quantum realm? This is a very interesting question and

it was worked out in 2001 by Ollivier and Zurek in an article entitled “Quantum

Discord: A Measure of Quantum Correlations” [49]. We shall reproduce some of

their calculations.

Mainly, the problem is how to write a quantum conditional entropy, as it involves

the notion of a pre-acquired knowledge. To obtain any knowledge of a quantum sys-

tem one must measure it. But quantum mechanically this is a strong intervention, as

this changes the abruptly the state of the quantum system. Moreover, different mea-

sures may change more or less the state. In this way a quantum conditional entropy

should be measurement-dependent. Suppose we perform a projective measurement

on the system SB,
{

Π̂B
k

}
, in a composite quantum state ρAB. If the outcome is k

then the normalized post-measurement state of the system SA is given by

ρAΠBk
=

TrB

[
Π̂B
k ρ

ABΠ̂B
k

]
pk

, (4.78)

where the hat means the extended operator, Π̂B
k = IA ⊗ ΠB

k . The amount of infor-

mation of the system SA which we can extract after getting this outcome k for the

system SB is S
(
ρA

ΠBk

)
. But this set of projection operators could have given any of

the other results. Therefore the average information we can extract from the system

SA given that we have measured the system SB with the set
{

ΠB
k

}
of projection

operators is

S̃ (A|B){ΠBk } =
∑
k

pkS
(
ρAΠBk

)
. (4.79)

This is the interpretation for a conditional entropy. Therefore the quantum mutual

information is also given by

J{ΠBk }
(
ρAB

)
= S

(
ρA
)
− S̃ (A|B){ΠBk } . (4.80)
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This quantity is interpreted as a measure of classical correlations as it gives the

difference in uncertainty about the subsystem SA before and after the measurement.

But still, this is a measurement-dependent quantity. In principle we could measure

the system SB with any set of mutually orthogonal projection operators, as we

are considering a projective measurement. Therefore, in order to have a measure of

classical correlations independent of the measurement, we consider the maximization

of J{ΠBk }
(
ρAB

)
. Maximize this quantity means to consider the largest amount of

classical correlations that can be obtained through a local measurement on SB. In

spite of the fact we began with the classical mutual information which is symmetric

if we exchange X and Y , this quantity is not. Thus, the total amount of correlations

is given by I
(
ρAB

)
and the amount of classical correlations by

J
(
ρAB

)
= max
{ΠBk }

J{ΠBk }
(
ρAB

)
= S

(
ρA
)
− min
{ΠBk }

S̃ (A|B){ΠBk } , (4.81)

leading us to a measure of quantum correlations given by the difference

Q
(
ρAB

)
= I

(
ρAB

)
− J

(
ρAB

)
. (4.82)

The quantity Q
(
ρAB

)
is called quantum discord and we will show below that it may

be a resource for quantum computation.

At the same time of the quantum discord’s paper, Henderson and Vedral pub-

lished an article [50] arguing that the quantity given by Eq. (4.81) is a proper

measure of the amount of classical correlations in a bipartite quantum system. Ex-

perimentally, quantum discord have been widelly used to measure the amount of

quantum correlation in systems [41,42,43,44]. For instance, in Ref. [42] it was the

first experimental evidence of nonclassicality in NMR systems. They measure the

dynamics of quantum discord with a sample of 23Na nuclear spin in a lyotropic

liquid-crystal at room temperature (26◦C). Also, the dynamics of quantum discord

and its classical counterpart have been studied in different local environments [51]

showing a rich dynamics of these correlations.

4.5 Applications of Quantum Correlations

In this section we will see some applications of the concepts developed in this

chapter, those of which arised in the context of quantum information. Each sec-
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tion will deal with some property or concept derived from the study of quantum

correlations.

4.5.1 No-Cloning Theorem

As we shall see below, the no-cloning theorem is a direct consequence of the

linearity of quantum operations [3,4], which says that an unknown quantum state

cannot be cloned (copied). For practical applications the most striking consequence

of this statement is that one cannot transcribe naively the classical error correction

techniques for quantum computation, since they are mostly based on backing up

copies of the state in the middle of a computation. For this reason we have to develop

quantum error correction techniques in order to deal with quantum computations

[52].

An operation U which would copy a quantum state |ψ〉 must be such that

∣∣ψA〉 ∣∣aB〉 U−→
∣∣ψA〉 ∣∣ψB〉 , (4.83)

where
∣∣aB〉 is an auxiliary quantum state which would store the copied state.

First we will consider a situation in which copying is possible. Let {|0〉 , |1〉} be

two states of a qubit. Consider also a unitary transformation on a system composed

of two qubits given by the matrix (the basis used is {|00〉 , |01〉 , |10〉 , |11〉}).

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (4.84)

This operation is called controlled NOT gate. It is an extremely important ope-

ration in quantum computation. It is a reversible generalization of the XOR gate

of classical computation∗. Operationally this gate affects the qubits in the following

way: |x, y〉 −→ |x, y ⊕ x〉, where the symbol ⊕ stands for the module-2 sum. The

first qubit is called the control qubit, as it remains the same and it may or may

not change the second qubit. The second qubit is called the target qubit because

it is the qubit which may or may not be changed by the gate. Two of the possible

∗The XOR logical gate implements an exclusive “or”, i.e., a true output results if one, and only

one, of the two inputs is true. This is contrasted with the standard OR gate where besides these

true restults it also results in a true output when the two inputs are both true.
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operations out of the four possible pairs of input qubit-qubit states can be interpreted

as a coping operation, namely

∣∣0A, 0B〉 CNOT−→
∣∣0A, 0B〉 (4.85)

and ∣∣1A, 0B〉 CNOT−→
∣∣1A, 1B〉 . (4.86)

Consider now an unknown qubit state
∣∣ψA〉 = α

∣∣0A〉 + β
∣∣1A〉, the CNOT gate

transforms it into

∣∣ψA〉 ∣∣0B〉 = α
∣∣0A, 0B〉+ β

∣∣1A, 0B〉
CNOT−→ α

∣∣0A, 0B〉+ β
∣∣1A, 1B〉 6= ∣∣ψA〉 ∣∣ψB〉 . (4.87)

Instead of being copied, the unknown state gets entangled with the auxiliary state.

Let us present a slightly more rigorous demonstration for the general case. A

quantum system SA is in the state
∣∣ψA〉. This state is supposed to be copied, in

other words a second quantum system SB, which is originally in the state
∣∣iB〉, is

supposed to be transformed into the state
∣∣ψB〉. Here, the initial state

∣∣iC〉 of the

copier system SC , which completes the composite system, can itself be transformed

into a new state
∣∣∣f (ψ)C

〉
in a manner which depends upon

∣∣ψB〉. The overall

procedure is supposed to be universal, as with an office copying machine, i.e., a

copy of an arbitrary state of SA is supposed to be made using the same unitary

transformation U of the composite system.∣∣ϕA〉 is a second state which is to be copied. Suppose there exists such a trans-

formation U such that

∣∣ψA〉 ∣∣iB〉 ∣∣iC〉 U−→
∣∣ψA〉 ∣∣ψB〉 ∣∣∣f (ψ)C

〉
, (4.88)

∣∣ϕA〉 ∣∣iB〉 ∣∣iC〉 U−→
∣∣ϕA〉 ∣∣ϕB〉 ∣∣∣f (ϕ)C

〉
. (4.89)

The unitary transformation maintains the inner product

〈
ψA
∣∣ϕA〉 =

〈
ψA
∣∣ϕA〉 〈ψB ∣∣ϕB〉 〈f (ψ)C

∣∣∣ f (ϕ)C
〉
. (4.90)

If
∣∣ψA〉 and

∣∣ϕA〉 are not orthogonal, (
〈
ψA
∣∣ϕA〉 6= 0), it follows that

1 =
〈
ψB
∣∣ϕB〉 〈f (ψ)C

∣∣∣ f (ϕ)C
〉
. (4.91)
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Since all the states are normalized, thus
∣∣〈ψB ∣∣ϕB〉∣∣ ≤ 1 and

∣∣∣〈f (ψ)C
∣∣∣ f (ϕ)C

〉∣∣∣ ≤ 1,

and hence ∣∣〈ψB ∣∣ϕB〉∣∣ = 1, i.e.,
∣∣ψB〉 = ±

∣∣ϕB〉 (4.92)

is a necessary condition for fulfilling Eq. (4.91). Therefore, if there exists such

an operation for some state
∣∣ψA〉, at least this operation is not able to copy any

non-orthogonal state to
∣∣ψA〉, in other words the machine could, in principle, only

copy another state
∣∣ϕA〉 which is orthogonal to

∣∣ψA〉. Recall our discussion of

environment-induced superselection in Sec. 3.6, which says that if the environment

monitors a set of states the superposition of such states is supressed by decoherence.

Our result of the no-cloning theorem may be seen as an extreme situation of this

phenomenon. By means of a possibly necessary system SC , the system SB monitors

perfectly some states of SA, i.e., SB does not extract some information of the state

of the system SA, as in the einselection case, but instead all information about the

state, as this is the very meaning of copying. This could be interpreted to provide a

zero decoherence time, which in turn implies that there exists no instant of time such

that any superposition of the states could ever be possible. The only states possible

of copying must be orthogonal, as einselection also provides with the concept of

preferred basis. Finally, this occurs because of entanglement. The states which the

environment (in our case the copying machine) extracts information get entangled

with the environment and therefore there is no possibility of obtaining a separable

state in the final of the computation, which would occur if the copying would have

been performed successfully.

4.5.2 Quantum Teleportation

As we have seen in the previous section an unknown quantum state cannot be

copied because of entanglement. Nevertheless entanglement can be a resource to

many interesting phenomena, one of which is quantum teleportation [53]. Quantum

teleportation is the process to transfer a quantum state from one system to another

regardless their spatial separation. The protocol to achieve this goal is the following.

Alice and Bob share a Bell state
∣∣ΦAB

+

〉
. The subsystems are the quantum systems

SA and SB, which are at Alice’s and Bob’s locations, respectively. Alice has an



Chapter 4. Quantum Information Theory 103

additional quantum system SC in a pure state

∣∣ϕC〉 = a
∣∣0C〉+ b

∣∣1C〉 , (4.93)

which is unknown to Alice. This state |ϕ〉, not the quantum system SC itself, is

to be teleported to Bob. That means that we are seeking a procedure by means

of which Bob’s subsystem SB can be prepared in the pure state
∣∣ϕB〉. SB is then

necessarily no longer entangled with any other system and, knowning the no-cloning

theorem, the system SC must have changed its state.

Considering all subsystems together we are dealing with a tripartite system. Let

us carry out some algebraic manipulations on this tripartite state. As stated above

we begin with the state

∣∣ϕC〉 ∣∣ΦAB
+

〉
=

1√
2

(
a
∣∣0C〉+ b

∣∣1C〉) (∣∣0A〉 ∣∣0B〉+
∣∣1A〉 ∣∣1B〉) , (4.94)

which can be manipulated as

∣∣ϕC〉 ∣∣ΦAB
+

〉
=

1√
2

(
a
∣∣0C〉 ∣∣0A〉 ∣∣0B〉+ a

∣∣0C〉 ∣∣1A〉 ∣∣1B〉
+b
∣∣1C〉 ∣∣0A〉 ∣∣0B〉+ b

∣∣1C〉 ∣∣1A〉 ∣∣1B〉)
=

1

2

{
a
(∣∣ΦCA

+

〉
+
∣∣ΦCA
−
〉) ∣∣0B〉+ a

(∣∣ΨCA
+

〉
+
∣∣ΨCA
−
〉) ∣∣1B〉

+b
(∣∣ΨCA

+

〉
+
∣∣ΨCA
−
〉) ∣∣0B〉+ b

(∣∣ΦCA
+

〉
+
∣∣ΦCA
−
〉) ∣∣1B〉} , (4.95)

where we have inserted some convenient zero states. Continuing with the manipu-

lation,

∣∣ϕC〉 ∣∣ΦAB
+

〉
=

1

2

{∣∣ΦCA
+

〉 (
a
∣∣0B〉+ b

∣∣1B〉)+
∣∣ΨCA

+

〉 (
a
∣∣0B〉+ b

∣∣1B〉)
+
∣∣ΨCA
−
〉 (
a
∣∣0B〉+ b

∣∣1B〉)+
∣∣ΦCA
−
〉 (
a
∣∣0B〉+ b

∣∣1B〉)}
=

1

2

{∣∣ΦCA
+

〉 ∣∣ϕB〉+
∣∣ΨCA

+

〉
σB1
∣∣ϕB〉

+
∣∣ΨCA
−
〉 (
−iσB2

) ∣∣ϕB〉+
∣∣ΦCA
−
〉
σB3
∣∣ϕB〉} . (4.96)

So far all we have done was only write mathematically the terms in the space HC
 ⊗

HA
 in terms of the Bell basis, which is accessible to Alice. This naturally led to a

state where
∣∣ϕB〉 shows up explicitly, besides some Pauli operations, in HB

 . In the

next step of the protocol Alice carries out a Bell measurement on the subsystems

SC and SA. There are four possible results of this measurement. Alice informs
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Bob of the result of her measurement by means of classical communication. The

associated two bits of classical information are transmitted by Alice to Bob, e.g., by

telephone. He, then, applies the corresponding unitary transformation, IB, σB1 , iσB2

or σB3 , to his subsystem in order to finally obtain the state
∣∣ϕB〉 on his subsystem,

ending the protocol. In Fig. 4.4 below one can see a picture which represents the

described protocol†. There is an interesting way to look at this protocol, which

Figure 4.4: Representation of the quantum teleportation protocol. This figure was

copied from Ref. [10].

is the following. At the beginning the subsystems SA is entangled with SB and

the state which we want to teleport is in a separate subsystem SC . This defines

the preparation procedure. After the Bell measurement carried out by Alice, the

final state is a composition of an entangled state of the subsystems SA and SC

and a separate state, the one which we teleported, on the subsystem SB. The Bell

measurement can be seen to have transferred the amount of entanglement, originally

in SAB, to SAC . In spite of that, observe that in order the protocol to work, Alice

and Bob must share information classically and therefore the quantum teleportation

cannot be used to transfer information faster than light. This can also be seen as a

consequence of the no-cloning theorem.

At the introduction we have said that the reason why we cannot use quantum

effects to send information faster than the speed of light was because of the no-

cloning theorem. Let us see why. Consider the same setup of the teleportation

†An EPR source is simply a system that generates one of the four maximally entangled two-

qubit states, the Bell states.
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protocol. Alice wants to send information to Bob, say, either the bit zero or the

bit one. She then measures her qubit either in the X basis or in the Z basis.

Alice and Bob have conventionally agreed that a X measurement means bit zero

and a Z measurement a bit one. After the measurement she uses the teleportation

protocol to transfer this state to Bob’s location. The task for Bob to read out the

information is find a way to discover if Alice has measured in the X or Z basis. If it

was possible for Bob to generate an arbitrary large number of copies of the quantum

state he would be able to know which basis Alice has measured. Observe that in this

scenario Alice and Bob do not need to exchange classical communication resource

because Bob would have a way to know the state without Alice’s help. Therefore,

if this were possible they could be really space-like separated such that those copies

and measurements that would be required to be performed by Bob in his laboratory

would take less time than the propagation of light between them and hence, it would

have been possible to send information faster than light. However, the no-cloning

theorem prohibits such copy machines and therefore Alice and Bob must use classical

resource in order to communicate, thus using at most a communication at the speed

of light.

Several groups have verified the protocol of quantum teleportation. Nowadays,

the larger distance which a qubit has been teleported was 143 Km, between the two

Canary Islands of La Palma and Tenerife [54].

4.5.3 Entanglement Swapping

In general, entanglement is created through interactions which are local pro-

cesses. We shall see a protocol to entangle two subsystems which have never in-

teracted. Consider two EPR sources I and II, each produce at the same time a

bipartite system SAB and SCD in the Bell states
∣∣ΨAB
−
〉

and
∣∣ΨCD
−
〉
, respectively.

The initial state of the protocol is, thus,∣∣ΨAB
−
〉 ∣∣ΨCD

−
〉

=
1

2

(∣∣0A, 1B〉− ∣∣1A, 0B〉) (∣∣0C , 1D〉− ∣∣1C , 0D〉) . (4.97)

Using the Bell bases in the spaces HA ⊗HD and HB ⊗HC the above state can be

written as ∣∣ΨAB
−
〉 ∣∣ΨCD

−
〉

=
1

2

(∣∣ΨAD
+

〉 ∣∣ΨBC
+

〉
−
∣∣ΨAD
−
〉 ∣∣ΨBC

−
〉

−
∣∣ΦAD

+

〉 ∣∣ΦBC
+

〉
+
∣∣ΦAD
−
〉 ∣∣ΦBC

−
〉)
. (4.98)
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Following a similar procedure of that we used in the quantum teleportation protocol

would be very tricky to arrive at this expression. The best way to see that this

is true is projecting the original state onto the four Bell states of the subsystem

SAD and take note of the resulting state, which is necessarily an state of SBC , and

amplitude. One can immediately see that a Bell measurement on the subsystems

SB and SC transforms the previously non-entangled subsystems SA and SD into a

Bell state. The Bell measurement trasfer the same amount of entanglement from

SAB and SCD to SAD and SBC . The Fig. 4.5 represents this protocol.

Figure 4.5: Representation of the entanglement swapping protocol. This figure was

copied from Ref. [10].

A recent experimental realization of the entanglement swapping between photons

can be found in Ref. [55].

4.5.4 Quantum Dense Coding

Every natural decimal number may be mapped into a string of bits. The shortest

string of bits to represent a natural number is the binary representation of that

number. No matter how large the natural number is, we always find that the string

of bits is finite. A rational number is the ratio of two integers, therefore it is also

necessary a finite string of bits to represent a rational number‡. But an arbitrary real

number (one that is not rational) would need an infinitely long string of bits to store

it, with maximum precision. A qubit needs two real numbers to define it precisely,

therefore we would never be able to store an arbitrary state of a qubit in a classical

computer with maximum precision. But this is not a problem as in practice all

‡This is so because the set of rational numbers is countable, i.e., it is isomorphic to the set of

natural numbers.
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experiments are bounded to the experimental precision of the equipments. Looking

the other way around, in a quantum computer where the elementary units for storing

information are the qubits itself, it is tempting to think that we could store an infinite

amount of information as we could code a real number in it, e.g. in its relative phase,

which would be analogous to store an infinitely long string of bits. Nevertheless, this

is not true because we have to read out the information stored in a qubit carrying

out a measurement and whichever basis we choose to measure, say, the spin of a

spin-1/2 particle, there are always two orthogonal states. Therefore a qubit may

transmit also 1 bit of information.

If we exploit the entanglement we can do better, send 2 bits of information

transmitting just one qubit, though. This protocol is called quantum dense coding

or superdense coding [56].

Suppose Alice and Bob share an entangled state, say, the Bell state
∣∣ΦAB

+

〉
. Alice

then performs one out of the following four possible local operations on her qubit,

IA ⊗ IB, σA1 ⊗ IB, σA2 ⊗ IB or σA3 ⊗ IB. The effect on the composite state for each

of these local measurements is

IA ⊗ IB
∣∣ΦAB

+

〉
=
∣∣ΦAB

+

〉
, (4.99)

σA1 ⊗ IB
∣∣ΦAB

+

〉
=
∣∣ΨAB

+

〉
, (4.100)

σA2 ⊗ IB
∣∣ΦAB

+

〉
=− i

∣∣ΨAB
−
〉
, (4.101)

σA3 ⊗ IB
∣∣ΦAB

+

〉
=
∣∣ΦAB
−
〉
. (4.102)

After performing the local measurement Alice sends her qubit to Bob and Bob,

who has now both qubits, performs a Bell measurement on both qubits and therefore

there are four possible outcomes. Alice has, thus, sent two bits of information to

Bob (base two logarithm of the four possibilities).

The transmission of just one qubit, and nothing more, could never transmit two

bits, therefore this is only possible to be acomplished by means of an entanglement-

assisted transmission, which means that they both shared previously an entangled

state.

Once more, entanglement plays a crucial role in exploring new ways of transmit-

ting information.
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4.5.5 Quantum Discord as a Resource

The aim of this section is to provide one example of a quantum protocol whose

improvement over classical ones is not due to entanglement. The task is to calculate

the normalized trace of an arbitrary n × n operator U . The algorithm is called

deterministic quantum computation with one qubit (DQC1) [57].

Consider n+ 1 qubits where n of them are in the maximally mixed state

1

2n
I⊗

n

, (4.103)

and one qubit is in the state

ρ =
(1− α)

2
I + α |0〉 〈0| . (4.104)

The initial total state is, therefore,

Ωi = ρ⊗ 1

2n
I⊗

n

, (4.105)

where the first qubit is the control qubit, or C-qubit, and the others are the target

qubits, or T-qubits. We will let this state evolve following the circuit given by Fig.

4.6. After the Hadamard gate we have the state

Figure 4.6: Quantum circuit of the QDC1 algorithm. Figure copied (and corrected)

from Ref. [57].

Ω1 =

[
1− α

2
I + α |+〉 〈+|

]
⊗ I⊗

n

2n
. (4.106)
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Opening this state explicitly gives us

Ω1 =

[
1− α

2
(|0〉 〈0|+ |1〉 〈1|) +

α

2
(|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0|+ |1〉 〈1|)

]
⊗ I⊗

n

2n

=
1

2

[
|0〉 〈0| ⊗ I⊗

n

2n
+ |1〉 〈1| ⊗ I⊗

n

2n
+ α |0〉 〈1| ⊗ I⊗

n

2n
+ α |1〉 〈0| ⊗ I⊗

n

2n

]
. (4.107)

Applying the controlled-U gate we obtain the final state

Ωf =
1

2

[
I ⊗ I⊗

n

2n
+ α |0〉 〈1| ⊗ U †

2n
+ α |1〉 〈0| ⊗ U

2n

]
. (4.108)

With this state we can evaluate the reduced density operator for the C-qubit, which

leads to

ρf =
1

2

 1
αTr(U†)

2n

αTr(U)
2n

1

 . (4.109)

Now evaluating the expectation value of the observables σ1 and σ2,

Tr (σ1ρf ) =
α

2n
Re [Tr (U)] , Tr (σ2ρf ) =

α

2n
Im [Tr (U)] , (4.110)

gives us the estimation of the normalized trace of the unitary operator U .

It can be shown that the algorithm is efficient (scales polynomially with n) and

that the best-known classical algorithm for estimating the trace of a unitary matrix

requires resources that are an exponential function of n (inefficient) [57].

A study of the correlations in this computation (which we will not present but

we refer to the Ref. [57] and references therein for a complete discussion) shows that

there is no entanglement between C and T (this means to calculate the bipartite

entanglement considering the cut Hcontrol ⊗ Htargets). An analysis of the quantum

correlations as given by quantum discord shows that the discord scales similar to the

efficiency of the algorithm, showing quantitatively, for the first time, that quantum

correlations other than entanglement also play an important role in the speedup

associated with quantum algorithms. This is very interesting since preservation of

coherence of the quantum states is difficult and requires a controllable environment

whereas quantum mixtures are indeed the common states at room temperature.

Though superficially presented, this algorithm posed new hopes for exploiting

quantum computation at large scale [58]. This kind of computation has been referred

to in the literature as mixed-state quantum computation and one reason for us to

study the quantum discord in this dissertation is because of such results.



Chapter 5

The Effect of Random Coupling Constants on

Quantum Correlations

We have seen that exploiting quantum correlations we can build quantum algo-

rithms that either surpass their classical counterparts or provide ways to transmit

information otherwise unimagined to be possible, e.g. through quantum teleporta-

tion. The algorithms we have discussed are ideal in the sense that they don’t take

into account the effect of the environment, which usually is present in nature. So, in

real-world applications of quantum information it is important to take into account

how the environment affects the behavior of quantum correlations.

The aim of this chapter is to study the effect on the dynamics of quantum corre-

lations on a toy model, as measured by concurrence, quantum mutual information

and quantum discord, due to a random interaction with the environment. Ran-

domness of the coupling constants models a dynamical environment as seen by the

system. The present study was inspired by the work of Castagnino et al. [59], where

they discuss the effect of a qubit environment on decoherence of a central qubit.

In this model we consider two noninteracting qubits interacting individually with a

common qubit environment.

The Hamiltonian of the composite system is

HSE = HI =
(
σA3 + σB3

)
⊗

N∑
i=1

h̄giσ
(i)
3 . (5.1)

Due to the fact that we are interested in a qualitative study of the effect of the

interaction, exclusively, we do not consider self-energy Hamiltonian terms for the

qubits.

Consider the most general initial state which has no initial system-environment

110
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correlation and no internal environment correlations

|ψ (0)〉 =
∣∣ψS (0)

〉
⊗ |E (0)〉

=

( ∑
i,j=0,1

αij
∣∣iA〉⊗ ∣∣jB〉)⊗( N⊗

i=1

(
βi
∣∣0i〉+ γi

∣∣1i〉)) . (5.2)

The coefficients must satisfy
∑

i,j |αij|2 = 1 and |βi|2 + |γi|2 = 1 for each i. The time

evolution operator is given by

U (t) = exp

{
− i
h̄
tHI

}
= exp

{
− i
h̄
t
(
HA +HB

)}
= exp

{
− i
h̄
tHA

}
exp

{
− i
h̄
tHB

}
, (5.3)

where HA,B = σA,B3 ⊗
∑

i h̄giσ
(i)
3 and we used the fact that

[
HA, HB

]
= 0. Therefore,

the composite state vector at a time t is

|ψ (t)〉 = U (t) |ψ (0)〉 =

( ∑
i,j=0,1

αije
− i
h̄
tHA |i〉 ⊗ e−

i
h̄
tHB |j〉

)
⊗ |E (0)〉 . (5.4)

This can be further evaluated to

|ψ (t)〉 =α00e
− i
h̄
tHA ∣∣0A〉 e− i

h̄
tHB ∣∣0B〉 |E (0)〉+ α01e

− i
h̄
tHA ∣∣0A〉 e− i

h̄
tHB ∣∣1B〉 |E (0)〉

+ α10e
− i
h̄
tHA ∣∣1A〉 e− i

h̄
tHB ∣∣0B〉 |E (0)〉+ α11e

− i
h̄
tHA ∣∣1A〉 e− i

h̄
tHB ∣∣1A〉 |E (0)〉

=α00e
−itE ∣∣0A〉 e−itE ∣∣0B〉 |E (0)〉+ α01e

−itE ∣∣0A〉 e+itE
∣∣1B〉 |E (0)〉

+ α10e
+itE

∣∣1A〉 e−itE ∣∣0B〉 |E (0)〉+ α11e
+itE

∣∣1A〉 e+itE
∣∣1B〉 |E (0)〉 , (5.5)

where we have defined E =
∑

k gkσ
(k)
3 .

Defining the environment states |E± (t)〉 = exp {∓2itE} |E (0)〉 the final state

vector is given by

|ψ (t)〉 =α00 |00〉 |E+ (t)〉+ α01 |01〉 |E (0)〉

+ α10 |10〉 |E (0)〉+ α11 |11〉 |E− (t)〉 . (5.6)

The density operator for this state can be evaluated to be

ρ (t) =


|α00|2P++ (t) α∗00α01P+0 (t) α∗00α10P+0 (t) α∗00α11P+− (t)

α∗01α00P0+ (t) |α01|2P00 α∗01α10P00 α∗01α11P0− (t)

α∗10α00P0+ (t) α∗10α01P00 |α10|2P00 α∗10α11P0− (t)

α∗11α00P−+ (t) α∗11α01P−0 (t) α∗11α10P−0 (t) |α11|2P−− (t)

 , (5.7)
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where Pij = |Ei (t)〉 〈Ej (t)|, with i, j ∈ {+,−, 0}, and |E0 (t)〉 = |E (0)〉.

The reduced density operator for the system is obtained from

ρS (t) = TrE (ρ (t)) (5.8)

and gives us

ρS (t) =


|α00|2 α∗00α01r1 (t) α∗00α10r1 (t) α∗00α11r2 (t)

α∗01α00r
∗
1 (t) |α01|2 α∗01α10 α∗01α11r3 (t)

α∗10α00r
∗
1 (t) α∗10α01 |α10|2 α∗10α11r3 (t)

α∗11α00r
∗
2 (t) α∗11α01r

∗
3 (t) α∗11α10r

∗
3 (t) |α11|2

 , (5.9)

where we have defined r1 (t) = 〈E (0) |E+ (t)〉, r2 (t) = 〈E− (t) |E+ (t)〉 and r3 (t) =

〈E− (t) |E (0)〉.

Suppose we have the initial state for the composite system

|ψ (0)〉 = (cos (α) |00〉+ sin (α) |11〉)⊗
∣∣ψE0 〉 . (5.10)

As we will see, the initial amount of entanglement, as measured by concurrence, will

depend on this parameter α. If α is either 0 or π/2 the state is not entangled and

if α is π/4 it is maximally entangled: it is a Bell state. For this initial state the

reduced density operator of the system is given by

ρS (t) =


cos2 (α) 0 0 sin (α) cos (α) r2 (t)

0 0 0 0

0 0 0 0

sin (α) cos (α) r∗2 (t) 0 0 sin2 (α)

 . (5.11)

Let us now calculate the function r2 (t).

This function is given by

r2 (t) = 〈E− (t) |E+ (t)〉

=

(
N⊗
k=1

(
β∗ke

−2igkt
〈
0k
∣∣+ γke

+2igkt
〈
1k
∣∣))×(

N⊗
l=1

(
βle
−2iglt

∣∣0l〉+ γle
+2iglt

∣∣1l〉)) . (5.12)

As the states are individually orthogonal the result is

r2 (t) =
N∏
k=1

[
|βk|2e−4igkt + |γk|2e+4igkt

]
. (5.13)
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As we will need later on, the norm-squared of this function is given by

|r2 (t) |2 =
N∏
k=1

[
|βk|4 + |γk|4 + 2 |βk|2 |γk|2 cos (8gkt)

]
. (5.14)

In the next two sections we will evaluate the measures of quantum correlations

and present our numerical results.

5.1 Calculation of the Measures of Quantum Correlations

In this section we will calculate the concurrence, quantum mutual information

and quantum discord for the state (5.11).

As we have seen in Sec. 4.4.2, in order to evaluate the concurrence we need to

calculate the eigenvalues of the matrix R = ρSρS, with ρS given by Eq. (4.70). Thus

ρS =
(
σA2 ⊗ σB2

)
ρ∗S
(
σA2 ⊗ σB2

)
(5.15)

=


sin2 (α) 0 0 sin (α) cos (α) r2 (t)

0 0 0 0

0 0 0 0

sin (α) cos (α) r∗2 (t) 0 0 cos2 (α)

 .

Hence R is given by

R =


sin2 (α) cos2 (α)

(
1 + |r2 (t) |2

)
0 0 sin (2α) cos2 (α) r2 (t)

0 0 0 0

0 0 0 0

sin (2α) sin2 (α) r∗2 (t) 0 0 sin2 (α) cos2 (α)
(
1 + |r2 (t) |2

)

 . (5.16)

As this matrix can be put into a block diagonal form, and moreover one block is a

null two-by-two matrix, two of its eigenvalues are zero. Call them λ3 = λ4 = 0. We

are left with the other two eigenvalues which are eigenvalues of the matrix

R̃ =

sin2 (α) cos2 (α) (1 + |r2 (t) |2) sin (2α) cos2 (α) r2 (t)

sin (2α) sin2 (α) r∗2 (t) sin2 (α) cos2 (α) (1 + |r2 (t) |2)

 . (5.17)

The eigenvalues of this matrix are given by

λ1,2 =
Tr
[
R̃
]
±
√(

Tr
[
R̃
])2

− 4Det
[
R̃
]

2
. (5.18)

The trace is

Tr
[
R̃
]

=
sin2 (2α)

2

(
1 + |r2 (t) |2

)
, (5.19)
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and the determinant is

Det
[
R̃
]

=
sin4 (2α)

16

(
1 + |r2 (t) |2

)2 − sin4 (2α)

4
|r2 (t) |2. (5.20)

The discriminant is(
Tr
[
R̃
])2

− 4Det
[
R̃
]

=
sin4 (2α)

4

(
1 + |r2 (t) |2

)2 − sin4 (2α)

4

(
1 + |r2 (t) |2

)2

+ sin4 (2α) |r2 (t) |2

= sin4 (2α) |r2 (t) |2. (5.21)

The eigenvalues are, therefore,

λ1,2 =
Tr
[
R̃
]

2
± sin2 (2α) |r2 (t)|

2
. (5.22)

With these eigenvalues in hand we can calculate the concurrence as (cf. Eq. (4.69))

C
(
ρS (t)

)
= max {0, λ1 − λ2 − λ3 − λ4} = max

{
0, sin2 (2α) |r2 (t) |

}
. (5.23)

Now let us evaluate the quantum mutual information for our state. Recall that

the quantum mutual information is given by

I
(
ρAB

)
= S

(
ρA
)

+ S
(
ρB
)
− S

(
ρAB

)
. (5.24)

Thus we have to evaluate the reduced density operator of the qubits. From Eq.

(5.11) the reduced density operator of the qubit A is

ρA = TrB
[
ρS
]

=

cos2 (α) 0

0 sin2 (α)

 . (5.25)

It is already diagonal and therefore the von Neumann entropy for it is simply

S
(
ρA
)

= − cos2 (α) log
[
cos2 (α)

]
− sin2 (α) log

[
sin2 (α)

]
. (5.26)

The von Neumann entropy for the qubit B is the same, by the Schmidt decom-

position. In order to obtain the von Neumann entropy for the composite state we

must evaluate its eigenvalues. Again, as it is a block diagonal matrix it is enough

to evaluate the eigenvalues of the matrix

A =

 cos2 (α) sin (α) cos (α) r2 (t)

sin (α) cos (α) r∗2 (t) sin2 (α)

 . (5.27)
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They are easily found to be

ξ1,2 =
1±

√
1− sin2 (2α)

(
1− |r2 (t)|2

)
2

. (5.28)

Hence it follows that the joint entropy is

S
(
ρAB

)
= −ξ1 log ξ1 − ξ2 log ξ2. (5.29)

With Eqs (5.26) and (5.29) we can easily evaluate the quantum mutual information.

The next measure of quantum correlation we are going to use is the quantum

discord. Calculate the quantum discord analytically is not an easy task because

it involves an optimization over measurements. In 2008 Luo [60] calculated the

quantum discord analytically for a class of density operators. He began with the

parametrization of two qubit states given by

ρAB =
1

4

(
IAB + ~u~σA ⊗ IB + ~vIA ⊗ ~σB +

∑
i,j

wijσ
A
i ⊗ σBj

)
, (5.30)

where all coefficients are real. Using the singular value decomposition (cf. App. A)

he reduced this to the following state

ρAB =
1

4

(
IAB + ~a~σA ⊗ IB +~bIA ⊗ ~σB +

∑
k

ckσ
A
k ⊗ σBk

)
. (5.31)

As he was interested in the correlations he considered only those states whose

marginals (reduced states) are maximally mixed. This is accomplished consider-

ing ~a = ~b = ~0, hence

ρAB =
1

4

(
IAB +

∑
k

ckσ
A
k ⊗ σBk

)
. (5.32)

He then developed a procedure to evaluate the quantum discord. He parametrizes

the von Neumann measurements and performs explicit calculations and finds an

analytic result. This class of states considered by Luo is a subset of the so-called X

states. An X state has the form

ρABX =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 . (5.33)
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Others also have calculated the quantum discord for other classes of states which are

also a subset of X states. In 2010 Ali et al. [61] proposed a procedure to calculate

the quantum discord for an arbitrary X state. They used the same parametrization

of von Neumann measurements Luo had used before. Basically they have four

parameters and one constraint. Shortly after that, in 2011, Lu et al. [62] showed

that they had forgotten one constraint and therefore had found the incorrect optimal

measurement to minimize the conditional entropy. In 2013, Huang [63] numerically

demonstrated that the analytical result of Ali, et al. is valid with worst-case error

0.0021, in this way not invalidating the works built upon Ali et al. procedure. Back

in 2011, Chen et al. [64] proposed an analytic expression to calculate the quantum

discord when the matrix elements of the X state satisfy some conditions. As the

state we are going to consider fits in one of the two conditions they have shown to

be possible an exact calculation we will state their results (for detail we refer to the

original work [64] and references therein).

If the two following properties are satisfied,

|ρ23 + ρ14| ≥ |ρ23 − ρ14| , (5.34)

(|ρ23|+ |ρ14|)2 ≤ (ρ11 − ρ22) (ρ44 − ρ33) , (5.35)

then the optimal set of measurement operators for the quantum discord Q
(
ρABX

)
is{∣∣0B〉 〈0B∣∣ , ∣∣1B〉 〈1B∣∣}∗.

For our state (cf. Eq. (5.11)) the first relation is

sin (α) cos (α) |r2 (t)| ≥ sin (α) cos (α) |−r2 (t)| , (5.36)

which is clearly satisfied. The second is

sin2 (α) cos2 (α) |r2 (t)|2 ≤
(
cos2 (α)

) (
sin2 (α)

)
, (5.37)

which in turn implies

|r2 (t)|2 ≤ 1. (5.38)

Recall the expression for this function from Eq. (5.14),

|r2 (t)|2 =
N∏
k=1

[
a2
k + (1− ak)2 + 2ak (1− ak) cos (8gkt)

]
, (5.39)

∗I implicitly assumed that we are measuring the subsystem SB for the optimization.
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where we have substituted |βk|2 = ak and used the fact that the coefficients are

normalized |βk|2 + |γk|2 = 1. The cos (x) function is bounded on [−1, 1]. Therefore

for the kth term of the product

(ak − (1− ak))2 ≤ a2
k + (1− ak)2 + 2ak (1− ak) cos (8gkt) ≤ (ak + (1− ak))2 , (5.40)

or

0 ≤ (2ak − 1)2 ≤ a2
k + (1− ak)2 + 2ak (1− ak) cos (8gkt) ≤ 1. (5.41)

Hence each term is bounded and consequently

0 ≤ |r2 (t)|2 ≤ 1, (5.42)

satisfying the condition. The quantum discord can be analitically evaluated, there-

fore, by the set measurement operators
{
MB

0 =
∣∣0B〉 〈0B∣∣ ,MB

1 =
∣∣1B〉 〈1B∣∣}. We

have to calculate the classical correlations for this set of measurement operators.

Recall that the classical correlations related with the discord are measured by

J
(
ρAB

)
= S

(
ρA
)
−
∑
k

pkS
(
ρAMB

k

)
, (5.43)

where we are already considering the optimal measurement operators. The proba-

bilities are pk = TrAB

[
M̂B

k ρ
ABM̂B†

k

]
. Let us calculate the states ρA

MB
k

. For k = 0

we have

ρABMB
0

=
1

p0

IA ⊗MB
0 ρ

S (t) IA ⊗MB†
0

=
1

p0

(|00〉 〈00|+ |10〉 〈10|) ρS (t) (|00〉 〈00|+ |10〉 〈10|) . (5.44)

As our state is given by

ρS (t) = cos2 (α) |00〉 〈00|+ sin (α) cos (α) r2 (t) |00〉 〈11|

+ sin (α) cos (α) r∗2 (t) |11〉 〈00|+ sin2 (α) |11〉 〈11| (5.45)

we obtain

ρABMB
0

=
1

p0

cos2 (α) |00〉 〈00| . (5.46)

The probability p0 is given by

p0 =Tr
[
ρS (t) IA ⊗MB

0

]
= Tr

[
ρS (t) (|00〉 〈00|+ |10〉 〈10|)

]
= 〈00| ρS (t) |00〉+ 〈10| ρS (t) |10〉 = cos2 (t) . (5.47)
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Therefore

ρAMB
0

= TrB

[
ρABMB

0

]
= TrB [|00〉 〈00|] = |0〉 〈0| . (5.48)

This is a pure state and has zero entropy. The second state, k = 1, is given by

ρABMB
1

=
1

p1

IA ⊗MB
1 ρ

S (t) IA ⊗MB†
1

=
1

p1

(|01〉 〈01|+ |11〉 〈11|) ρS (t) (|01〉 〈01|+ |11〉 〈11|) , (5.49)

which gives us

ρABMB
1

=
1

p1

sin2 (α) |11〉 〈11| . (5.50)

The probability p1 is

p1 =Tr
[
ρS (t) IA ⊗MB

1

]
= Tr

[
ρS (t) (|01〉 〈01|+ |11〉 〈11|)

]
= 〈01| ρS (t) |01〉+ 〈11| ρS (t) |11〉 = sin2 (α) , (5.51)

and therefore

ρAMB
1

= TrB

[
ρABMB

1

]
= TrB [|11〉 〈11|] = |1〉 〈1| . (5.52)

This is also a pure state and hence the second term in the classical correlations is

zero.

The first term is given by Eq. (5.26) and therefore

J
(
ρAB

)
= − cos2 (α) log

[
cos2 (α)

]
− sin2 (α) log

[
sin2 (α)

]
. (5.53)

Observe that for our particular situation the classical correlations are constant

through time. The quantum discord is, thus,

Q
(
ρAB

)
= − cos2 (α) log

[
cos2 (α)

]
− sin2 (α) log

[
sin2 (α)

]
+ ξ1 log ξ1 + ξ2 log ξ2, (5.54)

with ξ1,2 given by Eq. (5.28).

5.2 Numerical Results and Discussions

In this section we will analyze the dynamics of the measures calculated in the

previous section under three different environments. Before that we make some

remarks.

The parameters of our model are: α, which controls the initial system qubit

state, the βi’s in the initial environmental states, the coupling constants gi’s and the

number of environmental qubits N .
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Figure 5.1: Effect of the size of a homogeneous environment on the concurrence.

Here, g = 0.5 s−1 and α = π/4.

As can be seen for the expressions determining the concurrence, mutual informa-

tion and quantum discord, these quantities depend on the function |r2 (t)|. On the

other hand this function depends on the initial states of the environmental qubits.

As we want to do a more qualitative study we do not care for a particular initial

state of the environmental qubits. Therefore, we select the βk’s coefficients from a

probability distribution. In fact, as |βk|2 actually appears in the function |r2 (t)| we

select each of which from a uniform distribution in the unit interval [0, 1]. This is

done for all results shown in the following. Another remark is that for our interaction

and initial state the measure of classical correlations which appears in the quantum

discord is time-independent, being just a function of α. Thus, the features of quan-

tum mutual information and quantum discord become qualitatively the same. For

this reason the two relevant quantities to be analyzed are the concurrence and the

quantum discord. Before we consider the random coupling constants let us see what

are the effects of a homogeneous environment on the quantum correlations.
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By a homogeneous environment we mean simply that all coupling constants have

the same value. The time-dependence of the measures of correlations is given by the

behavior of the function

|r2 (t) |2 =
N∏
k=1

[
|βk|4 + |γk|4 + 2 |βk|2 |γk|2 cos (8gkt)

]
=

N∏
k=1

fk (t) . (5.55)

Each function fk (t) is periodic on its own. Since we are considering that all gk’s

are equal the whole function |r2 (t) |2 has the same period of the fk’s. First suppose

that all coupling constants are equall to g = 0.5 and α = π/4 (maximally entangled

state). Fig. 5.1 shows the behavior of concurrence in this situation when we change

the size of the environment. It can be seen that the peaks become sharply defined

when N increases. The first entanglement decaying also gets faster because the

more environmental qubits the more coherence is stolen by the environment. This

behavior also occurs for the quantum mutual information and quantum discord.
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Figure 5.2: Concurrence as a function of the parametrized initial state of the system

for a homogeneous environment. We used g = 0.5 s−1and N = 200.

In Fig. 5.2 we show the effect, on concurrence, of letting the initial state of the
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system have different amounts of entanglement. This is translated in nothing but

a different upper bound for the concurrence. This can be easily seen directly from

the mathematical expression of concurrence as |r2 (t)| is bounded between zero and

one and therefore, 0 ≤ C (ρ) ≤ sin2 (2α). For the quantum discord the effect is the

same as can be seen in Fig. 5.3. It can be noted looking at these two figures that
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Figure 5.3: Effect of the initial amount of entanglement on the quantum discord in

a homogeneous environment. We used g = 0.5 s−1 and N = 200.

the bound for the quantum discord is greater than for the concurrence. This occurs

because of the following. The maximum amount of quantum discord occurs when

the function |r2 (t) |2 takes the value one. The upper bound for quantum discord is

therefore (cf. 5.54) − cos2 (α) log [cos2 (α)] − sin2 (α) log
[
sin2 (α)

]
. Fig. 5.4 shows

that for this state and this interaction the upper bound for quantum discord is

greater than or equal to that of concurrence.
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Figure 5.4: Upper bounds of quantum discord and concurrence.
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Figure 5.5: Concurrence for different couplings with the homogeneous environment.

We used N = 200 and α = π/4.
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In Fig. 5.5 we show that changing the coupling constant changes the frequency

of the concurrence with time. This is due to the periodicity of |r2 (t)| and therefore

it is reflected also in mutual information and quantum discord. This effect is going

to be crucial when we consider the random case.

Now we are going to consider that situation where the coupling constants are

selected from a uniform distribution in order to analyze the effects of randomizing

the couplings. The distribution is uniform in the interval [g − dg, g + dg], where we

consider g = 0.5 and different amplitudes are given by dg. In Fig. 5.6 we show the

time evolution of concurrence for three different intervals. As expected, the smaller
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Figure 5.6: Effect of the rate dg/g of the uniform distribution on the dynamics of

concurrence. We considered g = 0.5 s−1, N = 200 and α = π/4 for all situations.

the interval is the more it will approximate the previous situation. For 1% relative

size (dg/g = 1%) it is already possible to note the decreasing of entanglement at

each peak. For 10% relative size the entanglement is lost after the first peak. The

same effects occur also with quantum mutual information and quantum discord.
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Figure 5.8: Effect of different environmental sizes on the concurrence. We considered

g = 0.5 s−1, dg/g = 1% and α = π/4.
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In Fig. 5.7 we compare the behavior of the measures under the uniform coupling

distribution with a 1% relative interval size. We can see that quantum discord decay

and grow more rapidly than concurrence in the vicinity of each peak.

The next situation explores the change in the size of the environment. Figs. 5.8

and 5.9 show that both concurrence and quantum discord decrease more when the

number of qubits in the environment increases. This can be understood, again, by

the fact that the more qubits in the environment the more coherence the environment

removes from the system.
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Figure 5.9: Effect of different environmental sizes on the quantum discord. We

considered g = 0.5 s−1 and dg/g = 1%.

The last distribution we are going to consider for the coupling constants is the

normal distribution. Calling g the mean value of the normal distribution and dg its

standard deviation, Fig. 5.10 shows that the larger the standard deviation the more

severe the decoherence effect is. This effect is also present in quantum discord.
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Figure 5.10: Effect of changing the standard deviation by mean value ratio on the

concurrence. We considered the mean value g = 0.5 s−1, α = π/4 and N = 200.
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Figure 5.11: The dynamics of concurrence for the three distributions studied. For

all of them we considered α = π/4, g = 0.5 s−1 and N = 200. Both for the uniform

and normal distributions we considered dg/g = 1%.



Chapter 5. The Effect of Random Coupling Constants on Quantum Correlations 127

The size of the environment again decreases the coherence of the systems. Figs.

5.11 and 5.12 show that the normal distribution imposes the most severe decoherence

effect for both concurrence and quantum discord. Comparing these two figures it is

easily seen that the quantum discord is more affected by the environment than the

concurrence.
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Figure 5.12: The time evolution of quantum discord for the three distributions

studied. For all of them we considered α = π/4, g = 0.5 s−1 and N = 200. Both for

the uniform and normal distributions we considered dg/g = 1%..

The main conclusion is that the effect of randomizing the coupling constants

induces loss of quantum correlations. This occurs because the period of the function

|r2 (t)| depends on the period of each of the products for each environmental qubit. If

we allow the environmental qubits to possess different coupling constants the periods

of these functions will be different and therefore the period of this function, which

is given by the least common multiple, will increase tremendously. In practice,

the system never recovers the initial amount of quantum correlations. When the

decreasing peaks occur, some of the products in |r2 (t)| are closing their periods and
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others are not.



Chapter 6

Conclusions

One of the purposes of this work was to provide an introduction to the field of

quantum information theory. We began studying the classical theory of informa-

tion in Ch. 2. We have introduced the Shannon entropy and seen two different

interpretations for it. From one perspective, the Shannon entropy measures the

amount of information (uncertainty) of a message (random variable) and, from the

other, it tells us the minimum amount of binary digits needed to encode faithfully

a given message. Then, we discussed two-messages entropies, the mutual informa-

tion, which measures the correlations between two messages or the information they

share in common; the conditional entropy, which gives the amount of information

we have about some message when we have a previous knowledge of another; the

joint entropy, which measures the non-redundant information of two messages; and

the relative entropy, which measures the loss of information when we use an ap-

proximate message instead of the original. Then, in Ch. 3 we reviewed some basic

concepts in quantum mechanics as well as introduced some more advanced ones such

as the dynamics of open quantum systems and generalized measurement dynamics.

In Ch. 4 we begin our exploration of quantum information. We began considering

the von Neumann entropy and saw that it is the analogous of Shannon entropy

in the quantum realm. In other words, it gives the amount of qubits necessary

to transmit (transpose) faithfully a quantum signal (density operator). Then, we

studied the concept of correlations in quantum theory as well as developed some

measures of quantum correlations. For pure bipartite states, we can measure the

entanglement with the entropy of entanglement, the purity or the Schmidt rank.

For mixed states, we measure the amount of correlations with the entanglement

of formation, the concurrence, the quantum mutual information and the quantum
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discord. Concurrence measures the amount of entanglement in a quantum states

whereas quantum discord measures the amount of quantum correlations. We have

seen that quantum discord provides a notion of classicality given by the fact that the

mutual information in the quantum realm can written in two ways. Finally, we have

shown several applications of quantum information theory through some quantum

algorithms. We presented the no-cloning theorem, quantum teleportation, entangle-

ment swapping and deterministic quantum computation with one qubit. The last of

which explores the quantum discord as a possible resource instead of entanglement,

as in all previous algorithms.

The second purpose was to study the dynamics of quantum correlations when we

consider the coupling between system and environment as a random distribution.

Our model consisted of two central qubits interacting with a qubit environment.

For a homogeneous environment, where the distribution is constant, the corre-

lations, as measured by concurrence, quantum mutual information and quantum

discord, have simple periodic structure where the frequency is proportional to the

coupling. The correlations are, therefore, never lost because they come and go with

time.

For a uniform environment, i.e., when the couplings are selected uniformly from

a interval [g − dg, g + dg], the correlations are gradually lost. There are two factors

that accelerates the lost of correlations, the size of the environment and the size of

the interval for the coupling. The effect of the size of the environment is due to the

fact that the larger the environment, more qubits available, the larger the capacity

to steal correlation from the system. With respect to the size of the interval, the

larger it is the more probable it is to the period become practically infinity, or even

become nonperiodic, due to the structure of the measures.

For a normal environment, i.e., when the couplings are selected from a normal

distribution with average value g and standard deviation dg, the correlation are,

again, gradually lost. The reasons are the same as before. The relevant difference

is that the normal environment imposes a more severe lost.

Our conclusion is that a random distribution for the coupling constants imposes

permanent loss of quantum correlations. The lost can occur either progressively or

almost instantaneously, depending on the size of the environment and the size of

possible values the couplings may take.



Appendix A

Singular Value Decomposition

In this appendix we will demonstrate a theorem from linear algebra called singu-

lar value decomposition [65] that leads directly to the Schmidt decomposition, just

by re-interpreting the terms within the context of quantum mechanics.

Let Am×n be a complex matrix. Then A†A is self-adjoint and therefore can be

orthogonally diagonalized∗. Let {v1, . . . , vn} be an orthonormal basis formed by the

eigenvectors of ATA, and let λ1, . . . , λn be the associated eigenvalues. Then, for eah

i ∈ {1, . . . , , n}

||Avi||2 = (Avi)
†Avi = v†i

(
A†Avi

)
= vTi λivi = λi ≥ 0. (A.1)

So, the eigenvalues of ATA are all nonnegative. By renumering, if necessary, we may

assume that the eigenvalues are arranged so that λ1 ≥ · · · ≥ λn ≥ 0.

The singular values of A are defined as the square roots of the eigenvalues of

ATA and are denoted by σ1, . . . , σn. They are also arranged in decreasing order,

σi =
√
λi. We will need some more definition before proceed. The column space of

a matrix is denoted by Col A and it is composed of vectors b that are mapped from

some x by A, i.e., b = Ax. The rank of a matrix is the dimension of its column

space.

Theorem. If a Am×n matrix has r nonzero singular values, σ1 ≥ · · · ≥ σr and

σr+1 = · · · = σn = 0, then rank of A is r.

Proof. Let {v1, . . . , vn} be an orthonormal basis generated by the eigenvectors

of A†A, ordered so that the corresponding eigenvalues of A†A satisfy λ1 ≥ · · · ≥ λn.

Then, for i 6= j

(Avi)
† (Avi) = v†iA

†Avj = v†i (λjvj) = 0 (A.2)

∗A n× n matrix is diagonalizable if and only if it has n linear independent eigenvectors.
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since vi and λjvi are orthogonal. Thus, {Av1, . . . , Avn} is an orthogonal set. Let

r be the number of nonzero singular values of A. As ||Avi|| = σi, if λi is a zero

eigenvalue then Avi = 0. Then {Av1, . . . , Avr} is linearly independent and clearly is

in Col A. Furthermore, for any y in Col A we may write x = c1v1 + · · ·+ cnvn, and

y = Ax = cAv1 + · · ·+ crAvr + cr+1Avr+1 + · · ·+ cnAvn (A.3)

= cAv1 + · · ·+ crAvr + 0 + · · ·+ 0. (A.4)

Thus, y is in Span {Av1, . . . Avr}, which shows that {Av1, . . . , Avr} is an orthogonal

basis for Col A. Hence rank A = r.

Theorem. The Singular Value Decomposition (SVD). Let Am×n be a matrix with

rank r. Consider, now, the following matrix Σm×n,

Σ =

D 0

0 0

 , (A.5)

where Dr×r is a diagonal matrix with its entries being the first r singular values of

A, σ1 ≥ · · · ≥ σr ≥ 0. The theorem states that there exist an Um×m unitary matrix

and an Vn×n unitary matrix such that A = UΣV †.

Proof. Using the results of the previous theorem, we define

ui =
1

||Avi||
Avi =

1

σi
Avi (A.6)

so that

Avi = σiui (1 ≤ i ≤ r) . (A.7)

Then {u1, . . . , ur} is an orthonormal basis of Col A. Extend this set to an orthonor-

mal basis {u1, . . . , um} and let

U = [u1u2 . . . um] and V = [v1v2 . . . vn] . (A.8)

Then U and V are unitary matrices (because their column vectors form an orthonor-

mal set). In this way we have

AV = [Av1 . . . Avr0 . . . 0] = [σ1u1 . . . σrur0 . . . 0] . (A.9)
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Now, consider the following product

UΣ = [u1u2 . . . um]



σ1 0 · · · 0 0

0 σ2 · · · 0 0
...

...
. . .

... 0

0 · · · · · · σr 0

0 · · · · · · · · · 0
... · · · · · · · · · ...


m×n

= [σ1u1 · · ·σrur0 · · · 0] (A.10)

and thus

A = UΣV. (A.11)

With this result in hand we can easily prove the Schmidt decomposition and

observe the recipe to find it. Suppose a general state of two particles

|ψ〉 =
∑
jk

ajk |j〉 |k〉 . (A.12)

Now, the SVD tells us that the decomposition of the matrix ajk is given by ajk =∑
i ujidiivik. Substituting this in the above expression we obtain

|ψ〉 =
∑
ijk

ujidiivik |j〉 |k〉 . (A.13)

Now, defining
∣∣iA〉 =

∑
j uji |j〉,

∣∣iB〉 =
∑

k vik |k〉 and
√
λi = dii we obtain the

known expression for the Schmidt decomposition

|ψ〉 =
∑
i

√
λi
∣∣iA〉 ∣∣iB〉 . (A.14)

Let us write some properties of a state written in its Schmidt decomposition. From

the SVD these λi’s coefficients are all nonnegative real numbers. These two sets{∣∣iA〉} and
{∣∣iB〉} are orthonormal basis in the Hilbert space associated with the

system A and B, respectively. Writing the density operator for such a state we have

ρ =
∑
ij

√
λiλj

∣∣iA〉 ∣∣iB〉 〈iA∣∣ 〈iB∣∣ . (A.15)

Evaluating the reduced density operator for both system we obtain

ρA =
∑
i

λi
∣∣iA〉 〈iA∣∣ (A.16)

ρB =
∑
i

λi
∣∣iB〉 〈iB∣∣ , (A.17)
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so, the Schmidt basis is the basis that diagonalized both the reduced density oper-

ators and, even more, the eigenvalues of ρA and ρBare the same. We can see by the

expressions that the following property is true,
∑

i λi = 1 (by the properties of the

density matrices).



Appendix B

Operator-Sum Decomposition

This decomposition is called operator-sum decomposition, Kraus decomposition

or Kraus’ theorem. It is important because it provides a description for general

quantum operations (cf. Sec. (3.5)).

Theorem: E : S (HN)→ S (HM) is a quantum operation if and only if

E (ρ) =
∑
i

KiρK
†
i , (B.1)

where Ki are linear operators satisfying
∑

iK
†
iKi ≤ I.

Before beginning the actual proof we have to define some states. Consider a

bipartite system SAB with state space HAB = HA ⊗ HB and, for simplicity, they

have the same dimension d. Let
{∣∣aAn 〉} and

{∣∣bBn 〉} be orthonormal bases inHA and

HB, respectively. We can always construct a non-normalized maximally entangled

state ∣∣∣ψ̃AB〉 =
d∑

n=1

∣∣aAn , bBn 〉 . (B.2)

Observe that
∣∣aAn 〉 =

〈
bBn

∣∣∣ ψ̃AB〉. Let
∣∣φA〉 be an arbitrary state

∣∣φA〉 =
∑
n

cn
∣∣aAn 〉 , (B.3)

and define the state ∣∣φ∗B〉 =
∑
n

c∗n
∣∣bBn 〉 . (B.4)

With these states we see the relationship

∣∣φA〉 =
〈
φ∗B

∣∣∣ ψ̃AB〉 , (B.5)

and likewise ∣∣φ∗B〉 =
〈
φA
∣∣∣ ψ̃AB〉 . (B.6)
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Thus
∣∣∣ψ̃AB〉 establishes an unambiguous map

∣∣φA〉 ↔ ∣∣φ∗B〉, which is conjugate

linear, i.e., if
∣∣φA〉 = α1

∣∣φA1 〉+ α2

∣∣φA2 〉 then∣∣φ∗B〉 =
〈
φA
∣∣∣ ψ̃AB〉 = α∗1

〈
φA1

∣∣∣ ψ̃AB〉+ α∗2

〈
φA2

∣∣∣ ψ̃AB〉 = α∗1
∣∣φ∗B1 〉+ α∗2

∣∣φ∗B2 〉 .
(B.7)

Beginning the actual proof.

Proof. Suppose

E (ρ) =
∑
i

KiρK
†
i , (B.8)

with Ki being linear and satisfying
∑

iK
†
iKi ≤ I and we want to show that it is a

quantum operation (cf. Sec.(3.5)). If Ki are linear by hypothesis then E (·) is also

linear. The trace is given by

Tr [E (ρ)] =Tr

[∑
i

KiρK
†
i

]
=
∑
i

Tr
[
KiρK

†
i

]
=
∑
i

Tr
[
K†iKiρ

]
= Tr

[(∑
i

K†iKi

)
ρ

]
≤ 1, (B.9)

with
∑

iK
†
iKi ≤ I. It is left to show that E is a completely positive map (see Sec.

(3.3) for a definition). Let
∣∣ψAB〉 be an arbitrary state in HA ⊗HB. Define∣∣φABi 〉

:=
(
KA†
i ⊗ IB

) ∣∣ψAB〉 . (B.10)

For an arbitrary positive operator πAB we calculate〈
ψAB

∣∣ (KA
i ⊗ IB

)
πAB

(
KA†
i ⊗ IB

) ∣∣ψAB〉 =
〈
φABi

∣∣ πAB ∣∣φABi 〉
≥ 0 ∀i. (B.11)

Therefore the average value of
(
EA ⊗ IB

) (
πAB

)
is〈

ψAB
∣∣∑

i

(
KA
i ⊗ IB

)
πAB

(
KA
i ⊗ IB

) ∣∣ψAB〉 =

=
∑
i

〈
ψAB

∣∣ (KA
i ⊗ IB

)
πAB

(
KA
i ⊗ IB

) ∣∣ψAB〉
=
∑
i

〈
φABi

∣∣ πAB ∣∣φABi 〉
≥ 0, (B.12)

and thus EA ⊗ IB is a positive map and EA a completely positive map. E being a

linear, trace-preserving and completely positive map it is a quantum operation.

Now we prove the reverse, suppose EA is a quantum operation. Since EA is a

quatum operation then (
EA ⊗ IB

) (∣∣∣ψ̃AB〉〈ψ̃AB∣∣∣) =: CAB (B.13)
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is a positive operator, where
∣∣∣ψ̃AB〉 is the state of Eq. (B.2). Explicitly

CAB =
(
EA ⊗ IB

)(∑
n

∣∣aAn , bBn 〉
)(∑

n

〈
aAn′ , bBn′

∣∣)
=
∑
n,n′

EA
(∣∣aAn 〉 〈aAn′

∣∣)⊗ ∣∣bBn 〉 〈bBn′

∣∣. (B.14)

Using the state of Eq. (B.6) we take

〈
φ∗B
∣∣CAB

∣∣φ∗B〉 =
∑
n,n′

EA
(∣∣aAn 〉 〈aAn′

∣∣) 〈φ∗B ∣∣ bBn 〉 〈bBn′

∣∣φ∗B〉
=
∑
n,n′

cnc
∗
n′EA

(∣∣aAn 〉 〈aAn′

∣∣) (B.15)

=EA
((∑

n

cn
∣∣aAn 〉

)(∑
n′

c∗n′

〈
aAn′

∣∣)) = EA
(∣∣φA〉 〈φA∣∣).

As CAB is a positive operator we can write its ensemble decomposition

CAB =
∑
i

∣∣c̃ABi 〉 〈
c̃ABi
∣∣ . (B.16)

Hence

EA
(∣∣φA〉 〈φA∣∣) =

〈
φ∗B
∣∣CAB

∣∣φ∗B〉 =
∑
i

〈
φ∗B

∣∣ c̃ABi 〉 〈
c̃ABi

∣∣φ∗B〉. (B.17)

Define KA
i

∣∣φA〉 :=
〈
φ∗B

∣∣ c̃ABi 〉
and we obtain

EA
(∣∣φA〉 〈φA∣∣) =

∑
i

KA
i

∣∣φA〉 〈φA∣∣KA†
i . (B.18)

Due to linearity then it holds to any density operator

EA
(
ρA
)

=
∑
i

KA
i ρ

AKA†
i . (B.19)

One last remark is that the decomposition is not unique. This makes sense since

we are describing, in general, a nonunitary dynamics, i.e., non-reversible, of quantum

systems and therefore we are not able to know from which state the present state

came from.



Appendix C

Information Theoretic Inequality

In this appendix we will demonstrate a general inequality for the von Neumann

entropy which, under some restricted conditions, turns out to result in some inequal-

ities used in this work. Suppose ρ =
∑N

k=1 pkρk is a general density operator, i.e.,

the operators ρk may not be pure states but instead mixed states. The goal of this

appendix is to show that

S (ρ) ≤
N∑
k=1

pkS (ρk) +H ({pk}) . (C.1)

This inequality means that the uncertainty of ρ cannot exceed the uncertainty of the

probability distribution alone plus the average uncertainty of the states composing

the ensemble.

As for each k ρk is a density operator, then suppose that they have the following

form

ρk =

dk∑
jk=1

λjkk
∣∣λjkk 〉 〈λjkk ∣∣ , (C.2)

where jk labels the states that compose the kth ensemble ρk and there are dk of

such states. The states
∣∣λjkk 〉 〈λjkk ∣∣ are pure but not necessarily neither distinct nor

orthogonal for all possible values of k and jk. For each k the numbers λjkk provide a

normalized probaility distribution, i.e., λjkk > 0 and
∑dk

jk=1 λ
jk
k = 1. We can rewrite

the original ensemble as

ρ =
N∑
k=1

dk∑
jk=1

pkλ
jk
k

∣∣λjkk 〉 〈λjkk ∣∣ . (C.3)

If there are states
∣∣λjkk 〉 which are equal we put them together and re-arrange all the

terms in the above expression, leading us to the following decomposition

ρ =
n∑

{k}=1

q{k}
∣∣ξ{k}〉 〈ξ{k}∣∣ . (C.4)
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The set of indices {k} is finite and the brackets just emphasize the fact that we

have changed the probability distribution pkλ
jk
k to a new distribution q{k}, but the

sum over {k} can be at any moment replaced by the original sum over k and jk re-

arraging back the terms. The states
∣∣ξ{k}〉 are distinct pure states but not necessarily

orthogonal. All we have done is to state what we already knew, i.e., that any density

operator can be seen as a convex combination of pure states. The reason of why we

did not began with such a state is that the inequality we intend to prove depends

explicitly on the original probability distribution {pk} and not on {q{k}}. The next

step is to see the density operator ρ as a reduced state operator of a pure state in

a larger Hilbert space. Find such a pure state that gives the density operator ρ by

tracing out the auxiliary degrees of freedom we are going to introduce by hand is

called a purification of ρ.

Consider an auxiliary Hilbert space HB with dimension nB = n, i.e., the dimen-

sion is equal to the number of pure states in Eq. (C.4). Thus a purification of ρA is

a state
∣∣ψAB〉 ∈ HA ⊗HB such that ρA = TrB

[∣∣ψAB〉 〈ψAB∣∣]. The following state

can be easily seen to be a purification of ρA,

∣∣ψAB〉 =
n∑

{k}=1

√
q{k}

∣∣ξA{k}〉⊗ ∣∣ϕB{k}〉 , (C.5)

where
{∣∣∣ϕB{k}〉} is an orthonormal basis in HB. Observe that this state is not the

Schmidt decomposition of
∣∣ψAB〉 because if it were the sum should go from 1 to

min (nA, nB), nA being the dimension of HA, and
∣∣∣ξA{k}〉 should be an orthonormal

basis in HA. Tracing out B we obtain

ρA =TrB
[∣∣ψAB〉 〈ψAB∣∣] =

n∑
{k},{k}′=1

√
q{k}q{k}′

∣∣ξA{k}〉 〈ξA{k}′∣∣∣TrB

[∣∣ϕB{k}〉 〈ϕB{k}′∣∣∣]
=

n∑
{k}=1

q{k}
∣∣ξA{k}〉 〈ξA{k}∣∣ , (C.6)

which shows that
∣∣ψAB〉 is indeed a purification of ρA. Suppose

{∣∣φAk 〉} is an or-

thonormal basis in HA, tracing out A gives us

ρB =TrA
(∣∣ψAB〉 〈ψAB∣∣) =

n∑
{k},{k}′=1

√
q{k}q{k}′TrA

[∣∣ξA{k}〉 〈ξA{k}′∣∣∣] ∣∣ϕB{k}〉 〈ϕB{k}′∣∣∣
=

n∑
{k},{k}′=1

√
q{k}q{k}′

〈
ξA{k}′

∣∣∣ ξA{k}〉 ∣∣ϕB{k}〉 〈ϕB{k}′∣∣∣ . (C.7)
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Moreover, the Schmidt decomposition guarantees that S
(
ρA
)

= S
(
ρB
)
.

Consider the following state

ρ′B =
n∑

{k}=1

q{k}
∣∣ϕB{k}〉 〈ϕB{k}∣∣ . (C.8)

The relative entropy between ρB and ρ′B is given by

S
(
ρB||ρ′B

)
= −S

(
ρB
)
− TrB

[
ρB log ρ′B

]
≥ 0. (C.9)

Or equivalently

S
(
ρA
)

= S
(
ρB
)
≤ −TrB

[
ρB log ρ′B

]
. (C.10)

Let us handle the right-hand side. By the definition of ρ′B we have that log ρ′B =∑n
{k}=1 log

(
q{k}
) ∣∣∣ϕB{k}〉〈ϕB{k}∣∣∣. Hence

−TrB
[
ρB log ρ′B

]
=−

n∑
{k}=1

log q{k}TrB
[
ρB
∣∣ϕB{k}〉 〈ϕB{k}∣∣]

=−
n∑

{k}=1

〈
ϕB{k}

∣∣ ρB ∣∣ϕB{k}〉 log q{k}. (C.11)

Calculating the above expectation value,

〈
ϕB{k}

∣∣ ρB ∣∣ϕB{k}〉 =
n∑

{l},{l}′=1

√
q{l}q{l}′

〈
ξA{l}′

∣∣∣ ξA{l}〉 〈ϕB{k} ∣∣ϕB{l}〉 〈ϕB{l}′ ∣∣∣ϕB{k}〉
=q{k}. (C.12)

We have, thus, the following result

S
(
ρA
)
≤ −

∑
{k}

q{k} log q{k} = H
({
q{k}
})
. (C.13)

But, as we have said, we want to get back to the original probability distribution of

the ensemble ρ, namely {pk}. What we have to do now is just re-arrange the sum

over {k} to k and jk again. This gives us

H
({
q{k}
})

=−
N∑
k=1

dk∑
jk=1

pkλ
jk
k log

(
pkλ

jk
k

)
=

N∑
k=1

pk

(
−

dk∑
jk=1

λjkk log λjkk

)
−

N∑
k=1

pk log pk

(
dk∑
jk=1

λjkk

)

=
N∑
k=1

pkS (ρk) +H ({pk}) . (C.14)
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Substituting in Eq. (C.13) we obtain what we wanted

S (ρ) ≤
∑
k

pkS (ρk) +H ({pk}) . (C.15)

Two further inequalities arise from this one. If the states ρk’s of the ensemble ρ

are all pure states, then S (ρk) is zero for every k. Hence it follows that

S (ρ) ≤ H ({pk}) . (C.16)

The Shannon entropy of the probability distribution is an upper bound for ensembles

of pure states. In this way we achieve S (ρ) = H ({pk}). The next inequality that

we can obtain from Eq. (C.15) is actually an equality. Considering that the set of

operators ρk’s has support on orthogonal subspaces∗. This means that the image of

the original ensemble can be decomposed into the direct sum of the images of each

ρk and, moreover, the image sets are mutually orthogonal. Mathematically, the set

ρk has support on orthogonal subspaces if and only if

im (ρ) = im (ρ1)⊕ · · · ⊕ im (ρN) and im (ρi) ⊥ im (ρj)∀i, j. (C.17)

This is also known as orthogonal direct sum decomposition [66]. If this happens,

then, there is no need to arrange the terms between Eqs. C.3 and C.4 or, in other

words,
〈
ξ{k}

∣∣ ξ{k}′〉 = 0. This in turn implies that ρB and ρB
′

are the same and the

equality of the relative entropy holds leading to an equality in Eq. C.15.

∗I searched out in several linear algebra’s textbooks and I did not find any such property. By

the context and the result we intend to reach this definition must be equivalent to the one we are

about to give.
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[53] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Woot-

ters, Teleporting an unknown quantum state via dual classical and Einstein-

Podolsky-Rosen channels , Phys. Rev. Lett. 70, 1895-1899 (1993).

[54] X. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B.

Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein,

R. Ursin, A. Zeilinger, Quantum Teleportation over 143 Km Using Active

Feed-Forward , Nature 489, 269-273 (2012).

[55] E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg,

Entanglement Swapping Between Photons That Have Never Coexisted , Phys.

Rev. Lett. 110, 210403 (2013).

[56] C. H. Bennett, S. J. Wiesner, Communication via One- and Two-Particle

Operators on Einstein -Podolsky-Rosen States , Phys. Rev. Lett. 69, 2881-2884

(1992).

[57] K. Modi, A. Brodutch, H. Cable, T. Paterek and V. Vedral, The Classical-

Quantum Boundary for Correlations: Discord and Related Measures , Rev.

Mod. Phys. 84, 1655-1707 (2012).

[58] Z. Merali, Quantum Computing: The Power of Discord , Nature 474, 24-26

(2011).

[59] M. Castagnino, S. Fortin, O. Lombardi, The Effect of Random Coupling Coef-

ficients on Decoherence, Mod. Phys. Lett. A 25, 611-617 (2010).

http://link.aps.org/doi/10.1103/PhysRevLett.88.017901
http://link.aps.org/doi/10.1103/PhysRevLett.88.017901
http://iopscience.iop.org/0305-4470/34/35/315
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.044102
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.044102
http://arxiv.org/abs/0905.2794
http://arxiv.org/abs/0905.2794
http://prl.aps.org/abstract/PRL/v70/i13/p1895_1
http://prl.aps.org/abstract/PRL/v70/i13/p1895_1
http://www.nature.com/nature/journal/v489/n7415/full/nature11472.html
http://www.nature.com/nature/journal/v489/n7415/full/nature11472.html
http://prl.aps.org/abstract/PRL/v110/i21/e210403
http://prl.aps.org/abstract/PRL/v69/i20/p2881_1
http://prl.aps.org/abstract/PRL/v69/i20/p2881_1
http://rmp.aps.org/abstract/RMP/v84/i4/p1655_1
http://rmp.aps.org/abstract/RMP/v84/i4/p1655_1
http://www.nature.com/news/2011/110601/full/474024a.html
http://www.worldscientific.com/doi/abs/10.1142/S0217732310032196
http://www.worldscientific.com/doi/abs/10.1142/S0217732310032196


BIBLIOGRAPHY 147

[60] S. Luo, Quantum Discord for Two-Qubit Systems , Phy. Rev. A 77, 042303

(2008).

[61] M. Ali, A. R. P. Rau, G. Alber, Quantum Discord for Two-Qubit X States ,

Phys. Rev. A 81, 042105 (2010).

[62] X. Lu, J. Ma, Z. Xi, X. Wang, Optimal Measurements to Access Classical

Correlations of Two-Qubit States , Phys. Rev. A 83, 012327 (2011).

[63] Y. Huang, Quantum Discord for Two-Qubit X States: Analytical Formula with

Very Small Worst-Case Errpr , Phys. Rev. A 88, 014302 (2013).

[64] Q. Chen, C. Zhang, S. Yu, X. X. Yi, C. H. Oh, Quantum Discord of Two-Qubit

X States , Phys. Rev. A 84, 042313 (2011).

[65] D. C. Lay, Linear Algebra and Its Applications 4th edition (2012).

[66] S. Roman, Advanced Linear Algebra 3rd edition, Springer Science+Business

Media, LCC, New York (2008).

http://pra.aps.org/abstract/PRA/v77/i4/e042303
http://pra.aps.org/abstract/PRA/v81/i4/e042105
http://pra.aps.org/abstract/PRA/v83/i1/e012327
http://pra.aps.org/abstract/PRA/v83/i1/e012327
http://pra.aps.org/abstract/PRA/v88/i1/e014302
http://pra.aps.org/abstract/PRA/v88/i1/e014302
http://pra.aps.org/abstract/PRA/v84/i4/e042313
http://pra.aps.org/abstract/PRA/v84/i4/e042313
http://www.amazon.com/Linear-Algebra-Its-Applications-Edition/dp/0321385179/ref=sr_1_1?ie=UTF8&qid=1389478183&sr=8-1&keywords=lay+linear+algebra
http://www.amazon.com/Advanced-Linear-Algebra-Graduate-Mathematics/dp/1441924981/ref=sr_1_1?ie=UTF8&qid=1389198342&sr=8-1&keywords=roman+advanced+linear+algebra

	Introduction
	Classical Information Theory
	 What is information?
	Measuring Information
	Shannon Entropy
	Mutual Information and Other Entropies
	Relative Entropy


	Quantum Dynamics
	Dynamics of Closed Quantum Systems
	Dynamics of Pure and Mixed States
	Dynamics of One Qubit

	Composite Quantum Systems
	Dynamics of Open Quantum Systems
	Measurement Dynamics
	Generalized Quantum Dynamics
	Decoherence and Environment-Induced Superselection

	Quantum Information Theory
	The von Neumann Entropy
	Entropy at the Interfaces: Preparation and Measurement
	The Entropy of Projective Measurements
	The entropy of preparation

	Correlations
	Measuring Correlations
	Correlations in Pure States; Entanglement
	Correlations in Arbitrary Bipartite States; Accounting for Mixed States

	Applications of Quantum Correlations
	No-Cloning Theorem
	Quantum Teleportation
	Entanglement Swapping
	Quantum Dense Coding
	Quantum Discord as a Resource


	The Effect of Random Coupling Constants on Quantum Correlations 
	Calculation of the Measures of Quantum Correlations
	Numerical Results and Discussions

	Conclusions
	Singular Value Decomposition
	Operator-Sum Decomposition
	Information Theoretic Inequality
	Bibliography

