“main” — 2007/6/27 — 17:40 — page 215 — #1 Volume 26, N. 2, pp. 215–234, 2007 Copyright © 2007 SBMAC ISSN 0101-8205 www.scielo.br/cam A transmission problem for the Timoshenko system C.A. RAPOSO1, W.D. BASTOS2 and M.L. SANTOS3 1Department of Mathematics, UFSJ, Praça Frei Orlando, 170 36307-352 São João del-Rei, MG 2Department of Mathematics, UNESP, Rua Cristovão Colombo, 2265 15054-000 São José do Rio Preto, SP 3Department of Mathematics, UFPA, Rua do Una, 156 – 66113-200 Pará, PA E-mails: raposo@ufsj.edu.br / waldemar@ibilce.unesp.br /mlsantos@ufpa.br Abstract. In this work we study a transmission problem for the model of beams developed by S.P. Timoshenko [10]. We consider the case of mixed material, that is, a part of the beam has friction and the other is purely elastic. We show that for this type of material, the dissipation produced by the frictional part is strong enough to produce exponential decay of the solution, no matter how small is its size. We use the method of energy to prove exponential decay for the solution. Mathematical subject classification:35J55, 35J77, 93C20. Key words: transmission, Timoshenko, beams, exponential decay, frictionaldamping. 1 Introduction The transverse vibration of a beam is mathematically described by a system of two coupled differential equations given by ρutt − (K (ux + ψ))x = 0, in (0, L)× (0,∞), Iρψt t − (E Iψx)x + K (ux + ψ) = 0, in (0, L)× (0,∞). (1.1) Here, L is the length of the beam in its equilibrium position,t is the time variable andx is the space coordinate along the beam. The functionu = u(x, t) #668/06. Received: 23/I/07. Accepted: 09/II/07. “main” — 2007/6/27 — 17:40 — page 216 — #2 216 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM is the transverse displacement of the beam andψ = ψ(x, t) is the rotation angle of a filament of the beam. The coefficientsρ, Iρ, E, I andK are the mass per unit length, the polar moment of inertia of a cross section, Young’s modulus of elasticity, the moment of inertia of a cross section and the shear modulus respectively. We denoteρ1 = ρ, ρ2 = Iρ, b = E I, k = K and we obtain directly from (1.1) the following system ρ1utt − k(ux + ψ)x = 0, in (0, L)× (0,∞), ρ2ψt t − b2ψxx + k(ux + ψ) = 0, in (0, L)× (0,∞). (1.2) The mathematical model describing the vibrations of beam with fixed extrem- ities is formed by the system (1.2), boundary conditions u(0, t) = u(L , t) = ψ(0, t) = ψ(L , t) = 0, t > 0, and initial data u(∙, 0) = φ0, ut(∙, 0) = φ1, ψ(∙, 0) = ψ0, ψt(∙, 0) = ψ1, in (0, L). If friction is taken into account, the system(1.2) becomes ρ1utt − k(ux + ψ)x + αut = 0, in (0, L)× (0,∞), ρ2ψt t − b2ψxx + k(ux + ψ)+ βψt = 0, in (0, L)× (0,∞), (1.3) whereα andβ are positive constants (we assumeα = β = 1). The termsαut andβψt represent the attrition acting in the vertical vibrations and in the angle of rotation of the filaments of the beam, respectively. Dissipative properties associated to the system(1.3) have been studied by sev- eral authors by considering dissipative mechanism of frictional or viscoelastic type. The frictional dissipation, obtained by introduction of a frictional mech- anism acting on the entire domain or on the boundary, was studied in [7, 8, 9]. The viscoelastic dissipation, given by a memory effect, was considered in [2] and [6]. An interesting problem comes out when the dissipation acts only on a part of the domain. In the present paper we consider a frictional mechanism acting only on the part of the domain given by 0≤ x ≤ L0 with 0 < L0 < L . We prove that for everyL0 the energy of the system decays exponentially to zero as time Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 217 — #3 C.A. RAPOSO, W.D. BASTOS and M.L. SANTOS 217 goes to infinity. In other words, our result states that dissipative properties of the system are transferred to the whole beam and stabilizes the system. The main result of this paper is Theorem 2 and its corollary, both in section 5. The mathematical model which deals with this situation is called a transmission problem. From the mathematical point of view a transmission problem consist of an initial and boundary value problem for a hyperbolic equation for which the corresponding elliptic operator has discontinuous coefficients. Hence, we can not expect to have regular solutions in the role domain. In the next section we establish the transmission problem and define appropriately the notion of solu- tion considered. We useHm andL p to denote the usual Sobolev and Lebesgue spaces [1]. 2 The transmission problem In this section we describe precisely the transmission problem treated in the paper and establish existence and regularity of solution. We begin by introducing the notation ρ j (x) = { ρ1 j , if x ∈ (0, L0) ρ2 j , if x ∈ (L0, L) } , k(x) = { k1, if x ∈ (0, L0) k2, if x ∈ (L0, L) } , b(x) = { b1, if x ∈ (0, L0) b2, if x ∈ (L0, L) } , α = { 1, if x ∈ (0, L0) 0, if x ∈ (L0, L) } , β = { 1, if x ∈ (0, L0)] 0, if x ∈ (L0, L) } , u(x, t) = { u(x, t), if x ∈ (0, L0)× (0,∞) v(x, t), if x ∈ (L0, L)× (0,∞) } , Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 218 — #4 218 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM ψ(x, t) = { ψ(x, t), if x ∈ (0, L0)× (0,∞) φ(x, t), if x ∈ (L0, L)× (0,∞) } . Using the notation above, model (1.3) can be written in the following form: ρ1 1utt − k1(ux + ψ)x + ut = 0, in (0, L0)× (0,∞), (2.1) ρ1 2ψt t − b1ψxx + k1(ux + ψ)+ ψt = 0, in (0, L0)× (0,∞), (2.2) ρ2 1vt t − k2(vx + φ)x = 0, in (L0, L)× (0,∞), (2.3) ρ2 2φt t − b2φxx + k2(vx + φ) = 0, in (L0, L)× (0,∞), (2.4) L0 L−L0 Dissipative part u(x), ψ(x) v(x), φ(x) Elastic part with boundary conditions, u(0, t) = v(L , t) = ψ(0, t) = φ(L , t) = 0, t > 0, transmission conditions, k1u(L0, t) = k2v(L0, t), ρ1 1ut(L0, t) = ρ2 1vt(L0, t), k1ux(L0, t) = k2vx(L0, t), k1ψ(L0, t) = k2φ(L0, t), ρ1 2ψt(L0, t) = ρ2 2φt(L0, t), b1ψx(L0, t) = b2φx(L0, t), (2.5) and initial data u(∙, 0) = u0, ut (∙, 0) = u1, ψ(∙, 0) = ψ0, ψt (∙, 0) = ψ1, in (0, L0), v(∙, 0) = v0, vt (∙, 0) = v1, φ(∙, 0) = φ0, φt (∙, 0) = φ1, in (L0, L). (2.6) We define the notion of weak solution to the system (2.1)-(2.6) as follows: Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 219 — #5 C.A. RAPOSO, W.D. BASTOS and M.L. SANTOS 219 Definition 1. LetV ,Hm andL2 be the spaces defined by V = { (w̄, w) ∈ H1(0, L0)× H1(L0, L); w̄(0) = w(L) = 0, w̄(L0) = w(L0) } Hm = Hm(0, L0)× Hm(L0, L) and L2 = L2(0, L0)× L2(L0, L). We say that(u, v, ψ, φ) is a weak solution to the problem(2.1)-(2.6) if for every(w̄, w) ∈ H1 0 (0, T;H 2 ∩V ) we have: ρ1 1 ∫ L0 0 ut(x, T)w̄(x, T)dx − ρ1 1 ∫ L0 0 ut(x, 0)w̄(x, 0)dx + ρ2 1 ∫ L L0 vt(x, T)w(x, T)dx − ρ2 1 ∫ L L0 vt(x, 0)w(x, 0)dx − ρ1 1 ∫ T 0 ∫ L0 0 ut(x, t)w̄t(x, t)dxdt− ρ2 1 ∫ T 0 ∫ L L0 vt(x, t)wt(x, t)dxdt + ∫ T 0 ∫ L L0 vt(x, t)wx(x, t)dxdt+ ∫ T 0 ∫ L0 0 k1(ux + ψ)(x, t)w̄x(x, t)dxdt + ∫ T 0 ∫ L L0 k2(vx + φ)(x, t)wx(x, t)dxdt = 0 and ρ2 1 ∫ L0 0 ψt(x, T)w̄(x, T)dx − ρ2 1 ∫ L0 0 ψt(x, 0)w̄(x, 0)dx + ρ2 2 ∫ L L0 φt(x, T)w(x, T)dx − ρ2 2 ∫ L L0 φt(x, 0)w(x, 0)dx − ρ1 2 ∫ T 0 ∫ L0 0 ψt(x, t)w̄t(x, t)dxdt− ρ2 2 ∫ T 0 ∫ L L0 φt(x, t)wt(x, t)dxdt + ∫ T 0 ∫ L0 0 b1ψ(x, t)xw̄(x, t)dxdt+ ∫ T 0 ∫ L0 0 ψt(x, t)w̄x(x, t)dxdt + ∫ T 0 ∫ L0 0 k1(ux + ψ)w̄(x, t)dxdt+ b2 ∫ T 0 ∫ L L0 φx(x, t)wx(x, t)dxdt + ∫ T 0 ∫ L L0 k2(vx + φ)(x, t)w(x, t)dxdt = 0. The transmission problem for a single hyperbolic equation was studied by Dautray and Lions [3], who proved the existence and regularity of solutions for Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 220 — #6 220 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM the linear problem. The existence and regularity of solutions to the transmission problem for the Timoshenko system is given in the following theorem: Theorem 1. If (u0, v0), (ψ0, φ0) ∈ V and(u1, v1), (ψ1, φ1) ∈ L2, then there exists a unique weak solution(u, v, ψ, φ) to the system(2.1)-(2.6) satisfying: (u, v), (ψ, φ) ∈ C(0,∞;V ) ∩ C1(0,∞;L2). Moreover, if(u0, v0), (ψ0, φ0) ∈ H 2 ∩V and(u1, v1), (ψ1, φ1) ∈ V , then the weak solution is a strong solution and satisfies (u, v), (ψ, φ) ∈ C(0,∞;H 2 ∩V ) ∩ C1(0,∞;V ) ∩ C2(0,∞;L2). Proof. For the proof we proceed in a quite similar manner as in [3]. � The total energy associated to the system is defined by E(t) = 1 2 ∫ L0 0 { ρ1 1|ut | 2 + ρ1 2|ψt | 2 + b1|ψx| 2 + k1|ux + ψ |2 } dx + 1 2 ∫ L L0 { ρ2 1|vt | 2 + ρ2 2|φt | 2 + b2|φx| 2 + k2|v 2 x + φ|2 } dx. Next we prove that the total energy associated to the system is decreasing for everyt > 0. Lemma 1. Let (u, v, ψ, φ) be the strong solution to the system(2.1)-(2.6), then d dt E(t) = − ∫ L0 0 |ut | 2dx − ∫ L0 0 |ψt | 2dx. Proof. Multiplying (2.1) byut and integrating by parts over the interval(0, L0), we get d dt ρ1 1 2 ∫ L0 0 |ut | 2dx = k1 (ux(L0)+ ψ(L0)) ut(L0) − k1 ∫ L0 0 (ux + ψ) utxdx − ∫ L0 0 |ut | 2dx. (2.7) Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 221 — #7 C.A. RAPOSO, W.D. BASTOS and M.L. SANTOS 221 Now, multiplying (2.2) byψt and integrating by parts over(0, L0) we obtain d dt { ρ1 2 2 ∫ L0 0 |ψt | 2dx + b1 2 ∫ L0 0 |ψx| 2dx } = b1ψx(L0)ψt(L0) − k1 ∫ L0 0 (ux + ψ)ψtdx − ∫ L0 0 |ψt | 2dx. (2.8) Multiplying (2.3) byvt and integrating by parts on(L0, L), we get ρ2 1 2 d dt ∫ L L0 |vt | 2dx = − k2(vx + φ)(L0)vt(L0)− k2 ∫ L L0 (vx + φ) vt xdx. (2.9) Multiplying (2.4) byφt and integrating by parts on(L0, L) leads to d dt { ρ2 2 2 ∫ L L0 |φt | 2dx + b2 2 ∫ L L0 |φx| 2dx } = −b2φx(L0)φt(L0) − k2 ∫ L L0 (vx + φ) φtdx. (2.10) Now observe that k1 2 d dt ∫ L0 0 ∣ ∣φ1 x + ψ1 ∣ ∣2 dx = k1 ∫ L0 0 ( φ1 x + ψ1 ) ( φ1 xt + ψ1 t ) dx, (2.11) and k2 2 d dt ∫ L L0 ∣ ∣φ2 x + ψ2 ∣ ∣2 dx = k2 ∫ L L0 ( φ2 x + ψ2 ) ( φ2 xt + ψ2 t ) dx. (2.12) Summing up (2.7), (2.8), (2.9) and (2.10), and using (2.11) and (2.12) together with the hypothesis of transmission we obtain d dt E(t) = − ∫ L0 0 |ut | 2dx − ∫ L L0 |ψt | 2dx. 3 Technical lemmas Now we develop a series of technical results in order to facilitate the proof of the main result of the paper. We begin by constructing a functionalE(t), equivalent to the energy functional, which satisfiesE(t) ≤ CE(0), C < 1. In order to do so, we use some multiplier techniques (usually associated to control problems) Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 222 — #8 222 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM and the following restrictions on the boundary conditions for the elastic part of the beam: |vx(L)| 2 ≤ 1 2L ∫ L L0 |vx| 2 dx. (3.1) |φx(L)| 2 ≤ 1 2L ∫ L L0 |φx| 2 dx. (3.2) Lemma 2. Let us define E1(t) = N1 E(t)+ ∫ L0 0 x (ρ1 1uxut +ρ 1 2ψxψt) dx+ ∫ L L0 x (ρ2 1vxvt +ρ 2 2φxφt) dx. Then d dt E1(t) ≤ − 1 4 ∫ L0 0 [ k1|ux| 2 + b1|ψx| 2 ] dx − 1 4 ∫ L L0 [ k2|vx| 2 + b2|φx| 2 ] dx. Proof. Multiply (2.1) by x ux and integrate by parts over(0, L0) to get d dt ∫ L0 0 ρ1 1x ut ux dx = L0ρ 1 1 2 |ut(L0)| 2 − ρ1 1 2 ∫ L0 0 |ut | 2 dx + L0k1 2 |ux(L0)| 2 − k1 2 ∫ L0 0 |ux| 2 dx + k1 ∫ L0 0 xψx ux dx − ∫ L0 0 x ut ux dx. (3.3) Multiply (2.2) by xψx and integrate by parts over(0, L0) to obtain d dt ∫ L0 0 ρ1 2xψt ψx dx = L0ρ 1 2 2 |ψt(L0)| 2 − ρ1 2 2 ∫ L0 0 |ψt | 2 dx + L0b1 2 |ψx(L0)| 2 − b1 2 ∫ L0 0 |ψx| 2 dx + L0k1 2 |ψ(L0)| 2 − k1 2 ∫ L0 0 |ψ |2 dx − k1 ∫ L0 0 xψx ux dx − ∫ L0 0 xψt ψx dx. (3.4) Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 223 — #9 C.A. RAPOSO, W.D. BASTOS and M.L. SANTOS 223 Multiplying (2.3) byx vx and integrating by parts over(L0, L) leads to d dt ∫ L L0 ρ2 1x vt vx dx = − L0ρ 2 1 2 |vt(L0)| 2 − ρ2 1 2 ∫ L L0 |vt | 2 dx + Lk2 2 |vx(L)| 2 − L0k2 2 |vx(L0)| 2 − k2 2 ∫ L L0 |vx| 2 dx + k2 ∫ L L0 x φx vx dx. (3.5) Now multiply (2.4) byx φx and integrate over(0, L0) to obtain d dt ∫ L L0 ρ2 2x φt φx dx = − L0ρ 2 2 2 |φt(L0)| 2 − ρ2 2 2 ∫ L L0 |φt | 2 dx + Lb2 2 |φx(L)| 2 − L0b2 2 |φx(L0)| 2 − b2 2 ∫ L L0 |φx| 2 dx − L0k2 2 |φ(L0)| 2 − k2 2 ∫ L L0 |φx| 2 dx − k2 ∫ L L0 x φx vx dx. (3.6) Summing up (3.3), (3.4), (3.5), (3.6), and making use of the hypothesis on the transmission, the punctual terms are canceled and we get d dt ∫ L0 0 x (ρ1 1uxut + ρ1 2ψxψt ) dx + d dt ∫ L L0 x (ρ2 1vxvt + ρ2 2φxφt ) dx = Lk2 2 |vx(L)| 2 + Lb2 2 |φx(L)| 2 − k1 2 ∫ L0 0 |ux| 2 dx − ∫ L0 0 xutuxdx − b1 2 ∫ L0 0 |ψx| 2 dx + ∫ L0 0 xψtψxdx − k2 2 ∫ L L0 |vx| 2 dx − b2 2 ∫ L L0 |φx| 2 dx. Now using (3.1), (3.2) and the Young’s inequality [4] we obtain d dt ∫ L0 0 x (ρ1 1uxut + ρ1 2ψxψt ) dx + d dt ∫ L L0 x (ρ2 1vxvt + ρ2 2φxφt ) dx ≤ k2 4 ∫ L L0 |vx| 2 dx − k2 2 ∫ L L0 |vx| 2 dx + b2 4 ∫ L L0 |φx| 2 dx − b2 2 ∫ L L0 |φx| 2 dx Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 224 — #10 224 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM − k1 2 ∫ L0 0 |ux| 2 dx + k1 4 ∫ L0 0 |ux| 2 dx − b1 2 ∫ L0 0 |ψx| 2 dx + b1 4 ∫ L0 0 |ψx| 2 dx + C̄ [ ∫ L0 0 |ψt | 2 dx + ∫ L0 0 |ut | 2 dx ] . Now, if we define E1(t) = N1 E(t)+ ∫ L0 0 x ( ρ1 1uxut +ρ 1 2ψxψt ) dx+ ∫ L L0 x ( ρ2 1vxvt +ρ 2 2φxφt ) dx and chooseN1 > C̄ we conclude d dt E1(t) ≤ − 1 4 ∫ L0 0 [ k1|ux| 2 + b1|ψx| 2 ] dx− 1 4 ∫ L L0 [ k2|vx| 2 + b2|φx| 2 ] dx. It is worth noticing that the estimate above is important in two aspects. First, it recovers a part of energy with minus sign. Second, it will play a fundamental role in the next two lemmas controlling punctual terms which will come up in the search for other negative terms of the energy. Lemma 3. Define E2(t) = N2 E(t)+ ∫ L0 0 ρ1 1x ut(ux + ψ) dx. Then d dt E2(t) ≤ ρ1 1 L0 2 |ut(L0)| 2 + k1L0 2 |ux(L0)+ ψ(L0)| 2 − C ∫ L0 0 [ |ut | 2 + |ψt | 2 + |ux + ψ |2 ] dx. Proof. Multiply (2.1) byx (ux+ψ) and integrate by parts over(0, L0) to obtain d dt ∫ L0 0 x ρ1 1(ux + ψ)ut = ρ1 1 L0 2 |ut (L0)| 2 − ρ1 1 L0 2 ∫ L0 0 |ut | 2 dx + k1L0 2 |ux(L0)+ ψ(L0)| 2 − k1L0 2 ∫ L0 0 |ux + ψ |2 dx + ρ1 1 ∫ L0 0 x ut ψt dx − ∫ L0 0 x ut (ux + ψ) dx. Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 225 — #11 C.A. RAPOSO, W.D. BASTOS and M.L. SANTOS 225 Using Young’s inequality, we get d dt ∫ L0 0 x ρ1 1(ux + ψ)ut ≤ ρ1 1 L0 2 |ut(L0)| 2 + k1L0 2 |ux(L0)+ ψ(L0)| 2 − k1L0 4 ∫ L0 0 |ux + ψ |2 dx + C̃ ∫ L0 0 |ut | 2 dx + C̃ ∫ L0 0 |ψt | 2 dx. Now, defining E2(t) = N2 E(t)+ ∫ L0 0 ρ1 1x ut(ux + ψ) dx we obtain d dt E2(t) ≤ ρ1 1 L0 2 |ut(L0)| 2 + k1L0 2 |ux(L0)+ ψ(L0)| 2 − k1L0 4 ∫ L0 0 |ux + ψ |2 dx + (C̃ − N2) ∫ L0 0 |ut | 2 dx + (C̃ − N2) ∫ L0 0 |ψt | 2 dx. If we chooseN2 > C̃ we conclude that there exists̆C > 0 such that d dt E2(t) ≤ ρ1 1 L0 2 |ut(L0)| 2 + k1L0 2 |ux(L0)+ ψ(L0)| 2 − k1L0 4 ∫ L0 0 |ux + ψ |2 dx − C̆ ∫ L0 0 |ut | 2 dx − C̆ ∫ L0 0 |ψt | 2 dx, and then d dt E2(t) ≤ ρ1 1 L0 2 |ut(L0)| 2 + k1L0 2 |ux(L0)+ ψ(L0)| 2 − C ∫ L0 0 [ |ut | 2 + |ψt | 2 + |ux + ψ |2 ] dx. Lemma 4. LetE3 be defined as E3(t) = ρ2 1 2 L2 ρ2 2 ∫ L L0 x (ρ1 2vxvt +ρ 1 2φxφt) dx+ ∫ L L0 (x−L) [ ρ2 1vt(vx + φ) ] dx. Then d dt E3(t) ≤ ρ2 1(L − L0) 2 |vt(L0)| 2 + k2(L − L0) 2 |vx(L0)+ φ(L0)| 2 − C ∫ L0 0 [ |vt | 2 + |φt | 2 + |vx + φ|2 ] dx. Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 226 — #12 226 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM Proof. Multiply (2.3) by (x − L)(vx + φ) and integrate by parts over(L0, L) to get d dt ∫ L L0 (x − L) [ ρ2 1vt (vx + φ) ] dx = ρ2 1(L − L0) 2 |vt (L0)| 2 − ρ2 1 2 ∫ L0 0 |vt | 2 dx + k2(L − L0) 2 |vx(L0)+ φ(L0)| 2 − k2 2 ∫ L L0 |vx + φ|2 dx + ρ2 1 ∫ L L0 (x − L)vt φt dx. Using Young’s inequality we obtain d dt ∫ L L0 (x − L) [ ρ2 1vt (vx + φ) ] dx ≤ ρ2 1(L − L0) 2 |vt (L0)| 2 + k2(L − L0) 2 |vx(L0)+ φ(L0)| 2 − ρ2 1 2 ∫ L0 0 |vt | 2 dx + ρ2 1 2 ∫ L0 0 |vt | 2 dx − k2 2 ∫ L L0 |vx + φ|2 dx + L2ρ2 1 2 ∫ L L0 |φt | 2 dx. Now we set E3(t) = ρ2 1 2 L2 ρ2 2 ∫ L L0 x (ρ1 2vxvt +ρ 1 2φxφt) dx+ ∫ L L0 (x − L) [ ρ2 1vt(vx + φ) ] dx and verify that d dt E3(t) ≤ ρ2 1(L − L0) 2 |vt(L0)| 2 + k2(L − L0) 2 |vx(L0)+ φ(L0)| 2 − k2 2 ∫ L L0 |vx + φ|2 dx − L2ρ2 1ρ 2 1 ρ2 2 ∫ L L0 |vt | 2 dx + ( L2ρ2 1 2 − L2ρ2 1 ) ∫ L L0 |φt | 2 dx. Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 227 — #13 C.A. RAPOSO, W.D. BASTOS and M.L. SANTOS 227 It follows then d dt E3(t) ≤ ρ2 1(L − L0) 2 |vt(L0)| 2 + k2(L − L0) 2 |vx(L0)+ φ(L0)| 2 − C ∫ L0 0 [ |vt | 2 + |φt | 2 + |vx + φ|2 ] dx. Observe that in the attempt to recover the total energy of the system with negative sign we introduced the lemmas 3 and 4. Now we need to control them. It will be achieved with the aid of the next section. 4 Compactness This section is dedicated to discuss the argument of compactness employed in the proof of the main result of the paper. First we introduce a notation; the symbol ⇀ is used to denote convergence in the norm of the Sobolev spaceL∞ as in [5]. For sake of completeness, we state the following result due to J.U. Kim. Lemma 5. Let (uk) be a sequence of functions satisfying uk ⇀ u in L∞(0, T, Hβ(0, L)), uk t ⇀ ut in L2(0, T, Hα(0, L)), ask → ∞, with α < β. Then uk → u in C([0, T], Hr (0, L)), for somer < β. Proof. See [5]. Lemma 6 (Lemma of compactness). If we define B(L0, t) = ρ1 1 L0 2 |ut(L0)| 2 + k1L0 2 |ux(L0)+ ψ(L0)| 2 + ρ2 1(L − L0) 2 |vt(L0)| 2 + k2(L − L0) 2 |vx(L0)+ φ(L0)| 2 Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 228 — #14 228 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM then, for everyη > 0 there exists a constantCη > 0 independent of the initial data, such that ∫ T 0 B(L0, t)dt ≤ η ∫ T 0 E(t)dt + Cη { ∫ T 0 ∫ L0 0 [ |ux| 2 + |ψx| 2 ] dxdt + ∫ T 0 ∫ L L0 [ |vx| 2 + |φx| 2 ] dxdt } for every strong solution(u, v, ψ, φ) to the system(2.1)-(2.6) and sufficiently large T . Proof. We use a contradiction argument. Define Bn(L0, t) = ρ1 1 L0 2 |un t (L0)| 2 + k1L0 2 |un x(L0)+ ψn(L0)| 2 + ρ2 1(L − L0) 2 |vn t (L0)| 2 + k2(L − L0) 2 |vn x(L0)+ φn(L0)| 2. Suppose that there exists a sequence of initial data (un 0, ψ n 0 ) ∈ H 2 ∩V , (vn 0, φ n 0) ∈ H 2 ∩V , (un 1, ψ n 1 ) ∈ V , (vn 1, φ n 1) ∈ V , and a positive constantη0 > 0 such that the corresponding solution(un, ψn), (vn, φn) of the problem ρ1 1un tt − k1(u n x + ψn)x + un t = 0 in (0, L0)× (0,∞), ρ1 2ψ n tt − b1ψ n xx + k1(u n x + ψn)+ ψn t = 0 in (0, L0)× (0,∞), ρ2 1v n tt − k2(v n x + φn)x = 0 in (L0, L)× (0,∞), ρ2 2φ n tt − b2φ n xx + k2(v n x + φn) = 0 in (L0, L)× (0,∞), with boundary conditions, un(0, t) = vn(L , t) = ψn(0, t) = φn(L , t) = 0, t > 0, transmission conditions, k1u n(L0, t) = k2v n(L0, t), ρ1 1un t (L0, t) = ρ2 1v n t (L0, t), k1u n x(L0, t) = k2v n x(L0, t), k1ψ n(L0, t) = k2φ n(L0, t), ρ1 2ψ n t (L0, t) = ρ2 2φ n t (L0, t), b1ψ n x (L0, t) = b2φ n x(L0, t), Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 229 — #15 C.A. RAPOSO, W.D. BASTOS and M.L. SANTOS 229 and initial data un(∙, 0) = un 0, ut (∙, 0) = un 1, ψn(∙, 0) = ψn 0 , ψn t (∙, 0) = ψn 1 in (0, L0), vn(∙, 0) = vn 0, vn t (∙, 0) = vn 1, φn(∙, 0) = φn 0, φn t (∙, 0) = φn 1 in (L0, L), satisfies ∫ T 0 Bn(L0, t)dt = 1, n ∈ N, (4.1) and the following inequality 1 > η0 ∫ T 0 En(t)dt + n { ∫ T 0 ∫ L0 0 [ |un x| 2 + |ψn x |2 ] dx dt + ∫ T 0 ∫ L L0 [ |vn x | 2 + |φn x | 2 ] dx dt } . Then the integral ∫ T 0 En(t)dt is bounded for every n ∈ N, and also, ∫ T 0 ∫ L0 0 [ |un x| 2 + |ψn x |2 ] dx dt → 0 as n → ∞, (4.2) and ∫ T 0 ∫ L L0 [ |vn x | 2 + |φn x | 2 ] dx dt → 0 as n → ∞. (4.3) Now we observe thatEn(t) > 0 and that ∫ T 0 En(t)dt is bounded. HenceEn(t) is bounded and we can take a subsequence of(un, ψn), (vn, φn) (for which we use the same notations) such that un ⇀ u in L∞(0, T,H 2 ∩V ), ψn ⇀ ψ in L∞(0, T,H 2 ∩V ), vn ⇀ v in L∞(0, T,V ), φn ⇀ φ in L∞(0, T,V ). Applying the lemma 5 we conclude that forr < 1 un → u in C([0, T]; Hr (0, L0)), ψn → ψ in C([0, T]; Hr (0, L0)), vn → v in C([0, T]; Hr (L0, L)), φn → φ in C([0, T]; Hr (L0, L)). Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 230 — #16 230 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM It follows from (4.1) that ∫ T 0 B(L0, t) = 1. (4.4) We observe that the convergences (4.2) and (4.3) result in ux = 0 almost everywhere in (0, L0)× (0, T), ψx = 0 almost everywhere in (0, L0)× (0, T), vx = 0 almost everywhere in (L0, L)× (0, T), φx = 0 almost every where in (L0, L)× (0, T). Now, applying Poincare’s inequality we obtain ∫ T 0 |u(L0)| 2dt ≤ c2 p ∫ T 0 ∫ L0 0 |ux| 2dxdt = 0, ∫ T 0 |ux(L0)| 2dt ≤ c2 p ∫ T 0 ∫ L0 0 |uxx| 2dxdt = 0, ∫ T 0 |ψ(L0)| 2dt ≤ c2 p ∫ T 0 ∫ L0 0 |ψx| 2dxdt = 0, ∫ T 0 |v(L0)| 2dt ≤ c2 p ∫ T 0 ∫ L L0 |vx| 2dxdt = 0, ∫ T 0 |vx(L0)| 2dt ≤ c2 p ∫ T 0 ∫ L L0 |vxx| 2dxdt = 0, ∫ T 0 |φ(L0)| 2dt ≤ c2 p ∫ T 0 ∫ L L0 |φx| 2dxdt = 0. This estimates implies ∫ T 0 B(L0, t) = 0, which is a contradiction to (4.4). This completes the proof of the lemma. We are now ready to prove the main result of this paper, that is, the exponential decay of the energy associated to the transmission problem for the Timoshenko System with frictional dissipation. This is the content of the next section. 5 Exponential decay Theorem 2. Let (u, ψ, v, φ) be a strong solution to the transmission problem for the Timoshenko System defined by(2.1)-(2.6). Then there exist positive Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 231 — #17 C.A. RAPOSO, W.D. BASTOS and M.L. SANTOS 231 constantsC andw such that E(t) ≤ C E(0)e−ωt . Proof. We start defining E(t) = N3E1(t)+ E2(t)+ E3(t). It follows from lemmas 2, 3, and 4 d dt E(t) ≤ − C0 E(t)− C1 N3 { ∫ L0 0 [ |ux| 2 + |ψx| 2 ] dx + ∫ L L0 [ |vx| 2 + |φx| 2 ] dx } .+ B(L0, t). Now, integrating this inequality over(0, T) and using the Lemma of Compact- ness we obtain E(T)− E(0) ≤ − C0 ∫ T 0 E(t) dt + η ∫ T 0 E(t) dt − C1 N3 { ∫ T 0 ∫ L0 0 [ |ux| 2 + |ψx| 2 ] dx dt + ∫ T 0 ∫ L L0 [ |vx| 2 + |φx| 2 ] dx dt } + Cη { ∫ T 0 ∫ L0 0 [ |ux| 2 + |ψx| 2 ] dxdt + ∫ T 0 ∫ L L0 [ |vx| 2 + |φx| 2 ] dxdt } . If we choose and fixη < C0 andN3 such thatN3C1 > Cη, we get E(T)− E(0) ≤ − C2 ∫ T 0 E(t)dt. (5.1) SinceE(t) decreases, we have T E(T) ≤ ∫ T 0 E(t)dt. (5.2) Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 232 — #18 232 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM Using (5.2) in (5.1) we obtain E(T)− E(0) ≤ − T C2E(T). Now observe that for sufficiently largeN we have N 2 E(t) ≤ E(t) ≤ 2 N E(t), (5.3) from what follows that E(T)− E(0) ≤ − C2 2N T E(T), or else E(T) ≤ α E(0) with α = [ 1 + C2 2N ]−1 . Note thatα does not depend on the initial data, and hence, by using the semigroup property we have E(t + T) ≤ α E(t) for every t > 0. (5.4) For t > 0, there exists a naturaln and a realr , 0 ≤ r < T such thatt = nT + r . This is equivalent to n = t T − r T . Now, using the inequalities (5.3) and (5.4)n times we obtain E(t) ≤ αn E(r ) ≤ 2Nαn E(r ). Observing once more thatE(t) decreases we have E(t) ≤ 2Nα( t T − r T ) E(0) ≤ 2Nα−1 E(0) e−w t , wherew = − ln ( α 1 T ) . Finally, using (5.3) we obtain E(t) ≤ 4α−1 E(0) e−w t , and conclude the proof. We can extend the previous theorem to the weak solutions by using simple density argument and the laws of semi-continuity for the energy functional. In this direction we have the following corollary. Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 233 — #19 C.A. RAPOSO, W.D. BASTOS and M.L. SANTOS 233 Corollary 1. Under the hypothesis of the previous theorem, there exist positive constantsC andw, such that E(t) ≤ C E(0)e−wt , for every weak solution(u, ψ, v, φ) of the system(2.1)-(2.6). 6 Concluding remarks During the past several decades, many authors have studied the same physical phenomenon for the Timoshenko system formulated into different mathematical models. Our approach to this problem is important not only from mathematical but mainly from the physical point of view with applications in Mechanics, amongst other branches of science. The system studied here is a model for vibrating beams subjected to two frictional mechanisms. More precisely, we proved that the presence of two frictional damping acting in a natural way on a small part of the beam, is enough to stabilize the whole beam. Moreover, it stabilizes quickly (at exponential rate). To the best of our knowledge, our result is the first in this direction. In this sense, this work generalizes the results previously obtained for Timoshenko’s system where attrition acting in the whole beam was considered. REFERENCES [1] R.A. Adams,Sobolev Spaces,Academic Press, New York, (1975). [2] F. Ammar-Khodja, A. Benabdallah, J.E.M. Rivera and R. Racke,Energy decay for Timoshenko systems of memory type.J. Differential Equations,194(1) (2003), 82–115. [3] R. Dautray and J.L. Lions,Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 1, Masson S.A., Paris (1984). [4] G.H. Hardy, J.E. Littlewood and G. Polya, “A Theorem of W. H. Young” § 8.3 inInequalities, 2nd ed., Cambridge University Press, Cambridge, (1988), pp. 198–200. [5] J.U. Kim, A Boundary Thin Obstacle Problem for a Wave Equation.Comm. Partial Differ- ential Equations,14 (8 & 9) (1989), 1011–1026. [6] Z. Liu and C. Peng,Exponential stability of a viscoelastic Timoshenko Beam. Adv. Math. Sci. Appl.,8 (1998), 343–351. [7] C.A. Raposo, J. Ferreira, M.L. Santos and N.N.O. Castro,Exponential Stability for the Timoshenko System With Two Weak Damping. Appl. Math. Lett.,18 (2005), 535–541. Comp. Appl. Math., Vol. 26, N. 2, 2007 “main” — 2007/6/27 — 17:40 — page 234 — #20 234 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM [8] Dong-Hua Shi and De-Xing Feng,Exponential decay of Timoshenko beam with locally distributed feedback. IMA J. Math. Control Inform.,18 (2001), 395–403. [9] Dong-Hua Shi, De-Xing Feng and Qing-Xu Yan,Feedback stabilization of rotating Timo- shenko beam with adaptive gain.Int. J. Control,74(3) (2001), 239–251. [10] S.P. Timoshenko and J.M. Gere,Mechanics of Materials,D. Van Nostrand Company, Inc, New York (1972). Comp. Appl. Math., Vol. 26, N. 2, 2007