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a b s t r a c t 

We investigate the cosmological production of gravitational waves in a nonsingular flat cosmology pow- 

ered by a “running vacuum” energy density described by ρ� ≡ ρ�( H ), a phenomenological expression 

potentially linked with the renormalization group approach in quantum field theory in curved space- 

times. The model can be interpreted as a particular case of the class recently discussed by Perico et al. 

(2013) [25] which is termed complete in the sense that the cosmic evolution occurs between two ex- 

treme de Sitter stages (early and late time de Sitter phases). The gravitational wave equation is derived 

and its time-dependent part numerically integrated since the primordial de Sitter stage. The generated 

spectrum of gravitons is also compared with the standard calculations where an abrupt transition, from 

the early de Sitter to the radiation phase, is usually assumed. It is found that the stochastic background 

of gravitons is very similar to the one predicted by the cosmic concordance model plus inflation ex- 

cept at higher frequencies ( ν � 100 kHz). This remarkable signature of a “running vacuum” cosmology 

combined with the proposed high frequency gravitational wave detectors and measurements of the CMB 

polarization (B-modes) may provide a new window to confront more conventional models of inflation. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the last decade, many authors have proposed cosmologi-

cal models driven by a “running vacuum” energy density, ρvac =
�(H) / 8 πG . The leitmotiv of such an idea is related to two basic

difficulties of the standard �CDM model (constant vacuum energy

density). Firstly, a dynamical �( H )-term may solve the so-called

cosmological constant problem because in this case the vacuum

energy density relaxes to its present value and one may argue that

� is small today because the expanding Universe is too old. Sec-

ondly, a dynamical- �( H ) term may also solve the so-called cosmic

coincidence problem, i.e. the fact that the time-varying matter en-

ergy density and the (constant) vacuum energy density have the

same order of magnitude nowadays. 

Since long ago, many different phenomenological decay laws for

�( H ) were proposed in the literature (see [1–5] for the oldest lit-

erature and [6–9] for more recent articles). The predictions of the

latest models have also been confronted with the available obser-
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ational data and the results compared with the predictions of the

tandard �CDM cosmology [10,11] . 

Besides enlarging the standard view of a rigid �-term, there

re also some attempts to justify theoretically a “running vacuum”

osmology based on different methods, among them: the thermal

nstability of a de Sitter spacetime [12] and the renormalization

roup (RG) approach in curved spacetimes [13] . In the latter case,

or instance, the emerging dynamical �( H )-term (beyond the true

onstant vacuum contribution) depends on an expansion power se-

ies on the Hubble parameter ( �H 

n ) where only the even powers

f H are involved in the RG realization, selected by the general co-

ariance of the effective action appearing in the quantum field the-

retical treatment in curved spacetimes [13–15] . In the same vein,

everal alternative approaches also try to represent the interacting

( H ) models through a Lagrangian description as in the F ( T ) grav-

ty approach [16] , or in its generalized form F ( R , T ), as discussed by

arko and coworkers [17] . Other attempts involve a mixture of a

calar field interacting with the radiation bath [18,19] , as in the so-

alled warm inflationary model [20–23] , or still based on the quan-

um mechanics probability of unstable states [24] . Although inter-

sting and highly promising to understand the decaying vacuum

roblem in the evolving Universe, none of them can at present be

onsidered definitive and/or widely accepted by the community. 

http://dx.doi.org/10.1016/j.astropartphys.2016.11.007
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In this connection, a large class of nonsingular models, where

he vacuum energy density evolves phenomenologically as a trun-

ated power-series in the Hubble parameter, has been proposed a

ouple of years ago [25,26] (its dominant term ρvac ( H ) ∝ H 

n , n

 2). This class of models has some interesting features, among

hem: a nonsingular origin for the expanding universe (no horizon

roblem) with a deflationary process also without “exit problem”,

hat is, the model evolves smoothly from the primeval nonsingular

e Sitter state to the radiation phase; its late-time cosmic expan-

ion history is very close to the concordance model and it also fur-

ishes a smooth link between the initial and final de Sitter stages

hrough the radiation and matter dominated phases. The temper-

ture behavior and the entropy generation during the continuous

on-adiabatic transition from de Sitter to the radiation phase has

lso been investigated [27,28] and a comparison with the late time

bservations has also been carried out in detail by Gomez-Valent

nd Solà [29] . 

Furthermore, the recent LIGO detection of gravitational waves

GWs) opened a new window of observations for astronomy and

osmological problems [30] . Its importance goes much far be-

ond the search for signatures of compact binary coalescence

black holes, neutron stars, etc). For instance, tensor perturba-

ions describing GWs generated in the inflationary stage may affect

he pattern of Cosmic Background Radiation (CMB) anisotropies

hrough the B-modes polarization [31] . In addition, there are also

ngoing projects (BICEP3, Keck Array experiments, SPT) and future

robes with high sensitivity instruments like the QUBIC, especially

esigned to measure the B-modes with high precision [32,33] . Nat-

rally, as compared with more conventional inflationary models,

he amplification of GWs from a primordial de Sitter stage sup-

orted by a decaying- �( H ) model may affect CMB polarization in

 different way, and, as such, this line of inquire deserves a closer

crutiny. 

In this context, we analyze here the production of primordial

Ws for a class of nonsingular “running vacuum cosmologies”. The

henomenological �( H )-term adopted here is defined by: �(H) =
b + αH 

3 /H I , where �b is the constant bare vacuum energy den-

ity, H is the Hubble parameter, H I is the primordial inflationary

cale and α is a dimensionless free parameter. Therefore, unlike

he general class discussed in Refs. [25,26] , the very late time be-

avior of the model analyzed here is exactly �CDM. The GW equa-

ion is derived and its time-dependent part numerically integrated

ince the primordial de Sitter stage. 

As we shall see, for higher frequencies ( ν � 100 kHz) the pre-

icted spectrum departs from the standard inflationary prediction,

nd, as such, these models are distinguishable if high frequency

W detectors become operative and reach the expected sensitiv-

ty in the near future. In general grounds, this signal reinforces the

ossibility of a new observational approach to inflationary physics,

nd provides additional motivation in the search for stochastic

ackground of GWs at high frequencies [34–36] ). It is also argued

hat similar results remain valid for generic decaying vacuum cos-

ologies with an initial de Sitter stage supported by a power-law

 

n with n > 2. 

. The model: basic equations 

Let us now consider that the Universe is described by a flat

riedmann–Lemâitre–Robertson–Walker (FLRW) geometry. In the 

o-moving coordinate system, the background line element reads

 c = 1 ): 

 s 2 = d t 2 − a 2 (t) d l 2 , (1)

here a ( t ) is the scale factor. 

The Einstein equations in the above background read 

 πG ρ + �(t) = 3 H 

2 , (2) 
 π G p − �(t) = −2 

˙ H − 3 H 

2 , (3) 

here a dot means time derivative and H = ˙ a /a is the Hubble pa-

ameter. To solve the above set of equations one needs the func-

ional form of �( t ), or equivalently, �( H ), as well as an equation

f state (EoS). 

As remarked before, it will be assumed here that the �( H )-term

s given by a particular case of the general class studied by Perico

t al. [25,26] (for closely related works see also [3,4] ) 

 πGρvac (H) = �(H) = �b + 3 α
H 

3 

H I 

, (4)

here �b is the bare cosmological constant. By assuming that the

aterial medium obeys the EoS, p = ωρ, where ω is a different

onstant for each era, one may show that the scale factor and

he Hubble parameter obey the following equations (from now on,

ithout loss of generality we consider α = 1 ): 

 

˙ H + 3(1 + ω) H 

2 
[ 

1 − H 

H I 

] 
− (1 + ω)�b = 0 . (5) 

he standard cosmic concordance model equations are recovered

y taking the limits H I � H and ω = 0 ( �CDM). At early times,

he last term proportional to the bare �b can safely be neglected.

n this case, for ( ω = 1 / 3 ) the solution of the above equation takes

he following form: 

 = 

H I 

1 + Ca 2 
, (6) 

here C is an integration constant. We see that the transition from

n early de Sitter ( Ca 2 � 1, H ∼ H I ) to the radiation phase ( Ca 2 �
, a ∝ t 1/2 ) is analytically described. 

Now, in terms of the conformal time [ d t = a (η) d η], the line el-

ment (1) becomes: 

 s 2 = a 2 (η)[ d η2 − δi j d x 
i d x j ] , (7)

hile the equation of motion (5) takes the form 

 

H 

′ 
a 

+ 3(1 + ω) H 

2 
[ 

1 − H 

H I 

] 
− (1 + ω)�b = 0 , (8) 

here primes denote derivative with respect to η. By fixing the

oS parameters, the integration constants for each era are obtained

y imposing the continuity conditions for a ( η) and a ′ ( η) at the

ransition times between two subsequent eras. 

By assuming that the vacuum decay mainly into ultra-

elativistic particles ( ω = 1 / 3 ) when the bare term of the decaying

acuum is negligible ( �b � H 

3 / H I ), it is easy to see that (8) boils

own to a ′′ − 2 
H I 

(
a ′ 
a 

)3 

= 0 . A direct integration of this equation

ields the following solution: 

 (η) = 

1 

2 C 1 

[ 

η + C 2 + 

√ 

(η + C 2 ) 2 + 

4 C 1 
H I 

] 

, (9) 

hich has two limiting cases: at very early times it is a de Sitter

olution, a ∝ | η| −1 , whereas at late time ( t >> H 

−1 
I 

) , it enters in

he radiation phase, a ∝ η [25,28] . The reduced Hubble parameter,

(η) = a ′ /a, for this stage 

 Inf-R (η) = 

a ′ 
a 

= 

[ 
(η + C 2 ) 

2 + 

4 C 1 
H I 

] −1 / 2 

, (10)

ssumes its maximum value for η = −C 2 , so H(−C 2 ) = H(ηmax ) ≡
 max = 

√ 

H I 
4 C 1 

. Therefore, we can rewrite the integrating con-

tants in the form C 1 = 4 H 

−1 
I 

H 

2 
max and C 2 = −ηmax , and, natu-

ally, (10) can be rewritten in terms of the new pair of constants

 ηmax , H max ), a form that will be useful in the next section. 
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Fig. 1. ( a ) Evolution of the quantity H = a ′ /a during the transition from primordial de-Sitter stage to the standard radiation phase ( ω = 1 / 3 ). The blue line curve shows the 

evolution of H in the standard approach (inflation + radiation) assuming an abrupt transition (AT). The red lines display the evolution of H in the smooth transition case 

(ST) for different values of the initial Hubble parameter H I defining the early de Sitter phase. ( b ) The same as Fig. 1 a but now for the potential, V = a ′′ /a . Again, the blue 

curve describes the “Grishchuk potential” usually assumed in the AT treatment [40,41] . Note that the maximum height of the potential for the ST case is strongly dependent 

on the values of H I . To better visualize the plots we have defined a suitable timescale τ ( η) (see text). The time τmax ′ for which the maximum value of H and V are attained 

assuming AT is always delayed in comparison to the ST case discussed here. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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3. Cosmological tensor perturbations 

The classical tensor metric perturbation for the conformal FLRW

flat metric (7) can be written as [39] : 

d s 2 = a 2 (η)[ d η2 − (δi j + h i j ) d x 
i d x j ] , (11)

where the perturbation h ij is small, | h ij | � 1, is transverse-traceless

and satisfy the gauge constraints: h 0 μ = 0 , h i 
i 
= 0 , ∇ 

j h i j = 0 . 

The first order evolution equation of h 
j 
i 

is given by [37–39] 

h 

j 
i 

′′ + 2 

a ′ 
a 

h 

j 
i 

′ − ∇ 

2 h 

j 
i 
= 16 πGa 2 δT̄ i j (T ) 

= 0 , (12)

where in the last equality we used that δT̄ i 
j (T ) 

≡ 0 because the to-

tal EMT (matter plus vacuum) has the perfect fluid isotropic form

[39] . The general solution of the above equation can be Fourier ex-

panded in the standard way 

h i j (η, x ) = 

√ 

16 πG 

(2 π) 3 / 2 

∫ 
d 3 n 

∑ 

r=+ , ×

r 
ε i j ( n ) 

×
[

r 

h n (η) e i n ·x 
r 
c n + 

r 

h 

∗
n (η) e −i n ·x r 

c n 
† 
]
, (13)

where 
r 

h n (η) are the mode functions, n is the comoving wave vec-

tor, 
r 

c n and 

r 
c n 

† 

are complex numbers, and 

r 
ε i j ( n ) is the symmetric,

transverse-traceless polarization tensor. Now, by recalling that the

comoving wave number is given by 

n = | n | = 

2 πa (η) 

λ
= k a (η) , (14)

and inserting the solution (13) into (12) , it is readily seen that the

temporal part yields a differential equation valid for both polariza-

tions (henceforth we drop the index r ) 

h n (η) ′′ + 2 H(η) h n (η) ′ + n 

2 h n (η) = 0 . (15)

where we have conveniently used the reduced Hubble parame-

ter, H, whose continuity also guarantees the continuity of the

first derivative of the scale factor. By using the auxiliary function,

μ = h n (η) a (η) , the above equation assumes the form first derived

by Grishchuck [40,41] : 

μ′′ + 

(
n 

2 − a ′′ 
a 

)
μ = 0 , (16)
his is the basic equation which allow us to obtain the associated

hysical quantities like the wave amplitude, energy density and

ower spectrum. 

The scale of the “Grishchuck potential”, V (η) = a ′′ /a, as com-

ared with the wave-number determines the behavior of the lim-

ting solutions for μ( η). The solutions are oscillatory, μ ∝ e ±in η ,

hen n 2 � | V | holds. The high-frequency modes in this case are

iluted by the cosmic expansion since h = e ±inη/a . In the opposite

egime one finds μ ∝ a so that the amplitude remains constant. In

his case, the damping of the waves due the universe expansion is

voided, a phenomenon usually referred to as adiabatic amplifica-

ion [40,41] . 

In Fig. 1 a and b we show the behavior of the quantities H(η)

nd V ( η) during the transition from the early de Sitter stage to

he radiation phase. For the sake of clarity, both quantities were

xpressed in terms of a convenient variable, τ = H max (ηmax − η) ,

here ηmax is the time when H = H max is reached. As shown be-

ow Eq. (18) , the value of H max depends on the scale H I . In the

ariable τ , the maximum of H for the decaying vacuum model oc-

urs at τmax = 0 while for the abrupt case the maximum is delayed

 τ ′ 
max > τmax ) . The interesting point here is that such a transition

n our model is smooth and can analytically be followed in terms

f the scale factor and the quantity H. 

. Gravitational wave solutions 

Let us now determine the generated spectrum of the GWs. Dur-

ng the transition from inflation to radiation (Inf-R), the GW Eq.

16) assumes the form 

′′ 
Inf-R + 

(
n 

2 − V Inf-R (η) 
)
μInf-R = 0 , (17)

here V Inf-R (η) = a ′′ /a ≡ H 

2 
Inf-R 

+ H 

′ 
Inf-R 

. From Section 2 one finds

hat the quantity H Inf-R for ω = 1 / 3 reads: 

 Inf-R (η) = 

1 √ 

(η − ηmax ) 2 + 1 / H 

2 
max 

, (18)

here we have at ηmax the maximum value H max � H 0 

√ 

ηeq H I / 8

nd ηeq is the conformal time of equality of the energy densities of

adiation and matter. Since the scenario starts as a de Sitter space-

ime (see discussion below Eq. (6)) , it is possible to obtain an an-

lytical solution for μ at that time. In addition, by imposing the
Inf 
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Fig. 2. ( a ) Present day root-mean-square amplitude of the GWs as a function of the physical frequency for H I = 10 35 s −1 . The amplitudes are displayed both for the decaying 

vacuum cosmology (red-curves) as well as for the �CDM model (blue-curves). In the former case the model evolves smoothly from inflation to radiation while in the latter 

an abrupt transition is assumed (see also Fig. 1 ). The superposition suggests that the predictions are quite similar in the domain of low frequencies. The infographic display 

the difference for high frequencies ( ν � 100 kHz). ( b ) Density parameter for GWs in the domain of high frequencies. For the �CDM model we have fixed the Hubble 

parameter to be H in f = 10 35 s −1 while for the decaying vacuum cosmology the arbitrary scale H I assumed three possible values as indicated in the figure (see text). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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diabatic vacuum lim n →∞ 

μInf ∝ e −inη/ 
√ 

n constraint [27] , we find:

Inf (n, η) � 

A 0 √ 

2 n 

(
1 − i 

n (η − ηmax ) 

)
e −in (η−ηmax ) . (19)

here A 0 is a real constant which specifies the initial amplitude of

he GWs. The above expression for μInf ( n , η), as well as its deriva-

ive μ′ 
Inf 

(n, η) , provide the initial conditions (taken at the initial

nstable de Sitter era) for the numerical integration of Eq. (17) .

onsequently, the evolution of the GWs can be traced until a time

r from which the scale factor and waveforms behave as in the

sual �CDM scenario. At the radiation era, it is possible to find an

nalytical solution for μ( η) whose initial conditions (evaluated at

r ) are given by the previous numerical integration. This solution is

alid until the conformal time ηeq , for which matter ( ω = 0 ) starts

o dominate, and the scale factor evolves exactly as in the standard

atter dominated cosmological scenario. At this stage, the analyt-

cal solution was obtained by considering the initial conditions (at

eq ) given at the end of the precedent radiation era. Finally, we

ave evaluated μ( η0 ) at the present time η0 . In addition, from the

tandard definition, we also find the resulting present power spec-

rum of the relic GWs in this model: 

(n, η0 ) = 

16 � 2 
Pl 

π
n 

3 | h n (η0 ) | 2 . (20)

In Fig. 2 a we show the present day root-mean-square (rms) am-

litude of the GWs as a function of the physical frequency ν for

he decaying vacuum model, which is related to the power spec-

rum via h rms (ν, η0 ) = 

√ 

P(ν, η0 ) . For comparison, we also show

he rms amplitude for the abrupt three phase transition model (de

itter, radiation and matter) with H I = 10 35 s −1 . For simplicity, we

ave not included a late time �b dominated epoch since the same

ffect for both models is obtained, namely, a little smaller value of

 rms for the complete GW spectrum [42] . 

Notice the remarkable superposition of both spectra for almost

he entire spectral range. The models are distinguishable only at

ery high frequencies, which are displayed in detail in Fig. 2 b,

here we show the spectrum of the density parameter �GW 

( ν ,

0 ). In this figure, we have fixed the value of H I for the abrupt

ransition model and considered some possible values of H I for the

ecaying vacuum cosmology. 

At high frequencies the two models predict distinct spectra for

 given value of H . As shown in Fig. 1 , such an effect can be un-
I 
erstood in terms of the behavior of H(η) and V ( η). Since the de-

aying vacuum model evolves smoothly from a de Sitter towards a

adiation era, the shape of H(η) for the transition and the conse-

uent lower value of H max (for the same H I ) result in a lower high

requency GW production. 

On the other hand, there is no adiabatic amplification for fre-

uencies ν > H max so that we have introduced a cut-off at νmax =
 max in these graphs. For a given H I value, the cut-off frequency

or the abrupt transition model is twice the cut-off frequency for

he decaying vacuum model. However, since we have freedom to

hoose H I for the �(H)-model, different cut-off frequencies are al-

owed (see Fig. 2 b). In principle, even for different values of H I , the

hape of the curves predicted by the AT and ST models are quite

ifferent thereby suggesting a possible test for the underlying in-

ationary mechanisms. 

. Final comments 

We have investigated the production of GWs in the context

f a flat nonsingular decaying vacuum cosmology. The dynami-

al �(H)-term was phenomenologically modeled as �(H) = �b +
 

3 /H I . This kind of model undergone a smooth transition from an

arly inflation to the standard radiation phase which can analyti-

ally be described [3,4,25,26] . Interestingly, the model explain the

resent day entropy content of the Universe stored in the relic ra-

iation [27,28] without necessity of a highly non-adiabatic reheat-

ng stage. Such scenario is also free of horizon and “graceful” exit

roblems, and is also in agreement with the observations at low

nd intermediate redshifts since it evolves to the standard �b CDM

osmology. In comparison with the standard approach (big-bang,

diabatic inflation, reheating, plus radiation and subsequent eras),

he present study also provides a simple way to understand how a

ifferent scenario can modify the predictions concerning the gen-

rated spectrum of GWs. 

Solutions for the GW equation were numerically obtained. The

esult furnishes a simple and definite example that details of the

ransition from an early de Sitter to the radiation phase plays an

mportant role in the generation of the GW spectrum. The identi-

ed lower GW production for high frequencies ( ν � 100 kHz) is a

emarkable signature of the � decay model (see Figs. 1 b and 2 b).

lthough far exceeding the frequencies (and sensitivity) of the ex-

sting GW detectors in ground-based experiments and space-based
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successors like LISA, new kinds of interferometers and detectors

operating in a frequency range high enough to test primordial GW

have been discussed in the recent literature [43] (see also [44,45] ).

The high frequency behavior shows that the model is not only dis-

tinguishable from abrupt inflationary scenario but can also pro-

vide a crucial test for the underlying mechanism as predicted in

some multi-field inflationary models [35] . Note also that current

GW interferometers can not detect the putative GW background

studied here, since the amplitude of this background is orders of

magnitude lower than the interferometer sensitivities. We refer the

reader to the paper by Moore, Cole and Berry [46] , where the sen-

sitivity curves of several detectors are displayed. Finally, it should

be reinforced that the model discussed here is a starting point for

the investigation of more complex and rich decaying vacuum cos-

mologies, like the general class proposed in Ref. [25,26] . Such mod-

els with �( H ) ∝ H 

n , n > 2 deserves a closer scrutiny since they

furnish a complete cosmological history. In principle, although the

details might be dependent on the power n , similar results to the

ones derived here should be expected because the entire class also

evolves through a smooth transition from de Sitter to the radia-

tion era. A detailed analysis involving the generation of GWs in this

more general framework plus the implications in the observed pat-

tern of CMB anisotropies through the B-modes polarization will be

discussed in a forthcoming communication. 
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