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It is demonstrated for the three-dimensional three-particle system that a divergence arising from

essentially the same singularity structure of the kernel of the scattering integral equation is responsi-

ble for both the EAmov and Thomas e6ects. The above divergence implies that the results of a

three-particle dynamical calculation will be sensitive to the details of the two-particle interaction.

In two-dimensional systems, the above divergence is absent and consequently the three-particle ob-

servables become essentially independent of the two-particle interaction model.

I. INTRODUCTION

Over the past decade there has been considerable in-
terest in two-dimensional systems such as helium ad-
sorbed on graphite' and spin-polarized hydrogen (Hl)
recombining on a helium Nm. The theoretical treat-
ment such as systems involves two-dimensional
quantum-mechanical problems sometimes involving three
or more particles. In view of the possibility of detecting
multiparticle bound states in monolayers of quantum
gases, it is interesting to solve numerically the bound-
state problem for a few particles in two dimensions.
Such numerical calcuiations have already been done by
Tjon and others (see Ref. 4). Also, a study of two-
dimensional quantum-mechanical three-particle systems
is essential for studying Iow-temperature behavior of
quantum cluster coeScients in two dimensions, which is
crucial for studying the quantum-mechanical properties
of such systems. In order to have a complete understand-
ing of the above lMoblems, it is necessary to study the
quantum-mechanical three-particle problem both formal-

ly and numerically.
From the experience gained from the study of three-

dimensional three-particle quantum systems, we shall
demonstrate certain general features of the quantum-
mechanical three-particle system in two dimensions. In
particular, we shall show that, if reasonable assumptions
are made about the underlying two-particle interaction,
the quantum-mechanical three-particle problem in two
dimensions is basically independent of the two-particle
interaction model. %e shall also demonstrate that this

model inde endence is a consequence of the absence of
the Efimov and the Thomas effects in two dimensions.
The three-particle three-dimensional problem, on the oth-
er hand, is very sensitive to the model employed in its
solution. In this paper we present a unified treatment of
Efimov and Thomas efFects and the model dependence of
three-particle observables in two and three dimensions.

The quantum-mechanical three-dimensional three-
particle system is the simplest one which shows certain
peculiar effects and has become the subject of intense
study in atomic, nuclear, and particle physics especially
because such a study is expected to yield information
about the underlying two-particle interaction. The two
most remarkable properties that this system exhibits were
first studied by Efimov and Thomas and are known as the
E6mov and the Thomas effects, respectively.

E6mov showed that if three nonrelativistic identical
bosons interact via a short-range two-particle interaction
A, V(r) characterized by a range parameter ro, then in the
limit as A, ~AO where ko is the strength needed to support
the first zero-energy two-particle bound state, the number
of three-particle s-wave bound states X tends to infinity
and is roughly given by

N-~ 'ln(
)
a

~
/ro),

where a is the two-particle scattering length which tends
to infinity in this limit. (There are two equivalent ways
of reaching this limit A, ~A,

&&,
one from above (A, &A,o,

a ~+ 0o ) and one from below (A, & Ao, a ~—~ ). How-
ever, for our mathematical treatment of the problem
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these two limits are equivalent and lead to the same
divergence of the trace of the kernel of the Faddeev equa-
tion [see discussion after Eq. (7)].) In a difFerent context
Thomas sho~ed that if three nonrelativistic particles in-
teract via short-range two-particle interaction A, V(r),
then as the range ro of this interaction tends to zero, the
binding energy of the three-particle system 8 increases
beyond any limit: 8~ ao. We shall show in this work
that these two apparently different effects are related
essentially to the same divergence of the trace of the ker-
nel of the scattering equation of the three-particle system
in two diff'erent limits and, hence, have the same
mathematical origin. %'e demonstrate from our unified
discussion of the Efimov and Thomas effects that as
r0~0 in the Thomas limit, the three-particle system is
expected to have infinite number of bound states with an
accumulation point at infinite binding energy. It is
worthwhile to recall that as

~

a
~

~ oo in the Efimov lim-
it, the infinite number of bound states accumulate at zero
binding energy.

In our unified treatment of this problem, we show that
the presence of one of the Efimov and Thomas effects im-
plies the presence of the other. Also, we expect that the
study of the three-particle system in three dimensions at
low energies, but slightly away from the Efimov limit,
will yield information about the underlying two-particle
interaction, and especially about its off-shell behavior.
This is related to the existence of the above-mentioned
divergence of the trace of the kernel responsible for the
Efimov and Thomas e8'ects. In other words, this diver-
gence of the trace of the kernel implies that the three-
particle observables be model dependent (i.e., sensitive to
the off'-shell behavior of two-particle interaction) when
one is slightly away from the Efimov limit.

We verify that in two-dimensional three-particle sys-
tems the Efimov-Thomas divergence of the trace of the
kernel is absent and consequently there are no Efimov or
Thomas effects, and for this system the low-energy three-
particle observables are less sensitive to the off-shell be-
havior of two-particle interaction and are reasonably
model independent. The low-energy four-particle system
(and most likely the n-particle system) in two dimensions
is also expected to yield model-independent results if on-
shell two-particle properties are held fixed. The three-
dimensional low-energy four-particle system is, on the
other hand, sensitive to the o8'-shell behavior of two-
particle interaction.

The present discussion has an interesting consequence
on the low-energy three-nucleon system. In this case the
kernel of the underlying scattering equation shows the
Efimov-Thomas divergence and the expected o8'-shell
sensitivity of low-energy three-nucleon observables has
been observed in numerical calculations. It has been
shown ' that in the Efimov limit the three-particle sys-
tem in three dimensions can essentially be described in
terms of an effective r type interaction at large dis-
tances. Moreover, ihe properties of the infinite number
of Efimov states become independent of the details of the
two-particle interaction. As we move away from the
Efimov limit (by increasing the deuteron binding for in-
stance) the remaining three-particle bound states are ex-

pected to become more and more model dependent. In
the case of the three-nucleon system, as the deuteron
binding is "low" and as one is still near the Efimov limit,
the off-shell sensitivity of low-energy three-nucleon ob-
servables is not very strong and essentially is controlled
by one three-nucleon parameter such as the triton
binding energy. Once two on-shell equivalent two-
nucleon interactions produce identical triton binding,
they produce identical results for all three-nucleon ob-
servables. This leads to correlations among various
theoretically calculated trinucleon observables, ' which
have been observed in various realistic and model calcu-
lations.

In two dimensions we expect the three-particle observ-
ables to be reasonably insensitive to off-shell properties of
the two-particle interaction. This model independence of
the three-particle system in two dimensions was implicit
in the work of Tjon who, however, was not completely
aware of it. We shall explicitly demonstrate this model
independence numerically and provide a physical ex-
planation for it through our unified discussion of the
Efimov and Thomas effects.

The plan of the paper is as follows. In Sec. II we
present our unified description of the Efimov and Thomas
effects in three dimensions and its relation with the off-
shell sensitivity of three-particle observables. In Sec. III
we present a similar discussion in two dimensions and
provide justification of model independence of three-
particle observables in two dimensions. In Sec. IV we
present some numerical results for the three-particle en-

ergy in two dimensions and demonstrate its model in-
dependence. Finally, in Sec. V we present a brief discus-
sion and concluding remarks.

II. THK KFIMOV AND THOMAS EFFECTS
IN THREE DIMENSIONS

For simplicity we limit our discussions in this section
and the following to the case of three identical bosons.
As we shall base our discussion on the work of Amado
and Noble, " we present only a brief account of their
work in the following and refer the more interested
reader to the original article.

The homogeneous three-particle scattering equations
responsible for the bound-state problem reduce to a single
equation in the case of identical bosons each of mass m,
which can be written as

4(p, k)= Jd p'd k'K(p, k;p', k')%(p', k'),

where in units 6=m = 1, the kernel K is given by

2«+-,'p
I
&« ——,'S ')

I
p'+-,'k')

K(p, k; p', k') =
E —p —k —p.k

X &'(p —k'),
where I; is the two-particle t matrix and E is the three-
particle center-of-mass energy. It has been suggested that
since the divergence of the trace of the kernel at the
Efimov limit arises from the small momentum behavior
of the kernel, the essential features of the Efimov effec
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can be obtained by keeping only the pole term of the
two-particle r matrix. Equation (2) then reduces to a
one-variable integral equation

%(p)= Jd p'k(p, p';E, A, )%(p'), (4)

TrK —I dy ln
0 p2/+2 +y 2

~ [1+(3y2+p2/1X2)1/2) —1 (8)

fC(p, p';E, A, ) = —m e(A —p)e(A —p')

g [g
—1+( ip2 E)1/2] —1

where a is the usual two-particle scattering length and A
is a momentum cutoff introduced to preserve conver-
gence at large momentum. A is supposed to be related to
the range ro of two-particle interaction by A=ra '

Th. e
pole approximation for the o(F-shell two-particle t matrix
in Eq. (5) is consistent with the zero range limit, ra~0
However, in order to reach the Thomas limit the inverse
range parameter of Eq. (5) should tend to infinity can-
sistent with ro ——A =0. The Efimov limit is achieved by
aking

I
a

I

~~ in Eq. (». Hence, by taking appropri-
ate limits in Eqs. (4) and (5), one can study the Efimov
and Thomas effects in a unified way.

For our discussion it is convenient to study the auxili-
ary eigenvalue problem

rl„(E,A, )$„(p;E,A. )= Jd p'l(p, p', EA, )P„( p', Eg) .

For each E and k there is an infinite set of discrete eigen-
values 2)„of Eq. (6). The consideration of the auxiliary
eigenvalue problem (6) relates the divergence of Trk"
with the appearance of the Efimov or the Thomas e8'ect.
For any E and A, , 2)„=1 corresponds to an eigenstate of
the problem. For a fixed negative E the real q's grow in
magnitude with A,. Hence, each 2) for a fixed /I, ( & A,o}can
be unity once as F goes from —~ to 0. Thus an infinite
number of bound states each with binding energy greater
than 8 must correspond to an infinite number of eigen-
values g's bein greater than unity at E = —8, which will
imply that Tr "(E= —B,A, ) diverge for any n.

As the divergence of the trace of the kernel is a neces-
sary condition for an infinite number of s-wave bound
states to appear, we examine the trace of the s-wave pro-
jection of the kernel. The trace is given by

2+3 2

TrfC Jdp ln-P [a+(-'p2+ p2}'/2]-'
p p2+p 2

where p = Eand a= 1/a. —The divergent part of the
integral (7) is independent of the sign of a, and hence of
a, and by using a dimensional argument it is easy to see
from Eq. (7) that for p = E=O, Trk diverg—es at the
lower limit (p 0) as ln

I
a

I
when

I
a

I
0, and

diverges at the upper limit (p~A) as lnA when A~ ao.
The first divergence corresponds to the Efimov limit and
the second corresponds to the Thomas limit. It is easy to
see that these two divergences have essentially the same
mathematical origin and that one implies the other. For
our purposes, we rewrite Trk given by Eq. (7}as

Now TrK of Eq. (8) is perfectly finite at the lower limit
y~0, but may diverge at the upper limit as A/o;~ oo.
Hence, both the Efimov divergence and the Thomas
divergence appear in the large y divergence of Eq. (8).
The essential divergence properties of Trk of Eq. (8) can
be summarized as follows. For P=O, Trk diverges as
ln(A/a) when either a~O or A~ ~; for p~O, TrK
diverges as lnA as A~ ~ and remains finite as +~0. In
the above limiting procedure we, however, do not consid-
er the possibility that a~0 and A~ 00 simultaneously.
The divergence of Trk at E = 8 is o—nly a necessary
condition for the appearance of an infinite number of
bound states with binding energy greater than 8. In or-
der that an infinite number of bound states really appears,
one requires that Trk" diverges as in(A/a) for all n such
that an infinite number of eigenvalues of k accumulate at
a value greater than unity. The necessary rigorous study
of Trk " has been performed by Amado and Noble, "and
we do not repeat it here. From the above divergence of
Trl for p=O, we conclude that there is an infinite num-
ber of bound states both in the Efimov limit (a~O) and
in the Thomas limit (A~~). For any finite p (&0),
Trk does not diverge as a~O, which means that in the
Efimov limit there is not an infinite number of bound
states with finite binding energy; and an infinite number
of Efimov states accumulates at zero energy. But for
large but finite p=po, Trk diverges as lnA as A~~,
which means that in the Thomas limit there is an infinite
number of bound states with binding energy greater than
Po. As this is true for any Po, however large, we conclude
that the infinite number of Thomas states accumulate at
infinite binding energy.

Apart from this similarity in the mathematical descrip-
tion of Efimov and Thomas efFects, there is a physical
similarity between these two effects. In the case of
Efimov effect,

I
a

I
~ oo and ro is finite, whereas in the

case of the Thomas effect, ra~0 and
I
a

I
is finite. In

both cases
I
a

I »ro, a limit which can be achieved by
making

I
a

I
-+ 00 (Efimov efFect) or r0~0 (Thomas

effect}. At p=O Trk diverges as ln(
I
a

I
/ro). We call

this divergence the Efimov-Thomas divergence, which
happens for

I
a

I /ra~ ao in our unified discussion of the
Efimov and Thomas e6ects. Both these eftects can be
easily understood in terms of the effective interaction of
the system. It has been demonstrated in a simple model
by Fonseca, Redish, and Shanley' that the effective in-
teraction of the system has a 1/r behavior at intermedi-
ate distances for which

I
a

I
&r &ra, where ro is the

range of two-particle interaction and a is the two-particle
scattering length. When

I
a

I
~ ao, we have a long-range

effective 1/r interaction which leads to the Efimov
eftect; and when r0~0 we have a 1/r interaction at
short distance which leads to the collapse of the Thomas
states at infinite binding. Hence both these effects can be
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understood by two limiting cases of the same effective in-
teraction.

In a less pathological and more realistic situation at
low energies for a finite

l
a

l
»ro (&0), Eqs. (4) and (5)

are still valid, but now with the 8's replaced by more
realistic form factors. In this case the convergence of the
integral in Eq. (4) is not given by the cutoff' A, which is
now set equal to infinity, but is given by the large momen-
tum behavior of the form factors of the two-particle in-

teraction. Then the solution of Eq. (4) is expected to be
very sensitive to the large momentum behavior of the
two-body interaction or to its short-range behavior.
Essentially, once the two-particle on-shell properties are
held Gxed and the two-particle interaction is assumed to
be of short range, this 6exibility of the two-body interac-
tion at short distances leads to different off-shell behavior,
which in turn will lead to different three-particle observ-
ables. As mentioned in Sec. I this off-shell sensitivity of
three-particle observables has been observed in three-
nucleon calculations. ' In general different on-shell

equivalent two-nucleon interactions lead to distinct
three-nucleon observables. The situation is completely
difFerent in two dimensions and we present a discussion of
this case in the following section.

III. THE ABSENCE OF THK
KFIMGV AND THOMAS

EFFECTS IN T%O DIMENSIONS

In this section we shall deal with the absence of the
Efimov and Thomas efFects in two dimensions. In this
case the s-wave projection of Eqs. (4) and (5) is

P(k)= f dp pk(k, p, E)$(p), (9)

but now with'4

k(k, p, E)= 28( A —p)8(A —k)t (E ——,'p )

X [(k 2+p2 E )2 k 2p2] —1/2 (10)

where t(E ——,'p ) is the appropriate two-body s-wave t
matrix. The effective range parametrization of the two-
body t matrix in this case is given by

t(e)=2[in( —e)—lny ]
=2[in( —e/y )] (11)

This two-body t matrix has a bound-state pole at
e= —y, and the appropriate Efimov limit of zero two-
body binding is achieved when y~0. The form (11) for
the two-body t matrix is appropriate for our analysis
though a one-term attractive separable potential pro-
duces a zero-energy bound state only in the limit when
the strength of the potential goes to zero. However, a
two-term separable potential with an attractive and a
repulsive part can produce a zero-energy bound state
with a nonzero potential. Even in this latter case the

l

X [(2p2 —E)2—p4] —1/2 (12)

This form of Trk is appropriate for studying both the
Efimov and the Thomas effects. The Efimov effect is re-
lated to low-momentum divergence of this integral,
whereas the Thomas effect is related to its high-
momentum divergence. In the case of the Efimov effect,
the two-body binding energy y is zero and the pole of
the two-body t matrix in Eq. (12) coincides with the lower
limit of the integral as one also takes E =0 in Eq. (12) as
in Sec. II. In the case of the Thomas effect, the diver-
gence of the integral (12) at the lower limit is excluded.
For our purpose it is convenient to rewrite Eq. (12) as

—1

4S
—E

Trl= lim4f pdp ln
2a~0 r'

X [(2p2 E)2 p4] —1/2

or
—1

Trk = lim 4f y dy ln —3y2+P2/y2
a~0 e/y

X[(2y'+P'/y )' —y ] '/2, (13)

where p'= E Eq—uat. ion (13) should be compared with
Eq. (g); in both cases both Efimov and Thomas effects are
related to the large y divergence. There is one diff'erence,
however. In Eq. (13) while studying Efimov effect (y ~0,
P=O) the lower limit of the integral cannot and should
not extended to zero, because for P=O the integral in Eq.
(13) diverges at the lower limit as y~O; whereas in Eq.
(8) the integral is perfectly finite at the lower limit. This
is why the limit e~O has been introduced in Eq. (13). On
the other hand, while studying the Thomas effect we set
E = —P &0 and P & y so that the denominators of Eq.
(13) never have a zero. It is easy to see that for P=O,
Trk diverges as ln[ln(A/y)] while either y~O (Efimov
limit) or A~ oo (Thomas liniit); for P&0, Trk diverges as
ln[ln(A)] as A~ oo (Thomas limit) and y is kept finite;
but Trk does not diverge for @+0, y~O, and A finite.
This behavior is identical to the behavior of Trk in three
dimensions. But in order for the Efimov or the Thomas
effect to exist Trk " must diverge in a similar fashion for
any n For our pu. rpose we consider Trk for E =0,
which can be easily written as

low-energy parameirization of the two-particle t matrix
can be written in the form of Eq. (11). As in the case of
three-dimensional problems we can study the Efimov and
Thomas effects through a study of Trk ". For n = 1, Trk
is given by

—.S —E3 2

Trt=4f pdp ln
0 y

Trk '=16f dp' f dk'[(k +p')' —k'p'] 3@2 3k
ln

4y2 4y2
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when written in the form of Eq. (14), the divergence of
the trace coming only from the upper limit is of interest
because the two-body binding energy y has been scaled
from the integrand and put in the upper limit together
with A. The most divergent part of the integral (14) at
the upper limit can be extracted after making the follow-

ing transformation of variables: x =r cos8, y =r sin8.
Then we have

(3/'&)(A /y ) dr

y, 1+cos sin8

g [ln(r cos8)ln(r sin8)]

At the upper limit of r integration, presumably at r ~~,
the 8 integration is well behaved and any divergence in

this limit should come from the upper limit of the follow-

ing integral:

(3/4xA /r ) dr
r lnr

which at the upper limit yields

Trk —[ln( —,'A /y )]

which is perfectly finite as A~ oo or y~O. This proves
the absence of both Efimov and Thomas efFects in two di-

mensions. The absence of the Efimov-Thomas divergence
of the trace of the kernel in two dimensions means that
the integration limit in Eq. (9) can conveniently be
pushed to infinity without the need of introducing form
factors of two-particle interaction. Hence, in Eq. (9) the
large momentum behavior is essentially given by Eq. (10)
even in the case of realistic potentials because, unlike in

the case of three dimensions, at large momentum the ker-
nel tends to zero very rapidly and gives convergent in-

tegrals at large momentum without any need of realistic
form factors of two-particle interactions. In other words,

Eq. (9} will be insensitive to the large momentum behav-

ior of these form factors, or to the short-range behavior

of the two-particle interactions. Assuming that in vari-
ous three-particle calculations one uses difFerent short-
range two-particle interactions, which produce identical
two-particle on-shell results, then the three particle ob-
servsbles in two dimensions, unlike in three dimensions,
will be reasonably model independent.

Though the absence of the Efimov efFect in two dimen-
sions has been conjectured before (using diff'erent models)
by Bruch and Tjon (separable potential model), Lim and
Mourone' (hyperspherical harmonic approach), and Lim
and Shimer' (Born-Oppenheimer approach), the present
discussion is distinct from these works in being complete-
ly model independent and in being a unique unified dis-
cussion of the Efimov and Thomas efFects and the model
independence of three-particle observables in two dimen-
sions.

The model independence of three-particle observables
in two dimensions was implicit in the work of Tjon. He
found a small sensitivity of three-particle binding energy
in two dimensions on two-particle interaction model em-
ployed when he held fixed the two-particle binding ener-

gy. We shall see that the above sensitivity disappears if
one holds both the two-particle scattering length and
binding energy fixed. Then the three-particle binding en-

ergy in two dimensions becomes essentially model in-
dependent.

IV. NUMERICAL RESULTS

In order to demonstrate our claim of model indepen-
dence in two dimensions of three-particle observables, we
have performed three-particle calculations with the fol-
lowing separable potential

with

(p I
v

I
p') = —~g (p)g (p'» (15)

g (p) =(o'+p')
The two-particle t matrix at energy E with this potential
is given by

(p l
t(E)

l
p') = —Ag(p)g(p') I+2irA, J q dq g (q)(E+ie q)—

In this case the fully on shell t matrix ( k
l
t (E)

l
k ) =2m ( k

l
t (E)

l
k'), k =k' =E, is given by

2+E)2m 2m —1 (~2+E)j
(k

l
t(E)

l
k) = — + —,'lno ——,'lnE —

—,
' g 2. +

)=t Jo

( k
l
t (E) l

k ) =—( cot5+ i)—
with"

cot6=a&+ —lnE+bE+cE +1 2 (19}

Here 5 is the scattering phase shift and az is the two-

Using the efFective-range expansion, this t matrix is
parametrized at low energies as

(2O)

dimensional equivalent of the scattering length in three
dimensions. It has been shown in Ref. 14 that there are
several ways of defining the scattering length in this case
in terms of a2. However, for our purpose we shall call
this dimensionless quantity a z, the scattering length
which is the energy-independent part of the two-
dimensionsl efFective-range function cot6. We also define
a modified scattering length az by

1 E, F.cot6=a2+ —ln +Q + 1 ~

F2 Eq
t.
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so that

1
Q2 =Q2+ lnE2 (21)

where E2 is the binding energy of the two-particle sys-
tem. The modi6ed scattering length Q2 will be useful in
our study of universality in the three-particle system in
two dimensions. It is interesting to note that when the
two-particle binding energy E2 ——1, Q2 reduces to Q2. In
Eqs. (19) and (21) there is a parameter in the argument of
the logarithm' which is set equal to unity and takes care
of dimensional consistency. Explicitly, Eqs. (17) and (19)
lead to the following nonzero part of cot5 in the limit
E~0.

0

0
h

m= 10

2m —1

cot5=o4 in'A+ —. Q —+ —ln
J K g

4m
1 E2 1

2m —1

+ —ln +—g —+ —ln
O K

1 J IT' E2

(22)

p 0
h

15

It is obvious from Eqs. (22) and (23) that the apparent di-
mensional inconsistency of Eq. (19) does not really exist.
From Eq. (23) we have exphcitly

FIG. 1. The ratio of trimer and dimer binding energies

E3 /E2 as a function of a 2 for the various separable potentials.
Data of Tables I and II are plotted in this universal plot.

4m
1 E2 1

2m —I

a, = + —ln (24)

4m
1 1 1

2m —1

a, =, + —ln
, j (25)

In order to demonstrate our claim of model indepen-

dence of three-particle observables in two dimensions, we
calculate the binding energy E3 of three identical bosons
in two dimensions by solving the three-particle Faddeev
equations in the momentum space.

The momentum-space Faddeev equations in the case of
the separable two-particle interaction (15) can be written
at energy E = —s as

$(k)=2 fd p(s +p +k +p k)

= fd p K(k, p}P(p) .

(p)
1+A,f d q g (q)( —s ——,'p~)

J

The s-wave projection of Eq. (26) is

Po(k)= f p dpKo(k, p)go(p), (27)

Ko(k,p)= f d8K(k, p),

where 0 is the angle between vectors k and p. Equation
(27} is then solved by standard numerical techniques for
the binding energy E3 of the s-wave three-boson system
interacting via the separable two-particle interaction (15).
The two-boson binding energy E2 is obtained by directly
equating the energy denominator of Eq. (17) to zero. In
Fig. 1 we plot the ratio of trimer to dimer binding ener-
g~cs E3/E2 versus Q2' %e vancd thc paramctcf Pl of Eq.
(16) from 1 to 10 and varied A, of Eq. (15), setting o =1 so
as to generate some of the points of the E3/E2 versus Q2

plot of Fig. 1. These points are exhibited in Table I and
compared with the calculation of Ref. 3. Each value of n
of Eq. (16) generates one type of form factor. We find
that the points for all m's lie on the same universal
E3/E2 versus Q2 plot.

The universal E3/E2 versus Q2 plot is essentially the
E3 versus Q2 plot where E2 ——1. This is because when

E2 E3/E2 reduces to E3 and Q2 reduces to Q2. This
means that when E2 ——1, E3 is uniquely determined by Q2

and this unique value can be read oft' from Fig. 1. In or-
der to verify this universality directly, wc performed
some calculations by varying o. and A, so as to maintain
E2 ——1. These results are shown in Table II. The results
of Table II are also plotted in Fig. 1. It is easy to verify
that the potentials of Table II use values of o. which are
very diferent from the values of o. used in Table I. Yet
the results of Tables I and II fall on the same universal
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TABI.E I. The dirner binding energy Ez, scattering length a&, and the trilner to dimer binding ener-

gy ratio E3/E, for various potentials characterized by 0 (=1},m, and A, . The E, /E2 values are com-
pared anth the calculation of Tjon (Ref. 3) when available.

/E
(Reference 3)

10

0.0602
0.0698
0.0799
0.0863
0.0961
0.1000
0.1043
0.1242
0.1404
0.1838

0.0801
0.0998
0.1200
0.1400

0.0481
0.0633
0.0731
0.1116
0.1861

0.0561
0.0776
0.0923
0.1131
0.1562

0.0019
0.0040
0.0073
0.0100
0.0150
0.0173
0.0200
0.0350
0.0500
0.1000

0.0032
0.0074
0.0135
0.0211

0.0001
0.0005
0.0010
0.0050
0.0200

0.0001
0.0005
0.0010
0.0020
0.0050

0.0069
0.0129
0.0208
0.0266
0.0352
0.0401
0.0449
0.0673
0.0863
0.1366

0.0199
0.0350
0.0575
0.0791

0.0019
0.0075
0.0133
0.0468
0.1245

0.0042
0.0160
0.0278
0.0472
0.0914

9.21
8.08
7.24
6.83
6.34
6.18
6.01
5.44
5.12
4.58

7.30
6.23
5.57
5.14

11.53
8.97
7.91
5.82
4.55

10.05
7.55
6.61
5.78
4.99

6.13

7.25
6.26
5.56
5.12

curve in Fig. 1, which is essentially the plot of E3 versus

a2 for E2 ——1. As all the potentials lie on the same
universal curve of Fig. 1 we conclude that when Ez is
maintained constant (Ez ——1), the three-particle energy
E3 is a function of a2 essentially independent of potential.

The same result is expected to hold for another E2 as
there is nothing special about Ez ——1. It is interesting to
comment at this stage that though the results of Tables I
and II produce very difFerent values of E2, they are near
the universal Efimov limit of small two-particle binding

in that E2ggcr and the three-particle binding E3 is
reasonably model independent. Of course, there is a
width of the E3/E2 versus a2 plot of Fig. 1 which varies
from 0 (for a2 ——0) to 5% (for a2 ——0. 15) as one moves
away from the Efimov limit (E2 ——a2 ——0). It is well
known that in a three-dimensional three-nucleon system
as E2 and az are held 6xed, E3 varies widely, generating
triton binding which may range from 6 to 12 MeV. From
the preceding discussion of the Efimov and Thomas
efFects, such a large variation of E3 in three dimensions is

TABLE II. The trimer binding energy E3 for 6xed E2 (=1) and a2 for various potentials character-
ized by 0, m (= 1 and 10), and A,. The calculated E3 is roughly constant.

E3(m =1)
E3(m =10)

1

10

1

10

1

10

10.000
32.539

5.345
17.562

4.472
14.75

3.1623
10.509

0.086 30
0.090 33

0.104 60
0.110728

0.124 20
0.132902

0.14043
0.151 19

0.183 83
0.200 74

0.026 55
0.026 55

0.044 85
0.044 85

0.067 27
0.067 27

0.08626
0.086 26

0.1366
0.1366

6.832
6.681

6.014
5.857

5.442
5.283

5.120
4.961

4.582
4 425

1.023

1.030

1.032

1.035
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expected. Though we are limited in this paper to a class
of separable potentials of Eq. (15) (which results in, at
best, a variation F3 of the order of ~ 5%) in view of the
arguments presented in Sec. III, the present conclusion of
model independence of three-particle observables in two
dimensions is by no means limited to the example studied
in this section and is expected to be true in general.

The present conclusion of model independence is ex-
pected to be true not only in the case of the three-particle
binding energy E3, but also for other low-energy three-
particle observables such as the scattering length a3 for
scattering of one particle from the bound state of other
two. %e calculated a3 for our model potentials and
found that this was indeed the case. Finally, we studied
the correlation among E3 and a3 calculated with model
potentials which produce the same E2 and a 2. As expect-
ed from our study, the correlation between E3 and a3 is
reduced essentially to a point if Ez and a2 are held fixed.
In other words, if E2 and a2 are held Axed, the three-
particle system in two dimensions essentially produces
the same E3 and a3 near the Efimov limit. In the case of
the three-particle system in three dimensions, the on-shell
properties of the two-particle system E2 and a2 are not
suScient to determine E3 and a3 uniquely. This leads to
the well-known linear correlation between the calculated
E3 and a3 in the three-nucleon system known as the Phil-
lips plot.

V. SUMMARY

In this paper we have presented a unified discussion of
the Efimov and Thomas effects and the model depen-
dence of three-particle observables. In particular we
have shown that both Efimov and Thomas effects are
consequences of the same singularity structure of the ker-
nel of the scattering integral equation satisfied by the
three-particle system. In the case of the two-dimensional
three-particle system, this singularity structure does not
allow for the occurrence of Efimov and Thomas effects
and suppresses the contributions of the large momentum
parts of the two-particle t matrix in the three-particle in-
tegral equation so that the three-particle observables are
insensitive to large momentum parts or short-range be-
havior of the two-particle interaction. This makes the
three-particle observables in two dimensions reasonably
model independent. The three-particle system in three
dimensions allows for the occurrence of Efimov and
Thomas effects and consequently the three-particle ob-
servables in three dimension are very sensitive to short-
range (off-shell) behavior of two-particle interactions.
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