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Abstract--We establish exact boundary controllability for the wave equation in a polyhedral 
domain where a part of the boundary moves slowly with constant speed in a small interval of time. 
The control on the moving part of the boundary is given by the conormal derivative associated with 
the wave operator while in the fixed part the control is of Neuman type. For initial state H I x L 2 
we obtain controls in L 2. ~) 1999 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - B o u n d a r y  controllability, Wave equation. 

S E C T I O N  1 

The  controllabil i ty for the  wave equat ion in smooth  domains has been studied in the papers  [1-4] 
by different methods .  For nonsmooth  or t ime dependent  domains the  l i terature is very restricted 
(see [5,6]). In  the  paper  [6] Grisvard used the H.U.M. introduced in [2] to  establish boundary  
controllabil i ty for the  wave equat ion in polyhedral  domains in R 2 and R 3. Some of Grivard 's  

results were extended to higher dimensions in [7,8] using Russell 's me thod  int roduced in [1]. 

In the  present paper  we s tudy  exact  boundary  controllabili ty for the wave equat ion in a poly- 

hedral domain  ~ C R n, n > 2 where the  entire boundary  or just  some of  its faces move with 
constant  speed less t han  one in a finite and relatively small interval of  time. We use Russell 's 
me thod  as improved by Lagnese in [9]. 

0893-9659/99/$ - see front matter (~) 1999 Elsevier Science Ltd. All rights reserved Typeset by ~4A4S-TEX 
PII: S0893-9659(99)00024-5 



2 W.D. BASTOS AND ,]. FERREIRA 

S E C T I O N  2 

Let YI be a finite collection of hyperplanes in R '~, n > 2, not all parallel and displaced in such 
a way tha t  the elements of H determine a bounded region ~. We call ~ a polyhedral domain and 
denote F its boundary. For each hyperplane r E H, the set 7r f3 F is referred as a face of f .  We 
say tha t  the face u n F moves when the hyperplane r moves towards its normal direction. 

Let F1 and F2 be two disjoint sets of faces of f such tha t  F = F1 U F2. We assume that  those 
faces composing F2 move with constant speed less than one in an interval of t ime [Q, t2] and that  

diam (fl) > t2 > tl  _> O. (1) 

We allow different faces in F2 to move with different speed. Our method works even if the faces 
in F2 move in different intervals of t ime satisfying (1). To keep the simplicity we will consider 
just one interval. An illustrative example is tha t  one where f is a cube and one of its faces is 
pushed slowly, inside or outside, in a short interval of time. 

Let fit be the deformed domain f at the t ime t > 0 (~0 = ~) .  Assumption (1) assures f t  # 0 

for every t. 
We set 

= U (2) 
t>O 

and assume tha t  there exists a neighborhood ~ of f l  such tha t  

c fi × [0, (3) 

Let T = diam ~ and set 

QT = U (4) 
0 < t < T  

for some T > T. We denote ~T the lateral boundary of QT and v = (ux, ut) the unit vector 
normal to ~T- Observe tha t  QT is a noncylindrical polyhedral domain in R '~+1 because the 
moving faces of ~ move with constant speed. The faces in F1 generate faces of Qt where the 
component  ut of u vanishes while on those faces generated by F2 we have vt # 0. The assumption 
tha t  the speed of the faces in F2 be less than one assures tha t  the surface ST is time-like. This is 
known to be sufficient to guarantee the well-possedness of the initial and boundary value problem 

studied here. 
Under the assumptions above, we prove the following. 

THEOREM 1. Given an initial state (uo, ul)  E H i ( f )  x L2(fl) and any T > T there exists a 

control g E L2(~T) such that the solution u E HI(QT) of the initial and boundary value problem 

utt -- Au = 0, in QT, 

u(x, 0) = u0(z), in 
u (z,o) = u l ( z ) ,  in 

vtut - Vu.u~ = g, o n  ~'~T, 

(5) 

satisfies 
u ( x , T )  = u t ( x , T )  = O, in f t .  | 

The boundary  condition above arises naturally in difraction problems where the mobility of the 
boundary is inevitable and is obtained assuming tha t  some elements of the reflector (boundary) 
acquire a velocity normal to its surface (see [10, Chapter  1]). 

Observe tha t  on the rigid part  of the boundary ut = 0 and the boundary condition reduces to 
the Neuman condition. 

The proof of the Theorem 1 is presented in the next sections. 
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S E C T I O N  3 

An important  step in the proof of the Theorem 1 is the existence of L 2 trace of the conormal 
derivative of the solution of the wave equation on hyperplanes of R n+l . In this section, we present 
an inequality due to HSrmander [11] to obtain such traces. We star t  setting some notations. 
Let # be any positive integer, Dk = io~ T, D = (D~ D~) and D a = D~ '~ . D~" for every 

k ' ' ' ' '  " '  

multindex a = ( a ~ , . . . , a , ) .  Let P(~) and Q(~) be two polynomials in ~ = ( ~ 1 , . . .  , ~ )  with 
complex coefficients and P(D) and Q(D) the corresponding differential operators.  We set 

p((,) - 0 I~1 

0~? . . .  o~-  p' 

and 

THEOREM 2. Let  ~t be an open and bounded subset of R t" and zc be a linear manifold in R ~'. If  

IQ(e) l 2 ~ ,  < Const. d r  1 
p(~)~ 

for every linear manifold r I orthogonal to r, then there exists a constant C = C(f~, Q, P) > 0 
such that 

~ ,Q(D)u[2 dTr ~_ C /R [P(D)u,2 dx 

for every u 6 C~ ° (~).  I 

The proof of theorem above is found in [11, p. 191]. Now assume tha t  lr is a hyperplane in R" 
with normal vector u. Then 

7r ~ = {~ + t~,; t e R } ,  ~ e ~. 

If we take Q(~) = VP(~)u  and set p(t) = P(~ + tu), then p'(t) = Q(~ + tu). Hence 

f~ /_ +°~ lQ(e + t~)l~ /_+~ Ip'(t)l  2 
IQ(~)I 2 d ~ l  ~ Ip(t)l  ~ + Ip'(t) l  2 1 p ( ~ ) 2  = oo /~(~ + t u )  2 dt < dt (6) 

since P(~ + tu) 2 = E [P((')(~ + tu)[ 2 > Ip(t)l 2 + Ip'(t)l 2. 
Now observing tha t  the last integral in (6) is bounded by 4 (degree p)2 (see [11, p. 194]) we 

conclude tha t  there exists C = C(~t, p) > 0 such tha t  

(7) 

for every u E C ~  (~t). 
Let # = n + 1 and P(~) = ~2 _ E i ~ l  ~ ,  ~ = (~1, . . . ,  ~n, ~t). Then 

for every u E C ~  (~).  Here C is a constant depending only on ft and the wave operator.  
Now let K C r be a compact  set and ~ C R n+l be a bounded neighborhood of K.  Let 

u E H I ( ~ )  be a solution of Utt --  t U  = 0 in ~.  Let ~ E C~¢(~) be a function such tha t  ~0 - 1 
near K.  Then the function v -= ~u  satisfies Vtt -- t V  = f for a convenient f E L2(~).  If  {p,} is 
a mollifier in gt, then v * p,~ E C8°((2) and satisfies 

(~ • p , , ) .  - a ( ,  • p, , )  = f • p . .  

The inequality (8) applied to v* Pn shows tha t  v has L ~ conormal derivative in K.  Since ~ = 1 
near K the same is true for u. Hence u has conormal derivative in L~oc(r ). 
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S E C T I O N  

In this section, we prove the Theorem 1. Let 

Uo E g l ( R n ) ,  

u"~ E n2(Rn),  

and let ~ be the solution of the Cauchy problem 

"utt - A T  = O, 

o)  = 

0 )  = 

4 

~00 and ~ be extensions of u0 and ulsuch that  

supp u"~ C ~,  (9) 

supp u"~ C ft, (10) 

in R n+l , 

in R n, 

in R n . 

(11) 

From well-known results on the propagation of singularities and the assumptions (9), (10), and 
the choice of T > T it follows tha t  ~(. ,T),~t(. ,T) E C~c(~). Now consider the reverse control 
problem for the wave equation with initial s tate (~(. ,T),~t(. ,T)) at the t ime t = T in the smooth 
domain ~. Since controllability for this problem is already established in [1] and [9], we may 
assert tha t  there exists a smooth function h on the lateral boundary 0 ~  x [0, T] such tha t  the 
solution of 

satisfies 

w t t  - A w  = O, 

w ( z ,  T )  = ~(x ,  T) ,  

w t (x ,  T )  = ~t (x ,  T) ,  

w(x ,  t) = h(x ,  t), 

in ~ x [0, T], 

in ~,  

in ft, 

in O~ x [0, T] 

w(x ,  O) = wt (x ,  0) = 0, in ~. 

Now we define u -- ~ - w and observe tha t  the restriction of u to QT solves 

utt - A u  = 0, in QT, 

u(x ,O)  = Uo(X), in ~, 

ut(x ,O)  = ux(x) ,  in ~, 

and 

u(x ,  T) = ut (x, T) = 0, in ~'~T. 

Now, to conclude the proof, all we need is to read of the trace of the conormal derivative of u 
on the surface ZT. We observe tha t  the component  w of u is smooth then its conormal derivative 
on ~ T  is smooth. For the component  ~ of u, we apply the Theorem 2 as discussed in Section 3 
and read the conormal derivative of ~ on the faces of ET as an L 2 function. The desired control 
is then given by taking 

vtut  - VU.Vx = g, on ZT 

which completes the proof. 

R E F E R E N C E S  

i. D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equa- 
tions, AppL Math. LII, 189-211, (1973). 

2. J.L. Lions, Contr61abilitd exacte, pertubations et stabilization de systemes distribuds, 1, Masson, Paris, 
(1988). 

3. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization 
of waves from the boundary, SIAM J. Control and optimization 30, 1024-1065, (1992). 

4. W. Littman, Near optimal time boundary controllability for a class of hyperbolic equations, In Lecture Notes 
in Control and Information Sciences, pp. 306-312, Springer-Verlag, (1987). 



Polyhedral Time-Dependent Domain 5 

5. M.M. Miranda, ContrSlabilit~ exacte de l'equation des ondes dans des domaines non cylindriques, C. R. 
Acad. Sci. Paris, t. 317, Serie I, 495-499, (1993). 

6. P. Grisvard, Contr61abilit~ exacte des solutions de l'equation des ondes en presence de singularites, J. Math. 
Pures et Appl. 68, 215-259, (1989). 

7. W. Littman, Remarks on boundary control for polyhedral domains and related results, In Boundary Control 
and Boundary Variation, (Edited by J. P. Zol~sio), Springer-Verlag, (1990). 

8. W.D. Bastos, Boundary control for hyperbolic equation in polyhedral domains, Ph.D. Thesis, University of 
Minnesota, USA, (1995). 

9. J. Lagnese, Boundary value control of a class of hyperbolic equations in a general region, S I A M  J. Control 
and Optimization 15, 973-983, (1977). 

10. F.G. Friedlander, Sound Pulses, Cambridge University Press, (1958). 
11. L. HSrmander, On the theory of general partial differential operators, Acta Mathematica 94, 161-248, (1955). 


