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Self-consistent quantum effects in the quark meson coupling model
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We derive the equation of state of nuclear matter for the quark-meson coupling model taking into account
qguantum fluctuations of thee meson as well as vacuum polarization effects for the nucleons. This model
incorporates explicitly quark degrees of freedom with quarks coupled to the scalar and vector mesons. Quan-
tum fluctuations lead to a softer equation of state for nuclear matter giving a lower value of incompressibility
than would be reached without quantum effects. Themediumnucleon andr-meson masses are also calcu-
lated in a self-consistent manner. The spectral function obtlmeson is calculated and tlhemass has the
value increased with respect to the purely classical approximation at high densities.
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I. INTRODUCTION breaking. One of the first models put forward along these
lines was the quark-meson couplit@MC) [3,4] model

The study of the high density and high temperature hadwhich describes the different phases of hadronic matter in
ronic matter is one of the most interesting subjects in nucleaterms of explicit quark degrees of freedom. This model de-
many-body physics for the understanding of superdense stassribes nuclear matter with nucleons as nonoverlapping MIT
and relativistic heavy-ion collision. Usually the frame of bags interacting through the scalar and the vector mesons,
quantum hadrodynamicd®HD) [1] is the departure to the very much in the same way as in the QHI. The crucial
study of the nuclear many-body problem describing nucleonsifference is that in the QMC, the mesons couple directly to
interacting with scalar and vector mesons. This meson fielghe quarks in the interior of the baryon. Many applications
theory has quite successfully described the properties of thgnd extensions of the model have been made in the last
nuclear matter and finite nuclei using the mean field approxiyears_see Ref§5-10], and references therein. Among sev-
mations for the meson fields. The vacuum polarization corgra| aspects the density dependent bag constant has also been
rections arising from the nucleon fields as well as the mesofhyestigated within this framfL0]. The behavior of the order
fields have also been considered to study the nuclear mattggrameter of the chiral symmetry breaking has been focus of
[2]. This is one way of obtaining a softer equation of stateattention and is believed to have strong consequences for
yielding a lower compressibility than would be reached with-gpservations in relativistic heavy-ions collisions. There are
out quantum effects. This is an indication that even if one issvidences for believing that the symmetry is restored at high
interested in developing effective models for the descriptionyensities(and temperaturg¢snaking the order parameter to
of such complex systems a description taking into accounyanish although the idea of further symmetry breaking with
quantum fluctuations may be of relevance. increasing densitief11] has not been extensively studied.

While descriptions of the nuclear phenomena have beep|though effective models are usually developed for classi-
efficiently formulated using some hadronic degrees of freeca| mean fields, one is often driven to the investigation of the
dom as in QHD, there have been interesting observationgontribution of quantum effects which modify dynamical
that reveal the medium modification of the internal structureequations and observables.
of the nucleon. High density and temperature matter has |n the present work, we investigate the role of the quan-
been, and is being, investigated in RHIC and CERN &nd tym fluctuations of ther meson in a nonperturbative self-
mediummodifications of the parameters of the theory usedconsistent way. Another effect we will consider are the
for the description of the experimental observations must bgacyum polarization corrections arising from nucleons as al-
considered. Furthermore, quantum chromodynar@SD)  ready done in the QHI2,12,13. The equation of state for
is expected to present a phase in which quarks and gluons aggnse matter is derived. We organize the paper as follows: In
not confined inside hadrons at high densities and/or temperaec. |1, we derive the equation of stdf0S for dense mat-
tures. At such high densities and/or temperatures, asymptotigy including the quantum fluctuations from the nucleons and
freedom implies smaller coupling constants. Therefore thghe & mesons within the QMC model. We also show the
degrees of freedom from the fundamental theory of strongpectral function for the same level of approximation. In Sec.

interacting systems, QCD, must be considered. Due to thg| we discuss in detail the numerical results obtained in the
complex structure of this theory we are led to formulate ef'present work and discuss possible outlook.

fective models that have the main properties and symmetries
of QCD as chiral symmetry and its spontaneously symmetry

Il. THEORY
*Email address: panda@ift.unesp.br The details of the QMC model have been given in Refs.
"Email address: braghin@if.usp.br [3,4,6]. Since we now include the vacuum polarization ef-
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fects of nucleons, we give here a few important steps for

1 1
completeness. GMFT:LJ dk(k2+ M*2)124 §m§0(2)+ §miw%,
In this model, the nucleon in nuclear matter is assumed to (27)° J 1K <ke
be described by a static MIT bag in which quarks interact )

with the scalar ¢) and the vector ¢) mesons. The quark

field y,(r,t) inside the bag then satisfies the equation being the cutoff given by théFerm) momentum at the

Fermi surfacekg, and

[iy#d,—(mg—gloo) —gdwoyTe(r,)=0, (1)

Ae=—— 3J dk| (k2 + M*2)172
wherem is the current quark mass ag andg? are the (2m)
quark couplings with ther and @ mesons. M
After putting the boundary condition at the bag surface, —(K2+M?2)V2— _9s00M ) (6)
we have the transcendental equation for the ground-state so- (K?+M?)17?

lution of the quark(in s statg as
The above expression for the energy density is divergent.
Jo(X)=Bqgi1(x) (2)  After renormalization by adding the counterterfii], we
have the expression for the finite renormalized energy den-

which determines the bag eigenfrequenay In the Sity,

above, Bq=(Qq—Rn{)/(Qq+Rnf), with Qq=(x?

+R2mE2) Y2 m¥ =mg—gloy is the effective quark mass.

The form of the quark wave function is almost identical toyhere
that of the solution in free space. However, the parameters in

the expression have been substantially modified by the sur-
rounding nuclear medium. Thus the quarks in the nucleon e =—

€ren= €MET T A €ren, (7)

*

M*“In(M—) +M3(M—M*)—ZM2(M
M 2

embedded in the nuclear medium are more relativistic than 6
those in a free nucleon. 13 25

The energy of the nucleon bag is —M*)2+ §M(M —M*)3— 1—2(M ~M*)4. (8

Qq Z2 4 . L .
M* :3?_ §+ §7TR B, (3)  The baryonic density is obtained by
. . ki

whereB is the bag constant and parametrizes the sum of p=—>. (9)
the center-of-mass motion and the gluonic corrections. Note 67

that this center-of-mass treatment is different from that of Jin
and Jenningg10]. The bag radiuR is then obtained through In the abovejy is the spin-isospin degeneracy factor which is
IM*/9R=0. This is the stability condition for the bag. An equal to 4 for nuclear matter and to 2 for neutron matter.
interesting fact related to the QMC model is that the bag

volume changes in the medium through the mean value of B. Quantum fluctuations for the o

the o field. This also implies that the bag eigenvalues are

also modified. Next, we consider the quantum corrections due to the sca-

lar meson. Including a quartic scalar self-interaction, the

Hamiltonian density for the scalar mesons becomes
A. Vacuum polarization for nucleons

We now proceed to study the EOS for nuclear matter H :E& octo+ Em202+)\04, (10)
including the vacuum polarization effects from nucleons at 72 2
zero temperature. The details of the theory have already been
discussed in the frame of QHD in Rd®R] through an ex- Wwith m, and\ being the bare mass and coupling constant,
plicit construction of a state with nucleon-antinucleon con-respectively. The quantized field satisfies the algebra
densates which is identical to those obtained through sum-
ming of tadpole diagrams for the baryon propagator in the [g(x),(}(y)]:ig(x_y)_ (11
relativistic Hartree approximation. Only a few important
steps are given here. The energy density after subtracting owe may expand the field operators in terms of creation and

the pure vacuum contribution becomes annihilation operators at time=0 as
eo:EMFT+A€, (4) 1 dk
o(x)= f [a(k)+a'(—k)]e"*, (12)
with the mean field contribution given by (2m)¥) \2w(k)
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: i w(k) : ox f 5
g(x)_—,-(zﬂ)wf dk\/—z [—a(k)+af(—k)Je > (Q|HU|Q> 2203 2w(k) [k?(sinh 29+ cosh 2y)
(13 L
2 i T m2 2 2

In the above,w(k) is an arbitrary function which for free +o7(k)(coshZ=sinh 2]+ Zm‘Tl +ONapl + 3]
fields is given byw(k)= Vk®+ ng and the corresponding 1
vacuum to this basis is defined througjvag=0. We shall +-m2oa+Nob. (22)
now adopt a procedure as in REZ] to calculate the quan- 2
tum corrections arising from the mesons. We consider an

ansatz for the ground state includingcondensates as Extremizing the above energy density with respect to the

functiong(k) yields

|Q)y=U,|vad), 14 S 6N| + 6\ o2 -
with AN (== 7 6a  6ro? 22
U,=U,U, (15) It is clear from the above equation that in the absence of a
7 quartic coupling no such averaged value is favored since this
whereU, =exp®/—B) (i=1,11). Explicitly the B; are given  function vanishes foh=0. Now substituting this value of
as ' g(k) in the expression for the-meson energy density yields
1
k _
=f dk\/#fg(k)af(k), (16) €r=5 M0+ \og
(23)
and where
1 2_ .2 2
B”T:EJ dkg(k)a’T(k)a’T(—k). (17) Mo=m,+ 12\ 1+ 12\ o (24
with
In the above,a’(k)=U,a(k)U,’1=a(k)—\/w(k)/Zf,,(k)
corresponds to a shifted field operator associated with the |— 1 dk 1 5
coherent statgl4] and satisfies the same algebra as the cre- - (2m)3 3 (K24 M2)12 (29

ation and annihilation operators for and o. Thus in this
construct for the ground state we have two functiopé)  obtained from Eq(20) after substituting for the condensate
andg(k) which will be determined through minimization of functiong(k) as in Eq.(22). This expressioli25) defines the
energy density. Further, sin¢®) contains an arbitrary num- o massM, . In Eq. (23) for the “effective potential” e
ber ofa’" quanta,a’|Q)#0. However, we can define the contains divergent integrals. However, our approximation is
basisb(k), bT(k) corresponding tdQ) through the Bogo- nonperturbatively self-consistent and it still contains the in-
liubov transformation. Further, to preserve translational ininities in the integral given by Eq.(25) which need to be
variance,f (k) has to be proportional té(k) and we take eliminated also in order to reinforce the meaningNdf, .
f,(K)=0o(27)%25(k). o will correspond to a classical Therefore we first obtain a well-defined finite expression for
field of the conventional approa¢h4]. It is easy to evaluate M, by renormalization. We use the regularization by cutoff
that and the renormalization prescription of R¢L5] and thus
obtain the renormalized mass; and coupling\ g through

(Q]o]0)= 0o, (18) ,
mg m
but, . :T+ 1214(A), (26)
(Q]o?|Q)=05+1, (19 11
=y H125(A ), (27)
AR A
where
L dk wherel; andl, are the integrals,
ﬁ)j T(k)(COSh Ay +sinh2g9). (20 1 dk
nn=— = (29
. N (2m)3 ) |K<a2K
We next calculate the expectation value of the Hamiltonian
density for theo meson given by Eq10). Using Eqs(18)— 1 1 1
(20) the energy density of{, with respect to the trial state Io(A)= —f dk(—— —— |, (29
becomes 22m)3 ) i=<a |\ 2k 2K+ pu
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used in the calculation.

M (MeV) my (MeV) R (fm) B4 (MeV) z mg (MeV) m,, (MeV)
939.0 0.0 0.6 211.303 3.9869 550.0 783.0
whereu is a renormalization mass scale afids the ultra- e — finite A (35)
violet cutoff. The resulting gap equation favi%, which ren— "0 ren’
minimizes the energy, in terms of the renormalized paramzq
etersm3 and\y can be rewritten as
2
M2=mZ+ 12\ go+ 122l (M), (30) i f L S
3(271_)3 k| <ke (k2+ M*2)1/2 2
where o is obtained from the minimization of the energy
density with relation tar, —Ae;—A€ren, (36)
de where
—| =0, (31
do 1
70 S
wmz—l—f dk(k?+M* )24 Zml wi+Ae,
and (27)% ) jKi<ke 2
M2 [ M? 37
1{(M,)= 6 02|n<—g>- (32  with Aee, given by Eq.(8) and A€, by Eq. (34). In the
T M

Self-consistency in expressid80) makes ther mass to de-
pend on the nucleon polarization becaugedoes depend on
it. Using the above equations we obtain the energy densit
for the o in terms of oy which is given by

|+

—3\rl?=2\0},

mg

12\r

M 4
64?2

2
M(r

2
"

1

In 5

2
ogt

€ :3)\R

o

(33

where u is a mass scale introduced in the renormalization

procedure. The above expression is given in termssof
mass,mg, and\r. However, from the renormalization pro-
cedure one sees that wheg is kept fixed, the bare coupling
A—0_ . Therefore the last term in E33) will be neglected

in the numerical calculations. This approximation is nearly

equivalent to taking into account the so-called “cactus” dia-
grams[16] which correspond to a resummation of the tad-
pole diagram with the loop propagator given by the self-
energy self-consistently.

After subtracting the vacuum contribution we obtain

AE(T: €5 e_o'(O-O: 0)

4 M2} 1
2 2 4 o 4
= —m202+3\goat —=|In| —2| -3
2 RY0 RY0 4772 Mz 2
M4 2ol 1
2 o,0 o,0 2

(34

whereM, o and |, are the expressions given by E¢30)
and (32) with ¢=0.

above equation, the last term includes the contribution from
the quantum correction of the mesons. In the mean field
approximation, i.e., in normal QMC modelz=0, and the
gnergy density from the- meson issm&aa. This then cor-
responds to the relativistic Hartree approximatigtHA),
with the last term of Eq(35) being the contribution arising
from the vacuum polarization effects from nucleon sector.
The usual vector mean field, is obtained from its equation
of motion as

393,
0)0:_2 pP-
m

w

(38)

The energy density from the field as given by Eq(34)
is still in terms of the renormalization scalewhich is arbi-
trary. We choose this to be equal to the renormalizedass
mg in doing the numerical calculations. This is because
changingu would mean changing the quartic coupling,
and this coupling constant enters here as a parameter to be
chosen to give the incompressibility for nuclear matter in the
correct range. The parametag$ andg,, (=3g%) are fitted
so as to describe the ground-state properties of nuclear mat-
ter correctly. For a given baryon densjy the energy den-
sity, the density dependent radius of the nucleon and the
nucleon effective mass are calculated at zero temperature.

Ill. RESULTS AND DISCUSSION

We now proceed with the numerical calculations for the
nuclear matter taking into account both effects presented
above. We start fixing the bag properties in the vacuum. We
use zero quark masses and the bag raiia$.6 fm. There
are two unknownsZ and the bag consta® These are ob-
tained as usual by fitting the nucleon mads=939 MeV

The energy density and pressure with baryon and thend enforcing the stability condition for the bag. They are

sigma condensate, are, respectively, done by

given in Table I.
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FIG. 1. The energy per nucleon of nuclear matter as a function  F|G. 2. The binding energy of the nuclear matter as a function
of p/p, for different corrections. All curves are for the same set of of /. The parameters are refitted to the saturation properties of
parameter of QMC. nuclear matter at the minimum of the curves.

We next calculatg the ground-state propertleg of the'also shown. Little change is noted in the values of the pa-
nuclear matter and fit the scalar and vector coupling CONco meters for the range ofz which is considered here. The
stantsg; andg,, (=3g;) to reproduce the nuclear matter ;e of ¢y which enters,Rfor example, in the mass, is
binding energy {15.7 MeV) at the saturation densitypf  getermined by the minimization of expressié88) with re-
=0.15fm ") for a given renormalizedr mass and cou- gpect tog at each density in a self-consistent manner. Using
pling, mg andig. these values, we plot the binding energgE& e/ p—My) for

Initially, we investigate the effect of the quantum correc-  clear matter as a function of density in Fig. 2. In the same
tions on the binding energy per particle arising from thefjgre we also plot the results for the RHA. Clearly, includ-
nucleon and ther mesons. The results are shown in Fig. 1'ing baryon ando-meson quantum corrections leads to a
Wher_e we plotEg as a functlon of the nuclear densjtypo.  gofter equation of state which is further softer for a higher
In this figure the coupling constangs andg,, are the same yajye of . The equation of state, pressuReversus as a
for the RHA, A\g=3.0, and\g=4.5 cases. Observe that the fynction of energy density is displayed in Fig. 3 for differ-
saturation density shifts by-0.1%, for RHA and =0.5,  ent cases. For comparison, the causal liRit e is also
for \g=3.0 and the binding energy changed.5 MeV for  shown in the figure. All the cases studied here respect the
RHA and =4 MeV for A\g=3.0 when the fluctuations are
included. In this way it is possible to assess the quantitative
relevance of including quantum fluctuations for theHow-
ever the parameters must be readjusted in order to describe
ground-state nuclear matter properties.

We now readjust the coupling constags andg,, such 300
as to obtain the correct saturation binding energy of nuclear
matter for RHA and for differenk g. Thew ando couplings
for given\ are tabulated in Table Il. Results from RHA are

400

350

250

200
TABLE II. Quark-c and w-nucleon coupling constants, in-
medium nucleon properties at saturation density, and the nuclear

matter incompressibility for different cases.

P (MeV/fm’)

150

100

Case gd g, M*/My R* (fm) K (MeV)

50
Normal QMC 598 896 0.775 0.5961 281

RHA 577 839 0793  0.5967 272 0
Ag=2.0 560 802 0.809  0.5972 263 0
Ag=3.0 551 7.77 0817  0.5975 256 € (MeV/fm’)
Ag=4.5 537 7.36 0.830  0.5978 244

100 200 300 400 500 600 700 800

FIG. 3. The pressure versus energy density of the nuclear matter.
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FIG. 4. Effective baryon masses in the medium.
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FIG. 6. The spectral functioin units of M ~?) of o meson
for \g=3.0.

guantum correction effects is examingd]. It is very inter-
esting to study these functions because, for example, in a
thermal model the dilepton yields in heavy-ion collisions
would be proportional to the spectral function. It gives a

causal conditionyP/de<1, so that the speed of sound re- more complete account of the-mediumo properties as

mains lower than the speed of light.

mass and width.

In Fig. 4 we plot the effective nucleon mass as a function ;¢ spectral function in the quantum theory can be ex-

of density. At the saturation density we glk?tf=0.817l\/| pressed in terms of the retarded self-enefBy=Re3q
and 0.831 for A\g=3.0 and\g=4.5, respectively. These _; Im3g, as

values may be compared with the resultshéf =0.775V

for normal QMC model and of 0.798 with the relativistic

Hartree approximation in the QMC model keeping the cou-pS(w’p)

pling constants fixed. This influence is much higher at high

nuclear densities. We can conclude that quantum effects, at —2ImZg(w,p)

the level we consider, increase the effective mdss T2 2 2 2 2"
We plot thein-mediumeffective radius of the nucleon [0°—p°—mz—ReXg(w,p)]*+[IM2g(w,p)]

(R*) as a function of density in Fig. ]* is also increased

in relation to the mean field approximation mainly for higher

(39

densities.

Next, the spectral function for the mesons including th

By definition the width of the corresponding mode, theis

e given by I'= —Im 3 g(w,p)/w. While the real part of the
self-energy is directly related to thelensity dependento
mass, which was calculated in the preceding section, the

1.01 . . T T
imaginary part will be defined by a width of tlkeconsidered
to be constant at this level of approximation. It will be given
1.0 by I'(p) =300 MeV[18]. This is anad hocprescription that
does not prevent the imaginary part of the spectral function
0.99 from varying with the density. The spectral function @t
' =0 can then be written in terms of it as
=
> 0.98 00 20l w0
w! = 1
Ps (cuz—l\/li)z-i-(uzl—‘2
0.97
whereM?2 is given by expressiofB0).
0.96 In Fig. 6, we plot the spectral function of themeson as
a function of the energy and of the density. The spectral
095 function becomes more strengthened as density increases and

Plpo

FIG. 5. The effective radius of the
of p/pg.

its center moves slightly for higher energies. We found there-
fore thatM, increases with density asg is positive, al-
though this is not so clear in the graph. The resulting width

nucleon as a functionof the spectral function is smaller at higher densities. In Fig.

7, it is explicitly shown ther mass as a function of the ratio
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FIG. 7. Theo self-consistent mass forg=3.0 and\g=2.0
with and without considering the polarization effects for nucleons.

plpg for two couplingshg=2.0 and\ g= 3.0 with and with-
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The difference of ther mass due to the nucleon polarization
is nearly independent ofg. The higher is the &) coupling

\r the higher is the increase of tlhemass with density. This
seems to be rather an indication of a further symmetry break-
ing instead of its restoratiofi1].

To summarize, we have used a nonperturbative approach
to include the quantum effects in nuclear matter in the frame-
work of QMC. The calculations of the scalar meson quantum
corrections was done here in a self-consistent manner includ-
ing multiloop effects. This leads to a softening of the equa-
tion of state. We have also calculated the spectral function of
the o and, in particular, the effectivim-mediummass of the
o meson modified by the quantum corrections. The effective
o mass increases with density although the polarization due
to nucleons contributes to diminish this mass. This may be
understood as a tendency to a prevention f(ghiral) sym-
metry restoration. These features deserve further investiga-
tion as well as the role of the coupling constant and its
influence on the chiral symmetry behavior at high densities
and temperatures.
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