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Abstract

The present work concerns the ghost-gluon vertex of Quantum Chromodynamics, which, ac-
cording to the Taylor identity, has no perturbative corrections to any order, in the Landau gauge
and for a specific momentum configuration. We study this vertex for a momentum configuration
for which there is no proof of such a result, which is the one with a zero gluon momentum.

The framework we adopt for it is the "Dynamical Perturbation Theory" approach, which consists
of inserting some nonperturbative information of the theory into its perturbative expansion. It is
a phenomenological attempt only, intended to probe infrared properties of the theory by means of
loop calculations.

We have made use of two nonperturbative informations: First, a finite gluon mass, since there are
even more indications that the gluon presents a mass, though it is a dynamical one — it intrinsically
changes from finite in the infrared, to zero in the ultraviolet. Second, a recent result on the effective
charge of Quantum Chromodynamics, which itself considers a dynamical gluon mass.

We calculate the 1-loop correction to the ghost-gluon vertex, aiming at verifying how close to
1 the ghost-gluon vertex renormalization function (Z;) is. The result obtained was positive in this
direction: Z; does not differ much from unity, as shown in Chap.5. Moreover, our result fits better
the lattice data when we consider the mentioned effective charge, than when we set the coupling
constant as a fit parameter.

Therefore, our somewhat phenomenological approach based on a dynamical gluon mass is, at
least, consistent, and supports the approximation Z; = 1, usually performed in the study of the

Schwinger-Dyson equations of Quantum Chromodynamics.

Keywords: Quantum Chromodynamics. Dynamical gluon mass. Schwinger-Dyson equations.

Dynamical Perturbation Theory.
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Resumo

O presente trabalho diz respeito ao vértice ghost-gluon da Cromodinamica Quantica, o qual, de
acordo com a identidade de Taylor, ndo possui corregdes perturbativas no calibre de Landau para
uma determinada configuragdo de momentos. Estudamos este vértice numa configuragao para a
qual ndo ha provas de um tal resultado, que ¢ para 0 momento do gluon igual a zero.

Para tanto, adotamos a abordagem da "Teoria Dindmica de Perturbagdo", que consiste em inserir
caracteristicas ndo perturbativas da teoria em sua expansao perturbativa. Trata-se de uma tentativa
de carater fenomenologico apenas, que objetiva explorar propriedades da teoria no dominio in-
fravermelho por meio de calculos de loop.

Utilizamos duas informagdes ndo perturbativas: Primeiramente, uma massa finita do gluon,
visto que ha consideraveis indicagdes de que ele apresente uma massa, embora esta seja 0 que
se chama de dinamica — ela, inerentemente, varia de um valor finito no infravermelho para zero
no ultravioleta. Em segundo, um resultado recente acerca da carga efetiva da Cromodinamica
Quantica, na qual € considerada uma massa dinamica do gluon.

Calculamos entdo a corregao, a 1 loop, do vértice ghost-gluon, com o fim de verificar o quao
proxima a funcdo de renormalizacdo (Z;) desse vértice é de 1. O resultado obtido foi positivo neste
sentido: 7 1 difere pouco de 1, como mostrado no Cap.5. O resultado, ainda, ¢ melhor ajustado aos
dados da rede quando consideramos a referida carga efetiva, do que quando usamos a constante de
acoplamento como um parametro de ajuste.

Portanto, nossa abordagem um tanto fenomenologica, baseada numa massa dinamica do gluon,
¢ ao menos consistente ¢ d4 suporte a aproximacdo Z; = 1, comumente efetuada no estudo das

equagdes de Schwinger-Dyson da Cromodinamica Quantica.

Palavras-chave: Cromodinamica Quantica. Massa dindmica do gluon. Equagdes de Schwinger-

Dyson. Teoria Dindmica de Perturbagao.



Chapter 1

Introduction

The main subject of this work is Quantum Chromodynamics (QCD). In order to understand it, a
good first step is asking: What is it intended to be about?

First, it is a theory of matter, that constitutes part of nature, whose description is the purpose of
Physics — which actually began to address this question with the birth of Quantum Mechanics (QM)
in the late 19th century. QM succeeded in characterizing the physics of microscopic scales, being
able to account quite well for the atomic spectrum — i.e. the periodic table, and also molecules and
their observed properties. All atoms are made of electrons and a nucleus, which in turn was seen to
be made of more fundamental entities (called particles), the protons and neutrons.

However, even the protons and neutrons, such as other particles that were known, seemed to
have a substructure, leading physicists to suppose that they would be composed of even more
fundamental particles. Up to the present, no experiment has shown us these particles. But there
has been more and more indirect evidence that these entities would indeed be. They are named
quarks and gluons. In fact, quarks and gluons are the basic dynamic constituents of QCD, which is
a quantum field theory: a gauge — or, even more specifically, a Yang-Mills theory.

So, the purpose of QCD is to describe the very being of protons, neutrons and all particles alike,
and also their behavior — which, as we shall explain, is summarized by the term strong interactions.
Then, in order to present QCD we shall first give an overview of observed facts and the inferences
they led to: Why quarks, and why gluons? Then, why Quantum Field Theory (QFT) seems to be
an appropriate framework for this description. Finally, why gauge theories also seem suited to it.

After showing how QCD meets some features of strong interactions, we display more formal
details on QFT and QCD themselves. The processes described by the theory are related to its
correlation (or Green) functions. The perturbative method expresses, at least in principle, any

correlation function as being constructed by more fundamental ones, namely the propagators and



vertices of the theory.

QCD contains quarks and gluons propagators, and the vertices among them. However, the quan-
tization of gauge theories requires gauge fixing, and for some gauges it corresponds to introducing
a new field, the ghost one. Then, besides the basic correlation functions cited above, QCD has the
ghost propagator and the ghost-gluon vertex also as fundamental quantities. As we show in Chap.3,
these Green functions, and the others of the theory, are all coupled to each other in a precise way.
This is the content of the Schwinger-Dyson equations (SDE), which are an object of study in order
to explore the theory.

One purpose of the present work is to deal with some class of results of SDE, concerning the
gluon propagator. It is well known in QFT that the propagators are quantities related to the mass of
the particles which are the fundamental excitations of the given field. In the mainstream, the gluon
is widely considered to be a massless particle, since it is so to any order in perturbation. However,
the perturbative method fails, for QCD, in the infrared (IR) domain — that is, at low energies. On
the other hand, SDE studies of the gluon propagator led to the conclusion that it could display a
massive character. This gluon mass is called dynamical, and it is energy-dependent: it goes to zero
in the ultraviolet (UV) —i.e. at high energies, and assume a finite value as the energy is decreased.

Now, there comes a technical problem. The perturbative method is a powerful and successful
tool in extracting, from the Green functions, physical observables, such as cross sections, and decay
rates of particles. But it is so only in its domain of validity — which for QCD excludes the IR region,
that is surely an important one, since it would be responsible for confinement (i.e. the fact that we
do not observe quarks and gluons alone, but only bound into certain composite particles).

Among the proposals to deal with this issue, one underlies our work: it is the "Dynamical
Perturbation Theory" (DPT). It consists in the idea of introducing nonperturbative information into
the perturbative series. That is, for example: consider the above result for the gluon propagator —
that it would have no mass in the UV, and be massive in the IR. Now take the perturbative expansion

of a given correlation function, up to certain number of loops containing gluon propagators. So, one



DPT-like procedure would be to rewrite this perturbative expansion with that complete propagator
in place of the original one (called bare) inside the loops. A more rigorous one would be to do the
same for all other propagators and vertices within the loop expansion.

However, the former case is what we have done, except for one detail. Instead of considering a
gluon mass that depends on the momentum (being finite in the IR and zero in the UV), we consider
a gluon propagator with a constant finite mass. This could of course be less accurate. But, like
DPT itself, this procedure we have employed is of phenomenological character. It is not proved
to be valid, and it is no more than an attempt to explore the theory, trying to obtain some useful
information and see its consequences.

So, our methods and limitations having been clarified, let us be more specific. This whole proce-
dure was applied to the ghost-gluon vertex. It is affirmed by the Taylor identity[3] that its complete
expression equals its bare one — in other words, as we shall explain in the text, its renormalization
function, Z, is identically equal to 1. Moreover, this identification is an useful simplification for
SDE calculations. On the other hand, the Taylor identity has been proven to hold to each order of
perturbation, so its validity in the IR domain is unknown.

Then, our work aims at investigating whether the renormalization function of the ghost-gluon
vertex is identically equal to 1, within the framework and proposals that we have just described.

Finally, before we start, we should set our conventions: we take ¢ = i = 1. That is, speeds are
measured in units of the speed of light (in vacuum), and actions are measured in units of the Planck
constant (over 27), so that quantities may be written equivalently as in powers of units of mass,

energy, momentum or length.



Chapter 2

Strong interactions and Quantum Chromodynamics

In the early 20th century, it was still lacking in Physics an understanding of matter 5], At
that time QM arose as the theory aiming at that, and it succeeded quite well in many applica-

tions in the atomic scalel®)!7]

. In a short time, Dirac improved QM to be compatible with Special
Relativity[g], then predicting the existence of particles and antiparticles, which was soon confirmed
by experiment[9].

Furthermore, Dirac accomplished the quantization of the electromagnetic field, providing great
advances in what can be considered one main foundation of QFT. We will discuss QFT in much
more detail later, but for now we anticipate that it is a quantum theory that can account for the
appearance and disappearance of particles, as in processes characterized by transformation of some
particles into others, such as those involved in nuclei decays, for instance.

So, we begin with a brief narrative about processes involving particles, and discoveries that led

to the theoretical development that we will focus on.

2.1 The place of strong interactions

2.1.1 Hadrons and their composition

As the endeavor to understand matter established some results, such as the atomic model and
the nucleus composition, even more empirical discoveries came up. For their history and more
detailed presentations we refer to [9] and [10]. In few words, the observation of particles, and of
each process they took part in, led to a classification of both interactions and particles. Besides
gravitation, the interactions were regarded as occurring in three kinds: the electromagnetic, the
weak, and the strong onel?!.

The particles’ classification, on the other hand, contains hierarchies. The first two classes are



hadrons and leptons, which differ in the very subject of this chapter: the hadrons are the particles
that participate in the strong interactions, while the leptons are those which do not so. The latter
arel?: the electron, the muon, the tau, and their respective neutrinos, and are, up to now, understood
to be elementary particles — unlike the hadrons, which are divided up in two subclasses: the mesons
and the baryons, according to the substructure they seem to have.

The suggestion that the hadrons would not be elementary came from the observation, during
the 1950’s and 1960’s, of a considerable variety of them, which was put schematically in 1961,
by Gell-Mann and, similarly and independently, by Ne’eman, too. This organization is called the

eightfold way, and is represented below:

The meson octet

The baryon decuplet

rf:—.l

Figure 2.1: The eightfold way, showing the quantum numbers involved in this classification: the
electric charge, (), and the strangeness, S.

With this whole fauna of particles, each one presenting some quantum numbers and lifetime,



there comes a natural question: could this diversity be actually explained by some substructure of
the hadrons? So, in 1964, Gell-Mann and (also independently) Zweig proposed that there would
indeed be such a substructure: all hadrons would be constituted of more basic elements, particles
which were coined by the name quarks. The original quark model contained three kinds of quarks,

then called flavors: up (u), down (d), and strange (s), following the pattern below.

S L2/3

/
I 7" 2\
_Lfl V]_sz E LA Iz

-2/3 S

Figure 2.2: The quark model with the flavors, up, down, and strange, showing their respective
antiquarks, and their quantum numbers /3 (the azimuthal component of the isospin /) and
hypercharge Y = 2(Q — I3).

In a short time the three-flavor quark model was extended to contain a fourth flavor, the charm
(c), which was empirically evidenced in 1974. Later, two more quarks were proposed in the model,
the bottom (b) and the top (t). The former was evidenced in 1977, but the top only in 1995, due to
its large mass.

These are the supposedly elementary particles that would constitute the mesons and the baryons.
Until the quark model was proposed, the evidence for them was just the great diversity of particles
and the reactions they participated in. However, along with particles’ discoveries, another strong
evidence came in the late 1960°s: the appearance of some dynamics inside the hadrons. We now

see how this came up.

2.1.2 More indication for quarks — the parton model
The evidence for an internal dynamics within hadrons arose in deep inelastic scattering (DIS)

experiments, in which a hadron-hadron, or a lepton-hadron scattering produces a final state with a



distinct particle content — for example, the electron-proton inelastic scattering, represented below

in its one-photon exchange approximation:

Figure 2.3: Electron-proton inelastic scattering, in the 1-photon exchange approximation.

The X stands for the sum over all possible hadrons in the final state. The cross-section for this

process is given by:
d’c B T’ 1
dQ2dv  4k2sin* (0/2) kok)) [

where, neglecting the electron mass,

Q? = — (k — K)* = 2kokfy (1 — cosb)

pP=M, (p) =W,

p.(k—FK)=Mv, 2Mv=0Q*+ W?— M?*.
The unknown details of the process are carried by the structure functions, WW; and W5, dependent

Wy cos? (6/2) + 2W; sin® (0/2)]

on both % and v. In 1969, Bjorken[1 11 obtained the result that these functions, in the deep inelastic

region of high Q% and high v, would scale — that is, would depend only on one variable, Q?/Muv:
Q> =00 .o, MWy (Q*v) = Iy (Q*/Mv)

{ s oo , with Q*/v finite —- VIV, (Q% 1) = Fy (Q2/Mv)
12],p.93

, both finite.

This behavior was indeed observed to agree quite well to experiment! , calling attention for
the lack of understanding of this scaling. Feynman offered an intuitive interpretation introducing
the so-called partons: basic constituents of the hadrons, that would individually elastically scatter
with the intermediate photon which, at higher energies, would probe shorter distance scales. This

is depicted in Fig.2.4:



strong interactions,
production of the
observed hadrons X

Figure 2.4: Representation of a parton scattering within the proton.

Putting together the parton and the quark model, the scaling functions F' are related to proba-
bility distributions for each quark, leading to sum rules which consist in constraints among these

distributions. For more details we again refer to [12]. It is of our interest to mention one of them:
1

/dxx [u(z)+u(z)+d(@)+d(z)+s(@)+5@)]=1-¢,
0
where (@) u , (d) d , and (5) s denote the probability distributions for (anti-)up, (anti-)down, and

(anti-)strange quarks, respectively, and ¢ stands for a participation of more partons than these three
quarks ad their antiquarks. Ref. [12] mentions data for which ¢ is close to 1/2 for the proton, thus
supporting the possibility that it might be composed by more particles, charged or not.

Therefore, the quark parton model served as a dynamic evidence of a substructure of hadrons,
not only with quarks, but also suggesting more possibilities of particles that could count as partons
—the QCD’s gluons, for instance. These are related to the subject of the next subsection, the last of

our chosen topics on pre-QCD phenomenology.

2.1.3 The concept of color: phenomenology

We have shown that there was plenty of evidence of a substructure of hadrons, from both their
variety and dynamics. Now we mention indicatives for a third aspect of hadrons substructure: an
internal degree of freedom.

First, we consider the A baryons, discovered in the 1950’s. In particular, A**, which is com-



posed by three u quarks and has azimuthal spin 3/2. By its fermionic character, its wave function
should be anti-symmetric. Therefore, in order to be so, if the ground state is spatially symmetric
there must be another characteristic for the quarks, so that the A™*’s wave function may be like

wA++ = 77Z}space’ébﬁavorqbspin’welse9 with ¢else anti-syrnmetric.

Moreover, the ratio between cross-sections
o (e”et — hadrons)

R:

o(eet — pmpt)
is found to be proportional to > @Q,%, where the sum is over the quark flavors, each with charge Q.
f

The experimental results are shown below (figure taken from [13]):
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Figure 2.5: The ratio R for increasing energy, with red lines at the thresholds for the flavors in the
hadronic final states.
It was found that good agreement with these data is obtained with a multiplicative factor near
3. Similar considerations for the pion decay into two photons, and for anomaly cancellation in the
Standard Model[13!, are also successful with a factor 3.
Then, if this factor is due to an internal degree of freedom, it seems to be equally common to

all flavors, and the data indicates it to assume three possible configurations. These are precisely
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the QCD colors. We will see in Sect.2.3 that their role in QCD is actually distinct, upgraded, one
may say. But up to now the quarks present, therefore, a color symmetry, which is formalized by
the group SU(3), so that hadrons consist in the singlet representations of this symmetry, in order
for the color wave function to always be completely anti-symmetric, consistently with observations
that led to the conception just described.

That all hadrons are color singlets is considered to be one condition for confinement — expression
that characterizes the empirical fact that quarks are not observed alone, but only combined into
mesons and baryons. This recalls an important feature of QFT, namely infrared slavery, to which

we now turn.

2.2 Phenomenology meets QFT

In the beginning of this chapter we have pointed out the place that phenomena involving particles
take in theoretical physics, which is in the domain of relativistic quantum theory. Since QFT is the
ruling paradigm for the study of strong interactions, the first point to be addressed is its suitability as
the formalism for particle physics. As introduced in [14], QFT "arose out of our need to describe the
ephemeral nature of life." Basically speaking, field theory deals with dynamic variables distributed
throughout some space. For this reason, QFT, despite its emergence from the conciliation between
QM and Special Relativity, is employed both in many-body and in particle physics. For the latter,
QFT meets quite well the dynamics of creation and annihilation of particles.

Furthermore, the also mentioned quantization of the electromagnetic field led to the development
of Quantum Electrodynamics (QED)[6H15}, which became a framework for the development of
QFT, conducting some advances, such as regularization and renormalization procedures[IS], and
giving a great success to the perturbative method, since QED predictions agree impressively with
experimental data to a great precision[16].

Besides the advances of QFT that were accomplished in QED, and among other ones (such as,

171,

for example, spontaneous, and dynamical symmetry breaking! 18]), another major advance was
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accomplished in the context of condensed matter physics: the concept of the renormalization group.

In the remaining of this section we shall briefly discuss the benefits it gives to QCD.

2.2.1 Renormalization and running charges

We begin our discussion of renormalization, which is mainly based on [14], Chap.VI.8 (to which
we refer for further details), with the following considerations. A QFT is, as will be shown in the
next chapter, described by a Lagrangian, that contains the dynamic information of the theory and
is a functional of its fields (i.e. degrees of freedom) and parameters (such as masses and coupling
constants). It also starts with the hypothesis that these degrees of freedom are, within the whole
range of their possible configurations, well described by the local fields present in the Lagrangian.

Renormalization may be related to a restriction in the validity of the local field concept to de-
scribe the physics in the distance (in the space where the fields are defined) scales under consid-
eration. As for a quantum theory, to a distance scale it corresponds an energy scale, and it was in
fact seen, in the development of QFT, that for an interacting theory the momentum scale in which
a given process takes place seems to be a significant quantity.

The standard approach to this subject in particle physics texts begins with the necessity of intro-
ducing regularization parameters in order to have well-defined calculations. Then, these parameters
are put, as detailed in Sect.3.2, into extra terms — called counterterms, that are set apart in the La-
grangian. When these counterterms have the same form as the terms they were originated from
in the former Lagrangian, the theory is said to be renormalizable. Renormalizability is in fact a
fundamental requirement for a QFT to be considered successful, or even valid.

This division with counterterms amounts to separa‘ting[l“]’p'344 the field configurations that would
be relevant to the physics for some scale. There is, indeed, always a scale ;. with dimension of
mass, no matter which regularization procedure is employed. However, the Lagrangian itself must

be independent of changes in this scale, so the relevant quantities derived from it (such as the
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correlation functions, as we shall see in Chap.3). That is,

d
— (correlation function) = 0,
du

thus allowing the theory to relate, in a precise way, its own description for different energy scales,
and implying a differential equation that contains the masses and couplings, and their dependence
on the renormalization scale ;. Our interest focus on the latter.

The dependence of each coupling ¢; (: = 1,...,n) with the scale is given by the so-called 3
function:

dgi
Bi(gla”'agn)_gy

where t = log (1/ 1), for a specific scale 1. So, the 5 functions describe the couplings (g;) as
quantities depending on ¢, analogously to a phase space flow given by (3;). This flow accounts for
the behavior of the interactions of the theory with the energy scale.

Before we proceed to discuss two possible behaviors of ¢; (1), we note that one content of the
renormalization concept is that there is a diversity of processes, and this diversity is related to dis-
tance — or energy, scales. Intuitively, it may be said that interactions lead to quantum fluctuations,
which may affect properties of the interactions themselves. Again citing [14]: "the quantum vac-
uum is just as much a dielectric as a lump of actual material".

We now explain how this variety of behaviors suits so well what is observed in strong phenom-

€na.

2.2.2 Infrared slavery (or not), and asymptotic freedom

As we have seen, strong interactions, however they are described, must present two features:
first, confinement, i.e. the fact that no partons (quarks and what else would constitute hadrons)
were ever observed, but only their bound states are. Second, scaling, that is, at high energies the
partons interact electromagnetically behaving as free particles. So, this is very well met by the
diversity we spoke of: for some processes the partons would behave as free from each other, while

for other they would be very strongly bound, and there appears to be some significance of energy
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scales.

Furthermore, these specific behaviors are fulfilled by solutions g for a 3 function!!). Although
it is still an open question, it is generally supposed that confinement might be described by possible
solutions that give increasing g for some momentum range. One, called IR slavery, correspond to
a coupling that increases indefinitely, becoming infinite at some value of momentum. Another one
is when a negative (3 goes to 0 for a nonzero g, so that g increases to a stable finite value in the IR.

On the other hand, there are solutions with a high energy behavior that indeed accounts for
scaling. This behavior is called asymptotic freedom, and corresponds to a decreasing g that goes to
zero as the momentum scale goes to infinity, so that the higher the energy, the weaker the interaction
among the fields of the theory — which would be the partons.

Then, we see that a QFT is capable of describing both an increasing (with distance) bind among
its basic constituents, and a decreasing (with energy) one until they are almost free from each
other. In particular, there is a class of QFT that, besides being renormalizable, is one of the few!19)
that present the property of asymptotic freedom: it consists of the non-Abelian Yang-Mills theories
(with possible addition of up to, in the SU(3) case, 16 fermions). They are a type of gauge theories,

which also meet quite well some features that strong interactions seem to possess, as we show next.

2.3 Phenomenology meets gauge theories

We have seen that quarks seem to have three possible internal configurations, associated to the
SU(3) color symmetry. It is widely known the statement of Noether first theorem that continuous
global symmetries lead to conservation laws20). On the other hand, local symmetries present
a distinct consequence which provided an important paradigm to Physics: the gauge principle,

according to which the symmetries dictate the dynamics, as we shall see below.

2.3.1 Gauge field theories
A gauge theory starts from imposing a local symmetry to a given system. We consider the

general case of a multiplet of fields, which transforms, under the action of a Lie group (usually
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SU(N)QU , as:
i (z) = ¢ (2) = Uy (2) ¢; (2) 13,5 =1,...,N, 2.1

with

U (@) =U (0 (2) = e 0"
an unitary operator of the group’s representation, whose Lie algebra generators are 7%, a =
1,...,d. The algebra has dimension d, and is defined by the operation and the structure con-
stants |7, T%] = i f®*T*. The local operator U (z) is parametrized by 6° (z), and z belongs to the
Minkowski space. For infinitesimal transformations, the variation of each field is

S = i0% (z) T (z) + O (6%) , (2.2)
where, from now on, we omit the multiplet, group, or Lorentz indices, when understood and more

convenient.

For a Lagrangian £ that depends on the field (¢ and on its first derivatives only, (2.2) implies that

oL
5L = —i T (9,0°) + O (62) |

so it is clear that the variation of the Lagrangian under the local symmetry comes from the term

d (0up), that is, from the expected fact that the derivatives of the fields do not transform in the same
way as the fields themselves. So, in order for the action to be invariant, i.e. for the dynamics of
the system to present this local symmetry, one proposes to change the ordinary derivative, 0, to the
so-called covariant derivative', D, that must act on ¢ in a way such that D¢ transforms in the same
way as :
Do U(D,p) <= D UDU'. (2.3)
It is then attempted to add a linear combination of the generators 7" to 0:
D, =0, —igAj (z)T", (2.4)

therefore introducing a new, called gauge field, A, (v) = Af (z) T, which is then coupled to ¢

More details on the subject of this subsection, in particular the covariant derivative, are presented
in [23],Chap.13.
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with intensity given by g. Then, 6 D = J A under the gauge group, and (2.3) implies that
AMHUMQW+§U@ﬂU, 2.5)
which for infinitesimal transformations assumes the form

1
A=~ ST 8 [, 4,] 4.0 () 26)

meaning that the gauge field belongs to the adjoint representation of the group’s Lie algebra[zz].
Thus, by 0 — D it is obtained a Lagrangian that is invariant under the local transformations
(2.1) and (2.5). Since the requirement of local invariance introduces the gauge field, one may
explore its dynamics, by introducing kinetic terms, and possibly other interaction terms, still pre-
serving invariance under (2.5). Besides gauge invariance, there are other requirements, such as
renormalizability[lg], which restrict the possible terms for a Lagrangian to be viable for a quantum

theory. One is

1 a a v
L (¢, 0p, A, 0A) = _ZF’“’F W+ L,, (2.7)
where — 2 /4 is the Yang-Mills® term, F is the field strength given by
Fo = ~[D,,D,] = 0,4, — 0,4, —ig[A,, A , (2.8)
g

and L,, is the original Lagrangian for ¢, with the covariant derivative in place of the usual one.
This replacement of 0 by D is called the gauge principle. It allows the promotion of a global
symmetry to be local, adding new fields that interact with the original ones in a manner specified
by (2.4), which clearly depends on which group representation the fields ¢, belong to.
In fact, the gauge principle is one main paradigm in Particle Physics, and accounts for the
descriptions in vogue for both the strong, and the electroweak interactions. QED, for instance,
is a quantized Yang-Mills theory with the Abelian group U(1), and the gauge field is precisely the

electromagnetic, whose quantum is the photon. Now we direct ourselves to QCD.

2.3.2 Quantum Chromodynamics

QCD is based on the promotion of SU(3) color symmetry to a local one. It is intended to

in reference to the pioneering work [25].
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described the dynamics of the quarks that are supposed to constitute the hadrons. So, the QCD
version of (2.7) is
L= P+ 0 (D~ my)v

where each quark of flavor j has mass m; and belongs to the fundamental representation[24] of
SU(3), F is given by (2.8), and the quanta of the field A are called the gluons. So, this dynamics
of quarks and gluons is expected to be able to describe the strong interaction and all its features.

Nevertheless, quantization is required for a theory that aims at phenomena at such small scales.
However, the quantization of gauge field theories is a complex, and still open matter. This issue is
addressed in Appendix B, in which we show the Faddeev-Popov method?®. It leads to the presence,
at the theoretical (linguistic, actually) level only, of the so-called ghost fields, that are both Grass-
mann variables and Lorentz scalars, denoted by \*, x*. They, as the gauge fields, also belong to

the adjoint representation of the group. Then, QCD is described by the effective Lagrangian

L=~ 43 (D —m) @ +(0X") (Dux) % (0,A™) (0,A™) . (29)

where the covariant derivative in the adjoint representation is
DuX = auX - ig [AWX] )
and the last term is a gauge-fixing to the class of covariant gauges.

Moreover, as for a quantum field theory, this Lagrangian must be renormalized, but for conve-
nience and clarity we hold it over to the next chapter. For now, we write more explicitly the terms
in (2.9):

L (0,4, — ,4,) (A% — A + 9 (9,4, — 0,A,) (4%, 4% + L (A, A,] (A%, A"
L = _Z(u V_l/u>( - )""5(# V_Vu>[ ) ]""Z[M? VH ) ]

o A p : - , - 1
T (00 = my) 7+ g A + (0°%) () = ig (9X) [Aun] = 5 (0.4 . 210)
So we note that the gluons couple not only to the quarks, but also to themselves (as explained

in Appendix B, the ghost-gluon interaction terms actually consist in gluon self-interactions). This

As the quantization of gauge theories stands on its own a whole matter of study, the discussion
of it could not be but incomplete, so we shall restrict ourselves to briefly mentioning problems
on the Faddeev-Popov quantization procedure.
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gives the theory a much complex dynamics, which will be made somewhat precise at the end of the

next chapter when we set the SDEs for QCD.

2.4 A not so close meeting

The just mentioned complexity of QCD dynamics might be precisely what would enrich the
theory in such a way that it would present all properties required for a theory to describe strong
phenomena. However, this is simply unknown yet: the perturbative method, whether as an ex-
pansion on the coupling or on the Planck constant, has intrinsic limitations and is unable to reach
the IR region, which is essential for the study of confinement. Moreover, there is no solution for
QCD: even semi-analytical methods seem to be far from giving complete success to the theory,
and possibly the furthest indication of success comes from lattice QFT, which computes transition
amplitudes and correlation functions in an approximated space-time latticel20].

Besides the fact that QCD is not yet completely solved, there is another important problem.
Although it seems appropriate to speak of quarks and gluons, there is an essential open gap be-
tween QCD and the object it aims to describe: the physics of hadrons. Empirically, one observes
amplitudes of hadronic processes, while with QCD one works with quarks and gluons correlation
functions, and, as we shall see next, begins with asymptotic states of quarks and gluons. Thus
far, field theory is unable to build this bridge, and models are needed to describe the hadronization
processes[27].

Clearly, these two problems are related to each other. But if they might in fact be solved unitedly
is still a great open question, and object of plenty of work in the present. Most of them work, in
a variety of approaches, within QCD, that is in fact the ruling paradigm for the study of strong
interactions. Therefore, within this paradigm, there is a certain need for the study of the IR region
of QCD, for which one must employ non-perturbative methods — in the sense of being not only
an expansion in powers of any coupling constant. We will concern ourselves with two of these

methods: lattice QFT, and the Schwinger-Dyson equations (SDEs), the latter being our focus.
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Chapter 3

Quantum field theory and Schwinger-Dyson equations

As shall be described, the SDE are an infinite set of integral equations which couple the various
Green functions of the theory. So we first discuss Green functions, starting with the reason why
they are relevant: their direct relation to transition amplitudes. For simplicity, we will discuss the

case of a scalar field.

3.1 Reduction (LSZ) formula

In a quantum theory one basic object to study the dynamics of some system is the S-matrix,

which is determined by the system’s Hamiltonian and is given by the transition amplitudes

<p17"'7pn Out| qi,---,q 11'l> = <p1a"'7pnin|S|q17"'7Ql 11'1>
In the standard approach, one starts with the hypothesis that the above states are generated, from
an unique vacuum state |(2), by the Heisenberg field ¢ () which satisfy the asymptotic (adiabatic)

condition

im (ale(2)[8) = 2 (ol n (2)18) (3.1)
for all |) , |3) eigenstates of the free field o, (2) = S¢,, (z) S~*. The multiplicative factor v/Z
is just the component of ¢ (z) |€2) along i () |£2).

As a consequence of this hypothesis, Oa:tny transition amplitude between on-shell momentum

eigenstates is related to the correlation functions of the field ¢ (),

G (21, @) = (Q T p (21) -+ ()] |2) (3.2)
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where T is the time-ordering operator. This relation is the so-called reduction* formula:

. n-+l . n o l .
(pr.-- - pnout| g, ... qin) = (é) /del...dDyne(Zf—lp’yj 2 0 ’“) «

X (Dxl + mz) e (Dyn + m2) G (Y1s oy Yny T1y v Xp)
+ disconnected terms, (3.3)

where m? = p? = ¢; Vj, k, and the disconnected terms are those in which at least one particle in
the process is not affected by it, that is, its initial and final states are the same.

By means of the reduction formula, the calculation of transition amplitudes amounts to deter-
mining certain Green functions of the interacting theory. We therefore proceed to a discussion of

the relevant types of Green functions in the context of this work.

3.2 Generating functionals and Green functions
In the quantum theory path integral formalism in D dimensions, the vacuum expectation value

(3.2) is related to the following functional integral over the dynamic variables

210 = [Doowi [P0 (Ll @)+ (@) p () (3.40)

= Z[O]Za/del---den J(z1) - T (2,) G (21, ..., 2) (3.4b)
n=0
which is named the generating functional for the Green functions, that are then explicitly given

by:
1 " Z[J]

Tn) = - -
@) Z[0] i0J (x1)---16J (zn) | ;_g
Their Fourier transforms are the Green functions in momentum space, denoted as:

GO (pre - p) = / 40y - dPa, e e P GO (31 ) (3.6)

= (21767 (Shoips) G (1, pa).

In particular, G® (p, —p) is called the complete propagator, and near the mass shell p> ~ m? it

G(n) (1'1, e

(3.5)

approaches iZ/ (p* — m?).

or LSZ, for H. Lehmann, K. Symanzik, and W. Zimmermann.
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Another type of Green functions consists of the connected ones, corresponding to Feynman

diagrams which are not separable in two or more disjoint diagrams. That is, the connected Green

functions G are related to processes in which no subsets of particles interact independently from

each other. They are generated by the functional W [J]| defined by
Z[J] =expW]J], (3.7)

so that

"W [J]

G e Xy) = .
S ) = ey T @) |y
More details on this definition, and examples of some low-order connected Green functions are

(3.8)

given in [15],Sect.5-1-5, and [28],pp.398-400, respectively.
Now, dividing any Green function by the two-point functions of each one of its external lines
defines the amputated Green functions:
ng) (P1y- -y Pn) = (H?Zl [G(2) (pj, —pj)} _1> G™ (py,....pn) , n>2

1 (3.9)
G¥ (p,—p) = m .

Recalling that near the mass shell G (p, —p) = iZ/ (p*> — m?), we see that the amputated func-

tions give a compact expression for the reduction formula:

. o n+l
(pr, - spnout| g, .. qin) = (iZ7V2)"7 (—qf +m?) - (= (=pa)? + m?) x
XG(n+l) <_pla cooy ™ Pnsq1, - - 7Ql)
Z("H)/ZG(S"H) (=P1ye ooy =Py @1y -5 Q1) - (3.10)
For Grassmann fields’, we define the even order Green functions as
0 0 0 10
GEQN)($1-~'7xn7y17"'7yn)::(-— T T W[nﬂﬂ)
61 (z1) 100 (z) 60 (y1) 0 (yn) 7=0

(3.11)

Moreover, we consider the Legendre transform® of the generating functional for the connected

Grassmann derivatives anticommute.
It consists in f (x) — ¢ (f' (z)) := f — xf’, then satisfying dg = —adf’, while

df = fide 170,
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Green functions W [J]. Given

oW J]
¢ (x,J) 67 () (3.12)
we have
il [¢] := [W [J] —i/deJ(x)gb(x)] : (3.13)
J(x)=J (z,9)
where the inverse J (z, ¢) is well defined as long as ;}V (E;])} = i¢ (r,0) = 0, and consequently
J=0
Ol [g] WIJ . 6J (x) .
oy~ [ (70 0 Ty~ o)
__0l'[¢]
— J(z,¢) = 5o (3.14)

The functional I' [¢] is traditionally called the effective action, and generates another set of Green
functions, the proper (or 1P, i.e. 1-particle irreducible) ones, by:

) B §"T [¢]
G (1) = S

(3.15)

=0
while for Grassmann fields

i o () () el

(3.16)
From the very definition of the field ¢,
5 W[ .,
- =5 _
o) 6w 0 T
D  [p 0 Wl [, 6T[g) W [J]
= Pl =i [ S m = e o e O

that is, Gl(gz) (y,2) is the inverse (by convolution) of the propagator —iG? (z, ). On the other

hand, for Grassmann fields the corresponding relation is given by

o J ow

0apd” (x —y) = m% (v) = 60, () i675 (y)
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§°T 5 §°T 5 oW
:>5Q5Dx—y:/dDz — = + — ——
o) 50, () 0, () 01, () 80, (x) 06, (2) 07, (2) ) 05 4]

5T W

=i [dPz = — . (18)
/ 5¢o¢ (‘T> 5¢'y (Z) (5777 (Z) 577,6 (y)
In either case, this leads to the following relation in momentum space:

GO (p,—p) = —— (3.19)

r P G (p, —p)

More examples of proper Green functions are shown in [28],Sect.12.7 and [15],Sect.6-2-2.

Now we have a whole package of concepts to work with. Before moving on to discuss the SDE,
we briefly introduce the idea of renormalized Lagrangians.

The factor Z in (3.1) actually corresponds to the renormalization of the Green functions of the
theory, which is also expressed in (3.3) and (3.10). An alternative procedure is to renormalize them
from the beginning, renormalizing the source ./,

J(x) — Z%J (z) ,
in the derivatives, and then obtaining the renormalized Green functions
(—i)" "z [\/?J]
Z[0] 5 (\/ZI ($1)> ) (\/Z] (xn)>

ng) (l‘l,...,l'n) =

J=0
G 5" Z [J]
Z[0] vZ" 0J (21)---0J (2,) J=0
= Z7"2GM (zy,. .. 2y, (3.20)
while
G =z (3.21)
Gy = ZG (3.22)
G, = 7G| (3.23)

which, therefore, already takes the Z factors of the reduction formula (3.10) into account.

In what concerns the generating functionals Z [J] and W [.J], the above redefinition of .J is
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equivalent to the redefinition of the field ¢,

V20 (z) ,

p(r) — 27
and, for the effective action I [¢], to ¢ (v) — Z~'/2¢ (z). The Lagrangian may then be rewritten
in terms of this redefined field, leading to an expression which contains the counterterms mentioned
in Sect.2.2. To exemplify it, we consider the scalar ¢* theory, with the Lagrangian

L= % (9u) (0") — %mo%z — Aoy’

which as a function of the renormalized field reads

1 1
L = §Z (Oup) (0"p) — §m022¥72 — X Z%p*
1 1
= 5 (0u9) (0"¢) = 5m 20 =Xt + L,

where

1 1
Lo=35(Z=1)(0u6) (9"9) = S0ns® — Drs"

with 8, = m@Z — m? and 6, = \gZ? — \.
Following this procedure, the whole renormalized theory may be constructed with the La-
grangian which now contains the counterterms in L., that are usually treated as additional interac-

tions of the theory.

3.3 The Schwinger-Dyson equations
With the whole machinery at hands, we first state, for a scalar field, a general differential equa-
tion which is the starting point for the derivation of the SDE. It all starts with the hypothesis that
the identity
/ ’Dgo% = (3.24)

holds in the theory under consideration,

— —i/Dg@%expi/dDaE (£+J<p)=/1790 [%(90)4‘«]] expi/de (L+Jp)=0.

., 0L . . o .
Now, we consider — not as a functional of ¢ (x), but of the functional derivative , which

)
dp i0J (z)
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enables us to write the above equation as:

G o] o[ ) o e

_ /Dw [%(¢)+J] expi/de (L+Jp) .

oL 4]
which in the sequence we apply to QCD.

3.3.1 Quantum Chromodynamics
The first step in order is to write down the renormalized Lagrangian for QCD. From (2.10),

making explicit all indices, we have:

1 1 ~
L = —ZZ?, (9, A% — &,AZ) (OFAY — 9" A™) — o7 (0.A%) (0.A") + Z3 (0"X") (0. x")
+ 750 (i@ — Zy,m;) ) — Zrgf™ (0"X") XPAS + ZngWTka%’“
2
— 2y (DAL — 0,AL) AVA™ — 2,5 e AL AL AT AN (3.26)
where
Iy = 22325 | Zop o= 2,202, 20 o= 2,277 2= 2222 (3.27)
which are relations that will be discussed in the next section. We denote the corresponding sources
. or 5T 5T
J(@)=—s . W)=, (@)=,
day, (z) ¢’ (x) 6¢" (x)
(3.28)
N ()= o X )= o
- dce(z) ] - b (x)”
with the fields given by
4% 4 ow —; i6W
ap — J = J =
a (I) 25Jg (.CU) ) ¢ (:E) Zéf]] (x) ) d) (x) 577] (IZ') b 3 29
() W o () — W (3-29)
o (z) o\ (z)

A detailed diagrammatic approach to obtaining SDEs is given in [29] for QED. We have formally

derived the SDE for the ghost propagator, this calculation is shown in Appendix C. However, it is
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sufficient for our purposes to only sketch the result, and then show diagrammatically some SDEs

of QCD. The general procedure, considering (3.25), is to start with the specific version of

possibly applying the derivative more times, and manipulate it until it results in an integral equation

such as
0 = —Z30%06P (x—2') + o +7 gfabca"/dDdey
’ 5cf () oca (z) 7!
W 5°T s ! (331)
dJet () §J2 (2) da® (z) dct (') dc (y) dc (y) ocb (x) T ’ ’
which in momentum space is written as
GO (p.=p) = =260~ Zrg " [ 50" GO (0 +a. —p — a) x
xGP (p+ g, —p, —q) GP* (¢, —q) . (3.32)

and is represented by the diagram below, where connected Green functions are designed as blank

circles, and the proper ones as shaded circles.

Figure 3.1: Representation of the SDE for the ghost propagator.

In this figure, and in the other ones to follow, we show only the 1PI contributions, and the further
terms (2PI and so on) are represented by "+ - - - "

So, the full (or dressed) ghost propagator is related to both the full gluon propagator and the full
ghost-gluon vertex. For the gluon, the SDE corresponds to:



Figure 3.2: Diagrams for the SDE of the gluon propagator.

where the fractions are symmetrization factors from the Feynman rules in each diagram. Next,

we show the SDEs for the quark propagator and for the quark-gluon vertex.

=1 _1
+ + e

Figure 3.3: Diagrams for the quark SDE.

+ M

+
r Ol
Figure 3.4: Representation of the SDE for the quark-gluon vertex.

A

where the amplitudes M, M’, M"” and M"' are all proper, each one involving a series of

diagrams30). Finally, the SDE for the ghost-gluon vertex is:
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. ok
Hix =,x‘E'*-\+# ,G:q_.:"ﬁsiﬁ_%,j o ‘\+

Figure 3.5: Representation of the SDE for the ghost-gluon vertex.

which is the main object of study in this work.
From (3.23) and (3.26), the full (dressed, complete) ghost-gluon vertex is related to the bare
(tree-level) one by
(full vertex) = Z; (bare vertex) . (3.33)
Therefore, any knowledge of Z; may be welcome for the solving of the ghost and the gluon SDEs
(Figs. 3.1 and 3.2), which will be the subject of the next chapter. In principle, Z; is a nontrivial
function of the momenta of the three legs of the vertex. Nevertheless, there is the possibility of

simplifications due to the gauge symmetry — which is the case we deal with.

3.4 Slavnov-Taylor identities

It is a well known fact that, although the quantization procedure requires gauge fixing, the sym-
metries of a given theory may be carried to the quantum level, thus leading, for instance, to the
Ward identities in QED[”}. For QCD there are, correspondingly, the Slavnov-Taylor identities
(STI) which, by imposing invariance on the generating functional Z, imply functional differential

17) 576 that, furthermore, imply identities for Green functions and also

equations for Z, W, and I" |
relations among some of them.

It turns out, however, that non-Abelian theories are distinct, since the Faddeev-Popov Lagrangian
indeed presents a symmetry that includes the ghost fields!! 7155175 This is the BRSTB I symme-
try, and is given by the particular gauge transformation when the gauge parameter is = —A\gxs,
where ) is a Grassmann number, and x, = (Y — X) /iv/2. Then, under an infinitesimal BRST

transformation:
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( 5Au =ADuxs ,
5 = XigTxath
xy = A%@.A , (3.34)
)
{ oxy = )\59 (X2, Xa)

where the term [, x»] in the last line is the Lie algebra bracket. We show now some consequences
of BRST invariance for QCD correlation functions/32)sect23

One result concerns the gluon propagator, whose expansion in terms of the self-energy II,,, is
given by

Dy, (k) = DGy, (k) + D5y, (k)T (k) Dg) ,, () + -+ -,
where D%’) . 18 the bare propagator. It states that the gluon self-energy 1I,,, is transversal to all
orders perturbatively, i.e. for all momenta k:
%kﬂk"Dg‘; (k) =06,
so that the self-energy may be written as
HZI; (k) =0 (kukv - kZQW) I (kQ) ’

and the full propagator in covariant gauges as

6 [ gu — kuky /K 1k,k
Dab k) = — v v - plvw )
o (K) k2< O I<:2)

In other words, the longitudinal term of the gluon propagator is not renormalized.

Moreover, the gauge symmetry imposes constraints among the renormalization functions in

(3.26), implying that, to all orders,

Z_%_Zw_ 7

Z3 23 ZQ Zl ’
which, from (3.27), is equivalent to

3/2 ~ 1/2 1/2
2,25 _ 2,252 P 2,22} 773 |
Zy Zs Z 2,75

That is, the renormalized coupling does not depend on which vertex is renormalized.

Finally, we consider the ghost-gluon vertex renormalization function Z;, which presents the
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following simple feature. In the limit of the incoming ghost momentum going to zero:

Zy=1,forn=0 (Landau gauge) . (3.35)
This identity was shown, by Taylorm, to be true to all orders perturbatively, and it means that this
vertex receives no perturbative corrections.

33) stating that, also for the Landau gauge, this is true in the

Furthermore, there is a conjecturel
limit of any momentum going to zero. We shall explore the zero gluon momentum configuration

within an improved perturbative correction, which will be discussed in the next two chapters.

3.5 Remarks on SDEs

The diagrammatic representations given above for the SDEs show that these constitute an infinite
set of equations coupling the Green functions of various (all, in fact) orders for the theory under
consideration. However, an important point to make is that the conceptual complexity is not only
the infinitude of the system of equations, but their very coupling.

In order to grasp their significance, consider the gluon SDE. It depends on all vertices, each of
which satisfies its own SDE, that also depend on all 2-point functions of the theory, and so on. So,
the SDEs express the fact that there is no independent correlation function in QFT.

Hence, if the interactions are ultimately related to the correlation functions, the way quarks
interact with each other, for instance, is intrinsically related to the behavior of al/ fields of the
theory. At last, QFT holds a whole distinct picture of interactions: it does not speak of interactions
between systems, but among them. It is worthwhile to note that this picture is brought just when
describing strong phenomena via QFT.

On the other hand, we come back to the fact that this complexity is carried from the conceptual to
the formal place, where it must be dealt with, and turn to the technical problem of finding solutions
to SDEs. This amounts to a whole body of WOI’kS[3O]’[34], some of which3+30] led to one basic
motivation for the present study: a massive-like solution for the gluon propagator, to which we

direct, then.
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Chapter 4

The dynamical gluon mass

From the discussion at the end of the previous chapter, it is clear that the whole set of SDEs
is intractable in practice: rigorously, solving exactly one SDE of a theory amounts to solving all
of them. Therefore, unless some kind of convergent limiting procedure is known, truncation is

unavoidable in order to reduce the set of equations to a finite one.

4.1 IR finite gluon propagator

Among SDE calculations, one important for the context of the present study was accomplished
by Mandelstam in his 1979 work [37]. In order to obtain a closed equation for the gluon 2-point
function in the Landau gauge, he made some assumptions and approximations that are still influ-
ential for more recent works, whether in their support or refutation. They were: (a) working with
pure QCD, that is, the quarks are treated as nondynamic in what concerns the dynamics of the glu-
ons themselves; (b) neglecting ghosts contributions, which leads to a quite simple form of the STI
which relates the full 3-gluon vertex to the bare one and to the gluon propagator[34]; (c) leaving out
the contribution of all other higher-order Green functions.

The result of Mandelstam, and also a slight variation of it made by Brown and Pennington/38:361,
for the gluon propagator were verified to be compatible with an infrared (IR) behavior like (k:2)72.
This specific IR enhanced (that is, more singular than 1/k* as k* — 0) behavior is phenomeno-
logically appealing, as the following two aspects exemplify. First, a propagator like (k:2)_2 may be
related3% to a linearly rising potential, accounting for a Schrédinger-like description of a bound
state of quarks. Secondly, it satisfies the Wilson area law, which serves as a criterion for confine-

391, Both of these aspects strongly lie in (a), an hypothesis that invokes the idea

ment in pure QCD!
of the gluons being responsible for the interaction between quarks which compose the observed

hadrons. Although this is, as noted in the discussion of Chap.3, not characteristic of QFT, its status
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is summarized in [39] (emphasis are ours):

"the idea of a static potential breaks down when dynamical quarks are included, and the

Wilson criterion becomes inapplicable. One hopes, however, that if a pure-gauge theory is

confining according to Wilson criterion, then it is an indication that dynamical quarks will

be confined when they are introduced."

Nevertheless, two distinct approaches oppose this IR enhanced result. One of them is the lat-
tice QCD, which, although is not sufficiently precise in the extreme IR, gives results that indicate

401 Another one started with the conclusion, by

the plausibility of an IR finite gluon propagato
Cornwall35 I, that the gluons would present an effective mass!41.

Cornwall introduced the so-called pinch-technique, which consists in a different construction
of the SDEs. Rearranging Feynman graphs combined in a gauge-invariant manner, and defining
effective Green functions that are compatible with multiplicative renormalization, he obtained a
non-trivial, gauge-invariant self-energy for his new gluon propagator, so that the gluon has a dy-
namical mass.

It is important to say that this dynamical mass does not mean that there is a massive on-shell
condition for the gluons — if there is any sense at all to speak of an on-shell condition for the QCD
fields. The massive solution consists in the presence of a running mass, which goes to zero in the

UV region, so that perturbative QCD results may be recovered. We mention, for our own use in the

next chapter, that Cornwall also obtained an IR finite coupling constant, that behaves as
1

4mblog [(4M2(k2) + k2) /A(%CD] ’

in Euclidean space, where b = (33 — 2n;) /4872, and n; is the number of fermions’.

[42]

(4.1)

Qenw =
Furthermore, QCD phenomenology <! seems to prefer Cornwall’s massive-like solutions, and
more recent numerical solutionsS® 41 for the gluon SDE also indicate an IR finite gluon propaga-

tor. The solution of [36], besides presenting a dynamical mass which preserves gauge-invariance®,

The inclusion of fermions is somehow ad hoc since, up to now, no SDE aproach has included
them.

It is proven in [36],Sect.4.5 that their solution indeed satisfies the STI, hence does not violate
gauge-invariance.
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regains the UV logarithmic perturbative behavior and can be fitted by
4

1 . m
D) = ey V0 M) =

from which were obtained values for the ratio m¢/Aqcp in a quite narrow interval around 2.

, 4.2)

It is also calculated in [36], within the same approximations of [38], a solution of the gluon SDE
with ghosts considered. To solve numerically the coupled equations for the ghost and the gluon, it
was assumed that Z; = 1, Z; = 1, and the result was again an IR finite gluon propagator, which
recovers the UV log behavior, too. The SDE approach in [36] and in [44] also derives, from this
dynamical mass, an effective running charge that is in accordance with lattice QCD results!*¥.
Even more recent papers 43 I, both within lattice QCD and SDE, continue to support an IR finite

gluon propagator. Now we turn to discuss some way to make a more phenomenological use of

these results.

4.2 Dynamical Perturbation Theory
Also in 1979, it was introduced > the idea of DPT: a scheme to improve the usual perturbative
series of QCD, introducing into it nonperturbative informations. If this could correspond to some

kind of resummation[46]

of the usual series in the bare coupling remains as a speculative matter
only. Furthermore, any formal demonstration in support of DPT still lacks. Yet one way to explore
this idea is taking the nonperturbative information to be the Green functions calculated via SDE,
and inserting, into a perturbative calculation, expressions for propagator(s) and/or coupling in the
whole range of momenta — that is, dressing them in the perturbative expansion, and verifying the
resulting behavior.

One may take, for instance, Cornwall’s expression (4.1), together with the massive fit for the
gluon propagator, (4.2), and insert them in place of the corresponding bare quantities when appro-

priate. This was performed in some phenomenological studies4?

, such as the pion form factor, a
modelling of hadronic cross-sections, and the Bjorken sum rule.

In general, as shown in [42], a variety of applications involving very different energy scales fits
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reasonably well the experiments, and they all lead to the same, and quite narrow, range for the
gluon mass at ¢> = 0,

mo ~ O (2Aqcep) - (4.3)

One possibility in particular is to use, in the usual perturbative series, the full propagators when

occurring in loops. It would be an option whether or not to use the full vertices, and/or the running

coupling, too. In any case, it could be a device to probe infrared properties by means of loop

calculations, which in the usual perturbative approach is clearly misleading.

4.3 Our proposal
We propose to investigate, within a DPT scheme, the renormalization function for the ghost-
gluon vertex, Z;. We calculate the 1-loop correction to this vertex, using all bare Green functions

except for the gluon propagator, which we consider to be, in Minkowski space,

By (K) = 75— (gw, - %) , (4.4)
where we took the Landau gauge (n = 0) for the following reason.

It is our intention to probe, within this DPT scheme, the approximation Z; = 1 that is made in
the procedures, described in Sect.4.1, of solving the gluon SDE. We employ our calculations for

the particular kinematical configuration of the gluon momentum equal to zero, so that we calculate

the sum of diagrams below:

k=0 gk—u
N

(a)
Figure 4.1: The ghost-gluon vertex in the zero gluon momentum configuration: the bare vertex,
plus the 1-loop corrections (a) and (b).

In the MOM scheme, (3.33) is:

A (12, %) = —igf N (1. q%) = Z1 (12, ¢°) Al (q)
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where A% (q) = —igf®°q, corresponds to the bare vertex, and the renormalized vertex factor

v bare

A (p2, ¢%) is given by the renormalization condition imposed at the energy scale y, fixing the value

of A (p2, p?). Then, if Ay, (¢?) is the unrenormalized expression obtained perturbatively, then:

Zi (i 0?) = A (it ?) = A (it ) e )
’ ’ T A (12)
Now we have all that is necessary to analyse our results, so we proceed to them.

(4.5)
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Chapter 5

Results and Conclusions

Our calculations of diagrams (a) and (b) of Fig.4.1 are shown in Appendix D. The unrenormal-

ized result is:

- aoc . aoc N&
& =igfq" N () = igf™ ¢ 75 ¢ (¢°) ,

where
¢ (q2) = 1—72—&-%7;—22—%;—22 —7:—22 (g + %7:;—22) log (1 + i—i)—l—é% (3 + i—i) log (1 + 7:—5) ;
which, as also shown in Appendix D, goes to unity as m goes to zero, thus recovering the massless
result Z; = 1, in accordance with Taylor identity (3.35) and with the conjecture mentioned in
Sect.3.4.

We choose to renormalize the vertex to unity: A (u?, u?) = 1 — that is, at ¢> = p? the full vertex

equals its tree-level expression. Therefore, from (4.5), our renormalized result is:

Na
- EC(QQ)

A (lﬂqu) = T Na (5.1)
_ 22
6. ¢ (12)
N
Ly 1—ﬁf(ﬂ2)
= 7 (1q") = —xa (5.2)
- 16_7r(: (¢%)
It is standard to expand this expression to
- N
27 (.07 =1+ ()~ C ()] + 0 (o) (53)

which is indeed consistent with the usual perturbative expansion, since it considers contributions
up to order v only. However, we work within a DPT proposition, i.e. a perturbative approach that
is supposed to contain some non-perturbative character, and not to be solely an expansion in orders
of a.. Therefore, we consider that it is worthwhile to use both (5.2) and (5.3) to investigate the result

of our calculations.
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5.1 General behavior of the solution

The first point we check is whether there is any significant difference between the results of (5.2)
and of (5.3). Furthermore, both expressions depend on three parameters: p, o, and m, so we shall
study how sensitive our result is to each one of these. At first, we have analysed plots within the
intervals ¢ € [1,10]GeV, a € [0.1,6.5], and m € [1,700]MeV, and in every case the distinction
between (5.2) and (5.3) was seen to be insignificant.

Although the result is practically the same, (5.2) involves one less approximation, so we choose
to use it in order to study the behavior of our solution for Z, ~!, since our proposal is an attempt of
perturbative expansion that is not restricted to powers of a. We sketch the dependence with each
one of the three parameters by fixing two of them while plotting Zl ~1(¢?) for some values of the
third.

The variation with p is the expected one for multiplicative renormalization, as shown in Fig.5.1:

0.87
0.0 01 1 10 100 1000

g? [GeV?]

Figure 5.1: The ghost-gluon vertex renormalization function for various renormalization scales,
for m = 250MeV and o = 0.5.

We see that Z, ~* (¢?) does not assume values much different than 1. The same occurs for the
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following interval of m:

1.005
1.
0.995 1
m=360MeV
0.99 m=450MeV
- ’ m=500MeV
™~ m=600MeY
0.985 1
0.95 1
0.975
0.97
0.01 0.1 i 10 100 1000

g2 [GeV?]

Figure 5.2: The vertex renormalization function for masses between 1.2Aqcp and 2Aycp (With
Agep = 300MeV), with v = 0.5 and renormalized at . = 5GeV.

Paying attention to the scale, the greatest variation of Z | ~* for this interval of masses is ~ 0.005,
i.e. 0.5% of the value 1 it assumes for high ¢2. So this renormalization function seems to be very
little sensitive to m, then it can hardly be useful for indicating some range of finite values for the
gluon mass. Still, could it at least point towards a finite rather than a null mass? The answer is:
hardly, too. In our first observation within m € [1,700]MeV, it was noted that, as m gets close
to 1MeV, Zl ~1 turns to be almost identically equal to 1, the massless limit. Therefore, this result
could suggest, whether an infinitesimal mass or m ~ Aqcp, only if compared with some reference
with a precision great enough to distinguish 1 from 0.975.

However, the only reference we have is from lattice calculations, [1] and [2]. Both contain error
bars which are > 0.5, and consequently we can already anticipate that, whichever conclusions our

result may lead to, it certainly will not give any information on the mass term for the gluon, within
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our DPT scheme.
Nevertheless, one more parameter remains to be sketched. It is actually the most influential one,

since a greater variation from unity can be obtained only with higher values of a, as seen below:

1.05
1 =
0.95
o=0.1
- =05
a3 097 a=0.9
o=2.0
0.85 4 o=4.0
0.8
0.75
0.0 0.1 1 10 100 1000
g2 [GeV]

Figure 5.3: Zl ~!(¢?) for various values of the coupling, for m = 250MeV and renormalized at
= HGeV.

All plots in Fig.5.3 above are for constant values of « in (5.2). On the other hand, it may be
considered in the following possible ways: (1) as a fit parameter, as usual in comparisons with
lattice data[47]; (2) related to the lattice’s bare coupling 5 = 2N/4n« [26]; (3) as the running
coupling obtained from SDE results that fit lattice data, given in [44]; (4) a constant equal to this
running result evaluated at the renormalization scale; (5) or the Cornwall’s expression (4.1).

Now, also because of our proposal of an improved perturbative expansion, we choose the options
(3) and (5), which are both running couplings supposed to contain nonperturbative information of
the theory. A more consistent approach would be to integrate these running couplings in the 1-loop

calculations of Appendix 4. However, we choose the simpler analysis of just replacing the o in
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(5.2) for each running charge, obtaining

Na(p?)
: 1= ———C (1)
2,7 ) = —— B8 54
1 - TC (¢*)
T

for v = aapp OF (e, Option (3) or (5), respectively.
Reference [44] presents an effective charge a,pp for gluon masses equal (in the Landau gauge)
to 500 and to 600MeV, both with the same qualitative behavior. We show here the latter, fitted by a

simple expression that we shall use ahead’.

Effective charge aapp(qg?), for m=600MeV
Fitted by: (a+cq2)/(1+bg2+d(g2)2)
a=6.3799787 b=2 4124457 c=0.45207373 d=0.0016655761

2

1

0 5 5 5 5 s 5 ; ' : : :
1e-06 1e-050.00010.001 001 01 1 10 100 1000 100001e+051e+06
g2 [GeV?]

Figure 5.4: Effective charge agp, for m = 600MeV, fitted by the rational equation shown in the
graphic, which accounts for the qualitative behavior of both results of [44].
We note, also, that this fit is made only to be used in (5.4), so our choice of function was for sim-
plicity rather than consistency with the behavior of the QCD charge to any order of perturbation. In
fact, all we require from this function (a + c¢¢?) / (1 + bg® + d(¢?)) is that it reproduces accurately

° In this figure, and in other ones to come, blue points are those with less than 1 standard deviation

(SD), the green ones with less than 2SD, and the red ones with more than 2SD.
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the points from the numerical SDE calculation of [44], specially in the interval ¢*> € (0.01,100),
where stand the lattice data we shall compare our results with, in the next section.

Before that, we, in order to compare the resulting behavior with the one for a constant o, show
(5.4) for options (3), (4) and (5), @ (¢*) = aase (¢%), aase (%) and ey (¢%) respectively, for
Agep = 300MeV and m = 2Aqep:

12
oasp(i?)
L5 aapr(a?)
acnw(a?)
1.1
105
i = = vt i—_—_—_—-_—-—f‘*—"_‘:__— ——
0.95
09
0.001 0.01 0.1 1 10 100 1000
Q2 [GeV?]

Figure 5.5: Z, ~! (¢) for options (3), (4), and (5) as the coupling c.

So, option (3) seems to be the only one to give values higher than unity, and, as we shall see in
(11,2

the next section, this choice fits better the results obtained in lattice computations .

5.2 Fitting lattice data

We now compare our results with lattice data taken from [1] and [2]. The former was calculated
for SU(3), while the latter for SU(2). None of them can be fitted to our result if we consider option

(1), i.e. a constant a. They were fitted only for running charges, as we show now.
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5.2.1 SU(2) data
We were able to fit the data from [2], renormalized at 2 = 10.5GeV?, with expressions corre-

sponding to options (3) and (5), giving the two following graphics'”:

Lattice data from [2], fitted with c.cnw
Fitted: m2=0.14897469
(r2=0.0016384489 FitStdErr=0.021290872)

1 R R ]

1.051

0.91

0.85 5 I I : RS . : RN S
01 1 10 100
2 [GeV2]

Figure 5.6: Z, ~! (¢?) data from [2], fitted by (5.4), with Cornwall’s expression (4.1) for c.

10 The title of each graphic contains the standard error, FitStdErr, and coefficient of determination,

12, of the fit. The better the fit, the closer FitStdErr is to 0 and 12 is to 1.
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Lattice data from [2], fitted: m2=0.34308767

with oagp=(3.1140704+0.61g2)/(1+0.8473265242+0.001(q2)2)
{r220.2521[}318 FitStdErr=0.020186499)

1.05

1.0257

08751

0.951

0.925 : IS S N I : NI S I : o i
01 1 10 100

g2 [GeV?]

Figure 5.7: Z, ~* (¢?) data from [2], fitted by (5.4), also with a fit
a = (a+cq?)/(1+bg*+0.001(¢?)) for aapp (¢%).

It is clear that a charge of the form obtained in [44] fits better this lattice data, and the fit residuals
are, except for the lowest ¢® point, within the range of the data error bars, that have width 0.05.
Within these errors, however, the data could fit Z, ! (¢®) = 1 as well. The same can occur for the

data from [1], as we see now.

5.2.2 SU(3) data

We start by pointing out that all errors of the data from [1] lie between 0.05 and 0.12. This
restricts our conclusions in the same way as before: within the errors, the data (which we renor-
malized at ;2 = 65.727GeV?) might be close to 1 enough to be fitted by Z, ~* (¢%) = 1. We fitted
them anyway, but now we have succeeded in fitting only when using an expression for agp (¢2),

as shown below.
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Lattice data from [1], fitted: m?=0.2606359

with o,agp=(5.3804448+0.13971961q2)/(1+0.992+0.001(q2)2)
{r2:[}.36[}54923 FitStdErr=0.038621201)

1.3

9 PoE b [}1 .1.[} P ..1.00

1
g2 [GeV?]
Figure 5.8: Z, ~! (¢®) data from [1], fitted by (5.4), with a fit
a = (a+cq?) /(1+bg®+0.001(¢?)) for aapp (¢%).

Once again, most of the fit residuals are within the errors of the lattice data. Therefore, the
best expression to fit them is indeed (5.4) with an effective coupling that has the same behavior as
aapp (¢°) obtained in [44]. However, as we have noted before, the data contain errors wide enough
to make this conclusion not much more reliable than saying that the data would be fitted by our
expression with a constant v, or even by the massless result Z, ~* (¢%) = 1.

So, the least we can say is: (I) Our DPT-like results are well fitted to lattice data, giving a
possible predilection for agp (¢?), within a mass range m € (490, 590) consistent with the previous
estimatives for the gluon mass discussed in Chap.4; (II) In general, the results do not differ much
from unity, sustaining, or at least not denying, the approximation of Zl ~! to be identically equal to

1, as usually considered in SDE calculations, without significant nonperturbative IR contributions.
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Chapter 6

Final remarks

We have employed a specific calculation based on some propositions and results obtained for
QCD: indications, from both lattice and SDE computations, for an IR finite gluon propagator; the
idea of DPT; the Taylor identity valid perturbatively; and conjectures or suppositions also concern-
ing the ghost-gluon vertex.

First, we calculated an effective 1-loop correction to this vertex in the Landau gauge and for one
momenta configuration only: zero gluon momentum. Other and more general configurations could
be a matter of further investigation, such as a gauge-dependence of the results — that might achieve
conclusions further than the Taylor identity and extend the possibilities of using simple expressions
for this vertex in SDE calculations in other gauges.

However, it must be stressed that our work made use of two approaches: dressing the gluon
propagators in the loop calculations and using, in the expression for the renormalization function,
(i) an effective running charge « (¢?); and (ii) a constant value . Anyhow, they are attempts of
introducing a nonperturbative quality of the theory into its perturbative expansion. There is no
proof of DPT’s validity or efficacy, and it is only supported by the phenomenological attempt itself.

Despite these limitations, our DPT-like approach gave a somewhat satisfactory result. It was
quite successful in sustaining the validity of (at least approximately) Z; = 1, and on indicating a
possible predilection for the case (i) above, specially for the effective charges with behavior like
the ones from [44]. These charges were obtained via SDE computations that were fitted to lattice
data and considered the gluon having a dynamical mass, indicating, then, some consistency of the
result.

Finally, there is one related work in progress. Recently[47], a calculation similar to ours was
employed for the gluon and the ghost propagators with an effective massive Yang-Mills Lagrangian.

Besides renormalizing the gluon propagator like in a massive on-shell condition, and using the
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coupling « as a fit parameter, the results presented in [47] were obtained by rescaling their original
result, i.e. renormalizing them at arbitrary convenient scales so that they would fit closely the
lattice data. We shall modify their result in two aspects: first, by imposing a renormalization
condition compatible with the ultraviolet massless behavior of the gluon; and then studying the
changes implied by the use of an effective running charge. This could be a further step in the

phenomenological direction taken in the present work.
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Appendix A Perturbative Method

In this appendix we show the general expression from which Green functions may be expanded
in orders of the coupling(s) of the theory under consideration. From the generator functional inte-
gral expression (3.4a), the separation of the Lagrangian into the sum of a free and an interacting

terms, L = Ly + L; respectively, leads to:

Z[J] = /Dgp (expi/dD:c L; [90]) expz’/de {Lo o] + Jo}

— (expi/dD(/U L {%D /Dgpexpi/de {Lo[p] + o}, (A.1)

where L is specified by a differential operator K , which is supposed to be invertible and is given
by
/dDa: Ly = —%/dDch ¢ (z) K (z,x) ¢ (r) + surface terms .
Now, with the change of variables

o (z) = @(x) = [d%y K~ (z,y) ] (y) , (A2)

[t s o [eedSe@ K @ae@ I @ew

1

_i/dDy J(y) K1 (y,w)J(ﬂf)}

up to surface terms,
= /Dcpexpi/dD:r{Lo + Jp} x exp;/dDm’dDy J(y) K (y,2)J (x) .
Since Z [J] is defined up to any multiplicative factor (see eq.3.5), (A.1) becomes
Z[J] =exp (z’/dDaz L; [%}) exp (;/dedDy J(y) K (y,x)J (x)) : (A3)
and then, by expanding the exponential series of £; [0/i0.J], one obtains, for any Green function,
a perturbative expansion in the coupling constant(s) contained in £;. Clearly, the reliability of
this perturbative series is limited at least by the magnitudes of these couplings, a point that can be

addressed from renormalization group considerations.
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One final remark must be done: we have chosen, for brevity, to show the expansion of the Green
functions generated by Z in terms of the interactions of the theory. However, a distinct, and perhaps
more conceptually fruitful expansion is obtained for the effective action I', the generator of proper
correlation functions, as a formal series'' in powers of the Planck constant 7. It may be shown that
this in fact consists in a loopwise expansion of the quantum fluctuations of the field theory. For this

subject we refer to [15],Sect.9-2-2.

That is, a power series in an unknown z, but with no assignment of values to it, and no concerns
with convergence.
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Appendix B Faddeev-Popov quantization

In this appendix we present the Faddeev-Popov procedure, which is a method for the quantiza-
tion of gauge fields within the functional integral formalism of QFT. The essential principle is that
the integration is over the dynamic variables, which is not given by [DA , since this would redun-
dantly integrate over gauge orbits'>. The Faddeev-Popov procedure is an ansatz that amounts to
taking a different (and supposed non-redundant'*) measure of integration for the gauge fields.

This is accomplished by factoring out of the generating functional the volume of the gauge

group[14]’Chap'“"4’[17]’5“’“‘7'2, as follows: Let S (A, DA) be the action for the gauge fields, and
Bre(4) = [DUS[f (An) B.1)

where DU is the invariant/32/24] integration measure of the gauge group, Ay is mapped from A
by U, and f is some function of the gauge fields, so that the delta functional corresponds to some
gauge fixing. App is the so-called Faddeev-Popov determinant, and is straightfowardly shown to
be gauge-invariant, as also are the measure DA and the action S for the gauge fields. Under the

above conditions, we may write the generating functional as'

20 = [DAe® pp(4) [DUSIF (Av)
_ /DU /DAAFP<A>6[f<A>} ¢

If one considers gauges of the form
f(Av) =G A — B,

with G and B to be chosen, and suppose [ to vanish for one specific U"?, one obtains the following

A gauge orbit is the set of field configurations related to each other by some gauge transformation.
That is, [ DA would overcount the degrees of freedom.

It is actually not assured that every Faddeev-Popov measure takes one and only one representative
of each gauge orbit. This issue is relevant at the nonperturbative level and is referred to as the
Gribov problem (or copies, or ambiguity), and is outlined in [15] and [48].

Although we shall not discuss this mathematical subtlety, we note that the step just below

involves interchanging the order of integrals at least one of which (since U is a function of
coordinate space) is divergent.

This supposition is an avoidance of the Gribov problem (see footnote number 13).
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expression for App :
0 (GuAY (x))

36" (y) ‘ o

where 0 is related to U by U = "7 'and T are the generators of the adjoint representation of

App (A) = det : (B.2)

the Lie algebra of the gauge group[49]. Taking the clever step of averaging Z over B as
Z - /DB Zexp ;—;/d% (B* ()% ,
exponentiating the G, A7/ term, then leads to the usual gauge fixing term added to the Lagrangian:
1
Z[J] = /DA App (A) expi/dD$ <£ ~ 3 (G AM)? + J#A“) . (B.3)
It is clear that Z depends on the choice of gauge, or class of gauges, which determines B.2,

32ps1 1f not, App is simply a

which, on the other hand, may depend or not on the gauge fields!
constant that can be discarded from B.3. But if App is a function of the gauge fields, it is of great

usefulness the following functional integral expression for an operator’s determinant:
det M = [ DXDX exp [dPadyx (2) M 2,) (1)
where y and Y are Lorentz scalar, and Grassmann quantities, then Arp (A) is (up to irrelevant
multiplicative ¢ factors) written as:
App(A) = —i/DxDX exp /dedDyXa () {%} ' (y) (B.4)
with the Grassmann fields y and Y belonging to the adjoint representation of the gauge group.

These are the so-called Faddeev-Popov ghosts (or "ghosts" only). In covariant gauges, G = 0 and

5 (GuAY (2)) b b D
= (670 — gf*™ 0" AC) —vy) ,
5 (9) ( 9f ARG
which in B.4, and integrating by parts, gives
Brp (4) =i [ DXDY exp [ 4P (0%%° ()] D 1) (B.5)

where D" = %9 — ig (T*)" A® is the covariant derivative#9), D = 60, — g fere A in the
adjoint representation. Thus, the Faddeev-Popov determinant is exponentiated, leading B.4 to
_ . 1 a —a al
Z[J] = /DADxDX expz/dD:L’ <£ T (G A 4 (9% ) D"+ JMA“> ,

so that the dynamics of the gauge fields is studied with the aid of the ghost fields, whose dynamics
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may also be considered (solely due to its functional integration above). To be more precise, the
ghost fields are a feature of language only — they are purely formal, and their coupling to the gauge
fields is a device to describe the actual gauge fields’ self-interaction.
Therefore, one can finally consider the gauge theory as being described by an effective La-
grangian, given by
Lom L — — (GuA™)* + (9"x") Debx" (B.6)

2
and study it through the generating functional

Z[J AN = / DAD\DY expi / 422 (Lo + Ju AP+ XX+ XAY) |
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Appendix C Calculation of the ghost SDE

In order to briefly show the process of calculation of SDEs, we now derive the SDE for the ghost
propagator. The procedure shown below is standard to obtain each SDE, for which it is enough to
apply more functional derivatives corresponding to the Green function of interest.

Since the functional derivative is
oL _ oL
X 70(0,x")
then (3.25) takes the form:

= _23 (a?xa) + 2923231/2gfabcay (XbAcu) ’

. 5 5 5
0 = |—Z30°—o— + Zygf™o"
! N (@) 10f i\ (x) 10 ()

_ 2 abegp (oW oW W a w
o [ Zga 5)‘ ( ) T Z gf 0 (26)\ (z) i6JH (x) T i6A° (m)zéJCl‘(r)> +A (SU):| €
o

_ 2
= 0= —(S)\e (y) |: Zga

+ A (1:)] exp W [J, 7,7\, 5\]

+ngabcau( R >+)\a($>] BW’

zéA (:r) 6N\ () 0T (x) s\ (w)isTer ()

A \,¢,6,J,a=0
W . SW

' - — + Z gfabc(r),u — +5a65D Y €W

i0A° (y) O (z) i () X () 6w (x) @=9) :

5 52w . ) W
BN R e a—— ) L _ 15950 (1 —
TN (@) ox(y) aJ (2) \ X" (z) 6A° (y) S

-1

—Z30*

= 0=

+ el (x —y)

o e o, Sal (2) 1) 52T -1
Z1gf*co [/d §Jer (x) Sa® (2) dee (y) oc® (x) ]

—1

A\ ¢, J,a=0
5T

o _~ 2
= 4 e )

+ 0% (2 — y) + Zyg foreo" { / dP?2dP 2, dP 2, x
M,e,é,J,a=0
y W 6T 5°T o’r

dJ () 6J2 (2) 6ce (y) 0c¥ (z1)  da® (2) 0¥ (1) dc (22) ¢ (29) 0cb () N 7
oM §°T

0
where we made use ofa—XM*1 = —M’la—XMfl- Finally, applying /dDy 3l () dce (y)

-1

(with
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implicit sum over all repeated indices) we obtain:
§°T

_ 7 925af D o v
0 Lo (o= )+ s

MA,¢,é,J,a=0
/ d”zd” *W 5°T 52T '
I 5 Jem () 0J4 (2) da® (2) dcf (=) oce (y) oce (y) dcP ()

+ g o

A A, ¢,¢,J,a=0
= 0=GPI(2,7) — Z;0%0" 6" (x — ')
—iZlgf“bcﬁ“/dDdey G((fl)fd” (x,2) GI(,?’,)/dfe (z,2,y) GP (y,z) .

Taking the corresponding Fourier transforms,

dPp | ' - dPp . ,

71 q e D 4P d”py d”ps ilp1-(x—2)+p3-z+pa-2' —(p3+pa) y+p2-(y—2)]
—iZ1gf*0" [ d” zd 5 e p1- P3-z+pa-2’' —(p3tpa) y+p2-(y—2)] o
(2m) (27r)

x GO (p1, —p1) GPT (p3, pa, —ps — pa) GO (p2, —p2)

d? ‘ N
- (0= / p zp (z—2") [G(2)af (p p> Zg(;afz-2p2
(2m)"

-7 abe dD c ef v e
—iZ,gf™ / o) "GO (p+q,—p — @) G (p+ q,—p, —q) G (¢, —q)

0 [D (p)] ™" = Z36 [Dioy ()] = Zag? e f! / éwaA’(‘o) (P, q) Dy (p+a) A (q,9) D (q)

Adopting the conventions below
a . a -1 @ -1 a @ —1
(G2 (p,—p) = [—zGEZJV” (p, —p)] = [D®% (p)] =6 [D (p)]
-1 _ _
G (p—p) = [HGE" (. —p)] = [0 ()] T =6 D)

. . 1, C.1
D((?)( )=10 bD(o) (p) = —E(S b7 €1
—ig A (p,q) = =Gy " (¢ = p,p, —q) = —ig [ A" (=g, —p) |
( —igf*" Ay (p.q) = —igf*p".

and using the SU(N) relation fabe feb/ = fabe f feb — _ fabe pfbe — _ N5 we finally obtain:

(D ()] " = Zs [Deoy (0)] " + Zug Afoy (0,0) Dy (p + ) A” (a,0) D (q) -
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Appendix D The 1-loop calculations

In this appendix we show an outline of the 1-loop calculations we have made, as described in

Sect.4.3. The loop integrals were calculated in D dimensions, and then dimensionally regularized[5 0,

D.1 Ghost-ghost-gluon loop
The diagram on Fig.4.1(a) contributes with

! ee/

neo_ _i/ﬂfd'f’crp 0 £ (p + k) 5_fdbepz/5d’d [A(O) (q —p)]
(1) b4 (27T)D (p I k)2 2 vp )
where A, is given by (4.4). Then, in the Landau gauge
v _ Ng’ fabc/ d”p (p+ k)" pr? ( (a—n), (g —p)p>
W2 @) P (0 + k) [(g—p)F —m?] \"” (q—p)* ’

since faoel fdbe fdfe — — (N/2) f@. For k = 0, ¢ = r, and so:

wo_ NG e [ dPp P 2 [p-a—p)
= 20! /(QW)D »*)? [(¢ —p)* = m?] (p (¢—p)° )

_ Ng fabc/ dPp { " 1t == (a-p)] [ =P = (- p)] }
2uP=4 @em)?” | p[(g—p)?—m2] 4 ®»)* [(q —p)* —m?] (¢ — p)?
. 1 9
writing p. (¢ —p) = 3 > —p*—(¢—p)].

. _ Ng fa”C/ d”p { " 1 P (¢ —1?)
W 2 en)” | la—p)?*—m?] 4> [(¢—p)° —m?] (¢ —p)°

Ll =) 1t fa—p) —mt e m
2" [(q—p)*—m?] 4 (p*) [(q—p)* —m?]
N e [dPp )1 P 1 (p+a)”
- 2“D_4f /(27T)D {22?2 [(p—q)? —m2] 4> —m?)p?
1 (2¢*—m?) p* 1 Fte" 1 (@) (p+e" }
L) [(p—9*—m2] 200+ P> —m)p* 4 ((p+9)?)° (> — m2)p?

where we have shifted the integration variable from p to p — ¢ when convenient in order to possibly
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obtain simpler integrands when Feynman-parametrizing:
1

Ng3 be de F(2) pﬂ
no= a ——— [dx
m = g /(2W>DO/ { 2 (p-a®-m)z+p(1-2)°

T2 (p+q)" I'(3) (2¢° —m?) (1—a)p"
L -m)e+pr - O [((p—q® - m)z+p(1-a)
ro[re ¢ (p+q)"
+/d 3
O/y[ 2 (@ =m2y+p* (@ —y)+ (p+q) (1 )]
O ()" (1—2)(p+9) ]}
AL [ - m)y+p2 (@ —y) + p+ 0 1 -2)]"

NG e [ dPp / {F(2) (p+zq)"
B o1/ /(QW)DO/dx 2 [P+ @2z (1—z) —m2a)

T@_+e" | TE) @2¢-m’) 0-2)@p+z9"
4 (p?— m2x)2 4 (2) [P+ ¢z (1 —x) — m2x]3

+jdy [F(3) ¢ (p+ zq)" I'(4) (¢») (1—2)(p+aq)” ]} .

2 [P+ gt (1—a)—m2y AT (2) [p2 + g2 (1 — 2) — m2y]’

50

Making use of well-known results for the momentum integrals®"), we obtain:

1 —€ —€
noo_ iNg? fabcqﬂ/dm F(E/Q):L" mQx_QQx(l—z) /2_ [ (e/2) m2r /2
O 2y 2 Ay 4 \dmp?

L(1+¢/2) 2¢*—m?)x(1— 1) (mzx —¢*xr (1 - 35))6/2
4 (2) [¢%x (1 — x) — m2x] A7 2

i I'(1+¢€/2) ¢*x F(2+¢/2) (21 —2)| (m?y—a(1l—2)\ "
- [ [2[ ]( ) }

@a(l—x) —my] AT (2) [¢%z (1 — ) — m2y]? A2
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(—QQ:E) B glog (1—2z—m?/¢%

1
NG e 1/2 €
= sam O/df{é<z‘”)‘”[1‘5l"g i
1/2 € m2x 1, ., ) r(1—1)
1 (W) P‘élog(wﬂ 1) ey — s
f ¢’ . (@z(l-w)
et —a)—mrgP| [ 7O

+ [d
/ Y [2 [¢?x (1 — x) — m?y]
0
where, as conventional, we do not consider all positive powers of €. The integrals over the Feynman

parameters are calculated using the results in [51].

1
A7 3 2
b iNg abcu/d 1 2_ _1 2_ 11 mer
1™ No\e 7)) g\ 7 —|—40g A2
0

(1):2(47r)2
1 v 1 1 m? r(l—x)
) —sxlog(l—az—m?/¢") + - (2 - —
2xog<47w2) 5% Og( x m/Q)+4< q2)[x(1_m)_xm2/q2]
2 7 108 i) Ty m?x (1 —x) —ym?/¢* |,
1
iNG are s 1 m*x ¢’z ¢ L ¢
_ abe d 21 — 7l —uxl 1- 5 9
4(477)2f 1 / 2% \anz) T a2 et og(l—2)+ 2m?
0
9 2 2
q 2, 0\, L m-_ 4 -7
—<1+ﬁ)xlog(l—!ﬂ—m/q)+§(2_?_ﬁ>Tm2/q2}
iNG e ) @ m’z 1 2 UEA NI
_ abc 1 1 — — 1 - 5
8(47T)2f LR P R A2 ! 0 v Amp? 2]
7 2 z? 1
& (5]
q° 2 2/ .2 2/ > 2 /¢ 1
O N |
2 2
)}
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ZNgB ube m2 m2 q2 q2 m2 m2
S

after some algebraic manipulations.

D.2 Ghost-gluon-gluon loop
The contribution of the diagram on Fig.4.1(b) is

p—— / O e 18y 1) Ve (kg = p)| 6 [A g (g — )] S
(2) ,uD_4 (27T)D p2 ) vy p y
where V2 (p. g, 7) = foi [gw (D =), + Gup (4 = 1), + G (r — p)y} and A, is given by (4.4).

Then, since f/ed fdbe ffec — — (NN/2) fab, for the configuration k = r — ¢ = 0, and in the Landau

gauge n = 0:

Ng* / dp [g7p’ + g"p” — 291" ( Pop ) < Do )
1% abc vV o o/t pPv
~ 5 D-4 + oT T o v y
= g1/ @2m)”  (p+9)* (> —m?)? pta)a (g ) \I" T
where we have shifted the integration variable in order to simplify most terms of the expression.

w _ Ng’ fabe / d”p [g7"p’ + g"p" — 29" p"] (q . w) <q 0 fﬂ)
@ 2w S en? et -me? T )\

il oy 7 (i -2} (w022
_ abe 4 (L —9gr ) pH _, 21
D T e L A R A

Ng* e [ d7p 1 ,  (pq)?
- o )

2u @2m)” (p+q)° (p? —m?)’
_ Ng’ abc/ d”p { pav o p-q p* ~ (29+p) qp }
2P~ (2m)” Lp? (p* — m?)* (p+q)° @ —m*’p*  (p+9)* (p* — m?)’
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NG e [ 4% | T (4) | (p— (1-2)q) gl p"
— dz { — d
2/1D74f /(271’)[)/ { ! F(2)0/ yy[pQ—q2(1—$)2+q2(1—x)—mQy]4
[ [(2¢+p—(1—2)q).qp" ]}
F(2> C(p? - m2x)? [p 21—z’ +¢ (1—x)—m2x}3

’z)
| & forl R o
r <2>""’ {@ m) PPt <1]f r) - m]] }
e R Ce= e
R foy ot (et )

1
iNG® . " —¢°x m*x 2/ 2
abc d 1 _1 1 1_ _
1(any q/$ v oe Gz ) 108 g ) Tloe (1= =)
0

x

4 31_22 [y+§l—22x(1—x)1og (v (1 — ) —ymz/(f)] }+0(6)

0

1
2
— abe o dw{wlo <—q—>+xlo 1—x—m?/¢?
4<4HT)Qf qO/ gl =3 g ( /@)

m
o ZNg?) abc 1 1 q2 5 1 m2 1 1 q2
= daT Gt rE T2 (e
LlmPm? 1
2

q 2
2 2 2
q- q m
i ww)k’g(l‘?)
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iNG®  ape 4 5 1¢2 q° m? m? [1 1m? 2 q*
=Y pabegn) 0 2 e (o 2 (2 2 e (1 L
4(4%)2f q 2 T eme |t T 2 08 e + 2 |2 {3 2 3 0g o

D.3 Their sum and massless limit

We have obtained:

zNg abe
?1):4( )Zfb MCl’

m2 1m2 m? e 1 ¢? m?

whose limit as m — 0 18:

where

m—0 1 3
¢ _>1—0+2(0)— (—1):5.

The second diagram contributes with

5 1¢° 7> m? m? [1 1m? 2 e
=2 D () e (2 S e (1 L
G2 12 + 6 m? [ + m2 8 q> + ¢ |2 + 2q¢2 3 ©8 m2/)|’

Therefore, we obtain the expected limit of Z; = 1 for massless gluon propagators:

gt = igfabcq#i\ffi_i (¢4 +¢o) = igfabcqui\(fj_i )

where we write explicitly the correction to the tree-level expression —igf®“g”. Finally, in order
to show the result based on our proposal (Sect.4.3), we write the factors (; and ¢, above in terms
of —¢?, since our analysis in Chap.5 considers spacelike ¢, and our calculation also considered
q? < 0':

Na
W ;o Fabe g 2
& =g g o< (@)

This assumption does not affect our results. It only keeps the integrands regular, discarding
some harmless boundary terms of the Feynman integrals which would, anyhow, be gone in the
renormalization process.



where, as said above, ¢* denotes |¢?|.
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