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Abstract 
Robotic vehicle navigation in unstructured and 
uncertain environments is still a challenge. This paper 
presents the implementation of a multivalued neuro-
fuzzy controller for autonomous ground vehicle 
(AGVs) in indoor environments. The control system 
consists of a hierarchy of mobile robot using 
multivalued adaptive neuro-fuzzy inference system 
behaviors.  
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1. Introduction 
 Robot vehicle appeared from growth exploration in 
unstructured and uncertain environments. These robots 
are becoming increasingly sophisticated and 
autonomous, and demand more intelligent behaviors 
from them in complex environments [7]. Among the 
applications currently it is like main the spatial 
exploration vehicles in Mars and vehicle unmanned 
used in special missions. 

To achieve navigation expectations must address 
a set of problems associated with real world 
environments. The dynamics of the environments can 
be only partially predictive through partial and 
approximation knowledge of the environments, partial 
sensing and noisy, and an agent hardware execution 
represented by controller [2] and [7]. 

The controller complexity is overcome having a 
hierarchical architecture by decomposing the 
navigation control problem into several subsystems, 
which can be controlled independently and in parallel, 
will reduce the negative effect that a large rule-base 
may have on real time performance [4]. 

The subsystems and their controllers are known as 
reactive behaviors and this approach is known as robot 
behaviors. The concept of behavior control was 
initially seen as a special form of decentralized 
switching control, where a command fusion is used to 
combine the output of several individual behaviors 
subsystems [8] and [9].  

However, this univalued structure has been found 
to have serious flaws. In particular, by treating 
behaviors as fully autonomous, this structure tends to 
cause the robot to be indecisive when the behaviors 
have mutually exclusive interests with nearly equal 
importance. This observation led to the introduction of 
multivalued behavior control system [1].  

Multivalued fuzzy logic control is well suited for 
controlling the complex robot navigation because it is 
capable of represent degrees of truth on a numeric 
scale and making inferences even under uncertainty, 
which allows to express partial preferences and to 
combine them using logical operators [3].   

Neural networks and others methods are used to 
solve the behavior learning problem. Learning allows 
autonomous robots to acquire knowledge by 
interacting with the environment and subsequently 
adapting their behavior and solve the problem of 
insufficient knowledge for designing the controller 
rule-base [5], [6] and [10]. 

This paper discusses with detailed an adaptive 
neuro-fuzzy inference system (ANFIS) implemented 
in structure of multivalued behaviors system for 
robotic vehicle navigation. The control system is 
organized in hierarchy of various adaptive neuro-fuzzy 
behaviors that represent physical position, where is 
implemented a multi-valued behavior control adaptive 
neuro fuzzy system to combine the degree preference 
output of several subsystems. 

2. Robotic Vehicle 
The rectangular shaped robotic vehicle has a 
differential driven platform steering system configured 
with two (dc) motors independently which control two 
wheels on a common axis and more two wheels swivel 
caster for support. The distance between wheels is 
0.80 m, the wheel radius is 0.008 m, the wheel 
thickness is 0.05 m and robot speed is -0.1 to 0.3 m/s. 
The sense perception system consists of set electronic 
sensors to formation mobile robot behaviors. Each 
independent behavior uses the sensory information to 
determine it is course of action. The navigation control 
system requires range sensors and localization sensors.  



Ranger sensors are responsible to measure the 
distance of (potential) obstacles, consists of a total of 
seven infrared (IR) range sensors around the vehicle. 
Using infrared range sensors instead of sonar sensors 
allows avoiding some of the drawbacks that the later 
are usually suffering from multiple reflections.  

These sensors are concerned to cover the whole 
field around the robotic vehicle, where three forward 
facing range sensors are used for front collision 
avoidance (F1, F2, F3), two lateral facing range 
sensors, right (R1, R2) and left (L1, L2) are used to 
control smooth contour following movements. 

The main object of the navigation is to reach a 
goal position while avoiding obstacles. This 
information is provided by localization sensors. Global 
Positioning Systems (GPS), Inertial Navigation 
Systems (INS) and electronic compass are typical used 
localization sensors. The present robotic vehicle is 
equipped with a Global Positioning Systems (GPS) 
that measure the change in orientation of the vehicle. 
The direction of the mobile robotic is obtained 
between the relation of the actual position and the 
initial position. The physical position of the sensors 
shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Robotic vehicle’s sensors. 

3. Multivalued Adaptive Neuro-
Fuzzy Behaviors Control System 

This section describes the design of multivalued 
adaptive neuro-fuzzy inference system (ANFIS) 
behaviors control system. A control schema, together 
with a set of object descriptor and a contextual 
condition, is packaged into a behavior. Behaviors play 
the role of situated actions: they indicated which 
movement should be performed which circumstances 
and with respect to which objects. Behaviors bridge 
the gap between abstract action description and 
physical control. 

Multivalued architectures are systems where 
behaviors return their degree of preference to several 
control alternatives instead of a single control action. 
The preference for each alternative can then be 
evaluated to determine the best control action through. 
The hierarchical organization of the behaviors used for 
the control action of the robotic vehicle is show in Fig. 
2.  

The control action system obtains the speed for 
the robotic vehicle. In practice are two systems, one 
for each independent motor, because the adaptive 
neuro-fuzzy inference systems (ANFIS) used a 
Takagi/Sugeno type fuzzy inference system that 
allows a single output. ANFIS is a network type 
structure similar to that of a neural network, which 
through maps inputs and output membership functions 
and associated parameters can be used to interpret the 
input/output map. The parameters associated with the 
input membership functions will change through the 
learning process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Architecture of multivalued adaptive neuro-fuzzy 
behaviors system to the speed activity. 

 
The computation of these parameters is facilitated 

by a gradient vector, which provides a measure of how 
well the fuzzy inference system (FIS) is modeling the 
input/output data for a given set of parameters. Once 
the gradient vector is obtained, any of several 
optimization routines could be applied in order to 
adjust the parameters so as to reduce some error 
measure. ANFIS uses either backpropagation or a 
combination of least squares estimation and 
backpropagation for membership function parameter 
estimation. 

The fuzzy rules for each behavior are obtained 
through model validation process, which the input 
vectors from input/output data sets on the FIS was not 
trained, are presented to the trained FIS model. When 
checking data is presented to ANFIS as well as 
training data, the FIS model is selected to have 



parameters associated with the minimum checking 
data model error. 

The speed control is achieved using four 
behaviors: Avoidance Collision Toward, Avoidance 
Collision Side Right and Avoidance Collision Side 
Left that use range finding sensors to determine 
distances to the nearest (potential) obstacles; and 
Heading Direction that use Global Positioning 
Systems (GPS) to determine the direction of the 
robotic vehicle through coordinate X and Y.  

The control command for the speed activity is the 
speed preference degree applied independently to the 
motors represented by three fuzzy sets: Stop Speed 
(SS), Medium Speed (MS) and High Speed (HS). 
With to intend to represent the motors velocity fuzzy 
sets are used a Gaussian membership was the simplest 
and best suited for this case, where µ ε (0, 1) is the 
preference degree. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 3: Speed fuzzy sets representation. 

3.1. Avoidance Collision Toward 
Behaviors 

The control action system obtains the speed for the 
robotic vehicle, one for each independent motor. To 
represent the development of the ANFIS behaviors, 
this section show the control action for right motor 
speed, because ANFIS Model Structure, input 
membership functions, fuzzy rules, training data set 
and checking data set are identical to left motor speed. 

The Avoidance Collision Toward behavior have 
ANFIS Model Structure with 3 inputs sensors F1, F2, 
F3 and 1 output represented the speed preference 
degree. The ANFIS Model Structure is shown in Fig. 4.  

The obstacle is detected by three sensors, Fig. 4. 
The range data provided are fed to ANFIS behaviors, 
which calculate the speed right motor preference.  The 
input membership function is the distance to the 
obstacle with the corresponding fuzzy set (near, 
medium, away).  

The data set used for training Avoidance Collision 
Toward behaviors ANFIS, consisted of 47 
measurements data points, which range sensors F1, F2,  

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 4: ANFIS Model Structure for Avoidance Collision 
Toward to right motor speed. 

 
F3 and the preference right motor speed, and used a 
checking data set obtained by applying a 5% random 
noise to the training data set. A combination of least 
squares estimation and backpropagation errors of the 
output over 50 training epochs are plotted in Fig.  5.  

 
 
 
 
 
 
 
 

Fig. 5: Plot errors during the training Avoidance Collision 
Toward behavior to right motor speed. 

3.2. Avoidance Collision Side Right 
and Left 

The Avoidance Collision Side Right and Avoidance 
Collision Side Left behaviors have the same ANFIS 
Model Structure, with 2 inputs, respective sensors R1, 
R2 and L1, L2 and 1 output represented the speed 
preference degree. The ANFIS Model Structure is 
shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
Fig. 6: ANFIS Avoidance Collision Side Right and Left 
behaviors to right motor speed. 
 
 



 
 

 
 
 
 
 
 
Fig. 7: Plot errors during the training Avoidance Collision 
Side Right behavior to right motor speed. 
 

Two sensors detect the obstacle, as Fig. 6. The 
range data provided are fed to ANFIS behaviors, 
which calculate the speed right motor preference.  The 
input membership function is the distance to the 
obstacle with the corresponding fuzzy set (near, 
medium, away). The data set used for training 
Avoidance Collision Side Right behaviors ANFIS, 
consisted of 26 measurements data points which range 
sensors R1, R2 and the preference right motor speed, 
and used a checking data set obtained by applying a 
5% random noise to the training data set. A 
combination of least squares estimation and 
backpropagation errors of the output over 50 training 
epochs are plotted in Fig.  7.  

3.3. Heading Direction Behaviors 
The Heading Direction behaviors ANFIS Model 
Structure is formatted with 2 inputs coordinate X and 
Y respectively and 1 output represented the speed 
preference degree. The ANFIS Model Structure is 
shown in Fig. 8.  
 
 
 
 
 
 
 
 
 
 
Fig. 8: ANFIS Heading Direction behavior to right motor 
speed. 
 

The actual position detected by GPS data 
provided are fed to ANFIS behaviors, which calculate 
the speed right motor preference to determine the 
direction of the robotic vehicle.  The input 
membership function to coordinate X-Y is the distance 
to the origin with the corresponding fuzzy set (away 
target, medium target, near target).   
 
 

 
 
 
 
 
 
 

 
Fig. 9: Plot errors during the training Avoidance Heading 
Direction behavior to right motor speed. 
 

The data set used for training Heading Direction 
behaviors ANFIS, consisted of 47 measurements data 
points, which range coordinate X, Y and the 
preference right motor speed, and used a checking data 
set obtained by applying a 5% random noise to the 
training data set. A combination of least squares 
estimation and backpropagation errors of the output 
over 50 training epochs are plotted in Fig.  9.  

3.4. Multivalued Adaptive Neuro-
Fuzzy Behaviors 

The Multivalued Adaptive Neuro-Fuzzy behavior 
calculated the vehicle speed during the trajectory 
avoidance obstacle and reaching the target. The 
avoidance collision is detected by Avoidance Collision 
Toward, Side Right and Side Left behaviors, and the 
target position is obtained by Heading Direction 
behavior. The speed preference degrees calculated by 
each behavior are fed to ANFIS Multivalued behavior, 
which calculated the motors speed.  

The resulting membership functions for the 
Avoidance Collision Toward, Avoidance Collision 
Side Right, Side Left and Heading Direction behaviors 
inputs shown in Fig. 12. Was experimented several 
types membership functions, the Gaussian 
membership functions to be best suited for this case 
and to all behaviors. The general form of a fuzzy rule 
for a 4 input and 1 output first order Takagi/Sugeno 
type controller is: 
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Where x, y, z and w are the linguistic variables, FL 

is the output for L-th rules, F, G, H and I are the size 
of the fuzzy sets for the behaviors A, B, C and D and R 
is the size of the rule base. 

For Multivalued Adaptive Neuro-Fuzzy, behavior 
input A, B, C and D are the preference speed with 



corresponding fuzzy set (Stop Speed, Medium Speed, 
High Speed), and R = 81 is the size of the rule base. 
The ANFIS Model Structure is shown in Fig. 10.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10: ANFIS Model Structure for Multi-valued behaviors 
to right motor speed. 
 

The speed preference data provided are fed to 
ANFIS behaviors, which calculate the speed right 
motor.  The input membership function is the speed 
right motor with the corresponding fuzzy set Stop 
Speed (SS), Medium Speed (MS) and High Speed 
(HS), Fig. 12.  

The data set used for training Multivalued 
behaviors ANFIS, consisted of 112 measurements data 
points, which speed preferences of the behaviors and 
the preference right motor speed, and used a checking 
data set obtained by applying a 5% random noise to 
the training data set. A combination of least squares 
estimation and backpropagation errors of the output 
over 50 training epochs are plotted in Fig.  11. 

 
 
 
 
 
 
 
 
 
 

Fig. 11: Plot errors during the training Multi-valued behavior 
to right motor speed. 

4. Implementation and 
Performance Multivalued 
Adaptive Neuro-Fuzzy Controller 

This section presents a sample of the experimental 
results that show the performance of the proposed 
multivalued adaptive neuro-fuzzy control system, the 
experimental results are simulated on MatLab 6.5 

toolbox software. The simulations are divided in three 
different scenarios.  The control system is illustrated in 
Fig. 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: Membership functions for the four inputs of ANFIS 
Multi-valued behavior to right motor speed; the 
measurement unit is the m/s. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13: ANFIS Controller system for robotic vehicle 
navigation. 



4.1. Scenario I 
With some obstacle between the robot start position, 
coordinate (0; 0), and the target position, coordinate 
(4.7; 3.5). The robotic vehicle reaches the target 
position avoidance the obstacle during the trajectory 
by going to turn the obstacle. The scenario 1 is showed 
in Fig. 14, and the independent motor speed is showed 
in Fig. 15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 14: Scenario I. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 15: Motor speed to scenario I. 

4.2. Scenario II 
With many obstacles between the robot start position, 
coordinate (0; 0) and the target position, coordinate 
(4.1; 5.1). The robotic vehicle reaches the target 
position avoidance the obstacle during the trajectory 
by going to turn the obstacle. The Scenario 2 is 
showed in Fig. 16, and the independent motor speed is 
showed in Fig. 17. 

4.3. Scenario III 
Represent more complex situations that illustrate the 
ability to navigate very obstacles between the robot  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16: Scenario II. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 17: Motor speed to scenario II. 
 
start position coordinate (0; 0) and the target position 
(1.3; 4.3). The robotic vehicle reaches the target 
position avoidance the obstacle during the trajectory 
by going to turn the obstacle. The Scenario 3 is 
showed in Fig. 18, and the independent motor speed is 
showed in Fig. 19. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18: Scenario III. 
 
 
 



 
 
 
 
 
 
 

 
 
 
Fig. 19: Motor speed to scenario III. 

5. Conclusions 
This paper has discussed the major improvements 
done to implement the proposed multivalued adaptive 
neuro-fuzzy behavior system for robotic vehicle 
navigation. The simulation of the control system was 
implemented on MatLab 6.5 toolbox in different 
environments showing good performance in avoiding 
obstacles and reaching a target in a variety of obstacles 
configuration.  

The success must be attributed to its adaptive 
neuro-fuzzy hierarchical architecture, which the 
learning allows robotic vehicle to acquire knowledge 
by interacting with the environment and subsequently 
adapting their behavior and solve the problem of 
insufficient knowledge for designing the ANFIS 
behaviors controllers rule-base, and allows all 
behaviors to express their in the available commands 
and fuse them by a fuzzy inference operation. 
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