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Abstract

Pervasive penetration of distributed energy resources (DERs), usually constituted
by renewable energy sources and/or storage systems along with their interfacing in-
verters, are pushing AC electrical grids toward a power electronics-based paradigm.
Although the presence of DERs in power grids brings more flexibility of operation
and the decentralization of energy generation allows us to obtain more efficient power
dispatch, it is imperative to achieve proper control over the existing inverters to sup-
port the synergistic integration of multiple electric apparatuses. This is particularly
true from the perspective of inverter-dominated AC microgrids (MGs), which rely on
the implementation of coordination strategies to adequately exploit DERs to support
controlled power dispatchability, power quality interventions, as well as accessibility
to energy markets.

Within such a context, this thesis presents a coordinated control strategy capable
of supporting multiple operation modes for transactive AC MGs through a model-
free, plug-and-play and topology-independent steering of inverters. Such a control
approach, namely Generalized Current-Based Control (GCBC), is capable of accom-
modating inverters of assorted operational natures, being of a dispatchable (d-DER) or
non-dispatchable (nd-DER) nature, relying on a centralized unit and on low-bandwidth
communication links. By flexibly coordinating DERs, the strategy supports the imple-
mentation of active current sharing among inverters, also endowing compensation of
reactive currents, as well as offering distributed and selective harmonic mitigation. In
addition, the control approach is capable of coping with intermittent energy generation
profiles, which are typical of nd-DERs. As another feature, the proposed coordination
strategy provides proportional current sharing without being affected by line imped-
ance parameters, in contrast to the conventional droop control method. Above all, the
GCBC strategy is capable of managing an interconnected MG to operate as a single
controllable entity, providing full controllability over its power dispatch to an upstream
grid, allowing it to trade energy services in transactive energy markets.

The merits of the GCBC strategy are thoroughly assessed throughout this thesis
by means of simulation and experimental results, based on multiple MG prototypes
focusing on the low-voltage (LV) perspective, ensuring that the method is feasible
for implementation in real-life applications. Numerous MG scenarios are evaluated,
such as under limited power capabilities, considering the presence of non-ideal voltage
waveforms, as well as upon communication issues, ensuring that the GCBC approach
endures operation under adverse conditions. Moreover, it is experimentally demon-
strated that the method is also capable of improving voltage quality in weak LV MGs
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of homogeneous features, as an indirect outcome of the proportional sharing of non-
active currents.

Lastly, advanced control functionalities are devised by flexibly adapting the GCBC
strategy, endowing LV MGs with the capacity to shape their operation to behave as
a variable and selective resistor, which supports a more efficient operation of the dis-
tribution grid and favors the damping of harmonic resonances. As another advanced
functionality, distributed compensation of active and reactive unbalanced currents is
also possible, based on concepts from the Conservative Power Theory. Moreover,
voltage regulation can be ensured for the MG by means of an automatic scheme in-
corporating the GCBC, allowing the possibility to concomitantly increase energy ex-
ploitation from nd-DERs. Finally, considerations on the integration of optimization
methods highlight that further capabilities can be formulated upon the adoption of the
GCBC strategy.



Sammendrag

En omfattende integrasjon av distribuerte energikilder (DERer), som består av
fornybare energisystemer med tilhørende omformere, representerer et paradigmeskifte
for AC strømnett i form av økt bruk av kraftelektronikk. Selv om bruken av DERer
i lavspenningsnettet muliggjør en mer fleksibel drift av nettet, og desentralisering av
energikildene tillater en økt effektivitet, er det helt avgjørende å ha tilstrekkelig kon-
troll over eksisterende omformere for å utnytte potensialet i dem. Dette gjelder særlig
for omformerdominerte mikronett, som er avhengige implementering av koordinerte
strategier for å utnytte DERer til kontrollert kraftregulering, forbedring av spenning-
skvalitet, samt tilgjengelighet til elektrisitetsmarkedet.

Denne avhandlingen presenterer en koordinert reguleringsstrategi for mikronett.
Strategien kan levere flere systemtjenester, og reguleringen legger til rette for plug-
and-play av omformere, uavhengig av topologien til nettet. Denne strategien, kalt Gen-
eralized Current-Based Control (GCBC), kan integrere omformere basert på både reg-
ulerbare (d-DER) og ikke-regulerbare (nd-DER) energikilder. Strategien er avhengig
av en sentralisert kontrollenhet samt et kommunikasjonssystem med lav båndbredde.
Ved hjelp av fleksibel koordinering av DERer støtter strategien deling av aktive strøm-
mer mellom omformere, kompensasjon av reaktive strømmer, samt tilbyr distribuert og
selektiv harmonisk demping. I tillegg kan strategien håndtere intermitterende energi-
produksjonsprofiler, som er typiske for nd-DERer. I motsetning til den konvensjonelle
statikk-metoden er den foreslåtte strategien også i stand til å gi proporsjonal strømdel-
ing uten å være påvirket av linjeimpedansparametere. Fremfor alt er GCBC-strategien
i stand til å styre et sammenkoblet mikronett for å fungere som én enkelt kontrollerbar
enhet, samt å ha full kontrollerbarhet over kraftutvekslingen med et overliggende nett,
slik at mikronettet kan handle energitjenester i bilaterale energimarkeder.

Aspektene ved GCBC-strategien blir grundig gjennomgått i denne avhandlingen
ved hjelp av simulering og eksperimentelle resultater, basert på flere lavspente (LV)
mikronett-prototyper, for å sikre at metoden er mulig å implementere i ekte applikas-
joner. Flere mikronett-scenarier blir evaluert, for eksempel ved begrenset effekt, under
ikke-ideelle spenningsforhold, samt ved kommunikasjonsproblemer. Dette sikrer at
GCBC-strategien fungerer også under ugunstige forhold. Videre er det eksperimentelt
demonstrert at metoden er i stand til å forbedre spenningskvaliteten i svake LV mik-
ronett, noe som er et indirekte resultat av proporsjonal deling av ikke-aktive strømmer.

Til slutt utvikles avanserte kontrollfunksjoner ved fleksibel tilpasning av GCBC-
strategien, hvilket gir LV mikronett muligheten til å oppføre seg som en variabel og
selektiv motstand, som støtter en mer effektiv drift av distribusjonsnettet og bidrar til
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demping av harmoniske resonanser. En annen avansert funksjonalitet er distribuert
kompensasjon av aktive og reaktive ubalanserte strømmer, basert på konsepter fra
«Conservative Power Theory». Videre kan spenningsregulering utformes for mik-
ronettet ved hjelp av en strategi som inkluderer GCBC, slik at man samtidig kan
øke energiutnyttelsen fra nd-DERer. Betraktninger rundt integrering av optimaliser-
ingsmetoder fremhever at ytterligere funksjonalitet fortsatt kan legges til ved bruk av
GCBC-strategien.



Resumo

A contínua expansão do uso de recursos energéticos distribuídos (REDs), normal-
mente constituídos de fontes de energia renovável e/ou sistemas de armazenamento
com seus respectivos inversores de potência, tem incorporado a eletrônica em potência
como panorama para redes elétricas CA. Embora a presença de REDs em tais redes
traga maior flexibilidade de operação e a descentralização da geração de energia pos-
sibilite despacho de potência mais eficiente, é essencial que se imponha um controle
adequado sob inversores para garantir uma operação harmoniosa com os múltiplos
dispositivos elétricos existentes. Tal requerimento é de particular importância em mi-
crorredes CA com alta imersão de inversores, as quais requerem a implementação de
estratégias de controle coordenado para adequadamente explorar REDs, visando obter
controlabilidade perante despacho de potência, intervenções para melhoria da qualid-
ade da energia, e também acessibilidade a mercados de energia.

Dentro de tal contexto, esta tese de doutorado apresenta uma estratégia de con-
trole coordenado capaz de prover múltiplos propósitos operacionais para microrredes
CA com características transativas. Tal abordagem rege a operação de inversores sem
necessitar conhecimento prévio das características da microrrede, independentemente
da topologia elétrica, e ofertando operacionalidades plug-and-play. Esta estratégia,
nomeada Generalized Current-Based Control (GCBC), é capaz de acomodar inver-
sores de características diversas, sendo de natureza despachável (d-RED) ou não-
despachável (nd-RED), com base em uma unidade centralizadora e em canais de
comunicação de banda estreita. Através da coordenação flexível de REDs, a es-
tratégia suporta a implementação de compartilhamento de correntes ativas, tão bem
quanto a compensação de correntes reativas, além da mitigação distribuída e seletiva
de harmônicos. Ademais, a estratégia de controle é complacente com perfis intermit-
entes de geração de energia, os quais são comuns em nd-REDs. Além disso, outra
vantagem se refere à capacidade de prover compartilhamento de correntes entre in-
versores de forma proporcional às suas capacidades, sem interferência das caracter-
ísticas de impedâncias de linha, diferente do método convencional de controle droop
(i.e., controle por inclinação). Acima de tudo, a estratégia GCBC é capaz de geren-
ciar uma microrrede CA interconectada para operar como uma entidade única con-
trolável, provendo controlabilidade total sob seu despacho de potência para a rede de
distribuição, permitindo a negociação de serviços energéticos em mercados de energia
transativos.

Os méritos da estratégia GCBC são amplamente avaliados ao longo desta tese,
por meio de simulação e resultados experimentais, com base em múltiplos protótipos
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de microrrede com foco em baixa tensão, garantindo que o método é viável a imple-
mentações práticas reais. Diversos cenários de microrrede são analisados, tal como sob
limitação de capacidades de potência, considerando a presença de tensões não ideias, e
também perante complicações relacionadas à comunicação de dados, certificando que
a estratégia GCBC é capaz de operar sob condições adversas. Ainda, demonstra-se at-
ravés de resultados experimentais que o método de controle é capaz de prover melhoria
da qualidade da tensão em microrredes fracas de baixa tensão que apresentam carac-
terísticas homogêneas, como um resultado indireto do compartilhamento proporcional
de correntes não ativas.

Finalmente, funcionalidades de controle avançadas são flexivelmente derivadas
com base na abordagem GCBC, possibilitando que uma microrrede seja capaz de
modelar sua operação para se comportar como um resistor variável e seletivo, o qual
suporta uma operação mais eficiente da rede de distribuição, ainda favorecendo o
amortecimento de ressonâncias harmônicas. Como outra funcionalidade avançada,
compensação distribuída de correntes ativa e reativa de desbalanço pode ser também
ofertada, com base em conceitos advindos da Teoria de Potência Conservativa. Ade-
mais, regulação de tensão pode ser implementada para microrredes, com base em um
esquema de controle automático incorporando a estratégia GCBC, possibilitando ainda
uma exploração de energia aprimorada para nd-REDs. Por último, considerações sob a
integração de métodos de otimização também ressaltam que funcionalidades adicion-
ais podem ser formuladas com base na adoção da estratégia GCBC.
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Chapter 1

Introduction

1.1 Background and Motivation
Decarbonization is a growing trend in the energy sector [1], and renewable energy

generation plays a vital role in supporting such an energy transition [2], pushing elec-
tric power systems toward new operational and economic paradigms [3]. The imme-
diate request to integrate renewable energy sources (RESs) into electrical grids is tied
to benefits, such as the decentralization of generation, which increases the reliability
in power dispatch [4]. In addition, integration of RESs provides a more diverse en-
ergy matrix that favors economic gains [5]. Nevertheless, as the proliferation of RESs
increases, previously unknown technical and policy-related challenges arise [6], de-
manding research into new operational and regulatory strategies [7] for electric power
systems.

Typically, RESs are small-scale energy generators that operate interconnected to
electrical grids, by means of power electronic converters. Such an incorporation of
power interfacing devices to RESs is part of the concept of distributed energy resources
(DERs) [8]. In fact, DERs may also comprise energy storage systems (ESSs), and
other complementary embedded technologies and functionalities, such as communic-
ation interfaces and remote control capabilities [9]. Hence, although RESs are in the
spotlight of the actual energy transition [3], their potential benefits to electric systems
cannot be fully exploited without the conceptualization of DERs.

In AC electrical systems, DC-AC power converters (i.e., so-called inverters) are
the main electronic units of DERs in relation to the provision of controlled power
conversion from RESs (e.g., photovoltaic- (PV) and wind-based generators), as well as
from ESSs. A schematic of an inverter-based DER connected to an AC power system is
depicted in Fig. 1.1. Converting power through inverters is possible due to their power
electronics infrastructure [10], which allows the possibility to modulate voltage and
current waveforms through the commutation of power switches. Concomitantly, the
control algorithms embedded to such inverters are the ones responsible for dictating the
operational features of DERs [11], adapting their voltages and currents according to
energy generation and grid quantities. For instance, DERs can be managed to pursue
local or global goals [12], leading to enhanced operation at their particular electric
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Figure 1.1: Schematic of a DER composed of a RES or ESS, and its inverter connected to an
AC distribution system.

nodes, or at their entire interconnected grid, respectively.

Conventional inverters existing within DERs are commonly designed to only pro-
cess active power, providing a dispatch of RESs’ generated energy to the electrical
grid. However, in recent years, led by the trend for Smart Grids (SGs) [12, 13], the
concept of smart inverters has enlightened new perspectives on the purpose of such
equipment [14, 15]. Beyond the provision of active power conversion, smart invert-
ers (also called multifunctional inverters) offer the possibility to employ their rated
capabilities in services related to power conditioning and grid support [16]. Thus,
flexible implementation of power quality interventions, and more sophisticated power
distribution planning strategies have become possible [17].

To implement such a perspective, the control flexibility of inverter-based DERs can
be exploited to offer ancillary functionalities, such as voltage support to the grid [18],
compensation of power oscillations and unbalanced currents [14], mitigation of react-
ive and harmonic components [19], and many others [15]. Moreover, since information
and communication technologies (ICTs) are intrinsic to SGs, communication features
are becoming compulsory for inverters [8]. This consequently allows them to support
remote control and interoperability, while broadening their applications to scenarios
of cooperative and coordinated operations [14, 20].

As more and more multifunctional abilities are being incorporated into electrical
grids, especially from the perspective of low-voltage (LV) power systems, the locally-
oriented operation of inverters is doomed to become obsolete. This occurs because
operation of DERs under individualized perspectives (i.e., purely local) does not take
into account the status of other equipment or the overall needs of the grid. Moreover,
non-coordinated DER actions may interfere with the proper functioning of their neigh-
boring inverters [21], as well as impairing grid stability [22]. To corroborate such un-
desired effects of interacting DERs, one can observe issues like the multi-timescale
coupling among their control loops [23], and the generation of circulating currents
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caused by the lack of synergy during their parallel operation [21].

On the other hand, as reinforced in [23], if proper coordination among multifunc-
tional inverters is formulated, more reliability and robustness can be achieved from
both local and global operational perspectives. Thus, the coordinated control of DERs
not only offers enhanced use of inverters’ power capabilities, but also decreases the un-
desired side-effects of their local functioning. Furthermore, proper coordination of an-
cillary services devised by smart inverters dispersed over AC grids can even optimize
the profitability of prosumers (i.e., DERs’ owners that also comprise local consump-
tion) [24]. Moreover, this also supports the offering of energy management features to
benefit entities at power system levels [25].

The importance of coordinating inverters is further evidenced in the so-called weak
grids, which are power systems comprising low short-circuit ratio and small inertia
constant [26]. In such a scenario, the significant presence of DERs potentially affects
the grid capability to maintain steady and compliant voltage profiles. Consequently,
this results in a chain effect that may interfere with the adequate operation of loads and
grid-tied converters [26], as well as potentially lead to the propagation of non-idealities
(e.g., harmonic distortions) [27] to adjacent distribution grids [28].

This condition is particularly frequent, and critical, in weak microgrids (MGs),
which are defined by [29] as power systems that: i) present clearly established elec-
trical boundaries; ii) comprise a considerable amount of loads and interconnected
DERs; iii) have the capability to act as a single controllable entity, with respect to
its point-of-connection (PCC) with an upstream grid (see Fig. 1.1); and that iv) are
able to operate both interconnected and islanded (i.e., under autonomous mode [30]).
Given all the particularities of MGs, their design, operation and management have
been extensively explored in the literature [31, 32, 33, 34], often converging on the
conclusion that proper coordination of DERs is imperative.

Since ICT is being widely incorporated into the infrastructure of electric grids,
along with the fact that MGs can be interpreted as individual entities, smartness can
also be extended to how such systems behave and operate. Smart MGs, for instance,
are systems that are intelligently self-sufficient (i.e., internally exploiting their re-
sources to be fully independent) [35]. Moreover, they are capable of dynamically
interacting with external agents to optimize internal and external financial and opera-
tional objectives [36].

As a result, if a smart MG is flexibly modeled and managed to act according to
market and technical requirements, it can accordingly take part in controlled energy
transactions [37]. Hence, smart MGs possess the means to interact with external agents
(e.g., the distribution system operator (DSO), aggregators or other MGs) to trade
market-regulated energy services. Among the examples of such services provided
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by LV MGs, one can find controllable power dispatchability [25], and power quality
support to achieve more robust operation of distribution grids [38].

The summary presented in Fig. 1.2 represents the scalable complexity of how the
context of RESs and SGs is impacting on how equipment (such as inverters) and power
systems (such as MGs) are evolving and interacting with other entities. It can be noted
that, although each of the previous discussions may be seen as an independent topic,
all concepts are fundamental pieces of the overall infrastructure of real SGs. Although
the practical model of SGs is complex, extending from consolidated concepts like
automation and digitalization, up to emerging ideas such as the energy internet [39], it
can be first realized by intelligently operating equipment that supports basic principles,
such as interoperability.

The background of this PhD thesis is also immersed within the multidisciplinary
context found in Fig. 1.2. By assimilating different SG concepts, the scope of this
thesis encompasses the idea of how multiple technological principles (e.g., smart in-
verters, coordinated control, energy services) can be integrated to obtain the flexible
operation of MGs. Beyond basic management features, the consideration of non-ideal
operational conditions is also of interest to this thesis, not to mention the importance
of accounting for market-oriented applicability. Thus, in summary, the grounds of this
thesis take into consideration the employment of smart inverters as potential tools to
improve the management of MGs, under diverse operational conditions, also invest-
igating possibilities to broaden the provision of ancillary energy services focusing on
the LV perspective.

DERs

✓  Decarbonization

✓  Renewables → RESs

✓  Energy Storage → ESSs

Smart Inverters

✓  Power Conversion

✓  Ancillary Services

✓  Remote Control

Smart Microgrids

✓  Power Dispatchability

✓  Ancillary Support

✓  Coordination of DERs

✓  Energy Services

✓  Transactive Control

MG 
Apparatus

PCC

✓  ICT

✓  Automation

✓  Digitalization

✓  Interoperability

✓  Energy Internet

✓  Energy Management

✓  ...

Smart Grids (SGs)

Figure 1.2: Background context of DERs, smart inverters and MGs within the scenario of
SGs.
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1.2 Main Goals and Contributions

1.2.1 Main Goals of the PhD Thesis

This PhD thesis is grounded in the perspective of a smart AC MG comprising a
significant amount of DERs of different natures, considering that their inverters have
the capability to operate as multifunctional devices offering ancillary services. The
targeted scenario holds homogeneous features, indicating that DERs, loads and line
impedances are fairly evenly distributed throughout the MG. In addition, since a MG
acts most of the time under the interconnected mode [5], this thesis also focuses on the
features of its operation as a single-controllable entity, assessing how it can contribute
to the support of an upstream distribution network.

Based on the above-mentioned conceptualization, the major objective of this thesis
is to develop a coordinated control strategy to allow transactive and multi-purpose
steering of DERs dispersed over an AC MG, focusing on the LV perspective. The
transactive control aspect of such a strategy [40] is intended to support the possibility
for the MG to trade energy services with external agents. Consequently, the flexibility
to achieve market-oriented management over active power dispatchability, in addition
to the extended provision of ancillary services, is offered. Furthermore, the proposed
multi-purpose feature relates to the fact that, beyond providing controllable power
extraction from DERs, distributed compensation of unwanted current components, as
well as voltage regulation, can be pursued.

Another goal of this thesis is to ensure that the proposed coordination of inverters
is valid under non-ideal operational scenarios, such as non-sinusoidal voltages, abnor-
mal voltage scenarios, as well as under ICT-related issues. Such goals imply that, by
providing flexible steering of DERs in a MG, both local and global objectives related
to power exploitation, power quality, grid support, and market-oriented actions can be
obtained.

The main goals of this thesis are explicitly highlighted as follows. They specify the
idea of developing a coordinated control strategy that grants:

1. Model-free formulation and flexible implementation

In order to deploy the strategy, features that facilitate its real implementation are
desirable, for the sake of practicality and commercial attractiveness. Hence, a
goal is set by developing a strategy that is: i) topology independent, ii) model-
free, and iii) plug-and-play.

The topology independence of the strategy strives to make it applicable to AC
MGs, regardless if they are based on single- [41], three-phase, or other poly-
phase circuits [42]. The model-free aspect implies that knowledge of MG para-
meters (e.g., line impedance characteristics, location of DERs or loads, features
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of transformers, etc.) are not essential for the adequate and proportional steering
of DERs [43]. In addition, the plug-and-play feature relates to the self-adjusting
capability of the control strategy to dynamically rearrange the coordination of
inverters during changes in the MG;

2. Adjustable active power conversion

Since the main purpose of DERs is to inject active power into grids, it is import-
ant to achieve controllability over such functionality. Thus, energy exploitation
can efficiently occur without affecting grid performance. Additionally, as power
generation profiles may be intermittent or limited, variability in the local op-
eration of DERs should be supported. Lastly, DERs of a dispatchable (e.g.,
endowing ESSs) and non-dispatchable (e.g., PV- or wind-based) nature may ex-
ist (i.e., herein denoted as d- and nd-DERs), so that the strategy must cope with
their synergistic operation;

3. Distributed compensation of unwanted currents

In AC MGs, reactive, harmonic and unbalanced current components are tied
to the lowering of energy efficiency and deterioration of power quality [27].
Hence, the control strategy intends to exploit dispersed inverters to also provide
distributed compensation of reactive currents, as well as selective mitigation of
harmonics. The compensation of unbalanced currents is also considered for
particular implementations;

4. Operation upon adverse scenarios

In general, LV MGs are known to be weak systems, in which voltage waveforms
cannot always be ideal (i.e., sinusoidal with constant magnitude). Consequently,
the goal of ensuring that the proposed coordinated control strategy presents ro-
bust operation under non-ideal scenarios is accounted for. In particular, this
thesis presents an assessment of the control approach upon scenarios of distor-
ted voltages, as well as considering voltage ride-through challenges. Another
research target is to demonstrate the features of the strategy under the occur-
rence of ICT-related issues, such as faulty communication links and delays in
data transmission;

5. MG dispatchability and support to transactive control

The key factor in the MG participation in energy transactions [37] is the ability
to achieve full power dispatchability. This thesis has the objective of demon-
strating that, by adequately coordinating DERs, the energy flow at the MG PCC
can be regulated to achieve decoupled active, reactive and harmonic control-
lability. Consequently, access to market-oriented transactions of active power
flow is individually possible. In addition, the reactive and harmonic power flow
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control at the PCC can support the planning of power dispatch for the upstream
grid and provide high power factor operation, respectively, being interpreted as
marketable energy services. Finally, full controllability over active and non-
active currents at the PCC also offers the possibility for the MG to operate under
self-consumption mode [44] (i.e., neither depending on the upstream grid, nor
significantly affecting its operation).

6. Voltage regulation capability

While exploiting DERs in distribution systems, it is important to ensure that
voltage profiles are maintained within acceptable ranges [8], foremost in the
internal nodes of the MG. With this in mind, this thesis also strives to develop
a coordinated control strategy that sustains the regulation of voltage profiles, if
overvoltage conditions occur internally to the MG. The availability of several
DERs to contribute to voltage regulation is also taken into account.

7. Experimental validations

Since the development of the coordinated control strategy reaches the power
electronics layer, it is important to validate the applicability of the proposed
functionalities to real-life implementations. As a result, beyond demonstrating
computational simulations, laboratory scale prototypes have been set up to ex-
perimentally assess the performance of the coordination approach.

1.2.2 Contributions of the PhD Thesis

This thesis explicitly presents the following scientific and nonscientific contribu-
tions, which are also evidenced by the scientific publications presented in Section 1.3:

Scientific Contributions

1. The development of a centralized strategy that provides multi-purpose coordin-
ated control of inverters in transactive MGs. The coordination approach, so-
called Generalized Current-Based Control (GCBC), is formulated based on the
analysis of electrical currents flowing within the MG, also considering power ex-
change interactions with the upstream distribution grid at the PCC. The GCBC
encompasses all the features previously explained in Section 1.2.1 for goal 1,
while also endowing control capabilities to achieve goals 2 to 5.

2. A systematic assessment of the features of the proposed coordination approach
is realized, by means of computational simulations and extensive experimental
work, being carried out on multiple simulation testbenches and laboratory-scale
MG prototypes. Beyond evaluating non-ideal scenarios of operation, compar-
ative studies with another well-known coordination strategy (i.e., droop control
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[31]) are conducted to highlight the particularities and contributions of the pro-
posed method;

3. An innovative approach is proposed to devise a resistive shaping for the PCC
of an interconnected MG, considering that the upstream distribution grid oper-
ates while suffering from distorted voltages. The method provides high power
factor operation and, upon the existence of resonant components, it supports
harmonic resonance damping, which minimizes deterioration of voltage quality.
In addition, the control approach holds improved performance when compared
to strategies that aim to fully mitigate harmonic currents;

4. A method to steer DERs to achieve distributed and decoupled compensation of
unbalanced currents in MGs, without requiring the implementation of virtual
impedance control loops [31], nor the extraction of sequence components. Such
an approach incorporates the Conservative Power Theory (CPT) [45] for gener-
ating reference currents for the compensation purposes;

5. Taking advantage of the MG power dispatchability, an automatic voltage reg-
ulation scheme is formulated. It is demonstrated that the energy exploitation
of non-dispatchable inverters can be enhanced without optimization algorithms,
while ensuring that overvoltage conditions are mitigated internally to the MG.
This occurs by the synergistic active and reactive power control of d- and nd-
DERs. Additionally, the proposed strategy allows the possibility to integrate
DERs into voltage regulation regardless of their location in the MG;

6. An extended outlook on the power dispatchability of transactive MGs is presen-
ted, demonstrating that multiple ancillary services can be provided. Moreover,
a transactive control framework for MGs is designed, relying on the steering
of DERs to offer the flexible provision of energy services in the power system
level, thus supporting accessibility to electricity markets.

Nonscientific Contributions

1. Two main contributions relate to UNESP/Sorocaba-Brazil. The first one con-
cerns the implementation of two experimental MG prototypes being: i) one
composed of three-phase inverters; and ii) one devised by the realization of tech-
nical improvements in a previously existent single-phase platform. Beyond the
fact that both testbenches can be used in future research, they lead to the second
contribution, which is the incorporation of these experimental infrastructures
into the activities executed for the thematic project "Interdisciplinary Research
Activities in Electric Smart Grids" [46], which is funded by FAPESP;

2. Two last contributions relate to NTNU/Trondheim-Norway. This PhD thesis
is also a direct outcome of the "Norwegian-Brazilian Collaboration on
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Power Theories and Cooperative Control for Renewable Energy Integration
(NB_POCCREI)" project [47], which was funded by the the Research Coun-
cil of Norway. Additionally, the interactions resulting from this thesis led to a
Cotutelle agreement for a double degree PhD, taking part in strengthening the
scientific cooperation between NTNU and UNESP.

1.3 List of Publications
During the three-year period of this PhD project, the main scientific findings have

been published in the following journal and conference articles. Such publications
present results obtained as a direct outcome of this PhD research, also comprising
additional contributions in correlated topics.

Journal Papers:

J.1) A. M. S. Alonso, D. I. Brandao, E. Tedeschi, and F. P. Marafao, “Resistive
Shaping of Interconnected Low-Voltage Microgrids Operating Under Distorted
Voltages,” IEEE Transactions on Industrial Electronics, 2021. Accepted

J.2) A. M. S. Alonso, L. O. Arenas, D. I. Brandao, E. Tedeschi, and F. P. Marafao,
“Automatic Overvoltage Control of Distributed Energy Resources Supporting En-
hanced Energy Exploitation in Interconnected Microgrids,” IEEE Transactions on
Sustainable Energy, 2021. Under Review

J.3) A. M. S. Alonso, J. H. Oliveira, D. I. Brandao, J. P. Bonaldo, H. K. M. Paredes,
and F. P. Marafao, “A Multifunctional Grid-Tied Inverter for Two-Phase Three-
Wire Networks Based on the Conservative Power Theory,” IEEE Transactions on
Power Delivery, 2021. Under Review

J.4) A. M. S. Alonso, D. I. Brandao, E. Tedeschi, and F. P. Marafao, “Distributed
Selective Harmonic Mitigation and Decoupled Unbalance Compensation by Co-
ordinated Inverters in Three-Phase Four-Wire Low-Voltage Networks,” Electric
Power Systems Research, vol. 186, pp. 1–14, 2020.

J.5) A. M. S. Alonso, D. I. Brandao, T. Caldognetto, F. P. Marafao, and P. Mattavelli,
“A Selective Harmonic Compensation and Power Control Approach Exploiting
Distributed Electronic Converters in Microgrids,” International Journal of Elec-
trical Power & Energy Systems, vol. 115, pp. 1–15, 2020.

J.6) A. M. S. Alonso, B. R. Pereira Jr., D. I. Brandao, and F. P. Marafao, “Optimized
Exploitation of Ancillary Services: Compensation of Reactive, Unbalance and
Harmonic Currents Based on Particle Swarm Optimization,” IEEE Latin America
Transactions, vol. 19, no. 2, pp. 314-325, 2021.

J.7) L. S. De Araujo, A. M. S. Alonso, and D. I. Brandao, “Decentralized Control
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of Voltage- and Current-Controlled Converters Based on AC Bus Signaling for
Autonomous Microgrids,” IEEE Access, vol. 8, pp. 202075–202089, 2020.

J.8) J. P. Bonaldo, J. A. O. Filho, A. M. S. Alonso, F. P. Marafao, H. K. M. Paredes,
“Modeling and Control of a Single-Phase Grid-Connected Inverter with LCL Fil-
ter,” IEEE Latin America Transactions, vol. 19, no. 2, pp. 205-259, 2021.

J.9) D. I. Brandao, W. M. Ferreira, A. M. S. Alonso, E. Tedeschi, and F. P. Marafao,
“Optimal Multiobjective Control of Low-Voltage AC Microgrids: Power Flow
Regulation and Compensation of Reactive Power and Unbalance,” IEEE Trans-
actions on Smart Grid, vol. 11, no. 2, pp. 1239–1252, 2020.

J.10) D. I. Brandao, L. S. Araujo, A. M. S. Alonso, G. L. dos Reis, E. V. Liberado,
and F. P. Marafao, “Coordinated Control of Distributed Three- and Single-Phase
Inverters Connected to Three-Phase Three-Wire Microgrids,” IEEE Journal of
Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 3861–3877,
2020.

Conference Papers:

C.1) A. M. S. Alonso, L. O. Arenas, R. T. Hock Jr., H. Guillardi Jr., H. K. M.
Paredes, F. A. S. Goncalves, and F. P. Marafao, “Experimental Implementa-
tion of a Single-Phase Microgrid: A Flexible Resource for Research and Edu-
cational Activities,” in 2021 IEEE 16th Brazilian Power Electronics Conference
(COBEP), 2021. Accepted

C.2) A. M. S. Alonso, F. Göthner, D. I. Brandao, F. P. Marafao, and E. Tedeschi,
“Power- and Current-Based Control of Distributed Inverters in Low-Voltage Mi-
crogrids: Considerations in Relation to Classic Droop Control,” in 2020 15th In-
ternational Conference on Ecological Vehicles and Renewable Energies (EVER),
2020, pp. 1–10.

C.3) A. M. S. Alonso, L. C. Afonso, D. I. Brandao, E. Tedeschi, and F. P. Marafao,
“Considerations on Communication Infrastructures for Cooperative Operation
of Smart Inverters,” in 2019 IEEE 15th Brazilian Power Electronics Conference
and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), 2019,
pp. 1–6.

C.4) A. M. S. Alonso, H. K. M. Paredes, J. A. O. Filho, J. P. Bonaldo, D. I. Brandao,
and F. P. Marafao, “Selective Power Conditioning in Two-phase Three-Wire Sys-
tems Based on the Conservative Power Theory,” in 2019 IEEE Industry Applic-
ations Society Annual Meeting, 2019, pp. 1–6.

C.5) A. M. S. Alonso, D. I. Brandao, F. P. Marafao, and E. Tedeschi, “Coordinated
Control of Parallel Power Conditioners Synthesizing Resistive Loads in Single-
Phase AC Microgrids,” in 2019 21st European Conference on Power Electronics
and Applications (EPE ’19 ECCE Europe), 2019, pp. 1–9.
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C.6) A. M. S. Alonso, D. I. Brandao, E. Tedeschi, and F. P. Marafao, “Distrib-
uted Harmonic Compensation in Single-Phase Low-Voltage Microgrids,” in XXII
Brazilian Conference on Automation (CBA), 2018, pp. 1–8.

The above-mentioned publications support multiple chapters of this thesis, and they
can be mapped according to Table 1.1. Moreover, it is highlighted that the following
three additional papers are currently being written: i) one journal paper, being an ex-
tension of "C.2", which has been invited for possible publication in IEEE Transactions
on Industry Applications; ii) one journal paper comprising the results from Section
5.5; and iii) one conference paper composed of discussions presented in Chapter 2.

Table 1.1: Mapping of publications to chapters.

Chapter 2 3 4 5 6

Journal - J.3, J.4, J.5, J.8 J.4, J.5, J.7, J.10 J.5
J.1, J.2, J.4, J.6

J.8, J.9, J.10
Conference - C.2, C.3, C.6 C.1, C.2, C.6 C.6 C.4, C.5

1.4 Structure of the Thesis
Besides its introductory part, this thesis is structured into six additional chapters,

aiming at plainly conveying the ideas and contributions comprised within the proceed-
ing discussions.

Firstly, in Chapter 2, the transactive aspect of MGs is presented. The concept of
Transactive Energy Systems (TESs) is introduced, and the MG power dispatchability is
discussed as a means to offer energy services, constituting a market-oriented outlook.

Chapter 3 explains the MG and DER topologies considered within this thesis, and
it presents the basic formulation of the proposed multi-purpose coordination of DERs
(i.e., the GCBC approach). The hierarchical control infrastructure of the strategy, as
well as its flexibility to control multiple current components, is thoroughly explained.

The multiple functionalities and transactive features of the GCBC strategy are
demonstrated in Chapter 4, in which extensive simulations and experimental results
are discussed. Moreover, additional operational considerations, such as the MG trans-
ition modes and a comparison with the droop control approach, are discussed.

Adverse operational scenarios, such as under distorted voltages, upon ICT-related
issues, and consideration of the matter of power coupling among DERs, are assessed
in Chapter 5. The goal of the discussions in this chapter is to show that the GCBC
approach is flexible and resilient for implementation in weak LV MGs.
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Advanced control functionalities related to the resistive shaping of MGs, distributed
compensation of unbalanced currents, and voltage regulation capabilities are provided
in Chapter 6. Moreover, a brief discussion about the integration of optimization ap-
proaches to the coordination strategy is also given.

Lastly, Chapter 7 presents the final conclusions of the PhD thesis, and offers pro-
posals for the development of future works.
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Conclusions

7.1 General Conclusions
In this thesis, a multi-purpose coordinated control strategy has been presented to

flexibly steer inverter-based DERs, focusing on the scenario of LV MGs participating
in transactive energy markets. Such a control approach, namely GCBC, relies on a
hierarchical architecture, and it uses a centralized unit (i.e. the MGCC) to adjust the
operation of inverters according to the desired MG operational goals.

The GCBC strategy is formulated based on the analysis of peak currents flowing
within the MG, and it presents a model-free feature, which provides a means to co-
ordinate DERs without previous knowledge of the MG’s physical parameters (e.g, line
impedances values). A synergistic interaction between both dispatchable and non-
dispatchable inverters is supported by the GCBC, guaranteeing that the strategy can
cope with realistic scenarios of LV MGs. In addition, the coordinated steering of DERs
allows the MG to achieve internal objectives, also offering operational functionalities
that support the energy planning of an upstream distribution grid.

The multifaceted perspective of transactive MGs was discussed in Chapter 2, point-
ing out their multiple possibilities of interactions in energy markets, under both finan-
cial and technical aspects. Besides this, a transactive control framework was presented
to clarify the participation of MGs as market players, as well as highlighting their
technical role in the scenario of cellular electric systems. Moreover, an extended out-
look on ancillary functionalities was discussed, situating MGs as key players in the
provision of grid-supporting energy services.

The infrastructure of the considered LV MG topology was presented in Chapter
3, explaining the scope of application of this thesis. The elementary local control
infrastructures of nd- and d-DERs were briefly presented, showing that they can offer
active power conversion from RESs or ESSs, and that smart inverters can also support
the provision of ancillary services. The three-layer hierarchical architecture of the
GCBC strategy was explained in detail, highlighting how the approach steers DERs,
as well as explaining how the MG interacts with external agents. Additionally, the
basic formulation of the GCBC strategy was also discussed, demonstrating that the
analysis of peak currents can offer current sharing capabilities for DERs, as well as
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showing that the MG can be controlled as a single dispatchable entity.

Multiple purposes of operation for the MG were exemplified in Chapter 4, by
means of simulation and experimental results. It has been demonstrated that the GCBC
strategy allows us to control inverters to pursue active and reactive current sharing, sup-
plying loads and alleviating the upstream grid from this burden. Moreover, the purpose
of achieving distributed and selective compensation of harmonic currents has been
demonstrated, by itself and while integrated into the control of fundamental currents.
Thus, beyond controlling inverters to compensate non-active currents, the GCBC of-
fers to the MG the possibility of operating under full self-consumption mode. Yet, as
intermittency is inherent to distributed generation systems, the strategy can cope with
variable generation profiles.

The MG power dispatchability has also been explored in Chapter 4, giving support
to the major transactive aspect of the MG, which is related to energy trading capability.
Both absorption and dispatch of active currents can be controlled at the MG PCC, as
long as DERs present sufficient energy generation and nominal capabilities to support
the intended goal. Yet, such a feature is conditional on the fact that MG contractual
constraints should always be obeyed, as well as compliance with grid codes. Further-
more, reactive power dispatch can be offered either independently or concomitantly to
active power control, giving more flexibility for the MG to sell energy services in trans-
active markets. Chapter 4 has also demonstrated that the MG functionalities offered by
the GCBC strategy are not affected by the features of line impedances, guaranteeing
that proportional sharing of currents occurs among DERs, in contrast to strategies such
as the conventional droop control.

Since LV MGs are usually weak systems, they are susceptible to operating under
non-ideal scenarios. Hence, Chapter 5 highlighted the particularities of the GCBC
approach when inverters operate under limited power ratings. Additionally, it has been
demonstrated that the strategy endures operation when voltages are highly distorted,
as well as that it presents voltage ride-through capabilities. Another interesting feature
related to the adoption of the GCBC strategy, particularly for homogeneous MGs, is
that it provides voltage quality improvement as an indirect outcome of the proportional
sharing of non-active currents. Finally, considerations on stability, communication
matters and power coupling are concluded in Chapter 5, indicating that the GCBC
presents operational concerns that, although not critical from a stability standpoint,
need to be taken into account prior to deploying the strategy.

Advanced control functionalities have been presented in Chapter 6, providing en-
hanced operational features for LV MGs. It has been demonstrated that, based on a
few adaptions of the GCBC strategy, the MG can be shaped to operate as a variable
resistor when voltage distortions exist, allowing high power factor operation at the
PCC, and supporting the damping of harmonic resonances. Voltage regulation has
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also been devised in Chapter 6, by means of an automatic approach that provides co-
ordinated Volt/Watt and Volt/VAR actions, allowing us to minimize the curtailment of
active power from nd-DERs. Finally, an approach based on the CPT was incorporated
into the GCBC, providing a means to achieve distributed compensation of unbalanced
active and reactive currents.

In summary, the overall conclusion of this thesis is that the GCBC strategy allows
the possibility of offering multiple functionalities for LV MGs. Both internal and ex-
ternal operational purposes of MGs can be considered while exploiting DERs, and the
integration of technical and market-related objectives can be taken into account. Thus,
the control approach can be seen as an innovative alternative to coordinate DERs in
MGs, contributing to the movement of the electric sector towards the implementation
of smarter grids.

7.2 Future Works
The following scientific aspects have been identified as prospective topics for future

works, aiming at expanding and giving continuity to the contributions found within this
PhD thesis.

a) Optimal regulation of the MG operation: Even though multiple operational pur-
poses can be offered by the GCBC strategy, MGs must dynamically adjust their
goals according to real-life oriented market indexes and energy generation fore-
casts [220]. Thus, optimal approaches [66, 217] can be devised to efficiently ex-
ploit the capabilities of DERs, steering them to better attend to the needs of the
MG. Multi-objective actions can be modeled for the MG, allowing the possibility
to optimize its internal usage of energy, as well as improving economic profitability
for prosumers and the MG manager;

b) MG power dispatchability supporting cellular electric systems: The coordin-
ated control strategy proposed in this thesis allows us to flexibly adjust the MG
power dispatchability, also shaping the PCC to emulate different behaviors for the
upstream grid. Consequently, the external interactions of the MG can be included
in the energy planning horizon of cellular electric systems (i.e., power systems
comprising multiple interconnected and supervised MGs, such as in cluster topo-
logies [52, 55]). Such operationality can to incorporate controllable provision of
distributed energy generation in an utility scale. Moreover, ancillary services can
be offered under the power system perspective, supporting voltage and frequency
regulation, congestion management, as well as power quality improvement;

c) Coordination of single- and three-phase DERs arbitrarily connected to three-
phase MGs: Although in this thesis simulation and experimental results only con-
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sidered either single- or three-phase inverters, LV MGs commonly present DERs
based on both topologies. Similarly to [68] and [71], the GCBC strategy can be ex-
tended to accommodate both single- and three-phase inverters in three-phase MGs
to support the sharing of fundamental currents. Additionally, distributed compens-
ation of harmonic currents using both inverter topologies, which has been rarely
studied in the literature, can be investigated based on the GCBC strategy;

d) Coordination of DERs under asymmetrical voltages: Asymmetries in voltages
often occur in weak grids, and the coordination of DERs should take that issue into
account. Further studies can conducted using the GCBC strategy to understand
how DERs can be steered to mitigate voltage unbalances, as well as to shape the
MG PCC to achieved different operational behaviors, such as the one of balanced
conductances or susceptances [148];

e) Redesign the GCBC strategy following a distributed control architecture:
Since the GCBC strategy relies on a centralized architecture, the existence of the
MGCC is unavoidable. Nevertheless, if the calculation required to attain control
references can be performed under a distributed architecture [226], multi-purpose
control can be supported without a central agent. Thus, improved reliability can be
achieved, as communication issues become less critical;

f) Fair voltage regulation: The automatic voltage regulation scheme proposed in
Section 6.3 coordinates d-DERs only proportionally to their nominal ratings and
generation capabilities. Consequently, the natural discrepancy occurring among
their voltage magnitudes, which is caused by voltage drops through line imped-
ances, is not taken into account. Hence, if the concept of fair overvoltage [205] con-
trol is incorporated to the GCBC strategy, all d-DERs (i.e., even those placed close
to the DST) can contribute to voltage regulation proportionally to their voltage
magnitudes. This feature would allow us to obtain a more equalized voltage profile
for all nodes of the MG.
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