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A scheme inspired in Lie algebra extensions is introduced that enlarges gauge models to allow 
some coupling between space-time and gauge space. Everything may be written in terms of a 
generalized covariant derivative including usual differential plus purely algebraic terms. A 
noncovariant vacuum appears, introducing a natural symmetry breaking, but currents satisfy 
conservation laws alike those found in gauge theories. 

I. INTRODUCTION 

The phenomenological successes of the standard model 
encompassing the Weinberg-Salam model and QCD 
brought about an optimistic hope that gauge theories would 
provide the clue to the whole question of fundamental pro- 
cesses. It was anticipated that gravitation would also submit 
to ajoint picture and a more general, unified theory would be 
found including and surpassing both the standard model and 
General Relativity. However, as the years went by, it was 
realized that such high expectations were not being fulfilled. 
The large number of free parameters in electroweak theory, 
the difficulties with grand unification, the lasting frustation 
concerning the quark confinement problem and the dogged 
resistence of gravitation to submit to the standard gauge 
scheme have progressively changed those feelings. Experi- 
mental results are more then enough a guarantee that gauge 
theories are fundamental indeed, but theory would say that 
they must be somehow enlarged, the present dominating 
trends being those involving strings and supersymmetry. We 
wish here to examine the first steps into another, quite differ- 
ent kind of generalization of gauge theories, inspired in the 
theory of Lie algebra extensions. Experience in gravitational 
gauge modeling strongly suggests a coupling between space- 
time and gauge space, while gauge models presuppose a 
strict local separation between them. The aim will be to find 
an acceptable compromise between these two conflicting po- 
sitions. 

The general ideas are exposed in Sec. II, where attention 
is called to the fact that independence between space-time 
and gauge space is equivalent to the adjoint character of the 
gauge potential. It follows in Sec. III a purely descriptive 
resume on the subject of Lie algebra extensions,“2 in reality 
an adaptation of material on group extensions3v4 which is 
more abundant in the physical literature. In the next section 
some homological language’ is introduced and the previous 
results translated into it. The tone is rather pedagogical, in- 
troducing algebraic terminology via analogy with the suppo- 
sedly known language of differential forms. Although mod- 
ern treatments of the subject make use of general modules,6 
we prefer to follow here the physically more intuitive 

J’ On sabatical leave from Instituto de Fisica Teorica, UNESP, Sao Paulo, 
Brazil. 

aproach using representations (or better, actions). This also 
allows us the consideration of the case in which neither alge- 
bra reduces to a module of the other and leads to a difference 
with respect to usual treatments, with the use of algebra- 
valued cochains instead of the module-valued ones. “Non- 
commutative” modules are extensively used in noncommu- 
tative geometry,’ so that our approach is more akin in spirit 
to cyclic cohomology. Progressive introduction of bundle 
language hopefully paves the way to a later comparison with 
the geometrical approach to gauge theories. In order to keep 
notation and language at a reasonable level of simplicity, we 
adopt a rather free way of speaking, forgetting about sec- 
tions, pull-backs, etc. whenever they are not essential. An 
algebraic derivative appears, in terms of which cohomology 
of representations has a treatment formally similar to the 
cohomology of differential forms. Group extensions have 
been used3 in the sixties to provide the formal proof of the so- 
called no-go theorems, or the theorems of McGlinn type.8 
Such theorems forbade coupling between internal and space- 
time symmetries at the algebraic level, an interdiction cir- 
cumvented by gauge theories through the introduction of 
local vector fields. A brief outline on vector fields on mani- 
folds and of the bundle structure of gauge theories is given in 
Sec. V. In this case, of course, usual differentials are also at 
work, and it turns out that everything can be written in terms 
of generalized derivatives, sums of usual and algebraic de- 
rivatives. Finally, the general field equations leading to what 
we claim to be the natural generalizations of Yang-Mills 
equations are given in Sec. VI. Generalized source currents 
satisfy, rather surprisingly, a conservation law analogous to 
the covariant divergenceless of currents in gauge theories. 

II. GAUGE SPACE AND SPACE-TIME 
Separation between space-time and internal space is in- 

herent to the subjacent geometrical structure in the gauge 
scheme, a differentiable fiber bundle which is a smooth 
manifold combining “internal” gauge space and space-time 
in such a way that the total space is locally a direct product of 
both. In very simple words, disregarding sections and pull- 
backs, around any point of the bundle there exists a neigh- 
borhood on which a “separated” basis {X,} = {X0,X,> is 
defined for the local vector fields, the first m ( = space-time 
dimension) fields X0 representing a basis for space-time 
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fields and the remaining Xi representing a basis for the gauge 
group algebra. In such “direct product” basis’ the members 
will have commutation relations of the form 

[X0&] =fCo*xc, 
[X,26] = 0, (2.1) 
[X,,X, ] = cj,,q. 

The right-hand term in the first relation represents merely 
the possible anholonomicity of the space-time basis, which 
we shall keep for a while because it gives a similar aspect to 
the two algebras involved. The vanishing of the second com- 
mutator signals the separation between space-time and the 
gauge space, the direct-product character of the association 
of the algebras generated by the X,‘s and the X,‘s: In pedant 
language, the fields Xi’s respond to the action of the X0’s 
according to the null representation. Equations (2.1) sum- 
marize the basic, underlying background into which the 
gauge potentials are to be inserted. 

In the presence of a connection (or gauge potential) 
a = X,aj the X@‘s are replaced by the covariant derivatives 
XL = X0 - CC’~ X,, in terms of which the commutation rela- 
tions become 

[x:,x;] =fC&X; - Fj&Xj, 

[x;,xj] = 0, (2.2) 

[X,,X,] = C’,,x,. 

This new basis is sometimes called the “horizontal lift” basis. 
The fields {X,) keep forming an ideal of the total field alge- 
bra and a representation of the gauge group algebra. The 
coefficients 

F" uh=Xo(ahh)-XXb(ah,)--fc,,ah,-CC~a',a/h 
(2.3) 

represent the connection curvature (gauge field strength). 
The vanishing of the second commutator requires now that 

X, (aj, ) = Cihiako, (2.4) 
a condition also used to obtain (2.3). Of course, this only 
says that a belongs to the adjoint representation and is the 
expected behavior of a connection under infinitesimal gauge 
transformations, but it is important to notice this relation 
between a's adjointness and the independence between “in- 
ternal” gauge space and space-time. 

Fields on manifolds generate one-dimensional local 
transformation groups. A field Y responds to the action gen- 
erated by a field X according to the Lie derivative 
L, Y = [X, Y ] and the commutation relations describe the 
actions of transformations generated by the fields on each 
other. The second relation says that space-time fields do not 
“feel” gauge transformations and gauge fields do not “feel” 
space-time transformations. Anholonomicity being unes- 
sential, the X, in (2.1) may be seen as representing the gen- 
erators of the group of translations on space-time. The pres- 
ence of a connection modifies these translation generators to 
Xi, thereby altering space-time homogeneity. Through the 
Lie derivative, the presence of the fields X, will affect every 
tensor on the bundle. Ethos of such effect will arrive at the 
associated bundles, formed by space-time combined with 

group multiplets to which particles are attributed. Each 
multiplet will carry a representation of the gauge group, The 
covariant derivative on such associated bundles will have, 
instead of the fields Xi, their representative operators acting 
on the given representation. The gauge generators Xi, kept 
unmodified, do not respond to space-time transformations 
at all. We would of course expect something different were 
we to build a gauge model for the space-time symmetries 
themselves. 

In reality, the local underlying geometrical structure of 
gauge theories iscompletely fixed by the above commutation 
relations, because of the Jacobi identities. The Jacobi identi- 
ty for three space-time fields Xi, X ;, X : gives the Bianchi 
identity 

[x~,[G?-q] -I- [x:,[xhG]] + [X&crx~]] 
= -{X;W”,,) +XfW,,,) +X;V’“,,) 

+fd,,F’,, +fda,Fj,, +fdbcFjud~X=O, (2.5) 
or, in invariant language, 

dF+ [a$] =o. (2.6) 
The Jacobi identity for three fields Xi, Xi, and Xi gives 

[x~~[xL?xj]] + [xi,[xL>x;l]] f [x~,[X,lX~]] 
= - fK,(Fj,,) + C’ihFh,,)Xj = 0, (2.7) 

which simply states the covariance of the curvature under 
gauge transformations: also F belongs to the adjoint repre- 
sentation Consequently, the commutation rules (2.2) do 
contain the basic geometrical background, to which of 
course dynamics is to be added. We can introduce dynamics 
through a Lagrangian or by the “duality rule” which states” 
that the field equations are, in the sourceless case, just (2.5), 
(2.6) written for the dual Fof F, 

X,Fiah+fcabFjac~ - Cjkiak,FiUb 
= x : F'"b + f', q-j", = 0, 

which is the same as 

dFi- [a&=0. (2.8) 
Noether source currents are then added to the right-hand 
side. This rule has the advantage of giving the correct Geld 
equations even when no Lagrangian is present,” as is the 
case when the gauge group is non-semisimple.‘2 From (2.8) 
follows a severe constraint on the source current J, 

dj- [a,& =O. (2.9) 
This property ensures the gauge invariance of the total 
(gauge field plus sources) system. 

The commutation relations above suppose a very special 
association, on the bundle, of the two algebras {X,} and 
(Xi) of the representatives of space-time fields and gauge 
group left-invariant fields. Algebra associations are the ob- 
ject of the theory of Lie algebra extensions, We shall see 
below how this theory, besides providing some new insight 
on gauge theories in general, suggests a modification of the 
above relations to 

[XlZi] =fcabXf -F”abXj -P/,X,> 
[x:,x,] = CjujXj, (2.10) 
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[X,,X,] = c&q. 
The second relation admits now a coupling between gauge 
and space-time transformations, of which the additional 
“curvature*‘,8 is a measure. The (modified) translation gen- 
erators act on the gauge generators no more through the null 
representation, but according to a representation deter- 
mined by the coefficients Cj,,. Some coupling of the sort 
must exist if gravitation is to be given by a gauge theory 
related to space-time symmetries, obviously not indifferent 
to translations. 

III. LIE ALGEBRA EXTENSIONS 

Let L be a Lie algebra with generators J, and commuta- 
tion relations 

[Jct,J,] =fCobJc. (3.1) 
Consider a vector space Von which a representationp of L is 
defined. p is a mapping of L into the set of automorphisms of 
K 

p:L+Aut( V), 

p:J, -p(J, 1. 
It is helpful to take a basis {X,) on Vand see eachp (J, ) as a 
matrix with elements 

[p(Jo )I’, = C/i, 
with the representation acting according to 

(3.2) 

p(Jo 1 Cx, 1 = C’aixJ- (3.3) 
More precisely, p is an action of L on V, that is, a mapping 

p:L 8 v- v, 
leading each pair (J,, Xi ) into C’,X,EV. It is preferable to 
use the word action instead of representation (which we shall 
nevertheless be using rather freely for its intuitive value), 
since J, -+p( J, ) is not aprioria homomorphism. Whenp is a 
homomorphism, Vis the carrierspace of the representation. 
As long as V is simply a vector space, V is an L module, but 
we shall below drop this condition. 

Let US recall that a Lie algebra L consists of an underly- 
ing vector space on which an antisymmetric internal oper- 
ation [, ] L is defined which satisfies the Jacobi identity. In 
particular, any vector space like Vabove may be considered 
as a commutative Lie algebra, generated by matrices X, such 
that 

[X0X’] F’ = 0. (3.4) 
It is more economical to consider once and for all the 

general case coming out when Vis not simply a vector space, 
or a commutative algebra, but a nontrivial algebra by itself. 
This means that we have instead 

[x , ,xJ]  ,’ = ‘/‘,J& 
(3.5) 

with C ly some structure constants. Of course, V is then no 
more a simple L module and we actually have the action of 
an algebra on the other (which modern authors prefer to call 
an operation’” ). A particular example occurs when L= V 
and the matrices (3.2) with elements [p(J, )I’, =fCoh gen- 
erate the adjoint representation of L. 

Consider now the direct srlm L $ V of the underlying 
vector space of L and the underlying vector space of V. How 
can we combine the algebras L and V to get a larger Lie 
algebra E with underlying vector space L $ V? The direct 
product case is well known, which appears when, once ab- 
sorbed into E, both L and Vconstitute subalgebras ignoring 
each other: every element of L commutes with every element 
of V. The general answer is, however, that L and V may be 
combined in various ways to give different algebras E (the 
extended algebras), depending mainly on the action of L on 
E. 

We want to obtain E as an “extension of L by V” and 
now proceed to discuss under which conditions E deserves 
such a name. To begin with, once L and Vare “immersed” in 
the larger vector space L EI V, the operation [ ,lE in E does 
not necessarily coincide with those ofL and V. Furthermore, 
once [ ,] E is defined, there will be conditions on the structure 
coefficients, coming from the Jacobi identities. And then, 
when such conditions are satisfied, the particular algebra E 
obtained depends on the action of L on V, on how the origi- 
nal representation behaves when considered in the enlarged 
space. 

A first condition, justifying the expression “extension by 
V,” is that V be simply included in L EI V. More formally, 
the mapping i: V-E is an inclusion and preserves the alge- 
bra V. This means that i is an algebra isomorphism and the E 
bracket [ ,] E will, when restricted to the {X,}, coincide with 
that of (3.5): 

[Xi,XjlE = [Xi,Xj] y = C”,X,Ei( v). (3.6) 
This is the action of i( V) on i( V) itself. We shall identify 
i( V) = Vas long as it does not lead to confusion. Concerning 
the insertion of L into E, things are more interesting when 
the mapping 

a:L + E, 
o:J, --+X0 , 

taking L into E is not necessarily an algebra homomorphism. 
Because we wish to consider the extensions coming through 
the given representation p, the automorphisms representing 
the action of L on i( V) are written 

[X0,X,]. =p(J,)(X,) = CiuiTG( V). (3.7) 
This expression and (3.6) say that i( V) is a normal subalge- 
bra (an ideal) of the extended algebra. The commutation 
rules of E will be (3.6), (3.7) and the expression for 
[X, ,X, ] E. The X,‘s would provide a linear (or uector) rep- 
resentation of L if they just mimic the behavior of the JO’s, 

[X,&]. =fcotlL (3.8) 
but in fact this is not necessarily the case for a general action 
of L on a(L). The general relation emerging is of the form 

[xo,xb] E =fCohXc -Bjubxj9 (3.9) 
the last term measuring the homomorphism breaking. This 
expression may be viewed as depicting automorphisms of E 
acting on the XU’s. In this case, when acting on its own repre- 
sentatives X,, the automorphisms induced by the action ofL 
do not necessarily yield results restricted to u(L). This sub- 
space is not necessarily a closed subalgebra: the /?‘U,,‘s are 
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precisely some constant (in the present purely algebraic con- 
text) components measuring the departure of the action 
from a(L). For linear representations, p’,, = 0 and CT will 
be a Lie algebra homomorphism. When V is commutative, 
representations satisfying ( 3.9) are usually called projective 
representations in Physics literature.‘4*15 We shall eventual- 
ly use the same terminology in the present more general con- 
text. 

Despite the appearence of (3.9)) L is not entirely “lost 
into E.” Some of its identity remains because a mapping may 
always be defined: 

IT, :E-+ L, 
which is such that 

77. [ i( V) ] = 0. (3.10) 

Borrowing from fiber bundle language, we say that n-. is the 
projection of the complete space E into the base space L, char- 
acterizing i( V) as the vertical space. u plays a role similar to a 
bundle section. Extra structures, analogous to connections 
and able to characterize horizontal spaces, will be seen to 
exist in the next chapter. It should be noticed, however, that 
we shall presently apply all this to the tangent field algebras 
of differential bundles and we should be careful with this 
language. Differential bundles are defined in such a way that 
only the null representation (with all C/, = 0) of L on V is 
concerned. 

The enlarged algebra E will then be given by (3.6), 
(3.7), and (3.9). We shall from now on drop the subindex in 
[ ,] E. In order to characterize E as a Lie algebra, the oper- 
ation [ ,] must satisfy the Jacobi identity. In a way analogous 
to (3.2) the V generators X, may be taken as matrices of 
elements (X, )“, = C kij automatically satisfying (3.6), 
which expresses the inner automorphisms of the subalgebra 
V. This corresponds of course to the adjoint representation 
of V. As already said, it is helpful to think also of the X,‘s as 
matrices with elements (X, ) > = C t, although this presup- 
poses the representaton to be linear. Applied to two 
members of the set {X,} and one of {X,}, the Jacobi identity 
gives (3.7) in terms of such matrices. For one Xi and two 
X0’s, the identity is 

o= [Xot[XbXi]] + [X,,[X,Jb]] + [Xb+LX,]] 

= (CAujCjbi - c”,cio, -fCohCLci f p”bckjJxA. 
(3.11) 

The right-hand side would seem to give (3.9) in matrix ver- 
sion, but we should be attentive: when X, belongs to the 
center of the algebra V, C Ajj = 0, and the matrix representa- 
tion gives (3.8) instead, due to its essentially linear charac- 
ter. When fiUjub = fiJabXj has values only in the center of V, LT 
is a homomorphism and the extension is said to be central. 
This is in particular the case when Vis commutative. Notice 
also that a direct product (all CjUj = 0, the null representa- 
tion in reality), by (3.1 I), can only happen when @,, be- 
longs to the center. When applied to three members of (X, } 
the Jacobi identity gives finally a new condition: the /3’,‘s 
are no more independent but must submit to 

CiJ jbc + cj,,p jab -I- CjbJ? :, 

-i-f d,bfi’,d i-f dcur@xi + f dl,,/%d = 0. (3.12) 

Recalling that, in the present algebraic context, multiplying 
by the matrix elements Ciqi represents the action of the gen- 
erator X,, comparison with (2.5) makes of this condition a 
kind of “algebraic Bianchi identity.” 

We have freedom to choose other basis for the algebra E 
in the vector space L @ V, say, 

X,-X: = h baXb - a;X,. (3.13) 

The “fourlegs” h ba will only change the anholonomicity. 
The change leading to interesting information is simply 

X,-+X; =X, - aiXi, (3.14) 

the criO’s being some constants. The commutation relations 
become 

[x:,x;] =fcobX: -fig&& 
[XL,Xi] = cJoixj, 

[Xi,Xj] = c”,.x,, 

where 

(3.15) 

(3.16) 

(3.17) 

fi ‘iub = p”, -,- K/b, (3.18) 
with 

Kjeb = CjO,aib - CjbiaiO - cx/fcab - Cikiakwaib 
(3.19) 

and 
C’jdi = Cj,, - (ykoCjki, 

which is simply the matrix version of (3.14). 

(3.20) 

Given the Cjai’s, any set of flj&‘s satisfying condition 
( 3.12) will make of Ea Lie algebra. Consequently, there is in 
principle a fair choice of possible extended algebras E, each 
one corresponding to a different action of L on i( V) [choice 
of the Cjai’s in (3.7) ] and on a(L) [choice of the pjnb’s in 
(3.9) ]. In reality, many of these choices are equivalent 
between each other. A set ( C/i,fijOb ) will be equivalent to a 
direct product if an a exists which, once used in (3.14), 
causes the vanishing of the Cj’,i’s and of thePj’,,‘s, leading 
back to (2.1) . If an a exists such that KjUb = - PjO,, a semi- 
direct product results. The extension is said to be trivial. 

The attentive reader will have noticed the close forma1 
analogy of (3.12) and the first three termsin (3.19) with the 
exterior derivations of a two-form ,!3 and a one-form a in an 
anholonomic basis {X,). It is as if (3.12) said 60 = 0 and 
(3.19) that K = da - [ a,a] , This analogy is sound indeed. 
To show its full meaning, as well as to examine equivalences 
between extensions, it is advisable to resort to a homological 
language, which we shall now briefly introduce. This lan- 
guage, akin to that of differential forms, will have the further 
advantage of being quite appropriate to the later discussion 
of differentiable vector field algebras. 

IV. INTO COHOMOLOGlCAL LANGUAGE 

We take on the space (L g, V) * dual to L B) V the basis 
b”, w’], formed by the covectors w”, wi such that 
w”(X,) = Sub, w”(X,) = 0 and l&X,) = si,, w’(X,) = 0. 
These covectors constitute, by exterior product, a basis for 
all the antisymmetric covariant tensors on L CB V. They are 
exterior forms on the vector space L 83 V, but will here be 
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considered as acting on the algebra. When applied to alge- relatively simpler. Differential forms are particular linear 
bras and taken in an algebraic context, exterior forms are cochains and many of their well-known properties come in 
COC~CZ~~S. The first-order covectors like ma and ai above will reality from that. A derivative operation d is defined which 
be one-cochains, second-order tensors like wL) A & are two- takes a p-cochain into a (p + 1) -cochain, 
cochains, etc. Cochains may also be defined on groups, d:f+(dW,+,, (4.1) 
group representations, and other non-necessarily linear ob- 
jects but Lie algebras are linear spaces and their cochains by 

I 

(P+ l)(dfl)(X,,X,, . . . . X,+,1 =x,WG,X, ,..., X,+,1 -X,fUx,,X, ,..., X,+,1 

+x,wx,,x,,& ,..., xp+, 1 - ... + ( - ,“Xp+ *wx,,x,,& ,... ,x,1 

- a( [X, ,x*1,x, ,..., x,+, ) + a( [X, ,x,1,x, ,..., x,+, ) + 

- fl( [~,,X4],&,...,Xp+, 1 + *** + ( - Yn( [X,,X,+, 1x2 ,...f x,1 

+ W&,[&,&], . . . . x,+, 1 + ... + ( - Yfvx,,x2,x3, . . . . [XP’XPf , ] 1. (4.2) 

An expression like X, fl(XZ ,X, ,..., Xp + , ) means that X, is 
toact on the result ofR(X,,X,,...,X,+ , ). We shall be inter- 
ested in algebra-valued cochains, following a line akin to 
cyclic cohomology. On algebra-valued cochains, the actions 
of generators appearing in (4.2) are the algebra operations, 
that is, the brackets: for instance, X, fl(X,,X,,...,X,+ , ) 
= [uN&,Fw,Xp+ I ) 1. The same must be kept in 

mind when using the exterior product, although in that case 
also their complete antisymmetry must be accounted for. As 
examples, 

wAoV,,X, 1 = [4X, ),dX, 11, (4.3) 

~AB(X,,X*,X,) = [WU, LB(X,,X,)] 

+ [@(X3 ),8(X, 7x2 I] 

+ [~(x,LLJ(x,,x, I]. (4.4) 
A direct calculation shows the validity of the Poincare 

lemma d’ = d d=O. We shall say that a cochain rp satisfying 
dlrF = 0 is closed, or is a p-cocycle. If another cochain ap ~ , 
exists such that rP = da, _ , , y, is exact, or is a p-cobound- 
ary. Every coboundary is a cocycle, but not vice versa. 

Let us come back to the cochains wB and wi. Using (4.2) 
for dw’(X,,X,), dw’(X,,X,) and d&(X0,X,) we find that 
the (0’) obey the Maurer-Cartan equations 

do” = - tfCobof Amb. (4.5) 
The ti”s constitute a basis for the cochains on the X0’s Let 
us define the V-valued two-cochain 

/I = X,/3’ = f~fiJubd Acob (4.6) 
and the one-cochain 

w = X,w’, (4.7) 
which will be important in the following. If we calculate w 
(X,, X,, X, ), it is immediate to recognize the expression of 
the Jacobi identity (3.12), with the X0’s acting on the Xj’s 
according to (3.7). Consequently, that identity simply states 
the closure ofDin the L subspace, #3 (X, ,X,,X, ) = 0. This 
is a first case showing the meaning of the “analogy” noticed 
at the end of the previous chapter. 
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Treatments of the subject stop usually at this point, with 
the closure offl in the L sector, and go directly to the discus- 
sion of equivalence classes of representations. Because we 
shall be interested later in the relations with complete fiber 
bundles, we extend the result to the complete algebra E. It is 
trivial to do it. As 

~Afl(x,,x,,x,) =~~W(x,,x,,x,, =o, 
we may write 

={dp- b,~]hx,,&,x,) =o. 

As the expression {@ - [a,/?] } vanishes also for any other 
combination of E basis elements (X, , X, , X, ) as arguments, 

DJ: = {db'- [w,L? I} =O. (4.8) 
This is a dual version of (3.12) with the advantage of being 
invariant, holding in any basis on E. In the same token, by 
comparing the results for all possible kinds of arguments 
(X, , X, ), we arrive at 

p=D,,w:=dw--AA. (4.9) 
0 measures a breaking of the Maurer-Cartan equations for 
the {w’}. Actually, as fi(X,,X,) = 0, they keep holding in 
the V subalgebra, but no more on the whole E. Once im- 
mersed in a larger algebra, the o’acquire a new role. In both 
expressions above D, is a “covariant derivative.” Going 
back to the bundle language, the cochain w has a role quite 
similar to that of a connection: it takes values on I’, it is such 
that w( Xi ) = Xi and it vanishes when applied to the horizon- 
tal vectors X,. Furthermore, (4.9) tells us that the two-co- 
chain /? plays the role of its “curvature,” for which (4.8) 
expresses the “Bianchi identity.” Recall that on fiber bun- 
dles the curvature measures exactly the departure of hori- 
zontal fields from constituting a closed subalgebra, just what 
fi does here. 

Actually, all the Jacobi identities above, (3.11)) (3.12), 
and the unwritten one which simply gave (3.7) in matrix 
terms, can be summarized in a unique expression generaliz- 
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ing (4.8). It is enough to introduce the canonical cochain for 
the total algebra, 

w=x,w*+xhd, 

for which 

(4.10) 

dW- WAW=O. (4.11) 

The identities already obtained come as parts of this expres- 
sion. In this way all the identities of Sec. III are translated 
into the homological language. 

Consider the V-valued one-cochain 

a = X,Qj = XlaJ,wa. (4.12) 
It takes values on the vertical Vspace. Defining also the two- 
cochain 

K=XjK”=fX,K’,w”Awb, (4.13) 

the K of expression (2.19) may be written as a “modified 
covariant derivative” of a, 

K=D,,,a:=da-wAa-a/\~---aAa. (4.14) 

But for the last squared term, this has the same aspect of the 
covariant derivative of a one-form a according to a connec- 
tion w. In (3.19), the term Lljcfe& is simply an effect of the 
anholonomity of the basis {X,3 and the first three terms 
there are simply da. The covariant derivative D,, is just the 
mapping d of the algebra E along the horizontal space. As to 
(3.18), it is now 

fl’=fi+K. (4.15) 
In reality, w’ = w + a defines a new “connection”, with 

p’ = dm’ - ti’ Aw’anddp’ f [of,/?‘] = O.As w’(X:) = 0, 
w’ is just that “connection” which “declares” as horizontal 
theX:. 

If some a exists for which fi = - D,,,a, the homomor- 
phism-breaking term in (3.9) may be made to vanish by 
transforming to the new basis {Xi}. The projective repre- 
sentation reduces to a linear representation. The algebra E is 
a trivia) extension of L by Y. So, the condition for a represen- 
tation to reduce to a linear representation is that the two- 
cocycleBbe covariantly exact (a covariant coboundary). It 
happens then that (T(L) is a subalgebra, the composition 
(r. ~a) is the identical automorphism of L and there is no 
intersection between i( I’) and a(L), in which case the alge- 
bra E is a semidirectproduct, 0 is a splitting and the extension 
is decomposable. A direct calculation shows that 

D,,K=O, (4.16) 
a second “Bianchi identity” for this case. 

Actually, for algebra-valued cochains the differential 
operator may be written as d= W”AX 
= &AX, + &AX,, with X, acting on the right through 

the bracket operation. This is of course reminiscent of the 
usual rule d = dx’ A d /dx’ of differential calculus. 

We have seen that extensions are characterized by the 
action of L on i( V) and on a(L). The equivalences between 
choices of sets (C’,,, , /+‘l,, ) referred to at the end of Sec. III 
can now be given a precise treatment. Cohomology groups 
can be introduced in a way analogous to those defined for 
differential forms. Closed V-valued p-cochains constitute a 
group Zp (&I/); V-valued p-coboundaries form another 

group, BP (E,V). The pth cohomology group is then the 
quotient HP(& I’) = Zp( E, V)/BP( E, V) and will contain 
equivalence classes of chains differing by covariant deriva- 
tives as in (4.15 ). The dimension of HP(E, I’) is thepth Betti 
number b p(E, v>. When the second Betti number b 2(iE, P’) 
vanishes, every projective representation is equivalent to a 
linear representation, the algebraextensions are all trivial. In 
particular, by Whitehead theorems, this is always the case 
for semisimple Lie algebras when Yis a module. In the gen- 
eral case, to fl and p ’ related by (4.15) will correspond the 
same representation. Actions or representations will corre- 
spond to cohomology classes of the two-form@, elements of 
the cohomology group H ‘(E, 0. Each equivalence class 
will be labeled by a cocycle p. C’ewal extensions, as said 
above, appear when P belongs to the center of K All trivial 
extensions are central extensions. 

The above purely algebraic case appears when the ai,‘s 
and pj,,,‘s are constants. Things are more complicated and 
interesting when Lie algebras of fields on differentiable man- 
ifolds are involved. Usual derivatives are then to be added to 
the above “algebraic” derivatives and a more complex pat- 
tern emmerges. 

V. FlELD ALGEBRAS ON MANIFOLDS 
We are slowly approaching the conditions of gauge the- 

ories, ready however to stop some steps before reaching 
them. In a gauge theory, the gauge group acts on the basic 
bundle through vector fields which are the representatives of 
its Lie algebra generators. But also the group of translations 
on space-time is there represented, although in a biased way: 
relations (2.1) and (2.2) tell us that translations only “act” 
on the gaugegenerators through the null representation. The 
action of groups on manifolds leads, in general, to highly 
nonlinear representations but we shall here only consider 
slight departures from the linear case, as suggested by Lie 
algebraextensions. Notice also that, although thecohomolo- 
gical approach is global on the algebras, it will here be ap- 
plied to the local algebras of tangent fields and so be essen- 
tially local. 

We have to take into account the action16 of two groups 
on a manifold M. Consider the action of one group, a Lie 
group G which may be any of them. Suppose the Lie algebra 
G ’ of the group G to be given by (3.1) in the basis of genera- 
tors {J,}. The Lie algebra generators J, are locally repre- 
sented by vector fields X, on M. The whole set of fields on M 
constitute an infinite Lie algebra E(M) and X,&(M). A 
representation p in terms of fields will now be a mapping p: 
G’-r= - (M), p: J, -X, = p(J, ) . The carrier space will be 
C m (M), the space of infinitely differentiable functions on M 
(in reality, differentiability to a few orders is enough). The 
representation would be linear if (3.8) holds. In the present 
case, by Frobenius’ theorem, this would mean that at each 
point x of M the XQ’s span a subspace of the tangent space 
T,M locally tangent to a submanifold of M locally diffeo- 
morphic to the group G. In the genera1 case, although such a 
subspace of T,M always exists, there wil1 be no submanifold 
to which it is tangent. Consider a local vector basis 
{X,;p = 1,2,...,n = dim M} around some xdki and suppose 
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it can be chosen so as to include the Xn’s plus some other 
fields {X,}: {X,} = {X,,X,}. The X*‘s do not constitute a 
subalgebra of the whole field Lie algebra around x and extra 
terms appear as in (3.9). 

To get some preliminary insight, consider first the near- 
est departures from linear representations, the central pro- 
jective representations for which the commutation relations 
are 

[XOJ,] =fCo& -&r (5.1) 
with floh some functions on M. In this case, the action of the 
Lie algebra on functions of C m (M) will include, besides the 
action of fields, multiplications by functions. This case, 
which corresponds to extensions by C ac (M) itself, is special- 
ly important when M is the phase space of some dynamical 
system” and in some approaches to quantization.” The Ja- 
cobi identity for the X0’s imposes 

x, (& 1 + K CL56 1 + X6 m.,, 1 + f d*bLL 
+fdcu&, +fd,&od = O. 

Under the change 
(5.2) 

X,+X; =X0 -au, (5.3) 
where now a,& r (M), the commutation relations become 

[x:x] =fCdJ: -PL, 
where 

(5.4) 

Pi6 =Pob +CXo(ab) -&(a,) -qFo61. (5.5) 
We may take on the space tangent to Maround a point x 

the covector basis {w”} = {w’,w’) dual to {X,, } = {X, ,X,}. 
The forms w0 such that w”( X, ) = S”, will obey the Maurer- 
Cartan equations and constitute a basis for the dual space 
p( G’)‘. Defining the two-formfl= (l/2) p,,w” Aw’would 
put the Jacobi identity under the form do = 0, that is, /3 is a 
cocycle. Defining also the one-form a = a,&, which is such 
that a, = a(X,), transformation (5.5) becomes 
fi’ = p + da. If some a exists for which fi = - da, the ex- 
tra term in (5.4) may be made to vanish by transforming 
according to (5.3) and the projective representation reduces 
to a linear representation. So, the condition for a projective 
representation to reduce to a linear representation is that the 
closed two-form p (a two-cocycle) be exact (a cobound- 
ary ). The one-form a has the properties of an Abelian con- 
nection, of which da is the curvature. When no a exists for 
which p = - da, fi is a closed nonexact form. Top and fl’ 
related by p ’ = fi + dv will correspond the same projective 
representation. Consequently, projective representations 
will correspond to the (cohomology) classes of the two- 
forms /?. They will correspond to extensions of the algebra 
{X,,} by the algebra C (x (M) of real functions on M with the 
usual product operation. Extensions are equivalent if related 
byp ’ = p + da and so each equivalence class will be labeled 
by a cocyclefl. A trivial extension will correspond to a linear 
representation. The exterior derivative “d” appearing above 
is restricted to the algebra {X,}. We notice the emergence of 
the connectionlike form a, the linear case happening when/3 
is an Abelian “curvature.” The structure coefficients play 
the role of an anholonomicity of the basis {X,}. The above 

case appears (with CJdi = 0) in the action of the gauge 
group on the functional space of gauge potentials.” The 
{X,} stand for the representatives of gauge transformation 
generators on that space, a and/? being functionals with the 
connections as arguments: a is an anomaly and da = 0 is the 
Wess-Zumino condition.15 

Let us now proceed to the more general case in which fl 
is vector valued with values along the remaining fields {Xi} 
of the basis {X,}:/?,, = X,p i0,. We think to have made the 
point we wished with the anholonomous coefficients, giving 
the two algebras a similar appearance for the discussion of 
extensions. We shall drop them from now on. The basis 
{X, } will have commutation relations of the form 

[xo,x6] = -O/6xjt (5.6) 
[ xo Yxi ] = cj*,xj 9 (5.7) 
[X, ,x, ] = CjkiXj. (5.8) 

As in (3.2), we may introduce matrices C, with elements 
(C, ,I = CJa,. The three commutation relations above de- 
scribe the actions of local transformations generated by the 
set of fields {X,, Xi} on itself. Once more, we must take into 
account that such relations only define a Lie algebra if the 
Jacobi identities are satisfied. In the present case, in princi- 
ple, things are more complicated, because the structure coef- 
ficients are no more constants. The matrix elements of C, are 
point dependent and the fields act on them, leading to extra 
terms in the previous Jacobi identities. Some extra supposi- 
tions will be necessary to get a simple structure. As there are 
things to be learned from them, we shall write their full ex- 
pressions: 

[X,[&+K]] + [X&L&]] + [JWLX,]] 
= - lx, (fi’,, ) + xc (Bjub ) + X6 (fijc, ) + Cjb# kc0 

+ cjc,fl kd, + C’,fi k6c)Xj = 0. (5.9) 
This generalizes (3.12) in the presence of fields. Recall that 
in expressions like (3.12) and (3.19) the factors of type Ci, 
have the role of a “matrix derivative.” There, the only repre- 
sentation at work was that given by the matrix action in 
(3.3). Here, we have two actions at work, the matricial and 
that of the fields X,. We may use the notational device 
Xi (Z “) = X, (Z “) + C “ojZj, for any Z with a higher in- 
dex of the kind i, j, k, as such a combination will appear 
frequently. With this notation the condition becomes 

x:cB’,,, +X:.(Pl,) +X;,Wc,) =o. (5.10) 

It is also interesting to introduce the notation 
Xi (Z “) = Xi (Z “) + cntiZi. These X 1 measure departures 
from covariance, as in (2.4)) X f (a”, ) = 0, for a connection 
a and (2.7)) X: ( Fnab ) = 0, for its curvature. Furthermore, 
they constitute by themselves a representation, as 

[x;,xy] = cj,,x;. (5.11) 

We want an extension of gauge theories, preserving as 
far as possible its properties. The structure constants c”,, are 
in reality only “constant” on the gauge group, but we shall 
take them constant also on space-time, X, (c”,) = 0. The 
resulting structure will have similarities with the gauge theo- 
ries but the matrix representations will be at work besides the 

2509 J. Math. Phys., Vol. 32, No. 9, September 1991 F?. Aldrovandi 2509 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.145.174.147 On: Mon, 17 Mar 2014 13:04:04



fields X0 and Xi. The next Jacobi identity is 

[x~*[x69xz]] + [x~7[xa?x6]] + [x6P[xi?xo]] 

= {X*(Ck,,) -X6(Ckaif + Ck&jbi - Ck,Cjai 

- Xi (B kab I - @jab C “$>xk = 0, (5.12) 

so that the condition is 

X;(Pkab) =X;(ckbi) -x;(ckai). (5.13) 

The covariance breaking of/3 is measured by a kind of “curl” 
of the C,‘s. The last nontrivial identity is 

[xu*[x,*xj]] + [xj~[xo,xi]] + [xit[xj3xa]] 

=CX~Cck,> +x,(ch,;) -Xi(C”,) 

+ c an 
k CII 

rj - c kjn c ‘laj - c’,,c “,i}& = 0. 

(5.14) 

Collecting the terms conveniently, we get 

XJ(Ckai) - Xf(Ck,) + cniickan = 0. (5.15) 

The simplest solution for these identities comes out 
when we take all C ‘“, ’ s andp Lub’~ constant. In this case, the 
matrices ( C,, ) and (C, ) give by themselves a representation 
of (5.6)-( 5.8). There is however another interesting solu- 
tion for these equations. Due to (5.11), Eq. (5.15) is auto- 
matically satisfied by 

ck, =x;cr”,,, (5.16) 

ybeing an object whose covariance breaking is just measured 
by the structure coefficients C ku,. Looking then for a solu- 
tion for (5.10) and (5.13), we find that they are both satis- 
fied by 

B xu6 =x,y”, -x6+* - Ck,yioyj,, (5.17) 

which has the appearance of a curvature but does not belong 
to the adjoint representation. 

We have seen that, differently from the {w’}, the {w’) 
did not satisfy the Maurer-Cartan equations. Life in {w”}- 
space is really dual to that in {X, ) space. Unlike their dual 
partners Xi, the w”s do not close an algebra under the exteri- 
or product. The vi’s may be seen as the components of the 
pull-back of the ui’s to the dual space L *. As the W”S may be 
identified with their own pullbacks, 

a*(o’) = jaw@. 

Equations (5.6)-( 5.8), with their consequences just 
given, provide the new geometrical stage set, in replacement 
of (2.1). There is now a coupling between space-time and 
gauge transformations. 

VI. EXTENDED GAUGE THEORlES 

Let us see now how a connection fares in the new envi- 
ronment. Under the change 

x,4x: =x0 -c&x,, (6.1) 
if we suppose that a is indeed a connection, X T(cltk, ) = 0, 
the commutation relations become 

[x:,x:] = -d-j&x,, (6.2) 

[x:,xi] =chotxh, (6.3) 

[X,%X,] = C’J,. (6.4) 
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Here, 

*% h*h =P’, c Fkoh f Ckojaj, - C”,c& 
Fknh = X,a”, - Xbaka - Ck,ai,a/,. 

We may write .YkGb in many different though 

(6.5) 

(6.6) 
equivalent 

ways, corresponding to different rearrangements of the 
terms. For instance, 

c-k 
s ob = P”, I- Fek,b, (6.7) 

where 

F*kab = Xzakb - xbbako - ck,iaiadb, (6.8) 
extends (3.18)-( 3.19) to the case in the presence of fields. 
We have so the vaccum field plus the usual field strength 
written with modified derivatives. If solution (5.16) is still 
available, the new total field strength can be written 

c-k 3 a,, = Fkob -!-XL+‘, - X;r”, - C”,yi&j. (6.9) 
To the usual gauge field Fis added@ with the normal deriva- 
tives of ( 5.17) changed to covariant derivatives according to 
the connection a. We should keep in mind that covariant 
derivatives have different expressions when acting on objects 
belonging to different representations. Because of their ori- 
gin from ( 5.16 ) , the l/‘s respond to the X * representation of 
(5.ll),sothat in (6.9) X:9, =X09,, -CLj,X?t(l/rb).We 
have so an usual field strength plus the nontnvial vacuum 
with a peculiar minimal coupling of the vacuum potential 
with the gauge potential. Another point of view would define 
a new “gauge potential” as a’ = a + y and 

c-k J ab = Xadkb - Xbapka - Ckiia’iGa’ib 

- dax;(ykb) + tljbXf(yka 1. 
Finally, 

.Fkoh = [X0 f”/‘,X,](a”b) - [X6 +Y’Ji](a”,) 

- Chiia’,ajb + [X, - a’,X, ] (f,) 

- [X6 -atJi](Yhul - C”.~y’~Yjb. 

Here, (minus) y behaves as a connection, “derives” a and is 
derived by it. 

Before going further, let us interprete some aspects of 
gauge theories in the light of the above picture. Not only 
Ckdi but also p vanish in gauge theories. We are now in 
condition to understand the meaning of that. In gauge theo- 
ries, the forms wh appearing in (4.5) are the Maurer-Car-tan 
or canonical forms of the gauge group. As p is related to 
them by (4.9 ), it is forcibly null by the Maurer-Cartan equa- 
tions. As is well known, *e the canonical forms, once pulled 
back to space-time, give the usual g - ‘dg contribution of the 
vacuum to the gauge potential. Consequently, /3is the vacu- 
um field. We have seen in Chap. IV that the presence of a 
connection was simply an addition to the initial cochain w. It 
is in reality W’ = w f a which is the usual physical connec- 
tion,,Q’ the field strength. They are “counted from” o andfl. 
Once @ is zero, w can be gauged off and a is the remaining 
connection. The covariant derivative becomes 0, and K in 
(4.14) acquires its usual expression da - a A a. The direct 
product appears as a very particular case of trivial extension. 
In the present case, the coupling between space-time and 
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gauge space modifies the derivatives X0 --+X i and creates a 
broken, nontrivial vacuum fi, whose nonadjoint character is 
an effect of a possible “rotation” of the CO’s. Let us examine 
the Jacobi identities: we obtain 

XJCkai) -X;(Ck,) + cnijckan =o, (6.10) 

which is (5.15) again, and says that indeed a solution like 
( 5.16) still works. The Bianchi identity is now 

X”,(cFj&) +X”,(Fjab) +X”b(Fjc,) =O. (6.11) 

Finally, the adjointness breaking becomes 

X&Fk,,) =X”,wkbi) -xX”b(Ck,i). (6.12) 

So, nothing really quite unexpected comes out at first from 
the addition of a connection: the identities are the same as 
before the introduction of the connection, but corrected to 
the covariant derivatives. With respect to gauge theories, the 
novelty is the change of the derivatives X, into the differen- 
tial-algebraic Xi, rather reminiscent of Fock-Ivanenko de- 
rivative, and the presence of a noninvariant vacuum. If we 
use the duality rule to obtain the field equations, the new 
extended Yang-Mills equation generalizing (2.8) is 

x **a y#b = Jjb, (6.13) 

Jjb being a source current. In gauge models only those cur- 
rents are acceptable which satisfy (2.9). They must be co- 
variantly irrotational, X’,Jjb = 0, as it follows from (2.8) 
and the covariance of F jab that X LX; Fjab = 0. We would 
not aprioriexpect nothing of the sort in the extended case, as 
s CjDb is not covariant and X l ‘= is a new, strange derivative. 
Nevertheless, a quite analogous relation turns out to be true: 
X”,X” >cPb= _ 0 1 [X ‘lo ,x l ‘b ] 9-jab 

= p5kabxk y@b 
- +[X”,C’,, - X”bC/,].33k”b. 

Use of (6.12) reduces this to $Fkllb Ci,i3“‘b = 0. The re- 
quirement that the extended algebra remain a Lie algebra is 
strong enough to cause the variance of 3 to be just compen- 
sated by the behavior of the C/,‘s. Currents should conse- 
quently satisfy a generalized irrotationality 

x “b J’b = 0 , (6.14) 

and the theory retains more symmetry than would be expect- 
ed at first sight. In gauge models, the constraints (2.9) on 
source fields lay behind the Ward identities instrumental in 
the procedure of order by order renormalization,*’ so that 
(6.14) would allow some hopes concerning renormalizabi- 
lity. 

tion (6.13) turns out to be Einstein’s equation for the corre- 
sponding curvature. 

Let us say a few words on the case in which the gauge 
potential is added to an initial background given by (3.7)- 
(3.9) with all Ckoi’s and fi kob’~ constant, the matrices C, 
and C, realizing a representation of (5.6)-( 5.8). Everything 
gets greatly simplified and it is found that 

X;(F*k,b) = 0, 

SO that F*k,b as given by (6.8) belongs to the adjoint repre- 
sentation and is the natural candidate to the new physical 
field strength. From (6.13)) it comes out that it obeys the 
Yang-Mills equation 

X”,(r;‘kab) = Jkb. 

When the matrices C, , ( C, ) ki = ( C kOi ), are antisymmetric 
and the algebra of the Xi’s is semisimple, such equations 
come from a Lagrangian of the usual type, - iFkkabFtkab. 
We have a model similar indeed to a gauge model, the differ- 
ence being in the additional algebraic parts added to the de- 
rivatives. An initial nontrivial background, present before a 
gauge potential is introduced, would at first sight violate the 
no-go theorems, but in fact semidirect products would be 
admitted. 

Some coupling between space-time and gauge space 
must exist if gravitation is to be described by a gauge theory 
related to space-time symmetries. We have given the general 
lines of a scheme modifying gauge theories in that direction. 
Indulging ourselves in a rather wild speculation, we might 
say that there is another, still more pretentious, possibility. 
Quark confinement, an extreme case of translational invar- 
iance breaking, has up to now been looked for as a dynamical 
(or mixed dynamical topological) effect, but it does pressu- 
pose so strong an effect of gauge fields on space-time behav- 
ior that we might wonder whether its origin could not be of a 
more primitive character, involving some basic “misbehav- 
ior” of the gauge program like the one in the extended 
scheme above. The presence of algebra-valued cochains, nat- 
ural generalizations of the differential forms of gauge mod- 
els, leads to derivatives of mixed differential-algebraic char- 
acter and points to noncommutative geometrical effects 
which could have some role to play in confinement and 
shielding. Of course, the main interest in a gaugelike theory 
for gravitation lies in the possibility of renormalizability. 
And despite the background vacuum noncovariance, cur- 
rents in the above extended scheme submit to conditions 
analogous to those ensuring invariance and renormalizabi- 
lity to gauge theories. 
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