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Nonlinear diffusion process in a Benard system at the critical point
for the onset of convection
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The evolution equation governing surface perturbations of a shallow Quid heated from below at the
critical Rayleigh number for the onset of convective motion, and with boundary conditions leading to
zero critical wave number, is obtained. A solution for negative or cooling perturbations is explicitly ex-
hibited, which shows that the system presents sharp propagating fronts.

PACS number(s): 47.20.Bp

The onset of convective motion in systems of the
Rayleigh-Benard type has been a subject of investigations
for many years. For any given thermal and mechanical
boundary conditions one may determine, through a linear
stability analysis, the critical Rayleigh number above
which the quiescent state is no longer stable [1]. Further-
more, a characteristic wavelength is also obtained, relat-
ed to the spacing of convective cells. Both the critical
number and the wavelength depend strongly on the
boundary conditions. A peculiar phenomenon is that, in
some cases, the characteristic wavelength may be infinite.
In this paper we will study one such system with the Auid
bounded below by a rigid plate and above by a free de-
formable surface, with constant heat Aux imposed on
both the upper and lower boundaries. However, instead
of applying the linear stability analysis, we will resort to
techniques inspired in the theory of nonlinear waves.
Since we know beforehand that the instability is associat-
ed with large space scales, it is quite natural to look for
the limit of long-wavelength disturbances in shallow wa-
ter [2]. In this way, we will be able to obtain not only the
critical Rayleigh number for the onset of convection (al-
ready known to be R =320 from the linear analysis [1]),
but also the equation governing the time evolution of
both surface displacement and temperature disturbance
at the critical point, a problem that cannot be tackled
through a linear approach. A similar procedure has al-
ready been used [3] to study the same system, but with an
undeformable upper surface, in a slightly supercritical re-
gime, that is for R )320. Our results, on the other hand,
describe the situation just at the critical point R =320,
but before convection could set in, when diffusion still
dominates.

To implement the above-mentioned procedure, we will
use the reductive perturbation method of Taniuti [4,5].
This method has been extensively applied to the study of
long waves in a variety of physical systems [6,7]. More
recently, it has been applied to systems of the Rayleigh-
Benard [8,9] and Benard-Marangoni [10] types where,
with different boundary conditions from those used in the
present work, the Korteweg —de Vries, Kadomtsev-
Petviashvili, and Burgers equations have been obtained as

p=p [1—a(T —T )],
where o, is a constant, and To and po are reference values
for the temperature and density, respectively. The equa-
tions governing the Auid motion are the following:

u„+m,=0,
po(u, +uu +wu, )= —p +p(u,„+u„),
po(w, +uw +ww, )= —p, +p(w „+w„)—gp,
T, +uT +wT, =v(T „+T„).

(2)

(3)

the equations governing surface long-wavelength pertur-
bations. However, it should be kept in mind that the use
of multiple scales, as in the reductive perturbation
method, does not necessarily lead to equations describing
wave disturbances. In fact, as we shall see in what fol-
lows, the phenomenon we are going to describe is not re-
lated to oscillatory motion. Instead, it is a diffusive
phenomenon governed by a nonlinear diffusion equation,
as the one discussed by Zel'dovich and Raizer [11] in a
different context. For a negative surface, or a cooling
temperature perturbation, we predict the existence of
sharp propagating fronts. For a positive or heating per-
turbation, our approach is not able to give an answer to
the problem since, in this case, the system enters the con-
vective regime, and the scaling we are going to use is not
appropriate to describe this phenomenon.

Let us then consider a Auid which, when at rest, lies
between z =0 and z =h. We idealize the Auid to be two-
dimensional, and work in the Boussinesq approximation.
At the bottom it is limited by an insulating plate, with
no-slip boundary conditions. At the upper surface, which
is supposed to be free and deformable, a constant heat
Aux is imposed. The Auid is unbounded in the horizontal
direction, and it is acted upon by gravity, with g= —gz.
We will take into account only buoyancy effects, disre-
garding those coming from surface tension. The velocity
will be denoted by v = (u, 0, w), the pressure by p, the tem-
perature by T, and the density by p which is supposed to
depend linearly on the temperature,
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In the above expressions, the subscripts denote partial
derivatives, p is the viscosity, and ~ is the thermal
diffusivity. We now have to state the boundary condi-
tions. On the upper free surface z =h +i)(x, t), we have
[12]

9t+0 Qx w

p —p, — ~ [w, +u (rj„)'—il, (u, +w )]=0,2p

[1—(il„)](u, +w )+2g, (w, —u, ) =0,

m=u =0,
T, = —(F/k) .

(10)

We will consider small disturbances from the static solu-
tion, which is given by

T =T ——(z —h)
k

where % =[I+(il„)]', F is the constant heat fiux
through the upper surface, k is the thermal conductivity,
and p, is the constant pressure exerted on the upper free
surface. On the lower surface z =0, the boundary condi-
tions are the following:

mention that the above stretching is not unique. For ex-
ample, in Ref. [13] a difFerent one has been used to study
the convective regime of a system with the same bound-
ary conditions.

Now, we expand all dependent variables in the follow-
ing way:

u =e (u0+Eui+ ' ' )
2

w =e (w0+ew, + ),3

p p. =~(po+epi+ ' ' ' )

T —T, =e(80+F8,+ . . ),
g =e( i)0+ ail, + . ) .

Once we have substituted these expressions in Eqs.
(1)—(11), a well-defined perturbative scheme shows up,
and we can solve those equations order by order in e. We
will not, however, present the calculation in full detail as
they are quite extensive, although straightforward. Let
us rather state the results of each order. In the lowest or-
der we have

0 8Go.
3R

8z
po =Go.

p, =p, —
gp0 (z —h)+ (z —h) 4z

u =Go.0 9

sz' z+

aF
p, =p0 1+ (z —h)

Before proceeding further, let us introduce appropriate
units: h for space, h /~ for time, Fh lk for temperature,
and poh for mass. All equations can thus be put in a
nondimensional form. In this process, the following di-
mensionless numbers will appear: the Prandtl number
o =p/p0a. , the Rayleigh number R =p0gaFh /k~p, , and
the Galileo number G =gh p0/p . From now on, all
quantities will be understood as nondimensional.

We are now in a position to introduce the reductive
perturbation method. First we define the stretched coor-
dinates according to

z 5z z
wo = Go + 'go@9 18 6

p, =Ro(z —1)g+Go i), +
Ro. 8G o.

gO

z3
uI =R

6

z' z z'+ —g~+ Go. —z

At this order, il0(g, r) is an arbitrary function. The next
order gives

O =g(g, r),

(=ex, r=et, 1 16Go.
+2 '

3

2 —z —Go z (iI0)~,

with e a small dimensionless parameter. Usually, the
Gardner-Morikawa transformation also involves a group
velocity c in the definition of the new variable g. Howev-
er, if we introduce it here, it turns out to be zero when
the calculations are performed. This is a clear indication
that the instability we are considering is nonoscillatory,
and it is the reason we have dropped the velocity c from
the definition of g. A word should also be said about the
time scaling. Depending on mechanical and thermal
boundary conditions, this scaling may give rise to disper-
sive oscillatory phenomena [8]. Inspired by this fact, but
choosing other boundary conditions, we will be able to
describe in this paper a different phenomenon, which will
not be related to oscillatory motion. However, we should

z4 z3 z2 z3 z2

1

2
16Gcr

3
3+ "

6 2

z'
2—Go (g0)~~ .

R Go. R 11Gcr
8 gpss 3

Ilg' 90r 6 18 (90 gg
' (12)

We are essentially interested in determining the evolu-

In the expressions, g (g, r) and i)&(g, r) are arbitrary func-
tions, which must satisfy
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8Go. Z'
02, = — zgo~(+ Go-

R 45
5z z

18

with the compatibility condition

R =320

tion equation for go. To do so, we do not need to calcu-
late u2, wz, u3, w3, p2, etc. We need only to obtain 82,
and 03, . Each one of them must satisfy two boundary
conditions, Eqs. (9) and (11), implying two compatibility
conditions, one at each order. This leads to

' 1/3

(Xo—X') ifX&Xo
y(g r)= . 6 2r

0 if y)yo
(17)

where g is the self-similar variable defined by

&=f «& )

The self-similar solution to Eq. (16) has been discussed
in the literature [11,14], and it can be written in the form

and

Go G o z
120 9 ~ 360 3

sz' z'+ (incog)2

with yp=( —,')'~ . We note that both the evolution equa-
tion and its self-similar solution are invariant under the
transformation

g —EX, 7=E t, P — 'gp= E 'g

80
4Go

3

4

12

Z3

3

Go. 3 2
(Vo)g

5

+80
30

4 3
Z + Z

6 3

Z

80 g«

4
+Go.

24

Z3
(ili)g .

Now, using Eqs. (9) and (11), the other compatibility con-
dition emerges, involving g& and g in exactly the same
combination they appear in Eq. (12). This fact allows the
elimination of g, and g from these equations, leading to
the following evolution equation for go:

Go. 4Go. 4Go. 4—1 no, + novo'+ +—(not)2=0 .
45

P,=2(P')g,
which is a nonlinear diffusion equation [11].

(16)

(14)

This is just the evolution equation for go we were looking
for, and which appears when R =320. Note that this is
the critical Rayleigh number for the onset of convective
motion, which was found previously in Ref. [1]. There-
fore, Eq. (14) describes the time evolution of surface dis-
placements at the critical point for the onset of convec-
tion. For each solution go of Eq. (14), the whole lowest
order follows, as uo, wo, po, and Oo are all functions of
7jo e

A further simplification comes in if we remember that
the validity of the Boussinesq approximation implies
Go. ))1, which is indeed the most usual case. Dividing
Eq. (14) by Gcr, and neglecting (Go )

' terms in compar-
ison to 1, it results in

gp +471pri g+ 4( 7)pg ):0
or in a con pact form

ihip, +2(gp)~~=0 .

Introducing a new field defined by P= —ilo, Eq. (15) be-
comes

Therefore, in stretched as well as in real coordinates, the
same solution is valid. Now, solution (17) is highly singu-
lar at ~=0, but its interest comes from the fact that it de-
scribes the asymptotic behavior for ~~~. In other
words, giving any initial condition for Eq. (16), say P($, 0)
which is supposed to be a localized function that satisfies
P(g, 0) 0, then P(g, r) will tend asymptotically to the
solution (17) as r~ ~ [15]. Therefore, Eq. (17) describes
the general behavior of the solutions to Eq. (16) for sur-
face perturbation go negative, and for large times. Their
most prominent property is the existence of sharp propa-
gating fronts: an initial localized disturbance will always
be nonzero over a growing bounded region of the g axis.
The points where it falls to zero are called fronts. They
propagate with opposite finite velocities, corresponding
to a noninstantaneous spread out of the disturbance,
which is opposite to the typical behavior of processes
governed by linear diffusion equations, which would be
the case for R well below 320. For R —320 su%ciently
small, we expect the nonlinear diffusion process to be
dominant, leading to the appearance of sharp propaga-
ting fronts.

For the sake of completeness, let us note that the
(2+1)-dimensional version of Eq. (14) can be obtained
through the introduction of an x-transverse y coordinate
from the beginning, and by defining its stretched counter-
part according to j=ey This definit. ion puts the coordi-
nates x and y on the same footing, and the resulting evo-
lution equation, in this case, will be

Go. 4Go.
1 gp + gp(ihip~~+ ihip~~)

+ + — ( '+ ')=0
45 3 90( log

For Go. ))1, it results in

ih, +2(gp)t~+2(go)~~=0 .

This equation has also been studied in the literature [14],
and in the case of circular symmetry it presents the same
kind of sharp propagating fronts as Eq. (15).

We now examine the meaning of negative perturba-
tions. First, we observe that since we are interested in
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studying the evolution of surface or temperature pertur-
bations of the system, it is quite convenient to introduce
another Rayleigh number, defined by

gpoh o;R= AT,
KP

where AT is the temperature difference between the bot-
tom and the moving upper surface. Of course, as a
consequence of the deformable upper surface, R is a non-
stationary x-dependent Rayleigh number. Using that
ET=(Fh lk)+e(F lk)pc+ o(e ), we obtain for R = 320,

gPoh aF
R =320+@ rio+o(e ) .

KPk

This new Rayleigh number states the balance between
buoyancy and dissipation for each coordinate x and time
t. Therefore, we can see that a negative go will stand for
a perturbation leading to R lower than 320 at any x and t.
In terms of the temperature Oo, the same is valid for a
cooling perturbation. Consequently, for this kind of per-
turbation, buoyancy is not enough to start the convective
motion, and the surface behavior will be described by Eq.

(17). For a positive or a heating perturbation, R would
be above 320 and the solutions of Eq. (15) would grow
indefinitely, showing the inadequacy of the approach for
this case. In fact, for positive perturbations the system
enters the convective regime, for which the scaling we are
using is not appropriate, and the equations we obtained
are not valid.

To summarize, we have derived the evolution equation
governing negative surface, or cooling perturbations of a
shallow Quid, at the critical point for the onset of convec-
tion, in a system of the Rayleigh-Benard type. We have
considered specific boundary conditions giving rise to
motions with a very large characteristic wavelength. The
equation found is a nonlinear diffusion type equation, and
in certain instances it may develop solutions with sharp
propagating fronts.
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