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A B S T R A C T

This study investigated the effects of two β-glucan molecules with different purities and isolated by different
biotechnological processes on the immune response of matrinxã (Brycon amazonicus) prior and after challenge
with Aeromonas hydrophila. In this sense, we evaluated serum cortisol and plasma glucose levels, the number of
leukocytes (lymphocytes, neutrophils and monocytes), as well as the respiratory activity of leukocytes prior to, 6
and 24 h post infection (hpi). During 15 days, fish were fed with diets containing 0.1% of two β-glucans (β-G 1
and β-G 2, with 71 and 62% of purity, respectively) and then submitted to challenge. Results were compared
with a positive control group fed with a β-glucan-free diet. A negative control group, also fed with β-glucan-free
diet but inoculated with PBS, was established to evaluate the effect of handling during injection. Our results
showed that different β-glucans affected differently the biological responses of matrinxã. The βG 2 modulated
the cortisol profile prior to and after the acute infection with A. hydrophila, and increased the mobilization and
activity of leukocytes. The infection promoted lymphopenia at 6 hpi and both β-glucans increased the circulating
lymphocyte population 24 hpi. Moreover, the β-G 2 prevented the infection-induced neutrophilia at 6 and 24
hpi. Finally, the β-G 2 caused a marked increase in the circulating monocytes prior to infection, and a reduction
at 6 hpi that was reversed at 24 hpi. In summary, our study demonstrates that β-G 2 was more efficient on the
induction of the cell-mediate immunity in matrinxã.

1. Introduction

Modern intensive aquaculture can adversely affect the health of
cultured fish by promoting a potentially stressful environment and the
growth of infectious diseases. Unfortunately, the indiscriminate use of
antibiotics and other drugs to control diseases has contributed to the
emergence of several resistant pathogenic organisms [1]. Therefore,
efforts aiming to develop strategies to control the pathogen and im-
muno-prophylactic measures are needed to support the economic via-
bility of the activity.

Dietary addition of immunostimulants has been shown to enhance
fish innate humoral and cellular immune responses against infectious
diseases [2–5]. These substances induce the proliferation of leukocytes
and their phagocytic activity, as well as secretion of immune mediators

such as cytokines [6]. Among these immunostimulants are the β(1–3)
(1–6)-D-glucans, hereafter referred to as “β-glucans”, which are highly
conserved carbohydrates found in the cell walls of plants, fungi, yeast,
seaweed, and bacteria [7,8]. They consist of a backbone of β-(1, 3)-
linked β-D-glucopyranosyl units with β-(1, 6)-linked side chains of
varying distributions and lengths [3,6,9]. The β-glucan from the cell
wall of Saccharomyces cerevisiae has been shown to have im-
munostimulatory and beneficial properties, including enhanced pro-
tection against infections [10], tumor development [11], and sepsis
[12,13]. Its effect has been attributed to the binding to multiple toll-like
receptors on leukocytes membrane, resulting in the stimulation of im-
mune responses, such as the increase of bactericidal activity [2] and
modulation of cytokine production [14].

Several β-glucans are now commercially available to be
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incorporated in the diets of livestock, including farmed fish [6,15]. The
activation of the immune response by the β-glucans depends on their
molecular weight and degree of branching and the extraction process
has implications for the benefits of these compounds [16,17]. However,
few are known about the comparative efficiency of β-glucans extracted
by different biotechnological methods, as immunostimulants able to
strengthen defense mechanisms [18,19]. Therefore, we compared the
effects of two insoluble β-glucan molecules over the immune response
in matrinxã, a teleost fish from the Amazon basin, with high economic
value for aquaculture in some South American countries [20]. In order
to achieve our aim, fish previously fed with β-glucans were experi-
mentally inoculated with Aeromonas hydrophila, a gram-negative bac-
terium that is commonly isolated from freshwater environment and
used to stimulate immune responses in fis [21]. The results presented
herein offer new knowledge about the immunostimulant effects of β-
glucan molecules as well as feed strategies to increase disease resistance
and improve fish health.

2. Material and methods

2.1. Experimental animals and lab condition

This study utilized 64 juvenile fish (250.9 ± 45.9 g and
25.7 ± 1.4 cm) that were kept individually in 64 40-liter fiber tanks (1
fish per tank, density near to 6.2 g fish L−1), during 10 days for accli-
matization to the laboratorial conditions being fed with a commercial
feed (28% crude protein CP). Temperature, oxygen and ammonia levels
were 30°± 0.4 °C, 5.7 ± 0.2 mg L−1, and 71.1 ± 21.2 μg L−1, re-
spectively. Photoperiod was 14 h light: 10 h dark, during summer
season.

2.2. Experimental design and diets

The present study evaluated the individual immunostimulant effect
of the two β-glucan molecules (β-G 1 and β-G 2) added to a rate of 0.1%
in commercial feed (28% CP) and their effects were compared with a β-
glucan-free diet as positive control. The matrinxa displays a highly
aggressive behavior [22], and fish were allocated in individual tanks in
order to avoid agonistic behavior which could drastically affect the
stress and immune responses. After acclimatization, fish were fed with
1.5% of their body mass twice a day (11:00–16:00 h) during 15 days.
We used 18 fish per treatment (Control, 0.1% β-G 1 and 0.1% β-G 2).
Another 10 fish were fed with the control feed to represent the negative
control group that would be inoculated with phosphate buffered saline
solution (PBS) in instead of bacterial inoculation. On the 16th day, six
fish were sampled to determine the prior infection condition. Following
that, 12 fish per treatment, starved for 12 h, were anesthetized (ben-
zocaine, 0.05 g L−1) and inoculated in the mesenteric cavity with a sub
lethal concentration of A. hydrophila (2.5 μL g−1), while the 10 fish
from the negative control group were inoculated with PBS. At 6 and
24 h post infection (hpi), anesthetized fish were bled in order to eval-
uate biochemical and cellular indicators of their immunological con-
dition.

Experimental diets were prepared using an extruded commercial
feed that was ground, and to which 0.1% of two different glucans coded
as β-G 1 and β-G 2 were incorporated. Then, in order to re-pelletize the
feed, the mixture was moistened with 40% water, passed through a
food processor, and finally dried in an oven with air extraction at 40 °C
for 24 h. The control feed was β-glucan-free. The two β-glucans were
isolated from Saccharomyces cerevisiae, being β-G1 Macrogard 71% pure
(batch number Q513187) and β-G 2 is a research and development
substance for now called “R&D β-glucan” 62% pure (batch number
T1411201). Both products contain β-glucans plus lipids, protein, ash
and moisture, and no nucleotides according to the manufacturer. The
batches were kindly provided by Biorigin, Brazil; (http://www.biorigin.
net/biorigin/macrogard/macrogard_en/index.html).

2.3. Acute bacterial challenge

The A. hydrophila strain was isolated from carp Cyprinus carpio
(strain A135, LAPOA, UNESP) and identified by sequencing of the 16S
rDNA (similarity of 97% with GenBank access: ATCC 7966). The strain
was stocked in TSB (Tryptic Soy Broth, Media) medium with 30%
glycerol (sterile), at −80 °C. An aliquot of 20 μL (strain stock) was
inoculated in 5 mL of autoclaved TSB medium and incubated in bac-
teriological incubator at 28 °C, for 24 h. Subsequently, 200 mL of au-
toclaved TSB medium was added and incubated again with the same
procedure. The bacterial suspension was centrifuged at 8.000 ×g for
10 min and supernatant was discarded. Then PBS buffer (0.01 M) was
used to wash the pellets twice and the suspension was centrifuged
again. The bacterial PBS suspension was lower than the lethal con-
centration CL 50 (7.6 * 108 CFUmL−1) adjusted by the UFC counting
after bacterial culture and determined based on the optical density
(OD600=1.095), using PBS buffer (0.01M). For stimulation of the fish
immune response, the bacterial suspension was previously determined
as a sub lethal dose (pre-experimental tests, data not shown). No
mortality was recorded during the experiment period.

2.4. Sampling

At each sampling time, 6 fish per treatment (different fish at each
sampling time were used) were anesthetized and blood samples were
drawn from the caudal vein using syringes without anticoagulant.
Blood was dispensed in 2mL microtubes with and without antic-
oagulant. Blood with the anticoagulant Glistab® was maintained under
refrigeration for plasma glucose determination and NBT activity mea-
sure. The blood smears preparations were made with fresh blood. Blood
in microtubes without anticoagulant was maintained at room tem-
perature for 3 h and then centrifuged (3000 rpm for 5min) for serum
separation. Serum samples were stored at −20 °C and further used to
measure cortisol levels.

2.5. Serum cortisol and plasma glucose concentrations

Blood cortisol concentration was measured by enzyme-linked im-
munosorbent assay (ELISA) with a commercial kit (DRG® Cortisol
ELISA, EIA-1887; DRG International, Inc., USA; http://www.drg-
international.com). The plasma glucose concentrations were mea-
sured by enzymatic method (Labtest kit, Sao Paulo, Brazil, code 84)
following the instructions of the manufacturer.

2.6. Leukocyte respiratory burst – NBT activity

The production of reactive oxygen species (ROS) was measured
using NBT (Nitro tetrazolium blue chloride – Sigma Aldrich - N6876),
following protocol by Anderson & Siwicki (1995) [23], modified by
Biller-Takahashi et al. (2013) [24]. Immediately after fish bleeding,
50 μL of heparinized blood was incubated with an equal volume of NBT
buffer (0.2%) at room temperature for 30min. Subsequently, 1 mL of
DMF (Dimethylformamide, Sigma Aldrich – 227056) was added to the
samples, and they were read using a spectrophotometer (Thermo Sci-
entific; Genesys 10S), at room temperature, at 540 nm.

2.7. Cellular counts

The total count of red cells was performed in a Neubauer chamber,
using whole blood diluted in formaldehyde citrate buffer 1:200. The
total and differential count of leukocyte was performed using optical
microscopy on blood smears stained with methanol blue eosin solution
May-Grünwald-Giemsa-Wrigth (MGGW), according to [25]. The leu-
kocytes were measured by the indirect method, which considers the
number of leukocytes for 2000 erythrocytes counted. To the leukocytes
differentiation, 200 cells were counted and the amount of each cell type
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was expressed as cells μl−1.

2.8. Data analysis

To evaluate the immunostimulant effect of both β-glucans and to
compare the control group prior to and after bacterial challenge all data
was submitted to normality (Shapiro-Wilk) and homoscedasticity
(Levene). A two-way-ANOVA was used with a factorial of 3× 3, being
3 treatments (positive control, β-G 1° and β-G 2°)× 3 sampling times
(prior to infection, 6 hpi, and 24 hpi). Duncan's post-hoc tests were
made for comparison of means. Finally, a t-test was used to compare the
means of positive and negative control groups 6 and 24 h after the re-
spective inoculations. Values in the text and figures are represented by
means ± standard error (SE) of the mean. P value < 0.05 was used to
estimate the level of significance for statistical differences.

2.9. Ethical statemen

All procedures that involved animal use were performed in ac-
cordance with ethical principles in animal experimentation, adopted by
the Colégio Brasileiro de Experimentação (COBEA), Brasilia, Brazil, and
approved by the Comissão de Ética no Uso de Animais (CEUA) protocol
n° 014679/14 UNESP - Jaboticabal campus.

3. Results

To evaluate the immunostimulant effect of two β-glucan molecules
(β-G 1 and β-G 2) on the induction of fish immune response, matrinxã
juveniles were fed for 15 days with or without the β-glucans before
being inoculated with A. hydrophila. Biochemical and cellular indicators
were evaluated just before inoculation and again 6 and 24 h after in-
oculation.

3.1. Blood cortisol and glucose concentrations

Prior to infection, fish fed with β-G 2 showed the highest levels of
serum cortisol, followed by animals fed with β-G 1 and lastly by the
positive control group. Fish from the positive control group presented
similar serum cortisol levels 6 h post infection (hpi). However, cortisol
levels were higher in fish fed with β-G 2 compared to fish fed with β-G 1
(P < 0.05), or the positive control diet (P < 0.001). Only fish fed with
the β-glucans reduced cortisol levels at 24 hpi, when compared to the
levels measured prior to infection and at 6 hpi. Serum cortisol levels in
fish of the negative control group were always lower than those of the
positive control (Fig. 1A).

Prior to infection, plasma glucose concentrations did not differ
among treatments. However, at 6 hpi all the challenged fish had re-
duced plasma glucose concentrations (P < 0.05). At 24 hpi, the glu-
cose levels of fish fed with β-G 1 were higher than those observed in the
positive control group; fish fed with β-G 2 revealed intermediate values.
Negative control glucose values did not differ between 6 and 24 h after
PBS inoculation, being higher at 6 hpi compared to the positive control
group (Fig. 1B).

3.1.1. Respiratory activity of leukocytes (RAL)
Prior to infection, RAL did not differ among treatments. However, at

6 hpi, we observed increase in the reactive oxygen species (ROS) in all
challenged fish. Furthermore, this increase was higher in fish fed with
β-G 2 followed by fish from the positive control group and lastly by fish
fed with β-G 1. At this sampling time, RAL did not differ between fish
from positive and negative control groups. Twenty-four hpi, RAL re-
turned to the initial values in all treated fish, but remained higher in
fish from the negative control group compared to the positive control
group (Fig. 2).

3.2. Number of circulating leukocytes, lymphocytes, neutrophils and
monocytes

Prior to infection, the number of leukocytes did not differ among
treatments. However, at 6 hpi, there was a drop of approximately 42%
in the number of these circulating cells, being lower in fish fed with β-G
2 (P < 0.05). At 24 hpi, the number of leukocytes was around 38%
lower than the initial values. At 6 and 24 hpi, fish from the negative
control group showed lower numbers of leukocytes than the positive
control group (Fig. 3A).

Prior to infection, the number of lymphocytes did not differ among
treatments. However, at 6 hpi, all fish from challenged groups showed a
drop of approximately 83% in the number of circulating lymphocytes
(P < 0.0001). Fish from the negative control group presented higher
number of lymphocytes than those from the positive control group. At
24 hpi, all challenged fish revealed an increase in the number of lym-
phocytes. However, fish fed with both β-glucans (1 and 2) showed
higher circulating lymphocytes values compared to the positive and
negative controls (P < 0.05), indicating an immune modulation by β-
glucan (Fig. 3B).

Prior to infection, the number of circulating neutrophils did not
differ among treatments. However, at 6 hpi, these levels rose markedly

Fig. 1. Serum cortisol (A) and plasma glucose concentrations (B) in matrinxã. Fish
fed with β-G 1 and β-G 2. The results are compared to fish from positive
(bacterial challenge) and negative (PBS injected) control groups, prior to and
after A. hydrophila inoculation. Different capital letters indicate differences
between treatment groups in each isolated sampling time. Different lowercase
letters indicate differences between the readings of the same treatment group,
collected at all times shown. Symbols, ≈ indicates no difference and * indicates
difference between positive and negative control groups 6 and 24 hpi. Columns
represent the means ± SEM (n = 6, P < 0.05).
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in all fish groups, reaching a fivefold increase in fish from the positive
control and the β-G 1 group (P < 0.05). Fish fed with β-G 2 also
showed increased number of these cells, albeit lower than fish from the
two groups aforementioned. At 24 hpi, the number of circulating neu-
trophils reduced in all challenged groups; the reduction was more
evident in fish fed with β-G 2 than in those fed β-G 1. Fish from the
negative control group showed lower numbers of these cells than the
positive control group in both samplings (Fig. 3C).

Prior to infection, fish fed with β-G 2 showed the highest number of
circulating monocytes, followed by fish fed with β-G 1 and lastly by fish
from the positive control group. At 6 and 24 hpi, only fish fed with β-G
2 showed a drop of 83% (P < 0.0001), and 60%, respectively. Fish
from the negative control group showed lower number of these cells
than the positive control group in both samplings (Fig. 3D).

4. Discussion

Herein we tested the immunostimulant effect of two different β-
glucan molecules on the immune response of matrinxã. The results
showed that the molecules differed in their biological potency and β-G
2 was more efficient in elevating the cortisol serum levels and stimu-
lating the innate immune response, prior to and after an acute experi-
mental infection.

The description of β-glucan effects over cortisol serum levels in
baseline conditions in fish is still minimal. In rainbow trout, physiolo-
gical cortisol serum levels did not change in fish fed with 0.1% of β-
glucan during four weeks [26]. Similarly, Pangasianodon hypophthalmus
fed with different concentrations of β-glucan during 9 weeks also did
not show changes in the levels of circulating cortisol [27]. We observed
that in matrinxã fed with β-G 2 high levels of cortisol were maintained
at 6 hpi. This profile may represent a mechanism to elicit an immune
response in order to prepare fish to fight against immune challenges. At
24 hpi, serum cortisol levels decreased in fish fed with both β-glucans,
especially in the β-G 2 group reinforcing the modulating effect of β-G 2
on cortisol serum levels. The separate/individual effects of cortisol and
β-glucans on the modulation of immune response are well characterized
in fish [2,6,28,29].

Our results are the first evidence that β-glucan can modulate blood
cortisol level in resting condition. This can be explained because β-
glucan has been recognized as a major fungal pathogen-associated
molecular pattern (PAMP) [2,30]. For this reason, when β-glucan binds
to receptors it can be similar to pathogen stimuli that lead to activation
of monocyte/macrophages system which increases IL-6 expression and
activates the hypothalamus/hypophysis/interrenal (HHI) axis and the
cortisol secretion. In fish, a direct association between bacterial infec-
tions or treatment with lipopolysaccharide (LPS; bacterial cell walls
components of Gram-negative bacteria) with induction of cortisol levels
has been described. For instance, Oreochromis mossambicus injected
with LPS from Escherichia coli showed modulation of the HPI axis at the
level of the cortisol producing tissue, as well as the corticotropic release
hormone CRH production on the ventral telencephalon tissue [31].

Hypoglycemia was detected after challenge with A. hydrophila (6
hpi) in all infected fish, suggesting that there was an energetic cost to
elicit the immunological response in matrinxã. Recently, a previous
study showed that immune responses in pacu (Piaractus mesopotamicus)
has a high energetic cost reflected by decrease of the plasma glucose
levels [32]. However, at 24 hpi, the glucose levels increased in all
challenged fish, indicating a recovery of the energetic condition of fish
after infection, regardless of dietary treatment.

β-glucans as a PAMP have strongly influenced the natural and
adaptive host immune responses [2,30]. On the other hand, β-glucans
are also known as leukocyte activators that promote immune protection
in several animal disease models [15]. Herein we found that dietary β-G
2 modulated leukocyte response in all infected fish by increasing the
number of the circulating leukocytes and by mobilizating them to the
infection site.

The immune modulator effect of glucans occurs following their
binding to specific receptors in monocytes/macrophages, neutrophils
and natural killer cells [33]. Indeed, β-glucan binds to different types of
receptors (βGR) in leukocytes, thereby triggering both innate and
adaptive immune response [2]. Among these βGR is the scavenger re-
ceptor that binds to anionic β-glucans (sulphated β-glucans) (for a re-
view see Meena et al., 2013). The complement receptor 3 (CR3) is more
expressed in neutrophils, monocytes, and NK cells compared to

Fig. 2. Respiratory activity of leukocytes in matrinxã. Fish fed with β-G 1 and β-G 2. The production of reactive oxygen species was measured using nitro blue
tetrazolium (NBT) (see Methods). The results are compared to fish from positive (bacterial challenge) and negative (PBS injected) control, prior to and after A.
hydrophila inoculation. Different capital letters indicate differences between treatment groups in each isolated sampling time. Different lowercase letters indicate
differences between the readings of the same treatment group, collected at all times shown. Symbols, ≈ indicates no difference and * indicates difference between
positive and negative control groups 6 and 24 h post infection. Columns represented the means ± SEM (n = 6, P < 0.05).
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macrophages. Binding of β-glucan to CR3 increases leukocytes' phago-
cytosis and degranulation as well as their tumoricidal activity [34].
Lactosylceramide is a glycosphingolipid found on leucocytes and en-
dothelial cells which binds to β-glucan and is associated with produc-
tion of reactive oxygen species (ROS) [4]. In addition, there are various
types of Toll-like receptors (TLR2-6). These receptors are used by
fungal, glucans and zymosan, all of which induce cytokines after
binding to TLR2 and TLR4, thereby favoring Th1 cell differentiation
[2]. Lastly, the dectin-1 βGR (dentritic cell-associated C-type lectin-1) is
considered the main β-glucan receptor and it recognizes carbohydrates
containing β-1,3 and/or β-1,6 glucan linkages, being expressed by
monocyte/macrophages, neutrophils, dendrite cells, and T cells [30]. In
carp, macrophages recognized β-glucans by multiple pattern recogni-
tion receptors that could include TLR but also non-TLR receptors and
they were less, but not unresponsive, to selective dectin-1 agonists [35].

In our study, RAL increased in all challenged fish, particularly in
those fed with β-G 2 at 6 hpi, which coincided with the reduction in
plasma glucose levels, indicating that the fish mobilized energetic blood
substrate to support higher immune cell activity. RAL increases were
also observed in carp intraperitoneally injected with β-glucan [10] and
in vitro, in Salmon salar macrophages [36]. The phagocytic activity of
fish leukocytes is one of the most important immune mechanisms for
surviving to pathogen infection [29]. The RAL is an important indicator

of the phagocytic activity. The increase in oxygen uptake at the in-
itiation of the respiratory burst is followed by the production of reactive
oxygen species which plays a role in the destruction of pathogens [24].

Total leukocyte counting reflected the counting of specific white cell
types. It is well known that, during the acute stage of an infection or in
conditions of immune exhaustion, there is a suppression of circulating
lymphocytes [37]. Moreover, in teleost fish it was demonstrated that B
cells have potent in vitro and in vivo phagocytic activities [38,39].
Accordingly, after bacterial inoculation, there was a strong lympho-
penia caused by the acute infection that was reversed at 24 hpi, espe-
cially in fish fed with both β-glucans. Therefore, it is plausible to sug-
gest that there was a migration process stimulated by the immune
activation and the reversal was due to immunostimulation by β-glucans
that increased these cells' population. In contrast with our results,
feeding sea bass Dicentrarchus labrax with Macrogard 0.1% during 60
days did not stimulate the lymphocytes populations [40].

Leukocyte profile was inversely associated to levels of serum cor-
tisol, except in the case of lymphocytes. In fish, cortisol has been shown
to affect the number of circulating leukocytes and their activity
[29,41–43]. However, different cells of the immune systems show
varied responses to cortisol [41]. Previous studies have described cor-
tisol induced lymphopenia and reduced lymphocyte proliferation as
well as other effects, such as an increase of the number of circulating

Fig. 3. Number of circulating leukocytes (A), lymphocytes (B), neutrophils (C) and monocytes (D) in matrinxã. Fish fed with β-G 1 and β-G 2. The results are compared to
fish from positive (bacterial challenge) and negative (PBS injected) control groups, prior to and after A. hydrophila inoculation. Different capital letters indicate
differences between treatment groups in each isolated sampling time. Different lowercase letters indicate differences between the readings of the same treatment
group, collected at all times shown. Symbols, * indicates difference between positive and negative control groups at 6 and 24 h post infection. Columns represent the
means ± SEM (n = 6, P < 0.05).
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neutrophilic granulocytes [44,45]. In carp, the cortisol induced apop-
tosis in activated B lymphocytes [46] whereas it caused an inhibition of
neutrophil apoptosis [47].

In fish, as in mammals, neutrophils play a primary role in the in-
flammatory process and are the first phagocytic cells to reach a site of
tissue injury or infection [38]. The neutrophils are the most abundant
circulating leukocyte in humans and zebrafish and are typically the first
responders [48,49]. Moreover, neutrophils can increase rapidly in cir-
culation during acute stress when cortisol levels are elevated [50]. We
observed that in matrinxã, under physiological conditions, lymphocytes
are the most abundant leukocytes. However, neutrophils observed in
low number before bacterial inoculation become highly sensitive after
acute infection, and increased significantly in the blood. In addition, at
6 hpi we observed an inverse association between the circulating neu-
trophils and the cortisol levels indicating the suppressor effect of glu-
cocorticoids over the neutrophils populations. Fish of the β-G 2 group,
with the highest cortisol levels, also had the lowest number of neu-
trophils. However, this association was not observed at 24 hpi. Cortisol-
induced neutrophilia was observed also in channel catfish stressed by
handling and transport [51].

Lastly, dietary β-G 2 induced a marked increase in the circulating
monocyte population before bacterial challenge. Beta-glucans are con-
sidered as strong mitogens inducing proliferation of peripheral blood
mononuclear cells [15]. However, the monocytes decreased after in-
oculation with A. hydrophyla, indicating that β-G 2 induced cellular
migration to the site of infection. A similar finding was described in
Pangasiodon hypophthalmus supplemented with β-glucan during 4 weeks
[13]. Moreover, the profile of cortisol before the inoculation and at 6
hpi is associated with the profile of the circulating monocytes. In the
physiological conditions, cortisol would be stimulating proliferation of
these cells and the lower number of monocytes at 6 hpi, coincident with
the highest cortisol levels observed, suggests the involvement of cortisol
in the cell migration process as suggested by Tort (2011). Monocytes/
macrophages are part of the first line of defense cells from the innate
immune system against infection and are also responsible for the reg-
ulation of inflammatory response [52,53]. Our results are in accordance
to other studies describing the stimulator effect of β-glucan over
monocyte functions [33].

The two different batches of Macrogard® we used promoted dif-
ferent results, the β-G 2 being the most efficient to stimulate cell-
mediated immunity of matrinxã. This has occurred with the use of
different β-glucans which vary in purity, solubility, primary structure,
molecular weight, branching and polymer charge, which have been
shown to influence their activity [54,55]. The binding to different
cellular receptors has been implicated in these activities [16]. Although
not yet fully understood, these attributes influence the way the carbo-
hydrates interact with their receptors. Similarly to our experiment, a
study tested the effects of adding two different glucans (β-G 1 68.5%
pure; β-G 2 55.5% pure, both from Saccharomyces cerevisiae) into
commercial feed of dogs to measure immune indicators. The study
found that the two glucans had significant immunomodulating effects,
but suggested that β-G 1 activity was superior to that of β-G 2 [18].
According to the authors, the samples of glucans were developed using
two different biotechnological processes. Moreover, a recent study with
Nile tilapia (Oreochromis niloticus) fed with diets containing the same
two β-glucan molecules (β-G 1 and β-G 2) of the anterior work cited
showed that the β-glucans have different magnitudes of effects on
growth performance and the immune response. Specifically, even with
a similar survival rate, the β-G 1 showed higher immunostimulation
than β-G 2, although β-G 2 had improved the fish growth [19].

In summary, in matrinxã, β-G 2 was more efficient to stimulate the
immune response cellular indicators and cortisol serum levels prior to
and during an experimental acute infection. In addition, we observed
an association of cortisol levels and immune response that indicate
glucan-induced cortisol improves the start of the early immune re-
sponse in matrinxã. Our results allow us to suggest that inclusion of β-G

2 in fish diet may help to prepare them to face stressful practices in fish
farming.
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