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RESUMO 

 

Nesta dissertação investiga-se o comportamento de um sistema de isolamento de 

vibrações de um grau de liberdade com amortecimento não linear. As 

transmissibilidades das forças e de movimento deste sistema são comparadas com 

as de um sistema de isolamento de vibrações linear. O sistema não linear é 

composto por uma mola e um amortecedor viscoso, ambos lineares, que estão 

acoplados a uma massa de modo tal que o amortecedor é perpendicular à mola. O 

sistema é excitado harmonicamente por um deslocamento da base ou por uma força 

na direção da mola. Quando o sistema é excitado por uma forca harmônica, as 

forças transmitidas através da mola e do amortecedor são analisadas 

separadamente, decompondo-as em termos dos seus harmônicos; permitindo assim 

determinar a contribuição individual de cada elemento no comportamento não linear 

do sistema como um todo. A transmissibilidade do sistema de isolamento não linear 

é calculada por meio de expressões analíticas validas para excitações com 

pequenas amplitudes, já para excitações com amplitudes grandes, calcula-se por 

meio de simulações numéricas.    

 

Palavras-chave: Transmissibilidade de força. Transmissibilidade do deslocamento. 

Isolamento de vibrações não linear. Serie de Fourier.   

 

 

 

 

 

 



 

ABSTRACT 

 

In this work the behaviour of a single degree of freedom (SDOF) passive vibration 

isolation system with a geometrically nonlinear damper is investigated, and its 

displacement and force transmissibilities  are compared with that of a linear system. 

The nonlinear system is composed of a linear spring and a linear viscous damper 

which are connected to a mass so that the damper is perpendicular to the spring. The 

system is excited with either a harmonic force or an imposed displacement of the 

base in the direction of the spring. When excited with a harmonic force, the forces 

transmitted through the spring and the damper are analysed separately by 

decomposing the forces in terms of their harmonics. This enables the effects of these 

elements to be studied and to determine how they contribute individually to the 

nonlinear behaviour of the system as a whole. The transmissibilities of the nonlinear 

isolation system are calculated using analytical expressions for small amplitudes of 

excitation and by using numerical simulations for high amplitudes of excitation. 

 

Key words:  Force transmissibility. Displacement transmissibility. Nonlinear vibration 

isolation. Fourier series.  

 

 

 

 

 

 

 

  



 

LIST OF SYMBOLS 

  

Symbol 
 

Name 
 

Units 
 

m   Mass [kilogram] – [kg] 
a   Damper length  [meter] – [m] 

t   Time  [seconds] – [s] 

k   Stiffness   [kg/m] 
c   Damping coefficient   [kg·s/m] 

h
c

  
Horizontal damping coefficient  [kg·s/m] 

eq
c

  
Equivalent damping coefficient  [kg·s/m] 

h   Damper length in any position  [m] 

x   Displacement of the mass [m] 
y   Displacement of the base [m] 

z   Relative displacement  [m] 

x   Velocity of the mass  [m/s] 

y   
Velocity of the base  [m/s] 

z   Relative velocity  [m/s] 

x   Acceleration of the mass  [m/s²] 

y   
Acceleration of the base  [m/ s²] 

z      Relative acceleration  [m/ s²] 

t
f

  
Transmitted force  [Newton] – [N] 

h
f

     
Horizontal lineal damping force  [N] 

e
f

  
Excitation force  [N] 

k
f

  
Spring force  [N] 

d
f

  
Damping force  [N] 

X   Amplitude of the displacement of the mass [m] 

Y   Amplitude of the displacement of the base [m] 

E     Energy dissipated by the damping force  [Joule] – [J] 

l
E

    
Energy dissipated by a linear damper [J] 

T      Non-dimensional Period    [--] 

ŷ      
Non-dimensional displacement of the base      [--] 

ẑ   Non-dimensional relative displacement     [--] 

ˆ 'x   Non-dimensional velocity of the mass     [--] 

ˆ 'y   
Non-dimensional velocity of the base     [--] 

ˆ 'z   Non-dimensional relative velocity      [--] 

ˆ ''x   Non-dimensional acceleration of the mass    [--] 

ˆ ''y   
Non-dimensional acceleration of the base      [--] 

ˆ ''z   Non-dimensional relative acceleration     [--] 

X̂   
Non-dimensional amplitude of the displacement of 
the mass 

   [--] 

Ŷ   
Non-dimensional amplitude of the displacement of 
the base 

    [--] 

D
T

  
Displacement transmissibility     [--] 

 



 

Symbol 
 

Name 
 

Units 
 

      
Linear damping ratio     [--] 

       Non-dimensional time    [--] 

   Angle between the damper and the horizontal line [radians] – [rad] 

d


 
Frequency at which the force through the damper 
starts to dominate the transmissibility 

   [--] 

eq


   
Equivalent damping ratio    [--] 

   Excitation frequency  [rad/s] 

n


  
Natural frequency  [m] 
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1   INTRODUCTION  

 

1.1 Background 

 

 Vibration is in many cases useful and desirable, e.g. in music or in medical 

treatments, but in most of the cases vibration is undesirable because of its 

detrimental effects on structures and on the human body. Excessive levels of noise 

from factories and vehicles engines as well as vibration transmitted through 

structures can cause discomfort in humans, and high amplitude vibrations can cause 

fatigue and damage in machinery and in structures. Nowadays there is a pressing 

demand for the protection of structural installations, nuclear reactors, mechanical 

components, and sensitive instruments from earthquake ground motion, shocks, and 

impact loads (IBRAHIM, 2008). 

These detrimental effects have motivated diverse approaches to vibration 

control which can be divided mainly into three areas. The first is the reduction of the 

vibrational excitation at source, which is often impractical because of economic and 

practical reasons. The second is the modification of the physical properties of the 

receiver, which is the part of the system which receives the transmitted vibration. The 

third is called vibration isolation. In this approach the vibration is reduced by 

employing isolators between the vibration source and the receiver (YAN, 2007). 

Vibration isolation is possibly the most widely used approach for vibration 

protection (RIVIN, 2003). It can be achieved by means of active, semi active and 

passive isolators placed between the source and the receiver. Active isolators usually 

perform well, reducing vibration to desirable levels over a wide range of excitation 

frequencies. However, computers and actuators are employed to modify the system 

response and they require a continuous supply of energy and have high costs. Semi-

active isolators modify the properties of the system. They use small quantities of 

energy and have good performance at high excitation frequencies, but usually they 
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have a complicated engineering design. A passive vibration isolator is composed of a 

spring and a damper located in parallel between the source and the receiver.  

Passive vibration isolation systems can be linear or nonlinear depending on 

the form of the forces in the system. This dissertation concerns nonlinear passive 

vibration isolation. The main goal is to compare the performance of a nonlinear 

isolator with a geometrically nonlinear damper with of that a linear isolation system 

and to analyse the time histories of the transmitted forces.  

 

1.2 Literature Review 

 

In the past few years the interest in studying nonlinear isolation systems has 

grown due to the need of improving the performance of vibration isolators, which  are 

often linear systems with linear viscous damping (LAALEJ et al. 2011). It is known 

that linear viscous damping reduces the forces transmitted through the isolator at the 

resonance frequency but increases these forces at higher frequencies. Ruzicka and 

Derby (1971) have studied passive isolation systems with linear stiffness and 

nonlinear damping. They investigated several systems, including those with hysteric 

damping and those in which the damping force is proportional to velocity raised to the 

n-th power. The case of 0n   represents Coulomb damping, the case of 1n   

represents linear viscous damping, and the case of 2n   represents quadratic 

damping, and so on. They have shown the usefulness of linear damping at the 

resonance frequency and the degradation of vibration isolation at high frequencies. 

Snowdon (1979) has also provided a significant review of linear isolation systems.  

Ravindra and Mallik (1994) have investigated isolation systems having 

nonlinearity in the stiffness and the damping under both harmonic force excitation 

and harmonic base excitation. They have shown that for such nonlinear systems, 

when excited by a harmonic force, the effect of increasing the damping results in a 

decrease in the transmitted force at resonance and that the attenuation of forces at 

high frequencies is diminished, in agreement with the results presented by Ruzicka 

and Derby (1971). Therefore the effects of the damping in such a system are similar 

to those for a linear system. Transmissibility is a widely used concept to measure the 
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performance of an isolation system. Force transmissibility is defined as the absolute 

value of the ratio of the excitation force to the transmitted force. Absolute 

displacement transmissibility is defined as absolute value of the ratio of the excitation 

displacement to the transmitted displacement. For a system with Coulomb damping, 

they have observed a strange jump in the absolute displacement transmissibility 

(called the jump effect). They have observed that this effect can be reduced and 

even eliminated by adding appropriated viscous damping.  

   Lang et al. (2009) have studied a single degree-of-freedom (SDOF) isolator 

with linear stiffness and cubic damping, applying the concept of the output frequency 

response function (OFRF) proposed by themselves. They showed that when this 

system is harmonically force-excited it can provide ideal isolation, in which only the 

resonant region is modified by the damping and that the behaviour of the isolator in 

frequency regions lower and higher than the resonance region remain unaffected, 

regardless of the levels of damping. This is because the relative velocity is large at 

frequencies near the resonance and small at frequencies higher than the resonance 

frequency. This is in agreement with the results obtained by Ruzicka and Derby 

(1971). 

 Milovanovic, Kovacic, and Brennan (2009) have investigated the displacement 

transmissibility of a system with linear stiffness and cubic damping and a system with 

linear-plus cubic stiffness and linear damping, both under base excitation. For the 

first system they have shown that in order to give a bounded response it is necessary 

to have a finite value of damping for each nonlinear stiffness term, this is different to 

that of a linear isolator where any value of damping results in a bounded response. 

Regarding the system with cubic damping they have found that this damping has a 

beneficial response in the resonance region but the performance at high frequencies 

is very poor.     

 Laalej et al. (2012) have investigated experimentally the beneficial of a cubic 

damper in vibration isolation. Using an active vibration isolation test rig, the authors 

have shown that significant benefits result from the use of cubic non-linear damping 

in SDOF vibration isolation systems, when force transmissibility is of interest.     

 Tang and Brennan (2012) have analysed the free vibration of a SDOF isolator 

with linear viscous damping, cubic damping and geometrically nonlinear damping in 
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which the damper is orientated at ninety degrees to the spring. They have shown that 

for low levels of vibration that cubic damping is equivalent to the geometrical 

nonlinear damping. Further, they showed that the system with cubic damping is very 

poor in attenuating free vibration.  

Tang and Brennan (2013) have analysed a system in which the damper is 

oriented at ninety degrees to the spring, excited harmonically by either a force or a 

base displacement. They have compared its performance with that of a linear system 

and with that of a system with cubic damping. In this dissertation, part of this work is 

reproduced in detail to compare the differences between these two systems, and the 

advantages of such a system compared to a linear system. Similar methods are 

initially employed in the analysis, but analysis based on the Fourier series on the time 

histories of the transmitted forces is also carried out.  

 

1.3  Objectives 

 

The specific objectives of this dissertation are to: 

 Compare the performance of a linear vibration isolation system with the 

performance of a nonlinear isolation system in which the damper is 

orientated at ninety degrees with respect to the spring. This is done for low 

and high amplitude excitation, and for force and base excited systems. 

 

 Analyse the time history and the Fourier series of the force transmitted 

through the nonlinear isolator to determine the behaviour of the force 

transmissibility at frequencies close to the resonance frequency. 

 

1.4  Contributions 

 

The contributions of this dissertation are as follows: 
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- From the study of the nonlinear system when excited with low amplitude 

vibration, it has been shown that the damping force depends on the square of 

the relative displacement and it makes the nonlinear isolator suitable for 

vibration isolation for low levels of excitation.  

 

- Analytical expressions have been derived for the nonlinear isolator when 

excited with low amplitudes of force and base displacement (presented in 

Table 3.1). Such expressions show the relationship between the maximum 

and minimum allowable amplitudes of the excitation force and base 

displacement, in order to maintain a better performance of the nonlinear than 

that of the linear isolator at the resonance frequency. The relationship between 

the transmissibility, the excitation frequency and the damping ratio of the 

horizontal damper is also derived. 

 

- It has been shown that the performance of the nonlinear system at high 

excitation frequencies is very good, performing better than the linear system 

for force excitation.  

 

- When the system is excited at a high level of vibration it has been shown that 

the performance of the nonlinear system deteriorates because higher order 

harmonics are generated because of a cascading effect of nonlinear 

behaviour through the system.  

 

1.5 Dissertation Outline 

 

 In chapter one a review of previous and related works is presented. Chapter 2 

deals with a linear isolation system when excited by either a harmonic force or a 

harmonic base displacement. Here, the relation between the parameters of the 

system and how they affect the isolation in each case at different frequency regions 

is discussed. A brief section about transient, steady state and resonance frequency is 

also included. 
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In Chapter 3 the nonlinear isolation system in which the damper is orientated 

at ninety degree to the spring is analysed. The performance of this nonlinear system 

is compared with that of a linear system when the system is excited either by a 

harmonic force or by a harmonic displacement. In each case the system is studied for 

low amplitude excitation, for which the nonlinear damping force can be approximated 

to an equivalent viscous damping force, and for high amplitude excitation where 

numerical analysis is conducted.    

In Chapter 4 the time histories for the force transmitted to the base at 

frequencies near the resonance frequency are analysed as well the frequency 

spectra. The forces transmitted by the spring and the damper, which sum to give the 

total transmitted force, are also analysed together with their frequency spectra. The 

force transmitted through the damper is then further analysed in detail to examine the 

nonlinear effects. 

Chapter 5 presents the main conclusions from the study conducted in this 

dissertation. It includes a summary of the dissertation and proposes some further 

work. 
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2   THE LINEAR ISOLATOR  

 

2.1 Introduction 

 

 The aim of this chapter is to review the characteristics of a single-degree-of-

freedom (SDOF) linear isolator system. This is necessary so that a comparison 

between a linear and a nonlinear isolator can be conducted in Chapter 3. The interest 

in the SDOF linear isolation system is confined to the cases in which the system is 

harmonically excited by a force applied to the mass, and base excitation. The free 

vibration of the linear system has been reviewed in detail by Harris (1961), Rao 

(2008), Steidel (1989) and Thomson (1996), among several different authors and is 

not discussed in this chapter, as well as the behaviour of the system when is 

disturbed by a random excitation, which is discussed in Harris (1961) and Steidel 

(1989). 

 The concept of transmissibility and the way in which the system parameters 

affect this in different frequency regions are investigated. The results are shown in 

non-dimensional form with the intention of demonstrating the general features of the 

system instead of results based on specific values of the parameters.  

 

2.2 The Linear Isolation System 

 

A SDOF isolation system is composed of a rigid mass, an ideal spring and an 

ideal damper rigidly connected in parallel so that the system moves in the same 

direction as an external excitation force applied to the mass. Such a system is a 

simplification of reality. In this representation each constituent element has only one 

function, so that the resilient properties of the system are represented by the spring, 

the damping properties of the system are represented by the damper and all the 

inertia properties of the system are represented by a point mass.  
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The spring is assumed to be to be massless and with no damping, and the damper is 

assumed to be massless and without stiffness. Figure. 2.1 shows a SDOF isolation 

system which can be either harmonically force-excited or base-excited. Its motion is 

restricted to the vertical direction;  e
f t  is the excitation force,  t

f t  is the transmitted 

force, m  represents the mass of the system, k  is the elastic constant of the spring, 

c  is the damping coefficient of the damper,  x t  represents the mass displacement, 

 y t  represents the base displacement, and      z t x t y t   is the relative 

displacement. The system stores kinetic energy by means of the movement of mass, 

the potential energy of the system is stored in the spring, and the energy of the 

system is dissipated by the damper. The displacement variables are all time 

dependent; because of that it will be use a notation in which it will just appear the 

variables without its explicit dependence on time.     

Figure 2.1 – A SDOF isolation system comprised of a rigid mass, a massless linear viscous damper 

and a massless linear spring. The system is excited in the vertical direction with either a harmonic 

force  e e
cosf t F t  and   0y t   or harmonic displacement by the base   cosy t Y t  and 

  0
e
f t  , where   is the excitation frequency is and t  is time. Its movement is restricted to the 

vertical direction. 

 

Source: Elaborated by the author  
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2.2.1 Equations of Motion 

 

 Most of the work in this dissertation is mainly conducted in non-dimensional 

variables, however some variables have dimension, mainly at the beginning of the 

present chapter and at the beginning of Chapter 3. To avoid confusions in this sense, 

it has been included a list of symbols with its dimensions in the first pages of this 

dissertation. 

In a linear system the viscous damping force is proportional to the relative 

velocity between the ends of the damper and the elastic force of the spring is 

proportional to the relative displacement between its ends. When the system is 

excited by an external force, the base displacement is 0y   and therefore z x . 

The inertia of the body  m
f t , the spring force  k

f t  and the damping force  d
f t  act 

in opposite direction to the excitation force  e
f t . This relation between the forces on 

the system can be written as  

       m d k e
f t f t f t f t  

 
                                         (2.1) 

The harmonic excitation force has the form  e e
cosf t F t , where 

e
F  is the 

amplitude of the force,   is the excitation frequency and t  is the time. The force due 

to the mass is  m
f t mx  , the linear damping force is  d

f t cx   and  k
f t kx   

is the elastic force of the spring. The overdot indicates differentiation in time, so that 

x  and x  are the mass velocity and acceleration respectively, and the negative sign 

indicates that inertia, damping and spring forces act in opposite direction of the 

relative acceleration, velocity and displacement of the mass respectively. Using 

Newton’s second law and substituting the previous definitions of the forces in Eq. 

(2.1) the equation of motion of the force-excited system is given by 

 
e
cosmx cx kx F t  

  
                                       (2.2) 

Note that the argument  t  is omitted here and in the remainder of this 

dissertation for clarity. When the system is base-excited there are no excitation 
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forces 0
e
f   and the force due to the mass depends only on the displacement x  of 

the mass, but the damping and stiffness forces depend on the relative displacement 

z x y   since the base is moving. Considering these conditions the equation of 

motion for the base-excited system is given by  

    0mx c x y k x y    
   

                                   (2.3) 

Subtracting my  from both sides of Eq. (2.3), the equation of motion for the 

base excited system can be expressed as a function of the relative displacement 

mz cz kz my                                               (2.4) 

Equations (2.2) and (2.4) are the main equations describing the system shown 

in Fig. 2.1 when is force-excited and base-excited. Equation (2.3) can be rearranged 

so that the variables can be separated obtaining   

mx cx kx cy ky                                               (2.5) 

Equation (2.5) will be useful further on when defining displacement 

transmissibility in Section 2.3.  

 

2.2.2 Transient, Steady-State and Resonance Frequency 

 

The solutions for the system described by Eqs. (2.2) and (2.4) are composed 

of the sum of two terms. The first term is the solution for the system when it vibrates 

freely, which is known as the homogenous solution and represents a transient. This 

is an oscillation at the natural frequency 
n

/k m   which decays quickly in time 

due to the damping present in the system. The second term is the particular solution 

which represents the steady-state. This is a vibration in which the system oscillates at 

the excitation frequency and lasts while the excitation force is active. In a physical 

system, which is being excited by its base or by an external force, both kinds of 

vibrations are present in the system oscillation but the transient always decays after 
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some time. The analysis on this work is based on the steady-state vibration of the 

systems, so that the transient is not taken in account. 

 A resonant frequency is defined as the frequency for which the system 

response is a maximum (Harris, 1961, p. 2-15), for the force and displacement 

transmissibility it can be defined as the frequency for which the transmissibility is a 

maximum. For low damping the resonance frequency of a system is very similar to its 

natural frequency 
n

 . Because of this, in this work the resonance frequency is 

normalised by the natural frequency 
n

  and the resonance frequency is assumed to 

be when 
n

1/   .  

 

2.3 Transmissibility for the linear isolator 

 

 The study on the linear and the nonlinear systems is conducted for two cases: 

1) when the system is harmonically base-excited and 2) when the system is 

harmonically force-excited. This is because in vibration isolation there are two 

concerns: 1) to isolate a vibrating machine from its surroundings in order to reduce 

the transmitted vibration from the machine to a receiver and 2) isolate a delicate item 

of equipment from a vibrating host structure or base. Clearly the mass m  represents 

the mass of the machine or equipment and the damper and the spring are used to 

reduce the transmission of movement or force. These elements together form the 

isolator system.      

 

2.3.1 Force and Displacement Transmissibility 

 

Transmissibility is one of the most used concepts to measure the performance 

of an isolator and is the concept used here to compare the performance between the 

two systems analysed on this work. Transmissibility is defined as ratio of the 

amplitude of the transmitted motion or force to the amplitude of the excitation motion 
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or force (Yan B. 2007, p. 3). When the system is being harmonically force-excited      

( 0y   and  e e
cosf t F t ) the force is transmitted through the spring and damper 

to the receiver, thus the transmitted force is the sum of these two forces 

 t
f t kx cx  . Assuming a harmonic response and employing complex exponentials 

to represent the excitation force 
e

j tF e  , the transmitted force 
t

j tFe   and the 

displacement response j tx Xe  , the amplitude of the transmitted force is  

 t
F k j c X                                                      (2.6) 

where 1j   . Following the same process Eq. (2.2) becomes                                      

 2

e
k m j cX F                                                  (2.7) 

Combining Eqs. (2.6) and (2.7) results in the force transmissibility given by 

                         t

F 2

e

F k j c
T

F k m j c



 


 

 
                                            (2.8) 

When the system is base-excited the transmissibility is defined as the ratio of 

the amplitude of the transmitted motion Y  to the amplitude of the excitation motion 

X . Using the complex representation for the excitation displacement j tx Xe   and 

the transmitted displacement j ty Ye  , in Eq. (2.5) results in the displacement 

transmissibility given by  

   
D 2

Y k j c
T

X k m j c



 


 

                                          
 (2.9) 

Note that force and displacement transmissibility for a linear system (Eqs. 

(2.8) and (2.9) respectively) are equal. To obtain a non-dimensional expression for 

the transmissibility, the numerator and the denominator of either Eqs. (2.8) or (2.9) 

are divided by k . Noting that the damping ratio 2/
n

c m  , a non-dimensional 

expression for the transmissibility can be determined. It is given by 

                 
F D 2

1 2  

1 2  

j
T T

j





 
 

  
                                        (2.10)    
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where /
n

    is the non-dimensional excitation frequency. Figure. 2.2 shows 

force (and displacement) transmissibility for a SDOF isolation system described by 

Eq. (2.10) for two different damping ratios representing low and high damping. The 

results in Fig. 2.2 are shown in decibels, which is commonly used to specify 

transmissibility as well as other physical quantities; it is a logarithmic quantity of the 

ratio between two quantities, one of these being the reference quantity. The 

transmissibility in decibels is defined as  

      10
20 t

F D

e

log
F

T dB T dB
F

 
   

 
                                 (2.11) 

 

Figure 2.2 – Force and displacement transmissibility for a SDOF system with linear damping. Dashed 

line - 0 01.  , solid line - 0 1.  , dashed dotted line - 21/ , dotted line - 
0 01

2
.
/   , straight solid 

line - 
0 1

2
.
/  . It is possible to see that when the damping ratio is small enough - 0 01. 

 
- there is a 

frequency region 
d

2    in which transmissibility achieve the best case in vibration isolation for 

this system (dB value ref. unity).  

 

Source: Elaborated by the author 
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It can be seen that at frequencies lower than 
I

2   , called the isolation 

frequency, the transmitted force or displacement is generally higher than the 

excitation force or displacement – this region is known as the amplification region. At 

frequencies greater than 
I

2   the transmitted force or displacement is smaller 

than the excitation force or displacement – this region is known as the isolation 

region. It also can be seen that transmissibility at frequencies close the resonance is 

determined by the amount of damping in the system; the larger the damping ratio the 

smaller the transmissibility at the resonance. The effect of viscous damping has the 

opposite effect in the isolation region. Increasing the damping ratio results in a 

detrimental effect on the performance of the isolator, causing an increase in the 

transmissibility in this region. There is a compromise in the choice of damping 

between good control at resonance and good control at high frequencies (YAN B. 

2007, p. 5). Finally Fig. 2.2 shows that at very low frequencies 1T   , transmitted 

force or displacement is equal to that of the excitation, which in decibels notation 

corresponds to   0T dB  .   

Recalling that the numerator of Eq. (2.10) is the transmitted force and this 

force is composed of the sum of the damping and the spring forces, it can be seen 

that the term 2  j    in the numerator is related to the damping force and the term 1 

in the numerator is related to the spring force. 

  

2.3.2 Transmissibility analysis for the linear system 

 

Some analysis about transmissibility can be conducted by means of Eq. 

(2.10). It is possible to find the frequency at which the force (or displacement) through 

the damper starts to dominate the transmissibility. For this to happen the damping 

force must to be equal to the force of the spring in the numerator of Eq. (2.10) then 

1 2  j    and the frequency at which the force through the damper starts to 

dominate the transmissibility is 
d

1 2/   . To determine the transmissibility peak at 
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the resonance frequency, 1   is set in Eq. (2.10) and the largest terms remaining 

are taken to obtain the value of transmissibility at resonance  

F 1 D 1

1

2
T T

 
                                           (2.12) 

From Eq. (2.12) can be seen what have been showed in Fig. 2.2, that an 

increase in the damping results in a decrease in the transmissibility at the resonance 

frequency. To determine the behaviour of transmissibility at high excitation 

frequencies, 
d

   is set in Eq. (2.10) and then the largest term in the numerator 

and in the denominator are taken to obtain  

F 1 D 1

2  
T T


 

 


                                        (2.13)    

From Eq. (2.13) can be seen that far the resonance frequency an increase in 

damping brings to an unfavourable effect increasing the transmissibility at this 

frequencies. If the damping is low, which is the case when 0 01.   so that the 

frequency at which damping force starts to dominate the transmissibility become very 

high compared with the isolation frequency 
d

2  the force through the spring 

take account on transmissibility and then there is a frequency region 
d

2    

where  

F D 2

1
T T 


                                              (2.14) 

which is the best case which can be achieved in transmissibility for a SDOF system 

(TANG; BRENAN, 2013). With low damping transmissibility decreases at a rate of 

40dB per decade whilst with high damping transmissibility decrease at a rate of 20 

dB per decade as showed in Fig 2.2. 
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2.4 Conclusions 

 

 In this chapter the most important features of a SDOF isolation system when it 

is either excited by a harmonic force or is base-excited have been discussed. The 

concept of transmissibility has been defined and used to measure the performance of 

the system. This has provided a benchmark by which the performance of a nonlinear 

isolator can be compared in Chapter 3. For the linear system it has been shown that 

there are three regions in the transmissibility curve; the amplification region for 

frequencies below 
I

2  , the region at which the transmissibility is mainly 

dominated by the spring and the region at which the transmissibility is mainly 

dominated by the damper. The last two regions are in the isolation region at 

frequencies above 
I

 . It has been shown that damping in the isolator has a 

beneficial effect at frequencies close to the resonance frequency, but it has a 

detrimental effect at high frequencies, where it increases the transmissibility.  
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3   NONLINEAR DAMPING ISOLATOR  

 

3.1 Introduction 

 

In Chapter 2 a SDOF isolation system has been studied. The main equations 

describing the system when it is force and base excited has been shown. The 

concept of transmissibility has been revised at different excitation frequencies and 

presented as a mean by which the performance of the linear system can be 

compared. In this chapter a SDOF system with a nonlinear damper is analysed. Its 

performance is determined and the way in which the nonlinearity affects the internal 

forces is investigated. To determine the performance of the system its force and 

displacement vibration transmissibility are compared with that of a linear system 

under harmonic force and harmonic base excitation. The study is conducted for both 

small amplitude excitation, as it is possible to use analytical approximated 

expressions, and for high amplitude excitation which is based on numerical 

simulations. 

This system is similar to the SDOF linear system described in Chapter 2. It is 

also composed of a mass, a linear spring and a linear damper; but its damper is 

placed so that it forms a 90º angle with the spring, as shown in Fig. 3.1. All the 

nonlinear characteristics of the isolator are due to this geometrical configuration.  

The system is excited in the direction of the spring and perpendicular to the 

damper with either a harmonic force, when investigating the force transmissibility, or 

harmonic displacement by the base, when investigating the displacement 

transmissibility.  

Tang and Brennan (2013) analysed this system with the purpose of 

investigating the advantages of such a damper configuration for force and 

displacement transmissibility. Here, part of this work is reproduced in detail to 

compare its differences and advantages with that of a linear system, sometimes 

using similar methods as employed by them and sometimes using other methods to 

confirm their results. 
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Figure 3.1 – A SDOF system with damper oriented perpendicular to the spring (Horizontal damper 

system). The system is excited in the vertical direction with either a harmonic force  e e
cosf t F t  

and   0y t   or harmonic displacement by the base   cosy t Y t  and   0
e
f t  , where  is the 

excitation frequency and t  is time. Its movement is restricted to the vertical direction.  

 

Source: Elaborated by the author   

 

3.2 Equations of motion     

 

As the nonlinear characteristics of the system are due only to the geometric 

configuration of the damper, it is necessary to determine the form of the damping 

force in the direction of motion, in order to determine the equation of motion for the 

system.                    

Figure 3.2 shows a free-body diagram of the damper. It can be seen that the 

damping force in the vertical direction is given by  d h
sinf t F    and the damper 

length in any position by 2 2h a z  , where  h
f t  is the force produced by the 

horizontal linear damper, 
h
c  is the horizontal linear damping coefficient, a  is the 

original damper length and z x y   is the relative displacement between the mass  
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Figure 3.2 – Triangle formed by the horizontal damper in two different positions. The damper length is 

a , the hypotenuse h  corresponds to horizontal damper length in any position;   is the angle formed 

by the damper and the horizontal line, the relative displacement between the mass and the base is z , 

h
c  is the horizontal linear damping coefficient, the horizontal linear damping force is  h

f t  and the 

nonlinear damping force produced by the horizontal damper in the vertical direction is  d
f t .   

 

Source: Elaborated by the author 

 

and the base; when the system is force-excited, the base is stationary, so 0y  , and 

then z x  (see Fig. 3.1).  

According to Fig. 3.2    d h
sinf t f t  , expressing  h

f t  as the multiplication 

of the relative velocity z  and a damping coefficient which takes into account the 

geometric properties of the damper in any position, and representing sin  in terms of 

z  and a , a nonlinear expression of the damping force is obtained   

 
2

2 2d h

z
f t c z

a z



                                                (3.1) 

Note that unlike a linear damping force the nonlinear damping force depends 

upon the amplitude of the relative displacement and not just upon the relative 

velocity, hence the system nonlinearity is caused by this dependence. As discussed 

by Tang and Brennan (2013), this kind of damping could be useful in situations in 

which large damping is required for a large relative displacement, for example at 
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resonance, and low damping is required for a low relative displacement, for example 

well-above the resonance frequency. 

 As the system is forced by  e
f t , the mass, or inertia, resists the change in 

movement and then acts in opposite direction of  e
f t ; the stiffness and damping 

forces act against the movement too. These relations can be written as  

       m d k e
f t f t f t f t                                              (3.2) 

where  m
f t  is the force due to the mass,  d

f t  is the damping force in the vertical 

direction,  k
f t  is the linear spring force. When the system is force-excited ( 0y  ), 

the harmonic excitation force is given by  e e
cosf t F t

 
and the stiffness and 

damping forces are given by  k
f t kx   and  d h

f t c x   respectively. Using 

Newton’s second law and substituting the previous expressions for each force into 

Eq. (3.2) gives the equation of motion for the force-excited system   

2

h e2 2
cos

x
mx c x kx F t

a x
  


                                  (3.3) 

As discussed in Chapter 2, when the system is base-excited (  e
0f t  ) the 

force due to the mass depends only on the displacement of the mass x , but the 

damping and stiffness forces depend on the relative displacement z x y  . The 

corresponding equation of motion is then given by 

2

h 2 2
0

z
mx c z kz

a z
  


                                       (3.4) 

Subtracting my  from both sides of the Eq. (3.4), the equation of motion for the 

base-excited system becomes  

2

h 2 2

z
mz c z kz my

a z
   

                          
            (3.5) 

Eqs (3.3) and (3.5) are the key equations describing the system shown in Fig. 

3.1. Comparing Eqs. (3.3) and (3.5) with Eqs. (2.2) and (2.4), which are the main 
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equations describing the linear system, it can be seen that the difference is in the 

nonlinearity present in the damping force of the nonlinear system. Eqs. (3.3) and 

(3.5) can be solved using numerical methods, which is done in Section 3.4. However 

some analysis is first conducted for low amplitudes of excitation. To do this some 

approximations for the damping force have to be made.   

 

3.3 Low Amplitude Excitation Study 

 

 When the relative displacement 0 2.z a  the term 2z  in the numerator of Eq. 

(3.1) is small compared with 2a  and can be neglected and this gives a simpler form 

of the damping force, which is given by 

2

d h 2

z
f c z

a
   

                                                  
 (3.6) 

The validity of this approximation is investigated by comparing the energy dissipated 

by a damper with the actual damping force Eq. (3.1) and a damper with the 

approximate damping force Eq. (3.6). 

 

3.3.1 Energy Dissipated by a Damping Force  

 

 In general, the energy dissipated by a damping force for a damper alone, such 

as that shown in Fig. 3.3, is given by the work done by the damping force (RUZICKA; 

DERBY, 1971). Assuming a harmonic relative displacement sinz Z t , the energy 

dissipated by the damping is four times the work done by the damping force over a 

quarter of cycle of vibration, thus,    

   
2

d

0

4
/

E f zdt
 

                                                    (3.7) 
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Figure 3.3 – Schematic representation of a damper with equivalent viscous damping excited by a 

harmonic force.  

 

Source: Elaborated by the author 

Substituting for z  together with 
d
f  given in Eq. (3.1) into Eq. (3.7), gives after some 

manipulation, the energy dissipated by the damping force 

   
 

2 22

2 4

h 2 2 2

0

4
/ sin cos

sin

t t
E c Z dt

a Z t

   




 
  

  
                                  (3.8) 

In order to obtain the approximate expression for the energy dissipated by the 

damping z  and Eq. (3.6) are substituting in Eq. (3.7), resulting 

      
24

2 2 3

Approx. h 2

0

4
/

cos cos cos
Z

E c t t t dt
a

 

                         (3.9)    

Using the trigonometric identity 

  3 3 3

4 4

cos cos
cos

t t
t

 
                                         (3.10) 

It can be seen that for an excitation at frequency   there is a response at this 

frequency and at three times this frequency. If the response at only the excitation 

frequency is considered (note that this is three times that of the third harmonic), then 

Eq. (3.9) simplifies to 

4

h

approx 24

c Z
E

a

 
                                                (3.11) 
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To compare the approximate energy dissipated by the damper given by Eq. 

(3.11) and the actual energy dissipated given by Eq. (3.8), they are divided by the 

energy dissipated by a linear damper 2

l
E c Z   (RAO, 2008, p. 70).   

Setting 
h
c c , where c  is the linear viscous damping, and dividing Eqs. (3.8) 

and (3.11) by 
l
E , the normalised energy dissipated, which includes all the harmonics, 

and the normalised energy  approximated, which includes just the harmonic at the 

excitation frequency, are respectively given by 

 
   

 
 

2 222

2 2

0l

4

1

/ˆ sin cos
ˆ

sin

t tE Z
E d t
E Z t

  


 

 
   

  
                             (3.12) 

and 

  
2

Approx.
4

ˆ
ˆ Z
E                                                    (3.13) 

where ˆ /Z Z a . The expression for the actual damper given by Eq. (3.12) is 

integrated numerically to give the normalised energy dissipated as a function of Ẑ . 

Figure 3.4 shows the normalised energy dissipated by the actual and the 

approximate damping forces, given by Eqs. (3.12) and (3.13), as a function of the 

relative displacement. It can be seen that both have similar behaviour - that of a 

parabola, as they are dependent on 2Ẑ ,  and that the lines begin to separate at the 

point 0 2ˆ .Z  . At this point the maximum error in the approximation for is only about 

2%. Figure 3.5 shows the ratio of energy dissipated calculated using the approximate 

expression to the actual energy dissipated in one cycle as functions of Ẑ . It can be 

seen that the energy calculated with the approximate expression is similar to the 

energy calculated using the actual expression for the damping force. Thus, it can be 

concluded that Eq. (3.6) is a good approximation to the damping force Eq. (3.1) for 

values of 0 2.z
a
  as discussed by Tang and Brennan (2013).  
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Figure 3.4 – Non-dimensional energy dissipated. Solid line, energy calculated using the actual 

damping force; dashed line, energy calculated using the approximated damping force. 

 

Source: Elaborated by the author 

Figure 3.5 –Ratio of actual energy dissipated to approximated energy dissipated. Solid line, energy 

ratio calculated using the approximate damping force; dashed line, energy ratio calculated using the 

actual damping force. 

 

Source: Elaborated by the author 
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3.3.2 Equivalent Viscous Damping 

 

 It is possible to approximate the nonlinear damping forces Eqs. (3.1) and (3.6) 

to equivalent linear viscous damping forces and thus represent the horizontal damper 

system shown in Fig. 3.1 as the equivalent linear system shown in Fig. 3.6, by 

employing the concept of equivalent viscous damping, such that Eqs. (3.1) and (3.6) 

could be written as the multiplication of the equivalent damping coefficient and the 

relative velocity 
d eq
f c z . 

Figure 3.6 – Schematic representation of a SDOF system with equivalent linear viscous damping 

force. The system is excited in the vertical direction with either harmonic force 
e
f  and 0y   or 

harmonic displacement by the base y  and 
e

0f  . Its movement is restricted to the vertical direction.  

 

Source: Elaborated by the author 

As the interest in this section is the low amplitude transmissibility the 

approximate damping force us used to obtain 
eq
c . A similar process can be 

conducted to obtain 
eq
c  for the actual damping force, however below it is shown that 

there is an easier way to obtain it. According to Ruzicka and Derby (1971) to achieve 

equivalence, between a nonlinear and a linear viscous damper, the energy dissipated 

by the nonlinear damper in one vibration cycle should be equal to the energy 

dissipated by a linear viscous damper for the same harmonic relative displacement.     
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It was shown in the last subsection that the damper with the approximate 

damping force of Eq. (3.6), is valid for relative displacement values 0 2.z
a
 . The 

equivalent viscous damping coefficient 
eq
c  can be determined by equating the 

energy dissipated per cycle by the nonlinear damping element Eq. (3.11) to that 

dissipated by the horizontal viscous damper 4 2 2

h eq
4/c Z a c Z   (RUZICKA; 

DERBY, 1971), solving for 
eq
c  gives 

22

eq h h2

1

4 4

ẐZ
c c c

a
                                              (3.14) 

which is the same as multiplying Eq. (3.13) by the horizontal viscous damping 

coefficient 
h
c . So to obtain 

eq
c  for the actual damping force it is necessary simply 

multiply Eq. (3.12) by 
h
c , as 

h
c  is a constant which multiplies both Eqs. (3.12) and 

(3.13). Figure (3.4) can then be thought of as representing the behaviour of the 

equivalent viscous damping coefficients as functions of Ẑ , for the actual and the 

approximate damping forces and Fig. (3.5) as representing its ratio as function of  Ẑ .  

Now, it is possible to write the equation of motion for the harmonic force-excited 

system Eq. (3.3) as 

eq e
cosmx c x kx F t                                         (3.15) 

and the equation of motion for the harmonically base-excited system Eq. (3.5), as 

2

eq
cosmz c z kz mY t                                      (3.16) 

where Y  is the base displacement amplitude. Therefore the nonlinear system of Fig. 

3.1 can be represented as the equivalent system in Fig. 3.6.      

 Equations. (3.15) and (3.16) can be expressed as dimensionless equations by 

using the damping ratio and by defining some non-dimensional variables. The linear 

damping ratio   was defined in Chapter 2 as the ratio of the damping coefficient c  

to the critical damping of the system, which is given by 
n

2m , where 
n

  is the 

natural frequency of the system. As 
h
c  is the horizontal viscous damping coefficient, 
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h

h

n
2

c

m



  represents the horizontal damping ratio. From Eq. (3.14) and the 

previous the definitions, the equivalent damping ratio for the approximate system can 

be written as  

2

eq h

1

4
Ẑ                                                      (3.17) 

Dividing Eqs. (3.15) and (3.16) by ka  and using the non-dimensional force 

e e
ˆ / ,F F a  the amplitude of base displacement

 
ˆ / ,Y Y a  the frequency

 
n

/ ,    

the mass displacement
 
ˆ / ,x x a

 
the relative displacement

 
ˆ / ,z z a  and the non-

dimensional mass and relative velocities 
n

ˆ ' /z z a ,
 n

ˆ ' /x x a , and 

accelerations
 

2

n
ˆ '' /z z a ,

 
2

n
ˆ ' /x x a , which are obtained by differentiating x̂  

and ẑ  in the non-dimensional time t 
n

, they can be written as 

eq e
2 ˆˆ ˆ ˆ'' ' cosx x x F                                           (3.18) 

2

eq
2 ˆˆ ˆ ˆ'' ' cosz z z Y                                           (3.19) 

which are the general non-dimensional equations of motion for the harmonic force-

excited and the harmonic base-excited systems respectively.  Note that 
eq

  does not 

necessarily come from the approximated expression to the damping force Eq. (3.17) 

but can come from the actual damping force. 

 

3.3.3 Transmissibility Equations for Low Amplitude Excitation 

 

Force and displacement transmissibility were defined in Section 2.3 of  

Chapter 2 as the ratio between the transmitted force to the excitation force and the 

transmitted displacement to the base excitation, respectively. It was shown that in the 

linear case force transmissibility is equals to displacement transmissibility. The force 

is transmitted through the damper and the spring, however for the nonlinear system 

the damping force has a different form, which leads to a different damping ratio. The 
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excitation force 
e
ˆ cosF   can be written as the real part of a complex number 

e
ˆ iF e 

 

by employing the complex exponential, since cos sinje j       . The use of 

complex exponentials to represent the force makes the calculations easier because 

the algebra is simpler. In the same way the mass, base and relative displacements 

can be represented as complex numbers ˆˆ jx Xe  , ˆ jy Ye   and  ˆˆ jz Ze   

respectively. Substituting the complex forms of the excitation force and 

displacements, and Eq. (3.17) in Eq. (2.10) from Chapter 2, the force and 

displacement transmissibility for the nonlinear system are given by          

2

h

F 2
2

h

1
1

2
1

1
2

ˆ

ˆ

j X
T

j X





 



  

                                           (3.20) 
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j Z
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

 



  

2

2
2

1
1

2
1

1
2

                                          (3.21) 

Note that unlike the linear system, for the nonlinear damper system the force 

and displacement transmissibility are not the same. This is because for the nonlinear 

system the damper force depends on the square of the relative displacement which is  

ˆ ˆ ˆZ X Y   for the base excited system and ˆ ˆZ X  for the force excited system.  

In order to obtain the transmissibility at each frequency of excitation it is necessary to 

know the displacement and relative displacement at this frequency. These are given 

by  

             
ˆ

ˆ

ˆ

e
F

X

j X



  
2

2

h

1
1

2

                                            (3.22) 

                         
2

2
2

h

1
1

2

ˆ
ˆ

ˆ

Y
Z

j Z




  

                                            (3.23) 

In Eqs. (3.22) and (3.23) the unknown variable is a function of itself. Tang and 

Brennan (2013) used the harmonic balance method (HBM) to determine X̂  and Ẑ  
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and have suggested that Eqs. (3.22) and (3.23) can be solved iteratively. Here, 

another solution method is used.  

 

3.3.4 Solution of Transmissibility Equations (Low Amplitude Excitation) 

 

Note that the transmissibilities given in Eqs. (3.20) and (3.21) are not 

dependent on the complex displacement amplitude but the absolute value of 

displacement amplitude and that Eqs. (3.22) and (3.23) are complex functions and 

therefore they can be represented in the form j     , where   is a complex 

number,   is the real part and   the imaginary part of  . It is thus possible to find 

X̂  and Ẑ  by analogy to finding the absolute value of a complex number, that is 

   ,  where    is the conjugate of  . 

 Multiplying the right side of Eq. (3.22) by its denominator and then separating 

the result in its real and imaginary parts leads to 

 

   

e he

h h

2
2

2 2
2 22 2

2 2

1
1

2

1 1
1 1

2 2

ˆ ˆˆ
ˆ

ˆ ˆ

F XF
X j

X X



 

   
      

    
                 
      

                 (3.24) 

For the force-excited system to obtain X̂  it is just necessary to multiply X̂  by 

its conjugate and take the root square of the result, which can be written as 

    
 

   

1
2 2 2

2
2

e he

2 2
2 22 2

2 2

h h

1
1
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1 1

1 1
2 2

ˆ ˆˆ
ˆ

ˆ ˆ
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X X



 

    
        

      
                   
        

        (3.25) 

One way to determine the value of X̂  for every frequency   is to search for 

the value of X̂  for which Eq. (3.25) is satisfied. Once a value of  X̂  is obtained this 
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is used in Eq. (3.20) to determine a value of transmissibility for every   and then the 

process is repeated for the next frequency  . Such a procedure is used for the 

base-excited system as well, and the equation from which Ẑ  is obtained is                

 

   

1
2 2 2

2
2 2

h

2 2
2 22 2

2 2

h h

1
1

2 0
1 1

1 1
2 2
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ˆ

ˆ ˆ

Y ZY
Z

Z Z



 

    
         

      
                   
        

      (3.26)  

In Fig. 3.7 are shown the force and displacement transmissibilities for the 

nonlinear isolator system when 0 4ˆ .
e
F   and ˆ .Y  0 4  respectively with 

h
 10 ,  

Figure 3.7 – Force and displacement transmissibility when ˆ .F 
e

0 4  and 0 4ˆ .Y   respectively for 

the nonlinear isolator system with 
h

10  . Solid line - displacement transmissibility, dashed line - 

linear isolator with 0 1.  , dotted line - force transmissibility, dashed dotted line: 21/ (dB value ref. 

unity)     
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obtained using the method described above. The transmissibility of a linear isolator 

with 0 1.   is also shown for comparison. These results are similar to those 

presented by Tang and Brennan (2013) who used the HBM to obtain their results. 

 

3.3.5 Transmissibility Analysis (Low Amplitude Excitation)     

 

Some analysis can be conducted on Eqs. (3.20), (3.21), (3.22) and (3.23) with 

the purpose of predicting the force and displacement transmissibilities in the different 

frequency regions for displacement amplitudes less than or equal to 0 2. a . To 

determine the behaviour of transmissibility for the harmonic force-excited system for 

high excitation frequencies,  1 in Eq. (3.22) is considered and then the largest 

terms in the numerator and in the denominator are taken to give 
 

2

e
max 1

ˆ ˆ /X F


  . 

Substituting this result in Eq. (3.20) and taking the largest terms yields  

2

e

h 3

F 221
2 e

h 3

1
1
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1
1

2

ˆ

ˆ

F
j

T
F

j







 


 



                                   (3.27) 

This results shows that at high frequencies the nonlinear isolator is very 

effective as the displacement amplitude does not depend on damping. Thus, the 

force through the damper become practically zero at high frequencies compared with 

the force through the spring and then the system behaves as it were undamped, 

which is the best that can be achieved for a SDOF system (see Fig. 3.7).     

For the resonance region 1  ,  
1 3

e h
1

2
/

ˆ ˆ /X F 


 , and the transmissibility 

at resonance is given by  

23
F h e1

2 ˆ/T F


                                               (3.28) 

 In order to maintain the transmissibility peak at resonance of the nonlinear 

isolator equal to or less than that of the linear isolator, the inequality 
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 
1 3

2

h e
2 1 2

/
ˆ/ /F 

 
must be satisfied, which means that to achieve this 

 3

e h
4ˆ /F   . That is, if the excitation force is less than this value the nonlinear 

isolator peak at resonance will be greater than the resonance peak of the linear 

system. Consequently the performance will be worse than that of the linear isolator. 

This is because the damping force produced by the horizontal damper is large when 

the relative displacement is large, and the fact that the isolator behaves as if it is 

undamped at high frequencies is because the damping force is small when the 

relative displacement is small.  

According to Eq. (3.28), and what has been mentioned previously, the 

resonance peak of the force transmissibility for the nonlinear isolator will decrease as 

the excitation force ˆ
e
F  increases. This is a desirable effect, but it should be noted 

that this is valid only for displacement values less than 0 2. a . Taking into account this 

restriction and setting 1   on Eq. (3.22), a limit on the excitation force is found to 

be 250ˆ /
e h
F  .  

 A similar procedure is conducted when the isolator is harmonically base-

excited. For high frequencies the upper limit of the relative displacement 

 max

ˆ ˆZ Y



1

 is found and then the displacement transmissibility becomes  

2
2

h
h

D 1
2 2

h

1
1

2
1 2

1
2

ˆ ˆ

ˆ

j Y Y
T

j Y

 




 

 


  

                                     (3.29) 

Note that at high frequencies there is a detrimental effect on the displacement 

transmissibility for the base-excited isolator when compared with the force-excited 

isolator as shown in Fig. 3.7. This effect is similar to that produced by a linear isolator 

where the force and displacement transmissibilities are proportional to 1/ .  

Equating the terms in the numerator of Eq. (3.29) the frequency value at which the 

force through the damper starts to dominate the transmissibility in the nonlinear 

isolator can be found, this is given by 2

d h
2 ˆ/ Y  . At frequencies lower or equal to 

d
  but inside the isolation region, it is the force through the spring which mainly 
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dominates the transmissibility and then for these values the transmissibility is 

proportional to 21/ . In order to obtain a better performance than the linear isolator, 

d
  for the nonlinear isolator should be higher than 

d
  for the linear isolator, that is 

2

h
2 1 2ˆ/ /Y   and from this provided that  h

2ˆ /Y    the frequency range for 

which the displacement transmissibility is proportional to 21/  will be extended and 

will be larger than the corresponding range for the linear isolator.  

At the resonance frequency, and from Eq. (3.23), the limit for the relative 

displacement is  h

1 3

1
2

/
ˆ ˆ /Z Y 


 , substituting this value into Eq. (3.21) and 

 

Table 3.1 Important values for the linear and the nonlinear horizontal damper isolators valid for 

displacement amplitudes less or equal to 0 2. a .  

 Force-excited 
 

Base-excited 
 

 Linear viscous 
Damper 

Horizontal linear 
viscous damping 

Linear viscous 
Damper 

Horizontal linear 
viscous damping 

Amplitude of relative 

displacement at 
resonance 

 
1
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
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Ẑ
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d
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Source: Adapted from Bing Tang and Brennan (2013) 
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manipulating the subsequent expression, the displacement transmissibility of the 

nonlinear system at resonance becomes  

ˆ/T Y


 23
D h1

2                                            (3.30) 

For the nonlinear isolator to have a better performance than the linear isolator, 

the inequality  
1 3

2

h
2 1 2

/
ˆ/ /Y   should be satisfied. This means that the amplitude 

of the base displacement should be  h

34ˆ /Y   . As the relative displacement 

amplitudes have a limiting value of . a0 2 , similar to that for the force-excited system, 

it leads to the restriction 
h

250ˆ /Y   (see Fig. 3.7). The important values from this 

analysis for the linear and the non-linear isolator are shown in Table 3.1 

As 
e h

250ˆ /F   and if 0 1.   and 
h

10 
 
then the maximum allowable value 

for the excitation force is 
e

0 4ˆ .F  , and then the maximum allowable base 

displacement amplitude for the base excited system is 0 4ˆ .Y  . These are the 

values used in the plots to try and show the maximum effect. 

 

3.4 Transmissibility for High Amplitude Excitation  

 

 When the amplitude of excitation for the nonlinear isolator is such that the 

relative displacement is higher than 0 2. a  the results from the previous study of 

Section 3.3 cannot to be applied and then it is necessary to return to the actual form 

of the equations of motion Eqs (3.3) and (3.5) which can be written in dimensionless 

form as   

2

h e2
2

1

ˆ ˆˆ ˆ ˆ'' ' cos
ˆ

x
x x x F

x
    


                                  (3.31) 

2
2

h 2
2

1

ˆ ˆˆ ˆ ˆ'' ' cos
ˆ

z
z z z Y

z
     


                                 (3.32) 
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To calculate the force and displacement transmissibility for high excitation 

amplitudes from Eqs. (3.31) and (3.32) the system is excited at single frequencies. 

The time responses of the system x̂  and ẑ  are obtained by solving the differential 

equations by means of the fourth-order Runge-Kutta method at each excitation 

frequency, employing the Matlab  function Ode45. The transients are discarded, 

since the principal interest is on responses at the excitation frequencies and at three 

times this frequency. From the steady state responses their maximum amplitudes are 

taken to calculate the forces through the spring and the damper, which correspond to 

the second and the third terms on the left sides of Eqs. (3.31) and (3.32). They are 

then summed and divided by the excitation force amplitude, which is known, to obtain 

the force transmissibility for high amplitude excitation. 

A similar equation is obtained for the displacement transmissibility. Once a 

transmissibility value has been determined for one frequency the process is repeated 

for the next frequency, with a small increment in frequency, until the whole frequency 

range is covered. 

 Force transmissibilities for different values of excitation amplitudes are shown 

in Fig 3.8. It is possible to see that for high levels of excitation the nonlinear system 

behaves very well at high frequencies, still as if were undamped, but at frequencies 

close to resonance the transmissibility is affected badly by the nonlinearity of the 

damping force, although the transmissibility at the resonance frequency remains 

smaller than for the linear system. Tang and Brennan (2013) have shown that the 

nonlinear damping force distorts the time histories of the force transmissibility 

resulting in a response which contains higher order harmonic terms, and that this 

effect is proportional to the excitation amplitude. In the next chapter this effect is 

studied in detail. 

In Fig. 3.9 the displacement transmissibility of the nonlinear isolator for 

different values of high amplitudes of excitation is shown. It is possible to see that at 

resonance and close to it, the system performs even better than for low excitation 

levels but at high frequencies the displacement transmissibility of the system 

increases and for some values of excitation this effect is worse than for the linear  
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Figure 3.8 – Force transmissibility for the nonlinear isolator system with 0 1.   and 
h

10  . For: 

solid line - linear isolator, dashed line - 
e

0 1ˆ .F  , dashed dotted line - 
e

0 2ˆ .F  , dotted line - 
e

0 3ˆ .F   

and dashed line - 
e

0 5ˆ .F   (dB value ref. unity).  

 

Source: Elaborated by the author 

 

system. This is due to the relation between the frequency at which the damping force 

starts to dominate the transmissibility and the excitation amplitude, established in the 

last section ( 2

d h
2 ˆ/ Y  ).    

Directly from Fig 3.9 can be seen that depending on the situation, the 

transmissibility at high frequencies can be reduced be reducing 
h

  and accepting 

some detrimental effect at resonance. As Tang and Brennan (2013) mention, this 

also occurs with the linear system, as there is a trade-off between reducing the 

response at resonance and increasing the transmissibility at higher frequencies.  
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Figure 3.9 – Displacement transmissibility for the nonlinear isolator system when 0 1.   and 
h

10  .  

For: solid line - linear isolator, dashed line - 
e

0 1ˆ .Y  , dashed dotted line -
e

0 2ˆ .Y  , dotted line - 

e
0 3ˆ .Y   and dashed line 

e
0 5ˆ .Y   (dB value ref. unity).  

 

Source: Elaborated by the author 

    

3.5 Conclusions          

 

In this chapter it has been shown that the nonlinear damping force produced 

by a horizontal damper which is perpendicular to the spring force and to the 

movement direction in an isolator, can be approximated by an equivalent linear 

viscous damping force, for low displacement amplitudes, without there being a 

considerable difference in the energy dissipated. Also, this nonlinear damping force is 

proportional to the square of the relative displacement amplitude between the mass 

and the base. This is beneficial for a vibration isolator as the damping force is large 

when the amplitude is large and small when the amplitude is small. 
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When the system is excited with low amplitudes it was found that at the 

resonance frequency its force and displacement transmissibilities are lower than for 

the linear isolator and therefore the nonlinear system performs better than the linear 

system, but there are conditions on the minimum amplitudes of force and 

displacement excitation below which the nonlinear system will perform worse than 

the linear system (see Table 3.1). At frequencies when 1  it was shown that with 

respect to the force transmissibility, the nonlinear isolator performs better than the 

linear isolator as the force transmitted through the damper is negligible compared 

with the force transmitted to the spring and the system behaves as if it were 

undamped. Concerning the displacement transmissibility of the nonlinear system it 

was found that it perform betters than the linear system but there is a detrimental 

effect as it depends on 1/  (see Table 3.1).     

When the system is excited with a high amplitude it was shown that for the 

force transmissibility the nonlinear isolator at resonance performs better than the 

linear system, but close to the resonance there is an unfavourable effect which 

increases the transmissibility at these frequencies. It also was shown that at 

frequencies when 1  the force transmissibility of the nonlinear system is very 

good since the system behaves as if it were undamped. Concerning the 

displacement transmissibility, at resonance the nonlinear isolator performs better 

than the linear isolator, but the frequency at which the damper begins to dominate 

the transmissibility decreases with the excitation amplitude. At high excitation 

amplitude this results in a detrimental effect on the displacement transmissibility.  
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4   DETAILED ANALYSIS OF THE NONLINEAR 

ISOLATION SYSTEM  

 

4.1 Introduction 

 

 In the previous chapter it was shown that the force transmissibility of the 

nonlinear damping system has desirable characteristics at high frequencies. However 

at frequencies close to the resonance frequency, the system has undesirable 

characteristics, even though the peak at resonance is smaller than that of the linear 

system (see Fig. 3.8). In this chapter an investigation is carried out into the causes of 

these adverse effects. The time histories of the internal forces are decomposed into 

their spectral components using the Fourier series in the resonance region, and 

these are studied to determine the sources of the nonlinearities and the way in which 

they propagate through the system.  

 

4.2 Brief Review of the Fourier series   

 

 The time histories for the transmitted forces and its components are periodic 

which repeats every period of the excitation frequency 2 /T   , where   is the 

excitation frequency, see for instance Fig. 4.1. Periodic signals can be analysed 

using the Fourier series. A periodic signal can be represented by adding together 

sine and cosine functions of appropriated frequencies, amplitudes and relative 

phases (SHIN; HAMMOND, 2008, p 31).   

The Fourier series representation of a periodic signal is given by (Shin and 

Hammond, 2008, p 312) 

  0

n n
n 1

2 2

2
cos sin

a nt nt
x t a b

T T

 



    
      

    
                             (4.1) 
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where 1  2  3  4  , , , , ...n   and the fundamental frequency, which corresponds here to  

the excitation frequency is 2 /T  ,  and the higher frequencies are integers 

multiples of this. The amplitudes of the higher frequencies than the fundamental are 

called harmonics. The quantity 
0

2/a  is the mean value of the signal and the 

coefficients 
n
a  and 

n
b  are the Fourier coefficients which are used to calculate the 

amplitude and the phase of each harmonic as follows: 

 

2 2

 n

1

n n n
tan /

n n
A a b

b a 

 

 
                                            (4.2) 

where 
 n
A  is the amplitude of the nth harmonic and 

n
  its phase angle. The Fourier 

series representation in terms of the amplitudes and the phase is given by 
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 n n
n 1

2
2

cos
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x t A n 




                                 (4.3)  

 The Fourier coefficients are calculated from (Shin and Hammond, 2008, p 32)    
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                  (4.4) 

The amplitudes and the frequencies are used to create the spectrum of the 

signal to determine the influence of each harmonic in the original signal. Depending 

on the signal it can be composed by odd or even harmonics or a combination of the 

two. 

 

4.3 Study of the harmonic content of the signals   

 

In this section the Fourier series is used to analyse the transmitted force in the 

resonance region as there is undesirable behaviour in this region, see Fig. 3.8. The 
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resonance region is roughly the frequency 0 3 1 6. .    so the present study will 

focus on the transmitted force at these frequencies. Taking in account the fact that 

the damping force is the cause of the nonlinearity of the system, as shown in Eq. 

(3.31), it is thought that this is the cause of the adverse behaviour. Tang and 

Brennan (2013) made the following comment:  

 

The nonlinear damping force has a profound effect on the transmissibility 

response and the time history response at the excitation frequency. The 

nonlinear damping force distorts the time history curves of the force 

transmissibility with the undesirable result that there are many high order 

harmonic terms in the response. The larger the excitation force amplitude, 

the stronger the influence on the force transmissibility curves (Tang and 

Brennan, 2013, p. 517).  

 

Following this indication the time history for the transmitted force as well as its 

frequency spectrum at different excitation frequencies in the resonance region are 

analysed. As the transmitted force is composed of the force transmitted by the spring 

and the force transmitted by the damper, the time histories of those forces with their 

frequency spectra are compared and analysed to determine the influence of each 

one of this forces on the transmitted force. Using the definition of the damping force 

from Eq. (3.31) and setting z x , the damping force is decomposed into the velocity 

of the mass ˆ 'x  and the damping coefficient 
f
c  which has the form 

2

f 2
2

1

ˆ

ˆh

x
c

x


 
  

 
                                                 (4.5) 

Hence the damping force can be written as 
d f

ˆ 'f c x . The time history of the 

damping coefficient and the velocity as well as its frequency spectra are also 

analysed with the aim to determine the influence of each of them on the nonlinearity 

of the damping force. This procedure is conducted for the nonlinear system when 

excited at five different frequencies; the first four of them are in the resonance region: 

0 3.  , 0 5.  , 1  , 1 5.  , while the last one belongs to the beginning of the 

isolation region: 2  . 
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4.3.1 Spectrum of the Transmitted Force 

 

From Eq. (3.31) can be obtained the expression for the non-dimensional 

transmitted force  
2

h 2
2

1

ˆˆ ˆ ˆ'
ˆt

x
f t x x

x
 


, Composed by the force transmitted through 

the damper and the force transmitted through the spring, respectively. The non-

transmitted force is composed of non-dimensional expression; therefore in this 

section the transmitted forces through the spring and the damper, as well as the total 

transmitted force are all non-dimensional forces. Also the velocity and the nonlinear 

damping coefficient are non-dimensional variables.   

To demonstrate the effect of the external excitation on the nonlinear system, 

the maximum value of the force in Chapter 3 is used, i.e., 
e

0 5ˆ .F  , and the horizontal 

damping coefficient 
h

10  .  

Figure 4.1 shows the time histories for the force transmitted through the 

nonlinear isolation system for the excitation frequencies 0 3.  , 0 5.  , 1  , 

1 5.   and 2  , together with their respective frequency spectra. Figs. 4.1 (a) 

and (b) show the time history for the transmitted force at 0 3.   and its frequency 

spectrum respectively; the harmonics shown in Fig. 4.1 (b) with the mean value (DC 

value) at zero frequency are used to reconstruct the original transmitted force curve 

in Fig 4.1 (a) by means of the Fourier series. This reconstruction, which serves to 

validate the frequency spectrum, is overlaid on the original curve. In Fig 4.1 (a) the 

first harmonic is also plotted which represents the transmitted force at the excitation 

frequency and which closely follows the transmissibility curve, and the excitation 

force, which has an amplitude 
e

0 5ˆ .F  .  

There can be seen that at this low frequency the maximum value of the 

transmitted force reaches nearly three times the amplitude of the excitation force, the 

presence of higher order harmonics can also be seen, which makes the transmitted 

force larger than the amplitude of first harmonic. Figure 4.1 (b) reveals that it only odd 

harmonics are needed to reconstruct the transmitted force curve and that the most 

important influence in the transmissibility is the force transmitted at the excitation  
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Figure 4.1 - Time history for the non-dimensional transmitted force through the nonlinear isolation 

system and its frequency spectrum when 
h

10   and 
e

0 5ˆ .F   for a) 0 3.  , c) 0 5.  , e) 1  , g) 

1 5.  , i) 2  . Blue solid line – time history for the transmitted force, yellow dotted line – Fourier 

series of the time history, red dashed line – first harmonic of the Fourier series, black solid line – 

excitation force, magenta horizontal line – mean value (DC level) of the signal. b), d), f) h) and j) – 

Frequency spectrum with the DC value at zero and the first fifteen harmonics from the Fourier series 

of the time history for the transmitted force curves shown in a), c), e), g), and j). 
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frequency (1st harmonic). Its amplitude is nearly 80% of the maximum value of the 

transmitted force curve. The force transmitted at the excitation frequency is more 

than twice the amplitude of the excitation force; the influence of the force at three, 

five, seven and nine times the excitation frequency is not so large but does adversely 

affect the transmitted force. Harmonics higher than the 9th have a negligible influence 

on the transmissibility. 

When the system is excited with a frequency 0 5.  , (see Figs 4.1 (c) and 

(d)), the transmitted force increases considerably being nearly five times the 

amplitude of the excitation frequency; the influence of the force transmitted at the 

excitation frequency continues to be significant since is nearly half of the total 

transmitted force is transmitted by the first harmonic. Comparing Fig. 4.1 (b) and (d) 

can be seen that the amplitude of the first harmonic is almost the same as for 

0 3.   unlike the amplitudes of the 3rd, 5th, 7th and 9th harmonics which are larger 

for 0 5.   than for 0 3.  .  
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When the system is excited at resonance 1  , which is illustrated in Figs. 

4.1 (e) and (f), the transmitted force increases just a little compared with the 

excitation force at 0 5.  , its maximum value is five times greater than the 

amplitude of the excitation force. The transmitted force at the excitation frequency is 

still nearly half of the total transmitted force. Unlike the frequency spectrum of the 

transmitted force at 0 5.   Fig. 4.1 (f) shows a significant contribution of the 

transmitted force mainly at three times and five times the excitation frequency and to 

a lesser extent at seven times the excitation frequency. The influence of harmonics 

higher than the 7th can be neglected. The time history of the transmitted force at the 

resonance has a slightly different shape than at lower frequencies, having its 

maximum and minimum values greater than the maximum and minimum of the 1st 

harmonic and the excitation force. At 1 5.   the transmitted force decreases, again 

its maximum value is nearly three times the amplitude of the excitation force. This is 

illustrated in Figs. 4.1 (g) and (h), where it can be seen that the transmitted force is 

mainly composed of the 1st and the 3rd harmonic, and to some extent, the 5th 

harmonic. There is no influence of harmonics higher than the 5 th in the time history of 

the transmitted force.  

In the isolation region at 2   the force transmitted is, as expected, less than 

the amplitude of the excitation force and is composed of the 1st and the 3rd harmonic, 

see Figs. 4.1 (g) and (h). There is no influence of harmonics higher than the 3rd. The 

amplitude of the first harmonic is nearly 70% of the amplitude of the transmitted 

force. The transmitted force at this excitation frequency starts to be similar to a sine 

wave. 

 

4.3.2 Force Through the Spring 

 

 As mentioned previously the total transmitted force to the base consists of the 

force transmitted through the spring and the force transmitted through the damper. In 

order to establish what is the importance of each component on the transmitted force 

in this subsection, the time history for the force transmitted through the spring and its 

frequency spectrum are studied. As in the previous section the frequencies 0 3.  ,  
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Figure 4.2 - Time histories for the non-dimensional force through the spring of the nonlinear isolation 

system and its frequency spectrum when 
h

10   and 
e

0 5ˆ .F   for a) 0 3.  , c) 0 5.  , e) 1  , g) 

1 5.  , i) 2  . Blue solid line – time history for the force through the spring, yellow dotted line – 

Fourier series of the time history, red dashed line – first harmonic of the Fourier series, black solid line 

– excitation force, magenta horizontal line – mean value (DC level) of the signal. b), d), f), h) and j) – 

Frequency spectrum with the DC value at zero and the first fifteen harmonics from the Fourier series 

of the time history for the force through the spring curves shown in a), c), e), g) and j).  
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Source: Elaborated by the author 

0 5.  , 1  , 1 5.   and 2   are considered. There is another important point 

to be made. The non-dimensional force through the spring corresponds to the third 

term in the left side of Eq. (3.31). It is equal to the non-dimensional displacement, so 

the force through the spring and the displacement of the mass have the same 

behaviour.  

 Figure 4.2 shows the time histories for the force transmitted through the spring 

together with their respective frequency spectra at five different frequencies; four of 

which are in the resonance region and the other one corresponds to the beginning of 

the isolation region. Figures 4.2 (a) and (b) shows the force transmitted through the 

spring when the system is excited at 0 3.   and its frequency spectrum, it can be 

seen that the amplitude of the force is a little smaller than the amplitude of the 

excitation force and is mainly composed of the 1st and to a lesser degree the 3rd 

harmonic. This feature maintains when the system is excited at 0 5.   (see Figs. 

4.2 (c) and (d)) and 1   (Figures. 4.2 (e) and (f)), in which the amplitude of the 
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force through the spring is smaller but almost equal to the amplitude of the excitation 

force. The time histories are slightly distorted mainly by the small influence of the 3 rd 

harmonic and the negligible 5th harmonic. They are very similar to the sine wave 

representing the excitation force. Thus at frequencies less than or equal to the 

resonance frequency, the force transmitted through the spring is almost equal to the 

amplitude of the excitation force. It also can be seen that  the  displacement of the 

mass is only slightly distorted when the system is excited at frequencies below the 

resonance frequency.  

Figures. 4.2 (g) and (h) shows the transmitted force through the spring at 

1 5.   and its frequency spectrum. It can be seen that the amplitude of the force 

transmitted through the spring decreases, it is nearly 70% of the amplitude of the 

excitation force and is basically composed of the 1st harmonic. When the system is 

excited at 2  , the amplitude of the force transmitted through the spring is nearly 

30% the amplitude of the excitation force. This is illustrated in Figs 4.2 (i) and (j). So 

at frequencies higher than the resonance frequency the transmitted force becomes 

sinusoidal and the force transmitted through the spring decreases. 

 

4.3.3 Force through the Damper 

 

 Figure 4.3 shows the time history for the force through the damper and its 

frequency spectrum for 0 3.  , 0 5.  , 1  , 1 5.   and 2  . Also shown is 

the time history of the first harmonic, the excitation force and the mean value. Again, 

it can be seen that only odd harmonics are needed to reconstruct the original curve.  

Figures. 4.3 (a) and (b) shows the time history and the frequency spectrum of the 

force through the damper at 0 3.  ; it can be seen that the peak value of the 

transmitted force is less than the amplitude of the excitation force being nearly 80% 

of this amplitude. Figure 4.3 (b) displays an interesting frequency spectrum. The 

force transmitted at the excitation frequency is nearly half the amplitude of the 

excitation force but unlike almost all the previous frequency spectra, the harmonics 

higher than the fundamental frequency do not decrease as the frequency increases. 

The 3rd harmonic is very small and the 5th, 7th, 9th, 11th 13th have a considerable 

amplitude and it is mainly these that compose the other part of the transmitted force.  
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Figure 4.3 - Time histories for the non-dimensional force through the damper of the nonlinear isolation 

system and its frequency spectrum when 
h

10   and 
e

0 5ˆ .F   for a) 0 3.  , c) 0 5.  , e) 1  , g) 

1 5.  , i) 2  . Blue solid line – time history for force through the damper, yellow dotted line – 

Fourier series of the time history, red dashed line – first harmonic of the Fourier series, black solid line 

– excitation force, magenta horizontal line – mean value (DC level) of the signal. b), d), f), h) and j) – 

Frequency spectrum with the DC value at zero and the first fifteen harmonics from the Fourier series 

of the time history for the force through the damper curves shown in a), c), e), g) and j).  
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This creates the distortion in the force transmitted through the damper curve as 

shown in Fig. 4.3 (a). It also causes the distortion in the time history of the 

transmitted force. 

At frequency 0 5.   the transmitted force through the damper broadly 

maintains its sinusoidal shape but increases its maximum value. It is nearly 20% 

larger than the excitation force. The force transmitted at the excitation frequency is 

again nearly half of the total transmitted force through the damper and this is true for 

every time history shown in Fig 4.3. However, the influence of the 3rd harmonic 

becomes relevant while the influence of the 13th becomes negligible. At the 

resonance frequency 1   the force transmitted through the damper increases, it is 

nearly twice the excitation force, see Fig. 4.3 (e) and (f). The shape distorts more, but 

maintains a similarity with Fig. 4.3 (c). The force transmitted through the damper is 
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mainly composed of the 1st, the 3rd, the 5th, and the 7th harmonic, and the rest of the 

harmonics are negligible.  

At 1 5.   the force transmitted through the damper is just a little smaller than the 

amplitude of the excitation force, see Fig 4.3 (g). From Fig 4.3 (h) can be seen that 

the force through the damper is mainly composed if the 1st and the 3rd harmonic and 

in lesser extend of the 5th harmonic. 

In the isolation region at 2   the force transmitted through the damper 

reduces considerably, see Figs 4.3 (i) and (j). It is nearly 15% of the amplitude of the 

excitation force and consists of the fundamental and the 3rd harmonic. Comparing the 

force transmitted through the spring (Figs 4.2 (i)) and the force transmitted through 

the damper (Figs 4.3 (i)) at this frequency it can be seen that the force through the 

damper is nearly one quarter of the force transmitted through the spring. This is 

consistent with the findings in Chapter 3 where it was found that at this frequency the 

transmitted force is mainly dominated by the force trough the spring. 

Comparing Figs. 4.2 and 4.3 it can be seen that specifically for the large value 

use here to the amplitude of the excitation force, the force transmitted through the 

damper exceeds the amplitude of the excitation force, while the force transmitted 

through the spring do not do it, whatever the excitation frequency. This is because 

the large amplitude of the excitation force produces large mass displacements and it 

makes considerably increase the force through the damper while the force through 

the spring increases but in a lesser extent. It also can be seen that the distortion in 

the time history curves of the transmitted force of Fig. 4.1 are due to the force 

transmitted through the damper, as would be expected, and not to the force through 

the spring.      

 

4.3.4 Nonlinear Damping Coefficient  

 

 The expression of the viscous damping force is the multiplication of two 

parameters: the damping coefficient which is constant for a linear damper and the 

relative velocity. For the damper considered in this work the damping coefficient is a  
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Figure 4.4 - Time histories for the non-dimensional damping  coefficient function 
f
c  of the nonlinear 

damper and its frequency spectrum when 
h

10   and 
e

0 5ˆ .F   for a) 0 3.  , c) 0 5.  , e) 1  , 

g) 1 5.  , i) 2  . Blue solid line – time history the nonlinear damping coefficient 
f
c , yellow dotted 

line – Fourier series of the time history, red dashed line – second harmonic of the Fourier series, 

magenta horizontal line – mean value (DC level) of the signal. b), d), f), h) and j) – Frequency 

spectrum with the DC value at zero and the first fifteen harmonics from the Fourier series of the time 

history for nonlinear damping coefficient curves shown in a), c), e), g) and j).  
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Source: Elaborated by the author 

function of displacement and hence time, because of this it is referred as the 

nonlinear damping coefficient and is denoted by 
f
c . For the same five excitation 

frequencies discussed above, the time history and spectrum of 
f
c are shown in Fig. 

4.4.  

Examining Eq. (4.5) some insight into the behaviour of 
f
c can be gained. The 

first two terms are constant and the term in the parenthesis is the term which governs 

its nonlinear behaviour. As it depends on the square of the displacement, the 

damping coefficient curve in time domain would be similar to a sine function squared. 

This has a mean value and its Fourier series is composed of even harmonics. Its 

larger values will be at the frequencies in which the displacement has large values 

(See Fig. 4.1) and the presence of higher harmonics would appear in 
f
c  at the 

frequencies for which the displacement displays a frequency spectrum with higher 

harmonics.  
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The higher displacements for the nonlinear system are at frequencies less than or 

equal to the resonance frequency, so the higher values for 
f
c  are at the frequencies 

0 3.  , 0 5.   and 1  . This can be seen in Figs. 4.4 (a), (c) and (e) which 

show the time histories of 
f
c  for these excitation frequencies. There is a small 

influence of harmonics higher than the 2nd in the time histories which can be seen 

clearly in the frequency spectra shown in Figs. 4.4 (b), (d) and (f). Some influence of 

the 4th harmonic for 1  , and the 4th and the 6th harmonic for 0 5.   and 1   

can be seen. For frequencies higher the resonance frequencies, 1 5.   and 2   

there is a negligible influence of higher harmonics. Only the mean value and the 2nd 

harmonic are necessary to reconstruct the original signals for the nonlinear damping 

coefficient, this is shown in Figs. 4.4 (g) and (h) for 1 5.   and Figs. 4.4 (i) and (j) 

for 2  . At these frequencies the amplitude of 
f
c  starts to reduce, with its 

amplitude being less than one.  

 Although the results depend on the parameters used in the beginning of the 

chapter, which are the same used in Chapter 3, in general it can be concluded that 

the nonlinear damping coefficient at frequencies inside the resonance region 

produces the effect of increasing the amplitude of the velocity; as its maximum values 

are larger than one. On the other hand for frequencies in the isolation region, the 

nonlinear damping coefficient produces the opposite effect, reducing the amplitude of 

the velocity; as its maximum values are smaller than one. This is a different effect 

compared with that of a viscous coefficient damping which is constant whatever the 

frequency value. 

 

4.3.5 Velocity of the mass 

 

 In determining the causes of the unfavourable behaviour of the transmitted 

force shown in Fig. 3.8, the transmitted force has been decomposed into forces 

transmitted through the spring and through the damper. The nonlinear force 

transmitted through the damper can be studied by examining the nonlinear damping 

coefficient and the velocity of the mass. In this subsection the time history and the  
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Figure 4.5 - Time histories for the non-dimensional mass velocity of the nonlinear damper and its 

frequency spectrum when 
h

10   and 
e

0 5ˆ .F   for a) 0 3.  , c) 0 5.  , e) 1  , g) 1 5.  , i) 

2  . Blue solid line – time history for the mass velocity, yellow dotted line – Fourier series of the time 

history, red dashed line – first harmonic of the Fourier series, magenta horizontal line – mean value 

(DC level) of the signal. b), d), f), h) and j) – Frequency spectrum with the DC value at zero and the 

first fifteen harmonics from the Fourier series of the time history for nonlinear damping coefficient 

curves shown in a), c), e), g) and j).  

0 1 3 5 7 9 11 13 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 

 

DC value - At Zero

0 0,5 1 1,5 2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Harmonics Frequency  

V
e

lo
c
it
y
 

Non-dimensional time  

A
m

p
li
tu

d
e
 

a) b) 

0 1 3 5 7 9 11 13 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

DC value - At Zero

0 0,5 1 1,5 2
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 1 3 5 7 9 11 13 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

DC value - At Zero

0 0,5 1 1,5 2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

f) 

Harmonics Frequency  Non-dimensional time  

Non-dimensional time  Harmonics Frequency  

V
e

lo
c
it
y
 

A
m

p
li
tu

d
e
 

V
e

lo
c
it
y
 

A
m

p
li
tu

d
e
 

e) 

c) d) 

 

 

 



67 
 

 

0 1 3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

DC value - At Zero

Harmonics Frequency  

0 0,5 1 1,5 2

-0.5

-0.3

-0.1

0

0.1

0.3

0.5

Non-dimensional time  

A
m

p
li
tu

d
e
 

g) h) 

0 0,5 1 1,5 2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

i) 

0 1 3 5 7 9 11 13 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

DC value - At Zero

j) 

V
e

lo
c
it
y
 

A
m

p
li
tu

d
e
 

V
e

lo
c
it
y
 

Non-dimensional time  Harmonics Frequency  

Source: Elaborated by the author 

frequency spectra of the velocity of the mass at five excitation frequencies near to the 

resonance frequency are analysed.  

 Figure 4.5 shows the time history of the velocity and its frequency spectrum for 

five different frequencies near to the resonance frequency. Only harmonics are  

needed to reconstruct the original curves. At 0 3.   the time history of the velocity 

is highly distorted (see Fig. 4.5 (a) and (b)), its frequency spectrum reveals that the 

first harmonic is nearly the 40% of the velocity of the mass and the higher harmonics 

compose the rest of the velocity. There is an influence of the 3rd, 5th, 7th and 9th 

harmonics in the reconstruction of the curve and the mean value is zero. At 0 5.   

the maximum value of the velocity increases and its time history curve is still 

considerably distorted. The influence of the higher harmonics is still significant, but 
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only up to the 7th harmonic. Because of this the shape of the curve is very similar to 

the time history for 0 3.  . This is illustrated in Figs. 4.5 (c) and (d).  

At the resonance frequency, 1  , the maximum value increases but there is 

the influence of mainly two frequencies; the fundamental frequency and three times 

this frequency and there is a very slight influence of the 5th harmonic. This is 

illustrated in  

Figures. 4.5 (e) and (f). An important issue is that at frequencies lower than 

the resonance frequency the nonlinearity in the velocity is very pronounced; In Figs. 

4.5 (b) and (d) can be seen the considerable presence of higher harmonics in the 

amplitude spectrum of the velocity of the mass at 0 3.   and 0 5.  , respectively. 

The presentence of these higher harmonics with considerable amplitude in the 

velocity of the mass are due to the high-pass filter effect caused by calculating the 

velocity from displacement response which possess higher order harmonics as  

shown in Figs. 4.2 (b) and (d) where the amplitude of the higher order harmonics is 

small. When the velocity is calculated from such a displacement response, the higher 

harmonics increases its amplitudes. For instance consider a displacement signal 

represented in time domain by 

          
1 1

3 5
2 3

sin sin sinu t t t t                                    (4.6)     

where   is the an angular frequency and t  is time. If  u t  is differentiated in order to 

obtain velocity it leads to  

       
3 5

3 5
2 3

cos cos cosu t t t t                                (4.7)    

It can be seen the effect of differentiating a signal composed by several 

harmonics, it increases the amplitude of the higher harmonics and maintains the 

amplitude at the fundamental frequency, just as a high-pass filter.  

At frequencies higher than the resonance frequency, the velocity amplitude 

decreases, at 1 5.   the velocity is mainly composed of the fundamental frequency 

and has a slightly influence of the 3rd harmonic, it is illustrated in Figs. 4.5 (g) and (h). 

In the isolation region, at 2  , there is just the velocity at the fundamental 
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frequency, evidently because at these frequencies the displacement response is very 

small (see Figs. 4.5 (i) and (j)).      

 

4.4 Conclusions   

 

 In this chapter the reasons why the transmitted force to the base becomes 

distorted at frequencies close to the resonance region has been investigated. 

Studying the time history and the spectra of the transmitted force it was found that its 

high values at the resonance frequency region are produced by the presence of 

higher harmonics in the transmitted force curves besides the force at the excitation 

frequency. These high harmonics are markedly presents in the force transmitted 

through the damper instead of the force transmitted through the spring.  

 Studying the force through the spring it was found that, specifically for the 

large amplitude value of the excitation force used here, the maximum force 

transmitted through it, is close to the amplitude of the excitation force and regardless 

the excitation frequency it is not larger than the excitation force but at frequencies 

higher than the resonance frequency the force transmitted through the spring starts 

to decreases. From the study of the force transmitted through the damper there was 

found that at frequencies near to the resonance frequency its amplitude exceeds the 

amplitude of the excitation force. 

 It was found that for the nonlinear damping force the damping coefficient is 

amplitude and hence time dependent which is very different compared by a viscous 

damping coefficient which is constant. It is a nonlinear function whose maximum 

values are more than one for frequencies below the resonance frequency and less 

than one for frequencies above the resonance region. That is because the 

dependence of the nonlinear coefficient on the mass displacement; which at the 

resonance region is large while at the isolation region is very small.  

   It was also found that the velocity is the most important cause of the 

nonlinearity in the damping force because of the presence of high harmonics in its 

time histories when excited with frequencies corresponding to the resonance 

frequency region. The presence of high harmonics with considerable amplitudes in 

the velocity curves is caused by the effect of increasing them when the displacement 

signal is differentiated which is similar to the effect of a high-pass filter.  

It can also be concluded that the nonlinearity of the damping force could be 

seen as the multiplication of two nonlinearities coming from the nonlinear damping 

coefficient which increases the amplitude of the harmonics of the velocity of the 

mass.       



70 
 

 

5   CONCLUSIONS  

 

5.1 Summary of the Dissertation 

 

This Chapter summarizes the work done in this dissertation and presents the 

main conclusions obtained as well as the recommendations for further work. The 

principal goals in this dissertation were to compare the performance between the a 

linear and a nonlinear vibration isolation system with its damper orientated at ninety 

degrees with respect to the spring and to analyse the time histories of the transmitted 

force at frequencies close to the resonance frequency. To achieve these objectives 

the dissertation was divided as follows:  

Chapter 1 introduced the topic of vibration isolation and to present a review of 

the literature in this area in the specific context of nonlinear vibration isolation.    

In Chapter 2 the characteristics of a SDOF linear isolation system when its 

mass is excited by a harmonic force and when the system is harmonically excited by 

the base have been reviewed. The equation describing the system in both cases has 

been obtained to define force and displacement transmissibility for a SDOF isolation 

system. The way in which the system parameters affect the isolations systems at 

different frequency regions has been investigated and a discussion about the 

concepts of transient, steady state and resonance frequency has been presented. 

In Chapter 3 the characteristics of a SDOF nonlinear isolation system in which 

the damper is orientated at ninety degrees to the spring was investigated. Its 

performance was compared with that of a SDOF isolation system by comparing their 

force and displacement transmissibilities in the cases in which the systems were 

excited by a harmonic force and by a harmonic base excitation. A study was 

undertaken in which low excitation amplitudes were considered. In this case, the 

nonlinear damping force was approximated to an equivalent viscous damping force. 

A numerical analysis was conducted for high amplitude excitation.  

The force transmissibility for high amplitude excitation levels from Chapter 3 

had undesirable performance at frequencies close to the resonance frequency. In 
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Chapter 4 the time histories for the force transmitted to the base at different 

frequencies near the resonance frequency and their frequency spectra have been 

studied. The time histories for the force transmitted through the spring and the force 

transmitted through the damper together with their spectra have also been studied. 

Finally, the force transmitted through the damper has been separated into a time 

dependent damping coefficient and the velocity of the mass to gain some insight into 

the nonlinear effects.  

 

5.2 Main Conclusions 

  

It has been shown that the force produced by a damper orientated at ninety 

degrees with respect to the spring can be approximated to an equivalent viscous 

damping force. It has also been shown that for low amplitude excitation the damping 

force depends on the square of the relative displacement and it makes the nonlinear 

isolator suitable for vibration isolation for low levels of excitation.  

Analytical expressions have been derived which describe the dynamic 

behaviour and the performance of the nonlinear isolator for low amplitude excitation. 

From these it can be concluded that at low amplitude excitation: 

 

- The force and displacement transmissibility at the resonance frequency are 

smaller than for the linear system provided that 
e

250ˆ /
h

F   and 

 ˆ /F   3

e h
4  for the force excited system and  h

34ˆ /Y    and 

ˆ /Y 
h

250  for the base excited system.  

 

- At high frequencies for the force excited system, the nonlinear system 

performs better than the linear isolator, behaving as if it were undamped. 

Regarding the displacement transmissibility, the nonlinear system also 

performs better than the linear system at the resonance frequency but there is 

a detrimental effect at high frequencies. 

 

 

For high excitation amplitudes and from the numerical results it has been 

shown that: 
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- Regarding the force transmissibility, the nonlinear system at the resonance 

frequency performs better than the linear system but there is an undesirable 

effect at frequencies close to the resonance frequency which makes larger the 

force transmissibility compared with that of the linear system. At high 

frequencies the nonlinear system performs very well, behaving as if it were 

undamped. This is one of the important results of this dissertation.  

 

- Regarding the displacement transmissibility close to the resonance frequency, 

the nonlinear isolator preforms better than the linear isolator but at high 

frequencies its performance is worse than the linear system. 

 

 

From the analysis of the time histories and the Fourier series of the 

transmitted force for the nonlinear system it has been found that the high values 

close to the resonance frequency are due to the presence of higher harmonics. 

Decomposing the transmitted force at frequencies close to the resonance region it 

has been shown that specifically for the large amplitude of the excitation force use in 

this work; the amplitude of the force transmitted through the spring is not larger than 

the amplitude of the excitation force. However, this is not the case with the force 

transmitted through the damper. 

Decomposing the force through the nonlinear damper it has been shown that 

the damping coefficient is not constant but varies with time and is a nonlinear 

function. It causes an increase in the amplitude of the velocity of the mass at 

frequencies greater than the resonance frequency and decreases the amplitude of 

the velocity in the isolation region. It has also been shown that the velocity of the 

mass is the most important cause of the nonlinear behaviour of the damping force. 

Finally, it can be concluded that the nonlinearity of the damping force arises from the 

geometry of the system. 

 

5.3 Recommendation for Further Work 

 

In this work the damper was oriented so that it is at ninety degrees from the 

spring. Further work can investigate the performance of SDOF isolation systems with 

different positions of the damper with respect to the spring between 0 and ninety 

degrees.  

Another possibility is to investigate the performance of a SDOF isolation 

system with two linear springs; one of which is at ninety degrees from the other and 
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is parallel to a linear viscous damper, the external disturbance is applied at ninety 

degrees to the damper.  

The performance of a similar system to that investigated in this work could be 

studied but considering two degrees of freedom so that the mass can move in the 

plane formed by the damper axis and the spring axis.  
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