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We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic
bright solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a quasi-one-
dimensional cigar-shaped geometry. Due to a strong Pauli-blocking repulsion among spin-polarized fermions at
short distances there cannot be bright fermionic solitons in the case of repulsive boson-fermion interactions.
However, we demonstrate that stable bright fermionic solitons can be formed for a sufficiently attractive
boson-fermion interaction in a boson-fermion mixture. We also consider the formation of fermionic solitons in
the presence of a periodic axial optical-lattice potential. These solitons can be formed and studied in the
laboratory with present technology.
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I. INTRODUCTION

There cannot be an effective evaporative cooling leading
to a trapped quantum degenerate Fermi gas �DFG� due to a
strong repulsive Pauli-blocking interaction at low tempera-
ture among spin-polarized fermions �1�. However, it has
been possible to achieve a DFG by sympathetic cooling in
the presence of a second boson or fermion component. Re-
cently, there have been successful observations �1–4� and
associated experimental �5–7� and theoretical �8–12� studies
of mixtures of a trapped DFG and a Bose-Einstein conden-
sate �BEC� by different experimental groups �1–4� in the
following systems: 6,7Li �3�, 23Na-6Li �4�, and 87Rb-40K
�5,6�. Also, there have been studies of mixtures of two-
component trapped DFGs in 40K �1� and 6Li �2� atoms.

The formation and collapse of a DFG in a boson-fermion
mixture 87Rb-40K have been observed and studied by
Modugno et al. �5,10,12�. Although, the fermion-fermion in-
teraction at short distances is repulsive due to strong Pauli
blocking and hence incapable of leading to collapse, a suffi-
ciently attractive boson-fermion interaction could overcome
the Pauli repulsion and could result in a collapse of a DGF.
Bright solitons in a BEC are formed due to an attractive
nonlinear atomic interaction. As the interaction in a pure
DFG at short distances is repulsive, there cannot be bright
solitons in a DFG.

In this paper we study the possibility of the formation of
stable fermionic bright solitons in a mixture of a DFG with a
BEC in the presence of a sufficiently attractive boson-
fermion interaction which can overcome the Pauli repulsion
among fermions. The formation of a fermionic soliton is re-
lated to the fact that the system can lower its energy by
forming high density regions �the solitons� when the attrac-
tion between the bosons and fermions is large enough to
overcome the Pauli repulsion in the DFG and any possible
repulsion in the BEC. In particular we consider the formation
of fermionic bright solitons, which can freely move in the

axial direction, in such a mixture for a quasi-one-
dimensional cigar-shaped geometry using a coupled time-
dependent mean-field-hydrodynamic model where the
bosonic component is treated by the mean-field Gross-
Pitaevskii equation �13� and the fermionic component is
treated by a hydrodynamic model �11�. This time-dependent
mean-field-hydrodynamic model was suggested recently by
the present author �12� to study the collapse dynamics of
fermions and is a time-dependent extension of a time-
independent model used for the stationary states by Capuzzi
et al. �11�.

Bright solitons are really eigenfunctions of the one-
dimensional nonlinear Schrödinger equation. However, the
experimental realization of bright solitons in trapped attrac-
tive cigar-shaped BECs has been possible under strong trans-
verse binding which, in the case of weak or no axial binding,
simulates the ideal one-dimensional situation for the forma-
tion of bright solitons. The dimensionless nonlinear
Schrödinger �NLS� equation in the attractive or self-focusing
case �14�

iut + uxx + �u�2u = 0 �1.1�

sustains the following bright soliton �14�:

u�x,t� = �2B sech��B�x − � + 2vt��

� exp�− iv�x − �� + i�B − vv�t + i�� �1.2�

with four parameters. The parameter B represents the ampli-
tude as well as pulse width, v represents velocity, the param-
eters � and � are phase constants. The bright soliton profile
is easily recognized for v=�=0 as �u�x , t��=�2Bsech�x�B�.
There have been experimental �15� and theoretical �16� stud-
ies of the formation of bright solitons in a BEC. In view of
this, here we study the possibility of the formation of a stable
fermionic bright soliton in a boson-fermion mixture.

In recent times there have been routine experimental stud-
ies on the formation of BEC in the presence of a periodic
axial optical-lattice potential �17�. This leads to a different
condition of trapping from the harmonic trap and generates a
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BEC of distinct modulation. Hence we also consider in this
paper the modulations of the fermionic bright solitons in the
presence of an optical-lattice potential.

In Sec. II we present the time-dependent mean-field
model consisting of a set of coupled partial differential equa-
tions involving the bosonic and fermionic probability densi-
ties. In the case of a cigar-shaped geometry with stronger
radial trapping, the above model is reduced to an effective
one-dimensional form appropriate for the study of bright
solitons. In Sec. III we present our results for stationary
axially-free fermionic bright solitons as well as those formed
on an axial periodic optical-lattice potential. We also demon-
strate the stability of the bright solitons after a perturbation is
applied. The bright solitons are found to execute stable
breathing oscillation upon perturbation. Finally, a summary
of our findings is given in Sec. IV.

II. NONLINEAR MEAN-FIELD-HYDRODYNAMIC
MODEL

The time-dependent Bose-Einstein condensate wave func-
tion ��r , t� at position r and time t may be described by the
following mean-field nonlinear Gross-Pitaevskii equation
�13�

�− i�
�

�t
−

�2�r
2

2mB
+ VB�r� + gBBnB��B�r,t� = 0, �2.1�

with normalization 	dr��B�r , t��2=NB. Here mB is the mass
and NB the number of bosonic atoms in the condensate, nB

��B�r , t��2 is the boson probability density, gBB

=4��2aBB /mB the strength of interatomic interaction, with
aBB the boson-boson scattering length. The trap potential
with axial symmetry may be written as VB�r�= 1

2mB�2��2

+	2z2�, where � and 	� are the angular frequencies in the
radial ��� and axial �z� directions with 	 the anisotropy pa-
rameter. The probability density of an isolated DFG in the
Thomas-Fermi approximation is given by �10�

nF =
�max�0,�
F − VF�r����3/2

A3/2 , �2.2�

where A=�2�6�2�2/3 / �2mF�, 
F is the Fermi energy, mF is the
fermionic mass, and the function max denotes the larger of
the arguments. The confining trap potential VF�r�
= 1

2mF�F
2��2+	2z2� has axial symmetry as the bosonic poten-

tial VB�r�, where �F is the radial frequency. The anisotropy
parameter 	 will be taken to be zero for axially free solitons
in the following. The number of fermionic atoms NF is given
by the normalization 	drnF�r�=NF.

We developed a set of practical time-dependent mean-
field-hydrodynamic equations for the interacting boson-
fermion mixture starting from the following Lagrangian den-
sity �12�:

L =
i

2
���B

��B
*

�t
− �B

* ��B

�t
� +

i

2
���nF

��nF
*

�t
− �nF

* ��nF

�t
�

+ �2��r�B�2

2mB
+ VB��B�2 +

1

2
gBB��B�4�

+ �2��r
�nF�2

6mF
+ VF�nF� +

3

5
A�nF�5/3� + gBFnF��B�2,

�2.3�

where gBF=2��2aBF /mR with the boson-fermion reduced
mass mR=mBmF / �mB+mF�, where aBF is the boson-fermion
scattering length.

The terms in the first round bracket on the right-hand side
of Eq. �2.3� are the standard Gross-Pitaevskii terms for the
bosons and are related to a Schrödinger-like equation �13�.
However, terms in the second round bracket are derived from
the hydrodynamic equation of motion of the fermions �11�.
Hence, the second kinetic energy term has a different mass
factor 6mF and not the conventional Schrödinger mass factor
2mB as in the first integral. Finally, the last term in this equa-
tion corresponds to an interaction between bosons and fermi-
ons. The interaction between fermions in spin polarized state
is highly suppressed due to Pauli blocking and has been ne-
glected in Eq. �2.3� and will be neglected throughout this
paper.

Recently, Jezek et al. �18� used the Thomas-Fermi-
Weizsäcker kinetic energy term TF of fermions in their for-
mulation which, in our notation, will correspond to a fermi-
onic kinetic energy of �2��r

�nF�2 / �9mF� in Eq. �2.3� in place
of the present term �2��r

�nF�2 / �6mF�. This kinetic energy
term contributes little to this problem compared to the domi-
nating 3A�nF�5/3 /5 term in Eq. �2.3� and is usually neglected
in the Thomas-Fermi approximation. However, its inclusion
leads to an analytic solution for the probability density ev-
erywhere �18�. For a discussion of these two fermionic ki-
netic energy terms we refer the reader to Refs. �11,18,19�.

With the Lagrangian density �2.3�, the Euler-Lagrange
equations of motion become �12�

�− i�
�

�t
−

�2�r
2

2mB
+ VB�r� + gBBnB + gBFnF��B�r,t� = 0,

�2.4�

�− i�
�

�t
−

�2�r
2

6mF
+ VF�r� + A�nF�2/3 + gBFnB��nF�r,t� = 0.

�2.5�

When the nonlinearity in Eq. �2.5� is very large, the ki-
netic energy term in this equation can be neglected and the
time-independent stationary form of this equation becomes

nF =
�max„0,�
F − VF�r� − gBFnB�…�3/2

A3/2 , �2.6�

which is the generalization of Eq. �2.2� in the presence of
boson-fermion coupling. Equation �2.6� has been used by
Modugno et al. �10� for an analysis of a DFG-BEC mixture.
In actual experimental condition the nonlinearity in Eq. �2.5�
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is quite large and Eq. �2.6� is a good approximation.
For the study of bright solitons we shall reduce Eqs. �2.4�

and �2.5� to the minimal one-dimensional form under the
action of stronger radial trapping. The one-dimensional form
is appropriate for studying bright solitons in the so-called
cigar-shaped quasi-one-dimensional geometry where 	�1.
For radially-bound and axially-free solitons we eventually
set 	=0. In this case the dynamical equations can be reduced
to strict one-dimensional coupled NLS equations without any
trap. We perform this reduction below where we take VB�r�
=VF�r�= 1

2mB�2��2+	2z2� which corresponds to a reduction
of �F and 	�F in VF�r� by a factor �mB /mF as in the study
by Modugno et al. �10� and Jezek et al. �18�.

For 	=0, Eqs. �2.4� and �2.5� can be reduced to an effec-
tive one-dimensional form by considering solutions of the
type �B�r , t�=�B�z , t�B

�0���� and �nF�r , t�=�F�z , t�F
�0����,

where

�i
�0�����2 


Mi�

��
exp−

Mi��2

�
� , �2.7�

and i=B ,F represents bosons and fermions and MB=mB and
MF=�3mBmF. The expression �2.7� corresponds to the re-
spective ground-state wave function in the absence of non-
linear interactions and satisfies

−
�2

2mB
��

2B
�0� +

1

2
mB�2�2B

�0� = ��B
�0�, �2.8�

−
�2

6mF
��

2F
�0� +

1

2
mB�2�2F

�0� =� mB

3mF
��F

�0�, �2.9�

with normalization 2�	0
��i

�0�����2�d�=1. Now the dynamics
is carried by �i�z , t� and the radial dependence is frozen in
the ground state i

�0����. The factorization of �B and �nF

above follows from the structure of the mathematical equa-
tions �2.4� and �2.5�. Although nF gives the probability den-
sity of DFG it may not be to the point to associate F

0 and �F
to physical fermionic one-particle wave functions. The true
fermionic wave function has the form of a many-particle
Slater determinant. Nevertheless, the functions F

0 and �F
could be regarded as mathematical functions related to fer-
mionic density �8�. In the quasi-one-dimensional cigar-
shaped geometry the linear fermionic and bosonic probabil-
ity densities are given by ��F�z , t��2 and ��B�z , t��2,
respectively.

Averaging over the radial mode i
�0����, i.e., multiplying

Eqs. �2.4� and �2.5� by i
�0�*��� and integrating over �, we

obtain the following one-dimensional dynamical equations
�20�:

�− i�
�

�t
−

�2

2mB

�2

�z2 + FBB��B�2 + FBF��F�2��B�z,t� = 0,

�2.10�

�− i�
�

�t
−

�2

6mF

�2

�z2 + FFF��F�4/3 + FBF��B�2��F�z,t� = 0,

�2.11�

where

FBB = gBB

�
0

�

�B
�0��4�d�

�
0

�

�B
�0��2�d�

= gBB
mB�

2��
, �2.12�

FBF = gBF

�
0

�

�F
�0��2�B

�0��2�d�

�
0

�

�B
�0��2�d�

= gBF
MBF�

��
, �2.13�

FFF = A

�
0

�

�F
�0��2+4/3�d�

�
0

�

�B
�0��2�d�

=
3A

5
�MF�

��
�2/3

. �2.14�

In Eq. �2.13� MBF=MBMF / �MB+MF�. In Eqs. �2.10� and
�2.11� the normalization is given by 	−�

� ��i�z , t��2dz=Ni. In
these equations we have set the anisotropy parameter 	=0 to
remove the axial trap and thus to generate axially free quasi-
one-dimensional solitons.

For calculational purposes it is convenient to reduce the
set of Eqs. �2.10� and �2.11� to dimensionless form by intro-
ducing convenient dimensionless variables. Although the al-
gebra is quite straightforward, the expressions become messy
with different factors of masses. As we shall not be interested
in a particular boson-fermion system in this paper, but will
be concerned with the formation of fermionic bright solitons
in general, we take in the rest of this paper mB=3mF
=m�87Rb�, where m�87Rb� is the mass of 87Rb, and whence
mR=3mF /4, MB=MF=mB, and MBF=mB /2. In the two ex-
perimental situations of Refs. �4,5� mB�3mF.

In Eqs. �2.10� and �2.11�, we consider the dimensionless
variables �= t� /2, y=z / l, �i=��l /Ni��i, with l=�� / ��mB�,
so that

�− i
�

��
−

d2

dy2 + NBB��B�2 + NBF��F�2��B�y,�� = 0,

�2.15�

�− i
�

��
−

d2

dy2 + NFB��B�2 + NFF��F�4/3��F�y,�� = 0,

�2.16�

where NBB=4aBBNB / l, NBF=8aBFNF / l, NFB=8aBFNB / l, and
NFF=9�6�NF�2/3 /5. In Eqs. �2.15� and �2.16�, the normaliza-
tion condition is given by 	−�

� ��i�y ,���2dy=1. Equations
�2.15� and �2.16� are the coupled one-dimensional NLS
equations describing the formation of solitons in the
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DFG-BEC mixture in a cigar-shaped quasi-one-dimensional
geometry.

In Eqs. �2.15� and �2.16� the term NFF��F�4/3 represents a
very strong Pauli repulsion which increases with the fermion
number NF. The purpose of this study is to show that a suf-
ficiently strong attractive boson-fermion coupling term
NFB��B�2 can overcome this repulsion and form the bright
solitons.

III. NUMERICAL RESULT

We solve the coupled mean-field-hydrodynamic equations
�2.15� and �2.16� for bright solitons numerically using a
time-iteration method based on the Crank-Nicholson dis-
cretization scheme elaborated in Ref. �21�. We discretize the
mean-field-hydrodynamic equation using time step 0.0005
and space step 0.025.

We performed the time evolution of the set of equations
�2.15� and �2.16� introducing harmonic oscillator potentials
y2 in these equations and setting the nonlinear terms to zero:
NBB=NBF=NFB=NFF=0 and starting with the eigenfunctions
of the linear harmonic oscillator problem, e.g., with
�B�y ,��=�F�y ,��=�−1/4 exp�−y2 /2�exp�−i��. The introduc-
tion of the extra harmonic oscillator potential in these equa-
tions only aids in starting the time evolution with an exact
analytic solution. In the end the harmonic oscillator poten-
tials will be set equal to zero and will have no effect on the
final wave function for solitons. During the course of time
evolution the nonlinear terms are switched on very slowly
and the resultant solutions iterated until convergence was
obtained. Then the time evolution is continued and the har-
monic oscillator potential terms in both bosonic and fermi-
onic equations are slowly switched off by reducing the y2

term to zero in 10 000 steps of time evolution. Then the
resultant solutions are iterated about 50 000 times for con-
vergence without any harmonic oscillator potential. If con-
verged solutions are obtained, they correspond to the re-
quired axially free bright solutions in the absence of any
axial potential. In our numerical investigation as in the the-
oretical study of Refs. �12,18� we use �=2��100 Hz, and
take mB as the mass of 87Rb. Consequently, the unit of length
l�1 �m and unit of time 2/��3 ms.

First we solve Eqs. �2.15� and �2.16� with NF=NB=1000,
aBB=5 nm and aBF=−20 nm. This value of aBB is the experi-
mental scattering length of Rb atoms �13�, and aBF=
−20 nm is the experimental scattering length of the Rb-K
system �5,6�. With these parameters the nonlinearities in Eqs.
�2.15� and �2.16� are NBB=20, NBF=−160, NFB=−160, and
NFF=274.6. The converged bright solitons are plotted in Fig.
1. In this case the fermionic and bosonic functions �F and
�B, respectively, have similar spatial extentions. It is possible
to have solitons with different extensions in space by varying
the parameters of the system. We took the experimental
values for the scattering lengths in Fig. 1. However, the
scattering length can be manipulated in the boson-fermion
6Li-23Na and 40K-87Rb systems near the recently discovered
Feshbach resonances in them �22� by varying a background
magnetic field. Thus by varying the scattering length and the
number of atoms we could arrive at different values of non-
linearity than in Fig. 1.

To simulate a different situation of nonlinearity param-
eters next we take aBB=−1 nm, aBF=−1.875 nm, NF=1000,
and NB=10 000. So that NBB=−40, NBF=−15, NFB=−150,
and NFF=274.6. In this case the profiles of the bright solitons
shown in Fig. 2 are very different from those in Fig. 1. In
Fig. 1 both the solitons are localized to a small region in
space, whereas in Fig. 2 only the bosonic soliton is localized
to a small region in space whereas the fermionic soliton ex-
tends to a very large region of space.

Next we consider NF=1000, NB=10 000, aBB=0.5 nm,
and aBF=−3.75 nm, so that the nonlinearity parameters are
NBB=20, NBF=−30, NFB=−300, and NFF=274.6. The pro-
files of the solitons in Fig. 3 are different from those in Figs.
1 and 2. In this case the bosonic function extends over a
longer region in space than the fermionic function. In Figs. 1
and 2 it was the fermionic function that extends over a longer
region in space.

In Fig. 2 the nonlinearity NFB appearing in the fermion
equation is less attractive compared to that in Figs. 1 and 3.

FIG. 1. �Color online� The stationary function ��i�z , t�� for
axially-free bosonic �dotted line� and fermionic �full line� bright
solitons vs z for NF=NB=1000, aBB=5 nm, aBF=−20 nm, harmonic
oscillator length l�1 �m and 	=0. The arrows in dotted and full
lines indicate the bosonic and fermionic axes, respectively. The
nonlinearity parameters are NBB=20, NBF=−160, NFB=−160, and
NFF=274.6.

FIG. 2. �Color online� The stationary function ��i�z , t�� for axi-
ally free bosonic �dotted line� and fermionic �solid line� bright soli-
tons vs z for NF=1000, NB=10 000, aBB=−1 nm, aBF=−1.875 nm,
harmonic oscillator length l�1 �m and 	=0. The arrows in dotted
and full lines indicate the bosonic and fermionic axes, respectively.
The nonlinearity parameters are NBB=−40, NBF=−15, NFB=−150,
and NFF=274.6.
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Hence the resultant nonlinear interaction in the fermion com-
ponent is less attractive and hence the fermionic soliton ex-
tends to a large distance in space. If the attraction in NFB is
further reduced the fermionic soliton ceases to bind.

Hence by manipulating the parameters one could have
different situations of localization of the solitons. One could
either have both the solitons extending up to similar distance
in space as in Fig. 1 or one of the solitons extending over a
longer region in space as in Figs. 2 and 3. It is worth em-
phasizing that in the fermionic equation �2.16� the diagonal
nonlinearity NFF is repulsive, hence the binding solely comes
from the attractive off-diagonal nonlinearity NFB correspond-
ing to an attractive boson-fermion interaction. Hence for a
fermionic soliton to appear NFB and aBF are always taken to
be negative or attractive. Consequently, NBF is also negative.
Finally, terms NBB and aBB could be either positive or nega-
tive. When these terms are positive or repulsive the bosonic
solitons are formed due to an attractive or negative NBF, as in
Fig. 3.

Next we study the stability of the bright solitons numeri-
cally. We consider the soliton of Fig. 3 and during time evo-
lution we suddenly jump at t=100 ms the nonlinearity NBF
from −30 to −33 and the nonlinearity NFB from −300 to
−330. This can be achieved by manipulating a background
magnetic field near a Feshbach resonance �22� in the boson-
fermion interaction and thus varying the boson-fermion scat-
tering length by 10%. Due to the sudden change in the non-
linearity the bosonic and fermionic bright solitons are set
into stable breathing oscillation. The evolution of the wave
function profile of the two solitons are shown in Fig. 4. The
solitons are found to execute stable non-periodic breathing
oscillation. In Fig. 5 we plot the root-mean-square size
�z�r.m.s. of the bosonic and fermionic solitons of Fig. 4 as a
function of time. The breathing oscillation of the two solitons
after the perturbation is applied results in the stable nonperi-
odic oscillation of the root-mean-square sizes illustrated in
Fig. 5. As, after applying the perturbation, the boson-fermion
attraction has been increased this corresponds to a reduction
in the root-mean-square size �z�r.m.s. as we find in Fig. 5. The

steady propagation of the solitons in Fig. 4 and the stable
oscillation of their root-mean-square sizes in Fig. 5 after the
perturbation is applied will demonstrate the stability of the
solitons.

Finally, we consider the fermionic bright solitons formed
on a periodic optical-lattice potential. For that purpose we
include in Eqs. �2.15� and �2.16� the following optical-lattice
potential formed by a standing-wave laser beam �17�:

FIG. 3. �Color online� The stationary function ��i�z , t�� for axi-
ally free bosonic �dotted line� and fermionic �solid line� bright soli-
tons vs z for NF=1000, NB=10 000, aBB=0.5 nm, aBF=−3.75 nm,
	=0 and harmonic oscillator length l�1 �m. The arrows in dotted
and full lines indicate the bosonic and fermionic axes, respectively.
The nonlinearity parameters are NBB=20, NBF=−30, NFB=−300,
and NFF=274.6.

FIG. 4. �Color online� The function ��i�z , t�� for �a� bosonic and
�b� fermionic bright solitons vs z and t for the solitons of Fig. 3. At
t=0 NF=1000, NB=10 000, aBB=0.5 nm, aBF=−3.75 nm, 	=0 and
harmonic oscillator length l�1 �m. The nonlinearity parameters at
t=0 are NBB=20, NBF=−30, NFB=−300, and NFF=274.6. At t
=100 ms �marked by arrows� the bright solitons are set into small
breathing oscillations by suddenly jumping the nonlinearities NBF

and NFB to −33 and −330, respectively.

FIG. 5. �Color online� The root-mean-square size �z�r.m.s. of the
bosonic �dotted line� and fermionic �full line� solitons of Fig. 4 vs
time.
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VOP = V0 sin2�2�y/�� , �3.1�

where V0 is the strength, and � is the wave length of the
laser. In our calculation we take V0=100 and �=� /2. To
solve Eqs. �2.15� and �2.16� with this optical-lattice potential
and desired nonlinearities, we again start the time evolution
with the solution of the linear oscillator problem. In the
course of time evolution the nonlinearities and the optical-
lattice potential are slowly introduced and eventually the har-
monic oscillator potential is slowly removed. Then the final
solutions are iterated for convergence. The resultant soliton
wave functions are plotted in Fig. 6 for NF=1000, NB
=10 000, aBB=0.3 nm, and aBF=−2.375 nm. The optical-
lattice potential introduces modulations in the solitonic wave
function. For the parameters of Fig. 6 the modulations are
more prominent on the fermionic soliton than the bosonic
one. By changing the parameters it is possible to have modu-
lations on the bosonic soliton as well.

IV. SUMMARY

We use a coupled set of time-dependent mean-field-
hydrodynamic equations for a boson-fermion mixture to

study the formation of fermionic bright soliton in a DFG as a
stationary state. In this study we take the boson-boson inter-
action to be both attractive and repulsive and the boson-
fermion interaction to be attractive. An attractive boson-
fermion interaction is necessary for the formation of a
fermionic bright soliton as the diagonal nonlinearity NFF in
the fermion-fermion system is always repulsive.

In the present study we demonstrate that stable solitons
can be formed in coupled NLS equations for the boson-
fermion mixture with repulsive diagonal nonlinearities and
attractive off-diagonal nonlinearities above some cutoff val-
ues. In another study �23� we showed the possibility of the
formation of bright solitons in coupled bosonic condensates
with intraspecies repulsion supported by interspecies attrac-
tion. The stability of the present fermionic and bosonic soli-
tons is demonstrated through their sustained breathing oscil-
lation initiated by a sudden jump in the boson-fermion
scattering length. Bright solitons have been created experi-
mentally in attractive BECs in three dimensions in the pres-
ence of radial trapping only without any axial trapping �15�.
In view of this, fermionic bright solitons can be observed in
the laboratory in the presence of radial trapping only in a
mixture of a DFG and BEC. We also suggest the possibility
of the formation of fermionic solitons on a periodic optical-
lattice potential. In the present investigation we used a set of
mean-field equations for the DFG-BEC mixture. A proper
treatment of the DFG should be performed using a fully
antisymmetrized many-body Slater determinant wave func-
tion �8�, as in the case of atomic and molecular scattering
involving many electrons �24�. However, in view of the suc-
cess of the hydrodynamic model in other contexts �12,25�,
we do not believe that the present conclusion about the ex-
istence of robust fermionic solitons in a DFG-BEC mixture
to be so peculiar as to have no general validity.

Note added in proofs: Recently, we became aware of
reaching a similar conclusion from a numerical solution of a
model using an antisymmetrized wave function for the fer-
mion wave function �26�. We apologize for missing this ar-
ticle before.
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