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Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions
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Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified
in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically,
they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by
analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for
simulated φφ pairs at the Relativistic Heavy Ion Collider (RHIC) energies.
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I. INTRODUCTION

In the late 1990s, it was shown [1] that the hadronic
mass-modification in hot and dense media can lead to a
novel type of correlation between bosons and their antipar-
ticles. These squeezed back-to-back correlations (BBC) are
the result of a quantum-mechanical transformation relating
in-medium quasiparticles to two-mode squeezed states of
their free, observable counterparts [1]. This is achieved by
means of a Bogolioubov-Valatin (BV) transformation linking
the asymptotic creation (annihilation) operators â

†
k (âk) of

the observed bosons with momentum kµ = (ωk, k), to the
operators b̂

†
k (b̂k) corresponding to thermalized quasiparti-

cles in the medium. This transformation is given by âk =
b̂kck + b̂

†
−ks

∗
−k; â

†
k = b̂

†
kc

∗
k + b̂−ks−k being ck = cosh(fk) and

sk = sinh(fk). For conciseness, we keep here the short-hand
notation introduced in Ref. [1], where (−k) denotes an opposite
sign in the spacial components of the momenta. Since the
BV transformation between these operators is equivalent to
a squeezing operation, the coefficient of this transformation,

fki ,kj
(x) = 1

2 log[
ωki

(x)+ωkj
(x)

�ki
(x)+�kj

(x) ], is called squeezing parameter;

ω2
ki

= m2 + ki
2 and �2

ki
= m2

∗ + ki
2 are, respectively, the dis-

persion relation in terms of the asymptotic mass m and in terms
of the in-medium modified mass m∗. A complete description
of the phenomenon should include a parametrization for m∗
depending on the particles’ momenta and on their coordinates
in the hot and dense system. For proposing the means to search
for it experimentally, however, it suffices to assume a linear
relation between the masses (i.e., m∗ = m ± δm, as was also
considered in Refs. [1–4]).

After the publication in Ref. [1], a similar BBC between
fermion-antifermion pairs was demonstrated to exist [2] if
the masses of these particles were modified in-medium. Both
the fermionic (fBBC) and the bosonic (bBBC) back-to-back
squeezed correlations are described by analogous formalisms,
being both positive correlations with unlimited intensity. This
behavior is in contrast to what is observed in femtoscopy, or the
Hanbury-Brown and Twiss effect (HBT), a quantum statistical
correlation among identical particles. In the HBT realm, two
bosons with similar momenta are positively correlated, with
intensity ranging from 1 to 2, whereas two fermions with
similar momenta are anticorrelated, with intensity between

0 and 1. Besides, the fBBC and the bBBC constitute a
direct probe of hadronic mass shift in the hot and dense
media, contradicting naive expectations that such informa-
tion vanishes at the freeze-out surface, leaving no trace on
correlations.

In the remainder of this article, we will focus on the bosonic
case only, more specifically, on bosons that are their own
antiparticles, such as φφ or π0π0. The two-particle correlation
function is written as

C2(k1, k2) = N2(k1, k2)

N1(k1)N1(k2)
, (1)

where the numerator is the two-particle joint distribution and
the denominator is the product of the two single-inclusive
distributions.

The numerator in Eq. (1) is proportional to the expectation
value of the four-operator 〈â†

k1
â
†
k2

âk2 âk1〉. After applying
a generalization of Wick’s theorem to locally equilibrated
systems [5,6], the complete two-particle distribution in such
cases can be written as N2(k1, k2) = ωk1ωk2〈â†

k1
â
†
k2

âk2 âk1〉 =
ωk1ωk2 [〈â†

k1
âk1〉〈â†

k2
âk2〉 + 〈â†

k1
âk2〉〈â†

k2
âk1〉 + 〈â†

k1
â
†
k2

〉〈âk2 âk1〉].
For estimating the above expectation values the asymp-

totic operators (â, â†) are first written in terms of the
ones in-medium, (b̂, b̂†). These last two operators diago-
nalize the full, in-medium Hamiltonian (i.e., Ĥm = Ĥ0 +
Ĥ1 = ∫

d3k �kb̂
†
kb̂k); the asymptotic Hamiltonian is Ĥ0 =∫

d3k ωkâ
†
kâk and Ĥ1 is proportional do the mass shift.

These thermal averages are calculated by means of the
density matrix operator ρ̂ as 〈Ô〉 = T r(ρ̂Ô), where ρ̂ =
1
Z

exp(− 1
T

V
2π3

∫
d3k �kb̂

†
kb̂k), Z = T r(ρ̂), and T is the tem-

perature. The resulting correlation function, given by the ratio
in Eq. (1), can be written as

C2(k1, k2) = 1 + |Gc(k1, k2)|2
Gc(k1, k1)Gc(k2, k2)

+ |Gs(k1, k2)|2
Gc(k1, k1)Gc(k2, k2)

, (2)

where the denominators represent the product of the
two spectral distributions Gc(ki , ki) = N1(ki) = ωki

d3N
dki

=
ωki

〈a†
ki

aki
〉. In the second term, the numerator is written in
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terms of the chaotic amplitude Gc(k1, k2) = √
ωk1ωk2〈â†

k1
âk2〉

and is originated in the indistinguishability of the two identical
mesons (either φφ or π0π0, in the current discussion), reflect-
ing their quantum statistics. In normal conditions the third
term, whose numerator is proportional to the squeezed am-
plitude Gs(k1, k2) = √

ωk1ωk2〈âk1 âk2〉, does not contribute.
However, if the interactions in the hot and dense medium
lead to mass modification, the third term triggers this striking
particle-antiparticle correlation. The three terms in Eq. (2)
contribute together in the case of neutral bosons that are their
own antiparticles, such as φφ or π0π0. For charged bosons,
such as π± or K±, these terms split in two separate correlation
functions, involving different pairs of particles. Thus, the
first two terms in Eq. (2) correspond to the HBT correlation
Cc(k1, k2) = 1 + |Gc(k1,k2)|2

Gc(k1,k1)Gc(k2,k2) for identical particle pairs
(π±π± or K±K±). However, the sum of the first and the last
terms leads to the squeezed correlation function Cs(k1, k2) =
1 + |Gs (k1,k2)|2

Gc(k1,k1)Gc(k2,k2) for particle-antiparticle pairs (π±π∓ or
K±K∓).

II. RESULTS ON SQUEEZED CORRELATIONS

Initial studies of the problem were performed for a static,
infinite medium [1,2]. Later, it was extended to the case of
finite-size systems expanding with moderate radial flow [3].
For the sake of simplicity a nonrelativistic treatment with
flow-independent squeezing parameter was considered there,
which allowed us to obtain analytical expressions for both
the squeezed and the femtoscopic correlation functions [3].
However, those studies focused on the behavior of the
maximum of the squeezed correlation function Cs(k,−k,m∗)
in terms of modified mass m∗ for particle-antiparticle pairs
with exactly back-to-back momenta k1 = −k2 = k [3,4]. In
studies of the HBT effect, this investigation corresponds to
focusing on the behavior of the λ parameter (i.e., the intercept
of the correlation function) for identical particles with exactly
identical momenta.

Although important for theoretically understanding the
finite size and flow effects on the squeezed correlation
function, the systematic study of Cs(k,−k,m∗) does not
represent a practical tool to look for the BBC’s experimentally.
In reality, the momenta of the two detected particles are
never exactly back-to-back and the in-medium shift in the
hadronic mass is not a quantity measurable in the detector. For
an empirical search of the BBC signal, and considering the
nonrelativistic context of Ref. [3], we suggest the following.
First, select the particle and the antiparticle from the same
event, with momenta (k1, k2), and combine them to form
the pair average and relative momenta, respectively, K =
1
2 (k1 + k2) and q = (k1 − k2). Then, analyze the squeezed
correlation function in terms of these variables, similarly to
what is done in HBT. The maximal value of the BBC effect is
reached for exactly back-to-back pairs, k1 = −k2 = k, being
located around K12 ≈ 0. Therefore, the squeezed correlation
function should then be investigated by varying K12 in the
region where it is small, for several values of q12 [i.e.,
Cs(k1, k2) → Cs(2K12, q12)].

The squeezed correlation function for φφ pairs is obtained
by inserting, in Eq. (2), the squeezing amplitude and the spectra
extracted from the results in Ref. [3], and rewritten in terms
K12 and q12, respectively, as
Gs(K12, q12)

= (ω1 + ω2)

2(2π )
3
2

|c0 | |s0 |
{

R3e−2R2K2
12 + 2n∗

0R
3
∗e

−2R2
∗K2

12

× exp

[
− q2

12

8m∗T

]
exp

[
− K2

12

2m∗T∗

]
exp

[
− im〈u〉R

2m∗T∗
(2K12)2

]}
,

(3)

Gc(ki , ki) = ωi

(2π )
3
2

{
|s0 |2R3 + n∗

0R
3
∗(|c0 |2 + |s0)|2)

× exp

[
− (K12 ± 1

2 q12)2

2m∗T∗

] }
. (4)

where K12 ± 1
2 q12 = ki , with i = 1, 2 are the individual

momenta and considering the region where the contribution
of the middle term (HBT part) in Eq. (2) is negligible. The
flow-modified radius and temperature in Eqs. (3) and (4) are
given, respectively, as R∗ = R

√
T/T∗ and T∗ = T + m2〈u〉2

m∗
, as

in Refs. [3,4]. We adopt natural units, h̄ = c = 1, throughout
this article.

Extending the analogy with the usual procedures adopted in
HBT, we can think that background can be chosen experimen-
tally by combining particle-antiparticle pairs from different
events. This choice corresponds to consider an uncorrelated
pair, free from identical particle exchange effects. However,
this is different in the BBC case since the squeezing factor
appears in the denominator of the correlation function as well.
Therefore, on searching for the effect of squeezing, we should
consider the product of the spectra of the particle and the
antiparticle in the denominator of Cs(2K12, q12), each one
written as in Eq. (4).

Naturally, the analysis in terms of the variable 2K will
not be suited for a genuine relativistic treatment. In this
case, a relativistic four-momentum variable can be constructed
as Q

µ

back = (ω1 − ω2, k1 + k2) = (q0, 2K), first introduced in
Ref. [4]. In fact, it is preferable to redefine this variable as
Q2

bbc = −(Qback)2 = 4(ω1ω2 − KµKµ) since its nonrelativis-
tic limit is Q2

bbc → (2K)2, recovering the average momentum
of the pair introduced previously.

In Ref. [4], we presented some introductory results on φφ

squeezed correlations in terms of |K12 | and |q12 |, but most of the
plots shown there were obtained by attributing precise values
to the variables in Eqs. (2), (3), and (4). In the current analysis,
however, we follow the previous procedure in a more realistic
estimate, in which the momenta are generated in a simulation
and then combined to form |K12 | and |q12 |. The binning in such
a simulation should reflect the finite experimental resolution
in momentum and experimental acceptance cuts can also be
introduced, whenever available. It should be stressed that the
choice of φ mesons considered here was made as a means
to illustrate the proposed method for two main reasons: φ’s
are their own antiparticles and their large mass validates the
nonrelativistic approximation considered here.
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FIG. 1. (Color online) Generated transverse mass distributions
(arbitrary normalization) are compared with PHENIX data for three
sets of fit parameters: (i) the freeze-out temperature Tfo = 109 MeV
and flow velocity βT = 0.77, (ii) Tfo = 157 MeV and βT = 0.4, used
in PHENIX simulation, and Tfo = 140 MeV and βT = 〈u〉 = 0.5,
adopted here.

In the simulation we generated the momenta of the φ

mesons with the following prescription. For roughly mimick-
ing the experimental cuts, based on PHENIX data on φ’s [7],
we introduced some simple geometrical selection criteria in
their generation. This was done by merely considering the cuts
in the azimuthal angle and in the pseudorapidity, as well as by
selecting the momentum region. In Fig. 1, we show the trans-
verse momenta generated in the simulation, as compared to
experimental data points, for three sets of parameters
corresponding to the temperature T and to the radial flow
velocity 〈u〉. All three sets are in reasonable agreement with
the measured distributions. In the remainder of this work we
fix T = 140 MeV.

We then combine the momenta of the φφ particle-
antiparticle pairs to calculate the squeezed correlation func-

tion, as explained previously. The top two plots correspond to
the simulated Cs(m∗, q12 ), keeping the average momentum of
the pair in a small interval |K12 | � 1 MeV. In the topmost plot
no cuts were considered, but in the middle plot of Fig. 2(a), a
rough version of the cuts from Ref. [7] were introduced in the
simulation. No sensitivity to those cuts is apparent. At last, for
cross-checking the simulation code, we compare the squeezed
correlation functions estimated with the generated pairs, with
that obtained by considering pairs with exactly back-to-back
momenta. This is seen in the plot at the bottom of Fig. 2(a),
showing the histogram obtained by attributing exact values to
q12 , and also fixing K12 ≡ 0, similarly to what was shown in
Refs. [2–4]. This plot in the bottom shows close similarity with
the first two, as would be required.

Since the strength of the squeezed correlation is expected
to be significant in the low-|K12 | region, we also suggest to
plot Cs(K12 , q12 ) as a function 2K12 , for enlarging the average
momentum region where the correlation intensity can be
significantly above unity. Figure 2(b) shows the result for the
squeezed correlation function from the simulation, obtained
considering the static case (〈u〉 = 0), on top, and the case with
radial flow (〈u〉 = 0.5), in the middle. In both, we considered
that the particles were emitted in a finite interval 	t = 2 fm/c
during which the emission decreases due to a Lorentzian dis-
tribution in time |Fs(	t)|2 = [1 + (ω1 + ω2)2	t2]−1 [1–4],
which multiplies the third term in Eq. (2). This factor reduces
the signal by almost three orders of magnitude, as compared
to an instantaneous emission (	t = 0). This can be seen by
comparing the plot in the middle of Fig. 2(b) with the one
in the bottom. We note that, although the reduction of the
strength caused by a finite emission period is dramatic, the
intensity of the φφ BBC correlation is still sizable, suggesting
that its experimental search is indeed promising. Another
particular emission time distribution will be discussed in the
following.

From Fig. 2(b) we see that, in the absence of flow, the
squeezed correlation grows faster from smaller to higher values
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FIG. 2. (Color online) Part (a) shows the squeezed correlation function in terms of the shifted mass m∗ and the pair relative momentum
|q12 |. Results from the simulation (top two plots) are compared with those from the calculation, with fixed K12 = 0 (bottom). Part (b) shows the
advertised plots for the squeezed correlation function to be searched for experimentally, with m∗ = 1 GeV. The striking effect of finite emission
times is shown by comparing the middle and the bottom plots in part (b). Part (c) shows the inverse width of the BBC function reflecting the
radius of the squeezing region, for R = 7 fm (top) and R = 3 fm (bottom).
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|q12 | than in the presence of flow. However, this last one is
stronger even in the low |q12 | region, showing that the presence
of flow can enhance the signal’s intensity over a wider region
of the (|K12 |,|q12 |) plane. The size of the squeezing region
is reflected in the inverse width of the curves as a function
of 2|K12 |, being narrower (broader) for larger (smaller) radii.
In Fig. 2(c), we compare the squeezed correlation functions
considering that the system radius is R = 7 fm, also used in
all the previous calculations, to the case of a system with a
smaller extent of the squeezing region, with R = 3 fm.

Returning to the discussion about the time emission
distribution, we should emphasize that we do not know a
priori how this emission should proceed, mainly in the simple
model adopted here. However, the lack of knowledge of such
a distribution, naturally does not invalidate the experimental
search of the hadronic squeezed correlations. The squeezing
is a fundamental phenomenon already detected in quantum
optics and it should be empirically observed in relativistic
heavy ion collisions, if the hadron masses are modified in-
medium by some mechanism. Therefore, as a common practice
in Physics, we should look for the effect experimentally and
once it is discovered, we can try to explain its time emission
process by means of a suitable model. Nevertheless, motivated
by an analysis made by the PHENIX Collaboration [8] we
investigated in Refs. [9,10] a different emission distribution in
time, by considering the effects of a symmetric, α-stable Lévy
distribution (i.e., |F (	t)|2 = exp{−[	t(ω1 + ω2)]α}) on the
squeezed correlation function of K+K− pairs. This functional
form was fitted to two-particle and three-particle Bose-Einstein
correlation functions. Two different values of the distribution
index, α = 1.0 or α = 1.35, were fitted to data, depending on
the region investigated of the particles’ transverse momentum
or transverse mass. Briefly summarizing those results, we
concluded that, for α = 1, such a time factor acting on
the squeezing correlation function reduces its intensity even
more dramatically than the Lorentzian factor discussed here.
However, it will still lead to measurable quantities, mainly
if the emission lasted a short period of time, of about 	t =
1 fm/c. However, if nature favors the higher value, α = 1.35,
this will result in a very small deviation from unity, not
detectable by the method proposed here. Naturally, in the case
of φ pairs, even for α = 1 and 	t = 1 fm/c the intensity will
be negligibly small for a Lévy-type distribution, due to their
large asymptotic mass. In spite of that, as discussed previously,
we do not know a priori the preferred form chosen by nature
for the emission process, which in itself does not invalidate
the experimental search of this phenomenon. For this reason
and for continuing the illustration of the proposed method
to search for the hadronic squeezed states, in the remainder
of this article we attain our discussion to the Lorentzian
time distribution, comparing it to the instantaneous emission
process only.

III. EFFECTS OF SQUEEZING ON φφ HBT
CORRELATIONS

We next discuss how the HBT correlation function can
be affected by the in-medium mass shift. Contradicting early
expectations that the thermalization washes out any trace of

mass shift in this type of correlation, we find its in-print in HBT,
reflecting the presence of the squeezing factor fi,j (m,m∗) in
the chaotic amplitude. This can be inferred from the analytical
results in previous articles [1–3]. However, the strength of the
squeezing effect on the two-identical particle correlation was
not carefully investigated in those references.

The analytical form of the HBT correlation function is
obtained by substituting the chaotic amplitude [3],

Gc(K12, q12)

= (ω1 + ω2)

2(2π )
3
2

{
|s0 |2R3e− 1

2 R2q2
12+ n∗

0R
3
∗(|c0 |2 + |s0 |2)

× e− 1
2 R2

∗q2
12 e− K2

12
2m∗T∗ e− q2

12
8m∗T exp

[
− im〈u〉R

m∗T∗
K12.q12

]}
, (5)

together with the spectrum given in Eq. (4), into Eq. (2). The
finite emission time factor, multiplying the square modulus
of Eq. (5), is now Fc(	t) = [1 + (ω1 − ω2)2	t2]−1. For
stressing the HBT effects in the φφ case, we selected the
region (small |q12 |) where the particle-antiparticle correlation
is not significant and the HBT is relevant to Eq. (2).

This is seen in Fig. 3. The top part shows the effect of
radial flow alone on the HBT correlation function while in the
bottom, the joint effects of flow and squeezing are shown. We
see that, without squeezing, the flow broadens the correlation
curves, as expected, since the expansion reduces the size of
the region accessible to interferometry. When the squeezing
effects are present, they seem to oppose to the flow effects,
almost canceling the broadening of the correlation function due
to flow for large |K|, another striking indication of in-medium
mass modification.
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FIG. 3. The plots show the HBT correlation function in the
absence of squeezing (top) and when it is present (bottom).
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IV. CONCLUSION

In this work we suggest an effective way to search for
the squeezed bosonic correlations in heavy ion collisions
at the Relativistic Heavy Ion Collider (RHIC) and soon
at the Large Hadron Collider (LHC). We argue that the
suitable variable to experimentally search for the squeezed
correlation function is the average momentum of the pair
2|K12|, the nonrelativistic limit of the relativistic variable
Qbbc = 2

√
(ω1ω2 − KµKµ) [4]. We show that, in the presence

of flow, the signal is expected to be stronger over the momen-
tum regions shown in the plots [i.e., roughly for 0 � |2K| �
100 MeV/c (depending on R) and 500 � |q| � 1500 −
2000 MeV/c] suggesting that flow may enhance the strength
of the BBC signal, facilitating its experimental discovery.
Another important result found within our simple nonrela-
tivistic model is that the squeezing can also distort the HBT
correlation function, leading to effects opposing those of flow,
almost neutralizing it for large values of |K12 |. For emphasizing
the dramatic effects induced by in-medium hadronic mass
modification on the correlation functions, we chose a constant
mass shift that leads to the maximal intensity, based on results
of Fig. 2. For φφ mesons, this corresponds to m∗ ≈ 1 GeV,
roughly a 2% reduction in the φ mass, as compared to its

asymptotic mass (m = 1.02 GeV). As stressed before, a more
realistic treatment should consider a detailed prescription
for the mass modification, based on models that predict its
dependence on the particles’ momenta and its distribution in
the hot and dense system.

The previous procedure is also applicable to other particles,
such as kaons. The corresponding results [9] are discussed
in Ref. [10]. Finally, it is important to note that all the
effects shown here should exist only if the particles have
their mass modified in the hot and dense medium. If no
modification happens, the squeezed correlation functions will
be flat unity, and the HBT correlation functions will behave as
usual. However, if the particles’ masses are indeed modified,
the experimental discovery of squeezed particle-antiparticle
correlation (and the distortions pointed out in the HBT
correlations) will be an unequivocal signature of in-medium
modifications by means of hadronic probes!
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