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ABSTRACT 

 

There is a global growing interest in agricultural practices to increase soil organic 

carbon (SOC) to promote soil fertility, climate change mitigation, and food security. 

Therefore, SOC measuring and monitoring is a key step in agricultural and 

environmental projects. The first chapter of this study aimed to identify potential proxies 

for topsoil SOC in an agricultural area, characterized by the adoption of central pivot 

irrigation, reduced cultivation, crop rotation, and use of crop residues. Nine spectral 

indices were extracted from time-series Sentinel-2 satellite images of bare soil. 

Additionally, three topographic indicators were extracted from a digital elevation model 

(DEM). Linear regression models were generated between the spectral indexes and 

SOC, considering the soil sampled in 2019, and between topographic indicators and 

SOC. The spectral indices with the best performance were EVI2 (Enhanced Vegetation 

Index), NDVI (Normalized Difference Vegetation Index), MSAVI2 (Modified Soil-

Adjusted Vegetation Index), and RVI (Ratio Vegetation Index), and the elevation was 

the best topographic indicator. After a seven-year study period (from 2012 to 2019), 

the area showed a significant increase in the topsoil SOC. The results of this research 

consolidate that the use of a multitemporal dataset can lead to more accurate 

identification of topsoil SOC proxies, instead of the use of a single date image. Two 

orchards were selected in the region of San Joaquin Valley, California (USA), having 

as the main objective of the second chapter characterize the multi-scale (tree scale 

and orchard scale) distribution of SOC and soil total nitrogen (STN) in micro-irrigated 

citrus orchards, grown under the same soil conservation practice. The first with Page 

mandarin (Citrus reticulata) in Strathmore, and the second with Washington navel 

orange (Citrus sinensis) in Ivanhoe. Both orchards are irrigated with micro-sprinklers, 

and pruning residues are disposed on the inter-rows. Soil samples were collected 

along transects, and each transect was divided into three sections: the first (α) located 

0.6 m from the tree trunk, the second (β) 1.2 m from the trunk (approximately below 

the canopy projection), and the third (γ) located in the center of the inter-row. In each 

section single samples were collected at two soil layers, 0-0.05 m and 0.05-0.4 m. 

From 0 to 0.05 m in Strathmore, the average SOC concentrations in the β and γ 

sections and the STN concentration in the γ section showed no statistical difference 

with the orchard. Whereas, from 0.05 to 0.40 m and from 0 to 0.40 m there was no 

statistical difference between the sections and the orchard. In Ivanhoe, where the soil 

is more homogeneous, there was no significant difference between the sections and 

the orchard. The results of this study can support the elaboration of future SOC and 

STN monitoring projects in the region. 

 

Keywords: Citrus orchard. Conservation practices. Remote sensing. Soil sampling. 

Spectral indices.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

RESUMO 

 

Há um crescente interesse global em práticas agrícolas que aumentem o carbono 

orgânico do solo (COS) para promover a fertilidade, a mitigação das mudanças 

climáticas e a segurança alimentar. Dessa maneira, a medição e monitoramento do 

COS é uma etapa muito útil em projetos agrícolas e ambientais. O primeiro capítulo 

deste estudo teve como objetivo principal a identificação de potenciais indicadores 

para o carbono orgânico presente na camada superficial do solo de uma área agrícola, 

caracterizada pela adoção de irrigação por pivô central, cultivo reduzido, rotação de 

culturas e utilização de resíduos de culturas. A partir de uma série temporal de 

imagens de solo exposto obtidas com o satélite Sentinel-2 foram extraídos nove 

índices espectrais. Também foram extraídos três indicadores topográficos a partir de 

um modelo digital de elevação (MDE). Foram gerados modelos de regressão linear 

entre os índices espectrais e COS, considerando o solo amostrado em 2019, e entre 

indicadores topográficos e o COS. Os índices espectrais de melhor desempenho 

foram EVI2 (Enhanced Vegetation Index), NDVI (Normalized Difference Vegetation 

Index), MSAVI2 (Modified Soil-Adjusted Vegetation Index) e RVI (Ratio Vegetation 

Index), e a elevação foi melhor indicador topográfico. Após um período de sete anos 

(2012-2019) de estudo, a área apresentou um aumento significativo no COS na 

camada superficial. Os resultados desta pesquisa consolidam que o uso de um 

conjunto de dados multitemporais pode levar a uma identificação mais precisa de 

indicadores de COS da camada superior do solo, ao invés do uso de imagem de uma 

única data. Foram selecionados dois pomares na região do Vale de San Joaquin na 

Califórnia (EUA), tendo como objetivo principal do segundo capítulo caracterizar a 

distribuição multi-escalar (escala de árvore e escala de pomar) de COS e nitrogênio 

total do solo (NTS) em pomares cítricos irrigados por microaspersão, cultivados sob a 

mesma prática de conservação do solo. O primeiro com Page mandarin (Citrus 

reticulata) em Strathmore, e o segundo com Washington navel orange (Citrus 

sinensis) em Ivanhoe. Ambos os pomares são irrigados com microaspersores e 

dispõem resíduos de poda nas entrelinhas. Foram coletadas amostras de solo ao 

longo de transectos, e cada transecto foi dividido em três seções: a primeira (α) 

localizada a 0,6 m do tronco da árvore, a segunda (β) a 1,2 m do tronco 

(aproximadamente abaixo da projeção da copa das árvores) e a terceira (γ) localizada 

no centro da entrelinha. Em cada seção foram coletadas amostras simples em duas 

camadas, em 0-0,05 m e em 0,05-0,4 m. De 0 a 0,05 m em Strathmore, as 

concentrações médias de COS nas seções β e γ e a concentração de NTS na seção 

γ não apresentaram diferença estatística em relação ao pomar. Enquanto que, de 0,05 

a 0,40 m e de 0 a 0,40 m não houve diferença estatística entre as seções e o pomar. 

Em Ivanhoe, onde o solo é mais homogêneo, não houve diferença significativa entre 

as seções e o pomar. Os resultados deste estudo poderão subsidiar na elaboração de 

projetos futuros de monitoramento de COS e NTS na região. 



 

 

Palavras-chave: Pomar de citros. Práticas conservacionistas. Sensoriamento remoto. 

Amostragem de solo. Índices espectrais.  
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GENERAL INTRODUCTION 

 

      In the next 30 years there is an expected increase of 2 billion persons in the world’s 

population, from currently 7.7 billion to 9.7 billion by 2050, and continuing to grow to 

around 10.9 billion by 2100 (UNITED NATIONS, 2019). It reveals an increased need 

for food production of about 70%, to meet the growing population demand until 2050, 

or approximately 100% if considered the developing countries (FAO, 2009). A current 

challenge is to accomplish food security through the rise in world food production 

(FRÓNA et al., 2019). 

      The irrigation of world agricultural lands is an essential key in food production, 

economic and rural development, and in the growth of job opportunities (ANGELAKΙS 

et al., 2020). Experts recognized the crucial role of irrigation in the increment of food 

production (FAO, 2003). The irrigation-based agriculture can reduce the potential risks 

related to precipitation uncertainty, ensuring food security (PERRY et al., 2009) and 

stable crop production (SALAZAR; RAND, 2016). 

      Currently, over 60% of the global cereal production and 50% of the value of all crop 

products are due to irrigated agriculture (ANGELAKΙS et al., 2020). An irrigated 

cropland produces about two and a half times more crop per hectare than a rainfed 

land (KENDALL; PIMENTEL, 1994). In Brazil, the average crop production in irrigated 

lands is at least 2.7 times greater relative to non-irrigated areas (FAO, 2017).  

Globally, the area equipped for irrigation is 307.6 million hectares (Mha), of which 

around 69% is in Asia and 17% in America, and where China (62.4 Mha), India (61.9 

Mha), and the United States of America (28.4 Mha) are the countries with the largest 

area (SIEBERT et al., 2013). California (4.2 Mha), Nebraska (3.6 Mha), and Texas (2.9 

Mha) are the states with the largest areas equipped in the United States of America, 

where most of the area is irrigated with groundwater (FAO, 2020b). California supplies 

more than a third of the vegetables and two-thirds of fruits and nuts of the country, 

including almonds, pistachios, and grapes (CDFA, 2020). 

Besides China, India, and the United States of America, Brazil is also among the 

ten countries with the largest equipped area for irrigation (FAO, 2020b). The estimated 

equipped area for irrigation in Brazil is around 6.95 Mha, of which 39% is in the 

Southeastern and 24% in the Southern regions of the country (ANA, 2017). Most of 

the irrigated area in the South region is by surface irrigation, due to rice production 

through food irrigation, whereas conventional sprinkler and central pivot irrigation are 
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the predominant systems in the Southeastern region (TESTEZLAF, 2017). The area 

for irrigation in Brazil has the potential to be expanded to 76,19 Mha, almost 11 times 

greater relative to the current area (ANA, 2017). 

A global concern about the future increase of irrigated areas is the decrease in 

water availability, needed to supply agricultural and non-agricultural water demands. 

Additionally, climate change will affect the expansion and productivity of agricultural 

lands (irrigated or non-irrigated) due to the expected negative impact on water 

resources (TURRAL et al., 2011). Irrigation water is a crucial element for the 

agricultural development in the Mediterranean climate of California, where the 

precipitation is not regular and there is a shortage of available water (JOHNSON; 

CODY, 2015). 

There are potential agricultural strategies to reduce the vulnerability towards the 

impacts of climate change. Considering farm and field scales, the adoption of 

agricultural practices, such as minimum or no-tillage, crop rotation, adoption of winter 

cover crops, and use of crop residues, can increase water infiltration and holding 

capacity, and improve soil health (Pathak et al., 2018). Crop residue practices tend to 

reduce soil water evaporation, improve the water use efficiency (MITCHELL et al., 

2012; HATFIELD; DOLD, 2019), support the maintenance of organic carbon and 

nutrients in the soil (GHIMIRE et al., 2017). Minasny and McBratney (2017) reported, 

through a literature review, that a 1% mass increase in organic carbon (or 10 g C kg-

1), promoted an average increase of 1.16% in the available water capacity (1.16 mm 

H2O 100 mm soil−1).  

Soil organic carbon (SOC) is one of the major indicators of the sustainability of 

agricultural lands (STELLA et al., 2019). SOC provides several benefits to soil health, 

improving aggregation and structure, biodiversity and biotic activity, nutrients and 

water retention, and decrease the risks of soil erosion and degradation (LAL, 2004). 

Furthermore, increasing SOC can improve the resilience of the soil towards drought 

events (LAL, 2016). Enhancing SOC and soil health are pertinent to the achievement 

of various sustainable development goals (SDG), such as climate action (SDG 13), live 

on land (SDG 15), and zero hunger (SDG 2). It would support climate change 

adaptation and mitigation, promote food security, and contribute specifically to SDG 

15.3, by combating desertification and restoring degraded soils (RUMPEL et al., 2020).   

The perspective of measuring, monitoring, reporting, and verifying SOC is a critical 

action for any agricultural project related to soil carbon, and climate change, supporting 
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management decisions (FAO, 2020a). An efficient SOC monitoring at the farm scale 

is essential to verify the soil quality framework and provide perspectives and incentives 

for climate mitigation (DELUZ et al., 2020). There is still a necessity that should be 

assessed or reviewed to better understand the agricultural management effects on 

SOC (CHENU et al., 2019). Besides the conventional methods for SOC monitoring, 

which are expensive, labor-intensive, and time-consuming (MIRCHOOLI et al., 2020), 

remote sensing techniques can offer a rapid, and low-cost alternative to estimate 

variables for different soil monitoring purposes (ANGELOPOULOU et al., 2019). 

This thesis presents research on SOC characterization and monitoring in two 

different study areas, in a subtropical area in Brazil and a temperate area in the USA. 

The objectives of the first chapter of this research were to use remote sensing data to 

identify potential proxies for topsoil SOC and monitor SOC changes over time in an 

agricultural area, characterized by the adoption of central pivot irrigation, reduced 

cultivation, crop rotation, and utilization of crop residues (straw). The main objective of 

the second chapter was to characterize the multi-scale soil spatial patterns of organic 

carbon and total nitrogen over micro-irrigated citrus orchards, grown under the same 

soil conservation practice. 
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HIGHLIGHTS  

 

• Multitemporal imagery percentiles improved the detection of soil organic carbon. 

• Spatial covariates were used to compare different soil sampling schemes. 

• Organic carbon content increased over seven years of soil conservation 

practices. 

 

ABSTRACT  

 

Soil organic carbon (SOC) has a crucial role for soil health. However, large datasets 

needed to accurately assess SOC at high resolution across scales are labor-intensive 

and expensive. Therefore, ancillary geodata, including remote sensing spectral indices 

 
1 This chapter follows the guidelines of the journal “Science of the Total Environment”. 
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(SIs) and topographic indicators (TIs) have been proposed as spatial covariates. 

Reported relationships between SOC and SIs are erratic, possibly because single-date 

SIs do not accurately capture SOC spatial variability due to transient confounding 

factors in the soil (e.g., moisture). However, multitemporal SI data analysis may lead 

to noise reduction in SOC-SI relationships. Therefore, this study aimed at: i) comparing 

single-date versus multitemporal SIs (derived from Sentinel-2 imagery from 2018 

through 2020) for assessment of topsoil (0-0.2 m) SOC (sampled in April 2019) in two 

agricultural fields in southeastern Brazil; ii) comparing the performance of SIs and TIs 

(derived from Topodata); and iii) using viable SIs and TIs to monitor SOC changes over 

time. Single-date SIs were not reliable proxies for topsoil SOC at the study sites. For 

most of the tested SIs, multitemporal data analysis produced accurate proxies for SOC; 

e.g., for the Normalized Difference Vegetation Index, the 4.5th multitemporal percentile 

predicted SOC with an R2 of 0.64. The best TI was elevation (ranging from 643 to 684 

m) with an R2 of 0.70. Soil samples collected in 2012 and 2016 were on a different grid 

than in 2019. The multitemporal SI and elevation maps indicated that the different 

sampling schemes were all representative of the topsoil SOC distribution of the entire 

study area. From 2012 through 2019, topsoil SOC increased from 19.3 to 24.1 g kg-1. 

The ratio between topsoil (0-0.2 m) and subsoil (0.2-0.4 m) SOC decreased from 1.7 

to 1.1. Further testing of the proposed multitemporal SI analysis is necessary to confirm 

its reliability for SOC assessment in the watershed and state.  

 

Keywords: Sustainable agriculture, crop rotation, reduced tillage, remote sensing, 

Sentinel-2, spectral indices. 

 

GRAPHICAL ABSTRACT 

 

 



21 
 

1.1  INTRODUCTION 

 

The oceanic and terrestrial ecosystems are two of the main global carbon pools. 

The largest global pool is the oceanic, and the largest terrestrial pool is the soil, with 

an estimated 39,000 Pg and 2,200 Pg of carbon, respectively (Batjes, 1996). The soil 

organic carbon (SOC) pool is about 1,505 Pg to 1.0 m and 677 Pg to 0.3 m depth (Lal, 

2018). Estimates of the soil inorganic carbon (SIC) range from 695 to 748 Pg to 1.0 m 

and 222 to 245 Pg to 0.3 m depth (Batjes, 1996). The SIC pool consists of carbonates 

(i.e. calcite, dolomite, and gypsum) and it affects the global carbon cycle, but with lower 

intensity than the SOC pool (Lal, 2004). 

The SOC pool consists mainly of residues from plant, animal, and microbial 

biomass at different stages of decomposition (Lal, 2018). It is considered a keystone 

of agricultural systems, as it is a driver of soil fertility and structure (Liang et al., 2019). 

SOC helps to promote nutrient cycling, soil structure, water storage, microorganism 

activity, and biodiversity (Tautges et al., 2019). 

Soils can act either as a source or as a sink of carbon, depending on climate 

conditions, biomass input, and management (Zomer et al., 2017). Small changes in 

SOC can strongly affect atmospheric CO2 concentrations (Lal, 2018; Liang et al., 

2019). As such, SOC sequestration is considered a possible strategy for climate 

change mitigation (Huang et al., 2019). Increasing SOC pool rearranges atmospheric 

CO2 into a long-lived organic pool, improving soil health and resilience, compensating 

for the gas emissions, and mitigating the effects of climate change (Tautges et al., 

2019).  

Land management practices that enhance SOC storage in agricultural systems 

include conservation tillage, crop rotation, residue retention, cover cropping, fertility 

management, and addition of amendments (Lal, 2018; Paustian et al., 2016). 

Retention of crop residues, no-till, and reduced tillage are soil conservation practices 

that have been widely adopted to increase soil health and reduce the adverse 

environmental impacts generated by the intensive farming system (Li et al., 2020). 

Conservation agriculture practices tend to benefit aspects of soil health, increasing 

carbon storage and biodiversity, and improving nutrient cycling (Norris et al., 2018). 

Besides improving soil moisture and crop productivity, irrigation practices can also lead 

to an increase in SOC (Trost et al., 2013). Huynh et al. (2019) observed that irrigation 

is the major factor influencing maize biomass yield, followed by tillage, and crop 
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rotation. Irrigation provides water to meet crop transpiration requirements, and 

transpiration leads to the production of crop biomass (Perry et al., 2009), thus leading 

to increases in farmers’ income and soil carbon inputs. 

Conservation tillage is the use of specific tillage practices that reduce soil 

disturbance compared with conventional tillage, thus promoting soil and water 

conservation (Claassen et al., 2018). Conservation tillage, which includes reduced 

tillage and no-till, covers at least 30% of the soil surface with crop residue, while 

conventional tillage covers less than 15% of the soil surface with residue (Eskandari 

et al., 2016). Although some evidence showed that adoption of no-till (NT) in croplands 

tends to accumulate SOC in the top surface layers, whereas conventional tillage (CT) 

tends to increase SOC deeper into the soil profile, many studies showed divergent 

results in SOC storage between NT and CT (Angers and Eriksen-Hamel, 2008). 

Spatial and temporal variability of SOC is related to land use, climate, agricultural 

management, topographic variables, soil type (Mirchooli et al., 2020), and annual 

biomass-C inputs (Mishra et al., 2010). SOC should be assessed across multiple 

scales to meet the needs of different stakeholders, such as farmers (field to farm-scale 

maps) and policy makers (regional to global-scale maps) (Vaudour et al., 2019). 

Conventional methods for SOC monitoring at the field scale include extensive field 

sampling and laboratory analysis, but this process is time-consuming, demands 

intensive labor, and it is costly (Mirchooli et al., 2020; Chen et al., 2020). Less 

expensive SOC quantification is required by the rising demand from the agricultural 

community and to obtain high-resolution repositories at farm and broader scales 

(Padilha et al., 2020).  

Remote sensing is a recognized technology that can provide a rapid, efficient, and 

inexpensive method to assess SOC in bare soils (Castaldi et al., 2019a, Kumar et al., 

2017; Xu, et al., 2017). Products from remote sensing can generate a spectral 

reference base for soil properties, as an alternative to the expensive traditional field 

sampling and analysis (Castaldi et al., 2019a). The soil spectral reflectance is an 

integrative property derived from inherent characteristics, such as water content, 

surface roughness, texture, organic matter (SOM), and minerals (Ymeti et al., 2019). 

Generally, the higher is the soil moisture or the SOM content, the higher is the 

absorption of light and, consequently, the higher is the soil color and the lower is the 

soil reflectance (Jensen, 2007). Similarly, the soil color, as a component of SOM, also 

becomes darker with the increase in SOC. Therefore, images of areas taken with dry 
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soil can help reduce the effects of soil moisture on soil reflectance (Angelopoulou et 

al., 2019). Soil reflectance in the visible near-infrared and shortwave infrared (VIS-NIR-

SWIR) wavelengths, which range from 0.4 to 2.5 µm, is highly influenced by SOC 

content (Vaudour et al., 2019). Satellite images can enable to evaluate SOC changes 

over time at locations that do not have soil monitoring or soil legacy data (Grinand et 

al., 2017), thus representing an essential technology for agricultural management 

policies and practices (e.g., Padilha et al., 2020).  

There are remote sensing satellite platforms providing imagery with different 

spatial, temporal, and spectral resolutions, which may allow SOC prediction with 

varying levels of accuracy (Wang et al., 2020). Multispectral satellites, such as 

Sentinel-2, can provide a high-quality capacity to assess SOC similar to that allowed 

by upcoming hyperspectral satellites (Castaldi et al., 2019b). The Copernicus Sentinel-

2 mission provides free imagery, a high revisit time (five days at the Equator), and 

thirteen spectral bands (four with 10 m, six with 20 m, and three with 60 m of spatial 

resolution) (European Space Agency, 2015). Spectral indices from satellite images can 

reflect vegetation variations and can be used for monitoring soil properties inferred 

from reflectance in specific spectral bands, such as SOC (e.g., Zhang et al., 2019). 

However, only a few studies tested the applicability of Sentinel-2 imagery to assess 

SOC, such as the studies conducted by Castaldi et al. (2016), Kumar et al. (2017), 

Gholizadeh et al. (2018), Castaldi et al. (2019b), Valdour et al. (2019), and Žížala et 

al. (2019). Moreover, terrain attributes, which can be derived from a digital elevation 

model (DEM), are covariates being broadly used in SOC studies (Fathololoumi et al., 

2020; Kunkel et al., 2019).  

Gholizadeh et al. (2018) used spectral indices derived from single-date Sentinel-2 

data to monitor and map SOC and soil texture in agricultural areas, and the chosen 

satellite data were close to the soil sampling date with bare soil condition. Kumar et al. 

(2018) applied spectral indices obtained from a single-date ASTER image to assess 

SOC in a heterogeneous study area. These authors also utilized a satellite image taken 

close to the soil sampling campaign, as Gholizadeh et al. (2018) did. Santos et al. 

(2014) derived spectral indices from a single-date Landsat 5 data of September 2011 

to estimate SOC in different soil classes. Since the soil sampling was conducted 

between July and September 2012, the authors justified selecting a satellite image 

from a different period due to imagery availability until 2011. Although many studies 

utilized single-date satellite data to assess SOC, we hypothesize that more accurate 
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assessment can be obtained from the use of multitemporal satellite data, as it would 

reduce space-time specific random error in the relationship between SOC and 

parameters derived from satellite data.  

The main objectives of the present study were: 1) comparing single-date versus 

multitemporal data analysis for SOC assessment; 2) evaluating the performance of 

spectral indices coupled with terrain elevation products, which are known to be good 

estimators for SOC; and 3) once some reliable proxies for spatial variability of SOC 

are identified, use them to assess SOC changes in the study area over time.  

 

1.2  MATERIAL AND METHODS 

 

1.2.1 Description of the study area 

 

São Paulo state is divided into 22 Water Resources Management Units (also known 

as “UGRHI” in the state of São Paulo). Each UGRHI belongs to a watershed and has 

its identification number and name. The UGRHI No. 14 - Alto Paranapanema is 

extensively characterized by field crops irrigated mainly with center-pivots (Ferreira et 

al., 2016). About 48.57% of the irrigated area of the São Paulo state is located within 

the Paranapanema River basin, with approximately 45.27% belonging to the Alto 

Paranapanema sub-basin (Landau et al., 2014). Here, a study area consisting of two 

neighboring fields was selected. 

The study area is in a commercial farm located at Itaí (SP), between the latitudes 

23°32’26”S and 23°35’38”S and the longitudes 48°54’16”W and 48°51’39”W. The 

present research work was conducted on the cropland irrigated by two center-pivots, 

which is divided into site A (49 ha) and site B (64 ha) as illustrated in Fig. 1. 

 
Fig. 1. Overview of the study area with the indication of a) the geographic location; b) 

subdivision in two study sites (A and B) from Google Earth picture (2019); c) soil 

sampling schemes of 2012-2016 and 2019. 
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Before 2010, the study fields were managed with conventional tillage. Since 2010, 

both the sites have been managed with a combination of conservation agricultural 

practices, including reduced tillage and crop rotation. Both the sites were irrigated with 

center-pivots. In addition, the residues from the previous crop were left on the soil 

surface. Bean (Phaseolus vulgaris L.), soybean (Glycine max L.), corn (Zea mays L.), 

and cotton (Gossypium hirsutum L.) were the four main crops grown at the study sites. 

Table S1 in the Supplementary Material provides an example of 5-year crop rotation 

at each study site, with information about the individual crops, as well as the showing 

date and the harvest. 

The soil in the study sites is classified as Ferrasol (IUSS Working Group WRB, 

2015), which is equivalent to a Latosol (SiBCS, 2018). It is characterized by average 

values of 65.2% of clay, 25.9% of silt, and 8.9% of sand at the topsoil layer (0-0.2 m), 

and 68.5% of clay, 22.6% of silt, and 8.9% of sand at the subsoil layer (0.2-0.4 m) 

(Souza et al., 2016). 

 

1.2.2 SOC dataset 

 

The land manager provided the soil legacy dataset (existing soil dataset) that was 

used in the present study. The field dataset was produced with the purpose of 

monitoring soil fertility. Soil samples were collected in 2012, 2016, and 2019. Six 

disturbed samples were collected within a 40 m radius to create a composite sample 

per location. The sampling scheme of 2012 and 2016 was the same (Fig. 1c). Due to 

the high costs of sampling and analysis, the sampling scheme of 2019 consisted of 

fewer sampling locations (Fig. 1c). Table 1 shows the details of the soil sampling 

schemes at the study sites. A variety of parameters were assessed through the soil 

sampling survey, including organic matter, pH, cation exchange capacity, phosphorus, 

potassium, calcium, and magnesium. However, only organic matter (SOM) data were 

considered for the present study. The SOM analyses were conducted following the 

Walkley-Black methodology (Walkley and Black, 1934). 
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Table 1 

Information on the soil sampling schemes. 

Location 

October 2012 July 2016 April 2019 

n 
Sampling 
density 

Soil 
layer 
(m) 

n 
Sampling 
density 

Soil 
layer 
(m) 

n 
Sampling 
density 

Soil 
layer 
(m) 

Site A 24 
1 per 

2.04 ha 

0-0.2 
and  

0.2-0.4 
24 

1 per 
2.04 ha 

0-0.2 5 
1 per 

9.80 ha 

0-0.2 
and 

0.2-0.4 

Site B 31 
1 per 

2.06 ha 

0-0.2 
and  

0.2-0.4 
31 

1 per 
2.06 ha 

0-0.2 8 
1 per 

8.00 ha 

0-0.2 
and 

0.2-0.4 

n = number of sampling locations. 

 

The equation 1 was used to derive SOC from the soil organic matter data. In Eq. 1, 

the conversion factor of 1.724 is based on the assumption that organic matter contains 

approximately 58% of organic carbon (Yigini et al., 2018). This conversion factor, 

known as the van Bemmelen factor, has been used as a universal factor due to the 

high costs of equipment and its maintenance required to measure soil organic carbon 

(Heaton et al., 2016). 

 

𝑆𝑂𝐶 = 0.58 𝑥 𝑆𝑂𝑀     𝑜𝑟     𝑆𝑂𝐶 =  
𝑆𝑂𝑀

1.724
                                                                        (1) 

 

1.2.3 Remote sensing data source and processing  

 

Ten cloud-free Sentinel-2 Level-2A scenes with bare soil conditions were 

downloaded from the Copernicus open access hub (https://scihub.copernicus.eu/). In 

this study, bare soil is assumed as the soil with no active or growing vegetation and 

with the possible presence of crop residues that were left out onto the soil surface from 

the previous crop after harvest. The processing of Level-2A includes an atmospheric 

correction applied to Top-Of-Atmosphere (TOA) Level-1C products (European Space 

Agency, 2015). The downloaded multitemporal imagery dataset included one image 

from 2018, eight from 2019, and one from 2020. The imagery captured bare soil at 

both the sites on three scenes, and individually for site A only over four scenes, and 

for site B only over three scenes.  

The Sentinel-2 mission is a combination of two identical satellites (Sentinel-2A and 

Sentinel-2B), offering a five-day revisit time. The MSI (Multispectral Instrument) is on-

board of each satellite, providing Earth’s reflectance imagery over 13 spectral bands. 
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The multi-spectral information from Sentinel-2 used in this study included: blue (B2, 

0.490 µm), green (B3, 0.560 µm), red (B4, 0.665 µm), and near-infrared (B8, 0.842 

µm) with 10 m of spatial resolution, and shortwave infrared 1 (B11, 1.610 µm) with 20 

m of spatial resolution.  

Nine spectral indices were calculated with the reflectance from these bands to 

detect proxies for SOC and improve its prediction (see Table 2 for definitions and 

references). The selected indices were: Canopy Response Salinity Index (CRSI), 

Difference Vegetation Index (DVI), Enhanced Vegetation Index 2 (EVI2), Modified Soil-

Adjusted Vegetation Index 2 (MSAVI2), Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Water Index (NDWI), Renormalized Difference 

Vegetation Index (RDVI), Ratio Vegetation Index (RVI), and Soil Organic Carbon Index 

(SOC Index). The analytical formulations to derive these spectral indices, as well as 

those based on the Sentinel-2 bands, are presented in Table 2. To produce NDWI, 

B11 was resampled from 20-m to 10-m pixel resolution using the ESA’s Sentinels 

Application Platform (SNAP) open-source software. 
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Table 2 

Spectral indices derived from Sentinel-2 multispectral bands. 

 
a CRSI: Canopy Response Salinity Index, DVI: Difference Vegetation Index, EVI2: Enhanced Vegetation Index 2, MSAVI2: 

Modified Soil-Adjusted Vegetation Index 2, NDVI: Normalized Difference Vegetation Index, NDWI: Normalized Difference Water 

Index, RDVI: Renormalized Difference Vegetation Index, RVI: Ratio Vegetation Index, and SOC Index: Soil Organic Carbon Index. 

 

 

We compared the ability of remotely-sensed indices to estimate SOC to that of 

topographic data, which has been widely used to model SOC dynamics (Wang et al., 

2018b). 

A 30 m resolution digital elevation model (DEM) was acquired from Topodata 

(http://www.dsr.inpe.br/topodata/), which is a product of a refinement process of SRTM 

(Shuttle Radar Topography Mission) elevation data from 3” to 1” vertical resolution 

(Valeriano and Rossetti, 2012). The DEM was used to generate three standardized 

terrain attributes: elevation, slope, and TWI (Topographic Wetness Index). TWI was 

calculated according to Equation 2 (Moore et al., 1993). 

 

𝑇𝑊𝐼 = ln
𝐴𝑠

tan 𝛽
                                                                                                                              (2) 

Spectral indexa  Formulation Formulation based on Sentinel-2 Reference 

CRSI √
(𝑁𝐼𝑅. 𝑅𝐸𝐷) − (𝐺𝑅𝐸𝐸𝑁. 𝐵𝐿𝑈𝐸)

(𝑁𝐼𝑅. 𝑅𝐸𝐷) + (𝐺𝑅𝐸𝐸𝑁. 𝐵𝐿𝑈𝐸)
 √

(𝐵8. 𝐵4) − (𝐵3. 𝐵2)

(𝐵8. 𝐵4) + (𝐵3. 𝐵2)
 Scudiero et al. (2014) 

DVI 𝑁𝐼𝑅 − 𝑅𝐸𝐷 𝐵8 − 𝐵4 Tucker (1979) 

EVI2 
2.4. (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 1)
 

2.4. (𝐵8 − 𝐵4)

(𝐵8 + 𝐵4 + 1)
 Jiang (2008) 

MSAVI2 
2. 𝑁𝐼𝑅 + 1 − √(2. 𝑁𝐼𝑅 + 1)2 − 8. (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

2
 

2. 𝐵8 + 1 − √(2. 𝐵8 + 1)2 − 8. (𝐵8 − 𝐵4)

2
 Qi et al. (1994) 

NDVI 
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

(𝐵8 − 𝐵4)

(𝐵8 + 𝐵4)
 Rouse et al. (1974) 

NDWI 
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 

(𝐵8 − 𝐵11)

(𝐵8 + 𝐵11)
 Gao (1996) 

RDVI 
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

√(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

(𝐵8 − 𝐵4)

√(𝐵8 + 𝐵4)
 Roujean and Breon (1995) 

RVI 
𝑁𝐼𝑅

𝑅𝐸𝐷
 

𝐵8

𝐵4
 Rondeaux et al. (1996) 

SOC Index 
𝐵𝐿𝑈𝐸

(𝑅𝐸𝐷. 𝐺𝑅𝐸𝐸𝑁)
 

𝐵2

(𝐵4. 𝐵3)
 Thaler et al. (2019) 
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where As is the specific catchment area (or contributing area) per unit contour length 

(m2 m-1), and β the local slope. In this study, β is the slope gradient of the area 

commanded by the center-pivot. TWI works as a mass balance, where As describes 

the trend to receive water, and β the trend to discharge water (Mattive et al., 2019). 

TWI represents the tendency of each unit (pixel) to accumulate water according to the 

relief (Sena et al., 2020). 

The nine spectral indices and the three terrain attributes were tested for their 

performance as proxies for SOC at the study area. 

 

1.2.4 Data analysis 

 

The correlations between topsoil SOC (2019 dataset) and geospatial data (i.e., 

spectral indices and topography) at the two study sites were investigated using linear 

regression analyses. Notice that the use of regressions using different slope and/or 

intercept values for the two fields. These analyses returned non-significant differences 

in slope and intercept values between the two sites indicating that single regression 

models were adequate to describe the investigated relationships across the two sites. 

The regression’s coefficient of determination (R2), intercept and slope values, slope’s 

p-values were used to infer the feasibility of spectral indices and topography as proxies 

for SOC.  

The performance of spectral indices from single satellite scenes and multitemporal 

stacks as proxies for SOC was evaluated. For the multitemporal analysis, the available 

imagery was snapped onto a common grid. Then, at each grid location, spectral index 

values were ranked from lowest to highest. The percentile (α) of these temporal 

distributions were such that values of α = 0 and α = 1 corresponded to the lowest and 

highest values across the multitemporal imagery stack at each grid location. Then, 

regressions using spectral index values from the same α levels as explanatory 

variables were evaluated. The spectral indices’ values corresponding to the entire 0 ≤ 

α ≤ 1 temporal distribution were estimated using the “PERCENTILE.INC” function in 

Microsoft Office Excel 2016 (Redmond, WA, USA). For each spectral index, the α value 

returning the linear regression with the strongest goodness-of-fit (i.e., lowest total sum 

of squares) with SOC was identified through Generalized Reduced Gradient nonlinear 

optimization using Solver (Frontline Systems, Incline Village, NV, USA) in Excel. 
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Additionally, the robustness of the selection of α was tested using leave-one-out (LOO) 

resampling (i.e., Jackknifing). This was done by systematically leaving out each 

observation from the dataset (i.e., 2019 topsoil SOC) and selecting the best α for the 

regression between SOC and the spectral indices. The average and standard deviation 

of the resulting array of α values were then calculated. Ideally, LOO average α value 

should be close to the whole-dataset model calibration value and therefore have a 

small standard deviation.  

 Additionally, the best proxies for SOC derived from the geospatial data were used 

to verify if the two sampling schemes are comparable. The comparisons between the 

SOC for the sampling schemes and the best proxies were performed using an Analysis 

of Variance (ANOVA) (p-value < 0.05). The three different years of soil sampling were 

compared to detect changes in SOC. The two sites, considered individually and 

together, were compared using a Wilcoxon test for paired samples, in case of equal 

sampling schemes, and a Kruskal-Wallis rank test (p-value < 0.05), for different 

sampling schemes condition. A Pearson correlation analysis was performed to 

evaluate the relationship between subsoil SOC changes and topsoil SOC changes 

over time. This analysis aimed at understanding what can be inferred about subsoil 

SOC changes from the topsoil SOC data. 

All the data analysis was performed using R software (R Core Team, 2020) and 

Microsoft Office Excel 2016 (Redmond, WA, USA). 

 

1.3  RESULTS AND DISCUSSION 

 

1.3.1 Spectral indices 

1.3.1.1 Analysis for single date  

 

The relationships between topsoil SOC (2019 dataset) and the selected spectral 

indices were analyzed according to the significance of the regression slope for all 

imagery acquisition dates (Fig. 2). None of the selected spectral indices returned 

significant correlations with SOC on the dates closest to the soil sampling time (April 

2019). However, the regression slopes for all spectral indices changed remarkably 

over time. When significant, the relationships between SOC and DVI, EVI, MSAVI2, 

NDVI, RDVI, and RVI were negative, whereas those for NDWI and SOC Index were 

positive. CRSI never returned significant correlations with SOC. EVI2, MSAVI2, NDVI, 
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and RVI showed the strongest single-date correlations (p<0.01) across all indices on 

August 13, 2019. Generally, most significant (p<0.05) correlations were observed in 

June, July, and August 2019, during the winter period. Brazil’s winter is a dry season 

that goes from June to September, whereas the summer is a rainy season that starts 

in December and ends in March. In 2019, a weather station near the study area 

(Paranapanema) recorded a mean monthly precipitation of 208.5 mm in January, 98.2 

mm in June, 75.0 mm in July, and 5.2 mm in August (CIIAGRO, 2020). Our results 

suggest that erratic correlations with SOC are likely to be observed when using spectral 

indices from a single date. Such inconsistencies may be due to a variety of site- and 

time-specific confounding factors. The current understanding of remote sensing 

imagery and the relationships with soil property indicates that often multiple factors are 

influencing the remote sensing imagery (Xu et al., 2018), i.e., various factors having 

different spatial patterns may be captured by the remote sensing imagery. The 

relationship between a target soil variable, such as the topsoil SOC for this study, and 

spectral indices from remote sensing can be described as a spatial linear model for 

which the soil property is the dependent variable, the spectral index is the explanatory 

variable, and the error is a spatial random component (Scudiero et al., 2018; Xu et al., 

2018). To best describe the spatial variability of the target soil variable, the magnitude 

of the spatial random error should be minimized. At the sites considered for the present 

study, the confounding factors contributing to the spatial random error probably 

included soil moisture, surface roughness, and the presence of plant stocks on the soil 

surface. The surface roughness of soils is described as irregularities over the surface, 

which can be produced by texture, size of aggregates, and soil management practices 

(Thomsen et al., 2015). The two study sites are next to each other and have the same 

soil type. The two sites were also under very similar farming management practices. 

Therefore, (surface) soil moisture may have been the main confounding factor 

contributing to the changes in the SOC relationship with spectral indices over time.  

Published research on SOC relationships with spectral indices by using a single 

(concurrent or near in time) satellite imagery show very inconsistent results, most likely 

because the presence of confounding random errors in such relationships was not 

considered or tested. Gholizadeh et al. (2018) found a positive correlation between 

SOC and NDVI by using single-date Sentinel-2 data, differing from our results, and a 

negative correlation for MSAVI2 and RVI, in agreement with the results of this study. 

Kumar et al. (2018) investigated the effect of eight predictor variables for SOC using a 
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single-date ASTER satellite image. The same authors found out that NDVI produced 

a positive and the best correlation with SOC, which was due to the vegetation condition 

of the study area. Nevertheless, Zhang et al. (2019) derived NDVI from Landsat-8 

multitemporal data and observed that this relationship goes from negative to positive, 

but also indicated that most images showed a negative correlation between SOC and 

NDVI. Their research work indicated that SOC cannot be predicted by using a single 

date NDVI image, which is consistent with the findings from the present study. When 

using spectral indices from a single-date, erratic correlations with SOC are likely to be 

obtained. Instead, multitemporal spectral indices analyze extra information regarding 

the study objective and result in a more robust approach (Zhang et al., 2019). These 

finding may be applied not only for NDVI, but also for other indices (i.e., EVI2, MSAVI2, 

and RVI), as illustrated in Fig. 2. 
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Fig. 2. Slope values of the linear regression between topsoil SOC (2019 dataset) and 

single date Sentinel-2 spectral indices. n.s.: non-significant (p-value ≥ 0.05), *: 

significant at p-value < 0.05, and **: significant at p-value < 0.01. CRSI: Canopy 

Response Salinity Index, DVI: Difference Vegetation Index, EVI2: Enhanced 

Vegetation Index 2, MSAVI2: Modified Soil-Adjusted Vegetation Index 2, NDVI: 

Normalized Difference Vegetation Index, NDWI: Normalized Difference Water Index, 

RDVI: Renormalized Difference Vegetation Index, RVI: Ratio Vegetation Index, and 

SOC Index: Soil Organic Carbon Index. 

 

1.3.1.2 Spectral indices time series analysis 

 

The key to minimizing the effect of spatial random error in the relationships between 

spectral indices and SOC may be via multitemporal remote sensing data analysis 

(ZHANG et al., 2019), as shown for other soil properties, such as salinity (Scudiero et 
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al., 2015) and heavy metals (Liu et al., 2018). The strength of the relationships between 

topsoil SOC (2019 survey) for selected α values of all spectral indices is shown in Fig. 

3. Low p-values indicate strong relationships. When p<0.05, relationships are 

significant. In Fig. 3, for each index-SOC regression, the best α value is indicated with 

a label. 

The strength of the SOC relationships with the spectral indices varied widely when 

different α values were used. All indices except CRSI showed significant (p<0.05) 

relationships with SOC. EVI2, MSAVI2, NDVI, and RVI yielded the strongest 

relationships with SOC. These four indices returned stronger relationships with 

different α values and were considered for further analyses. The strongest 

relationships for these four indices were observed around α values in the 0.039 to 

0.049 range (Table 3). The four best spectral indices selected in this study use only 

red and near-infrared bands in their mathematical formulation. The soil spectral 

response is high in the red and near-infrared bands (Xue and Su, 2017), but it is also 

affected in the shortwave infrared region (Castaldi et al., 2016). SOM is spectrally 

active throughout the visible and near-infrared spectra, and the range across the 

shortwave infrared region has also been observed to correlate with SOM (Pearlshtien 

and Ben-Dor, 2020). Angelopoulou et al. (2020) indicated that the reflectance from the 

VIS-NIR-SWIR (visible-near infrared-shortwave infrared) spectral region (0.4-2.5 µm) 

is an important information that can be used to assess SOM and SOC. Particularly, the 

wavelength around 0.664 µm is an important region associated with SOM (Ben-Dor et 

al., 1997). The spectral reflectance around 0.664 µm is close to the spectral range from 

the red band (B4) of Sentinel-2, which goes from 0.650 to 0.680 µm (central 

wavelength = 0.665 µm). Castaldi et al. (2019b) also used Sentinel-2 data to predict 

SOC in croplands. These authors reported that the red and the near-infrared bands 

were more important than the shortwave infrared band in one of their study areas, 

where the mean SOC estimated was 26.7 g kg-1. 
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Fig. 3. P-value of the regression slope between topsoil SOC (2019 dataset) and 

different percentiles of multitemporal (α) Sentinel-2 spectral indices. The label indicates 

the optimal percentile for each spectral index. CRSI: Canopy Response Salinity Index, 

DVI: Difference Vegetation Index, EVI2: Enhanced Vegetation Index 2, MSAVI2: 

Modified Soil-Adjusted Vegetation Index 2, NDVI: Normalized Difference Vegetation 

Index, NDWI: Normalized Difference Water Index, RDVI: Renormalized Difference 

Vegetation Index, RVI: Ratio Vegetation Index, and SOC Index: Soil Organic Carbon 

Index. 

 

Table 3 provides the regression statistics for the best-performing α for the EVI2, 

MSAVI2, NDVI, and RVI indices, which yielded very similar results. The four regression 

models had similar R2 (~ 0.64) and RSME (~ 1.38) values. All the models were 

significant at the p<0.01 probability level. The four regression models also had very 

similar optimal α. The robustness of the percentile selection was tested using leave-

one-out resampling. For EVI2, the LOO average α was 0.041 (standard deviation = 

0.02561); for MSAVI2 it was 0.049 (standard deviation = 0.02571); for NDVI it was 

0.044 (standard deviation = 0.02562); and for RVI it was 0.038 (standard deviation = 

0.02557). The LOO analyses indicated that the optimal α values in Table 3 were fairly 

robust. 

The selection of the 0.05 percentile (i.e., α = 0.05) NDVI is an approach used to 

distinguish bare-soil from vegetation by many authors (Jiang et al., 2010; Zeng et al., 

2000; Montandon and Small, 2008; Ding et al., 2016). Our data-driven approach 
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indicated that α~0.05 is a good value to detect SOC on bare soil with NDVI and other 

spectral indices. Commonly, however, a threshold of NDVI = 0.25 (or other arbitrary 

value) is used to distinguish vegetation from bare soils in satellite images (Castaldi et 

al., 2019b; Demattê et al., 2018). The average (± standard deviation) values (across 

the two sites) corresponding to the α values in Table 3, were: for EVI, 0.14±0.03; for 

MSAVI, 0.17±0.03; for NDVI, 0.09±0.02 (which is remarkably lower than arbitrary 

thresholds selected in other research); and for RVI, 1.21±0.04. 

 

Table 3 

Regression statistics between topsoil SOC (2019 dataset) and the selected spectral 

indices. The α values indicate the percentile value for the multitemporal time series of 

the spectral indices. 

 

Spectral 

index 
n α R2 

Intercept          

(95% CI) 

Slope                         

(95% CI) 
p-value 

EVI2 13 0.042 0.640 
34.368  

(29.166, 39.569) 

-72.334  

(-108.348, -36.320) 
0.001 

MSAVI2 13 0.049 0.641 
36.025  

(30.029, 42.021) 

-70.183  

(-105.012, -35.354) 
0.001 

NDVI 13 0.045 0.640 
34.854  

(29.420, 40.288) 

-115.792  

(-173.378, - 58.206) 
0.001 

RVI 13 0.039 0.639 
80.485  

(52.346, 108.625) 

-46.805                             

(-70.144, -23.465) 
0.001 

EVI2: Enhanced Vegetation Index 2, MSAVI2: Modified Soil-Adjusted Vegetation Index 2, NDVI: Normalized 

Difference Vegetation Index, RVI: Ratio Vegetation Index, n = number of sampling locations; R2 = coefficient of 

determination; CI = confidence interval. 

 

1.3.2 Terrain attributes 

 

The elevation values ranged approximately from 627 to 699 m, and TWI from 10.0 

to 17.5. The slope values varied from 0.1 to 20.3%, with a mean of 5.5%. According to 

the slope classes suggested by the Brazilian Agricultural Research Corporation 

(EMBRAPA, 1999). Most of the study area can be classified as a slightly wavy (3-8%) 

terrain, with the slope gradient varying from flat (0-3%) to wavy (8-20%).  

Table 4 provides the statistics of the linear regression between the standardized 

topographic indicators and topsoil SOC (2019 dataset). The linear regression between 

https://www.embrapa.br/
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the standardized elevation and SOC had R2 = 0.70 (p<0.01) and RSME = 1.26. On the 

contrary, the standardized slope and TWI were not good predictors for SOC. 

Since the standardized elevation presented the best performance, it was selected 

as a proxy for topsoil SOC (2019) spatial variability in the study area. Generally, several 

evidences showed that SOC has a positive correlation with elevation (Tsozué et al., 

2019; He et al., 2020), which is corroborated by the results of the present study. Wang 

et al. (2018a) collected topsoil (0-0.2 m) samples in a northeastern agroecosystem 

area of China to study the spatial distribution of SOC. They observed that elevation 

was the most important topographic variable to predict SOC. Zhou et al. (2020) 

collected topsoil (0-0.2 m) samples in a watershed located in northwestern China, to 

assess the use of multitemporal Sentinel-1A data in SOC estimation. They also 

concluded that elevation was the most important topographic variable for predicting 

SOC. Those findings are consistent with the results presented in this study, and 

highlight the relevance of elevation as a potential proxy for assessing the topsoil SOC. 

 

Table 4 

Regression statistics between topsoil SOC (2019 dataset) and the standardized 

topography indicators. 

Standardized 

indicator 
n R2 

Intercept              

(95% CI) 

Slope                  

(95% CI) 
p-value 

Elevation 13 0.702 
24.085              

(23.249, 24.921) 

2.011                

(1.140, 2.881) 
0.0004 

Slope 13 0.191 
24.085              

(22.708, 25.462) 

-1.048                       

(-2.482, 0,385) 
0.136 

TWI 13 0.021 
24.085              

(22.571, 25.599) 

0.352                        

(-1.224, 1.928) 
0.633 

n = number of sampling locations; R2 = coefficient of determination; CI = confidence interval; TWI = 

Topographic wetness index. 

 

1.3.3 Sampling scheme comparison and topsoil SOC temporal changes 

 

Figure 4 presents the maps of multitemporal NDVI using α=0.045 (Fig. 4a) and 

elevation (Fig. 4c). The whole-area values, those at the 2012-2016 sampling sites, and 

those at the 2019 sampling sites are compared in the boxplots of Figs. 4b (for the NDVI 

map) and 4d (for the elevation map). The NDVI average values were very close across 

the boxplots (0.096 considering all the pixels of the study area, 0.094 for the 2012-

2016 sampling scheme, and 0.093 for the 2019 sampling scheme, respectively). 

Similarly, the average elevation at the two sites was = 670 m, which was very close to 
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that of 2012-2016 (671 m) and 2019 (669 m) sampling schemes. The ANOVA test 

indicated that the mean values across the three boxplots were non-significantly 

different for both NDVI and elevation. These results indicated that both the 2012-2016 

and the 2019 sampling schemes were both representative of the whole-area frequency 

statistics for both NDVI and elevation. It should be noted that only the results for NDVI 

are reported here for the sake of conciseness, but EVI2, MSAVI2, and RVI had 

equivalent results for NDVI and elevation. 

 

 

Fig. 4. Multitemporal 0.045 percentile of the Normalized Difference Vegetation Index 

(NDVI) map (a) and its frequency distribution (boxplots) for all the entire study area 

and the two different sampling schemes (b). Elevation map (c) and boxplots for the 

entire study area and the two different sampling schemes (d). Distribution outliers were 

not included in the boxplots. 

 

Along the study years, at Site A, Figure 5(a) shows the topsoil SOC changes (mean 

of 22.53 and standard deviation of 3.01 in 2012; mean of 23.52 and standard deviation 

of 2.39 in 2016; and mean of 24.69 and standard deviation of 2.10 in 2019). The 

Wilcoxon test for paired samples (from 2012 to 2016) and the Kruskal-Wallis rank test 

(from 2016 to 2019) revealed no significant difference in the topsoil SOC at site A 

during the study period. Figure 5(b) shows the topsoil SOC changes (mean of 16.78 

and standard deviation of 2.74 in 2012; mean of 24.90 and standard deviation of 2.56 
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in 2016; and mean of 23.71 and standard deviation of 2.63 in 2019) at site B. The 

Wilcoxon test for paired samples (from 2012 to 2016) presented a significant 

difference, and the Kruskal-Wallis rank test (from 2016 to 2019) showed no significant 

difference in the topsoil SOC at site B. Figure 5(c) shows the topsoil SOC changes 

(mean of 19.29 and standard deviation of 4.03 in 2012; mean of 24.30 and standard 

deviation of 2.56 in 2016; and mean of 24.08 and standard deviation of 2.40 in 2019) 

considering the sites together. The Wilcoxon test for paired samples (from 2012 to 

2016) presented a significant difference, and the Kruskal-Wallis rank test (from 2016 

to 2019) showed no significant difference in the topsoil SOC at the sites together. The 

mean SOC increased by 24.83% in the topsoil layer from 2012 to 2019. 

 

1.3.4 Subsoil, whole profile, and SOC stratification ratio 

 

Across the two sites, a linear regression described that the relationship between 

topsoil and subsoil SOC presented a poor statistical coupling in 2019 (slope = 0.57, 

intercept = 8.83, and R2 = 0.26), and a better coupling in 2012 (slope = 0.69, intercept 

= 1.25, and R2 = 0.74). Because of the lack of a strong correlation between soil layers, 

we could not infer if either of the sampling schemes were representative of the SOC 

distribution in the subsoil. Therefore, we did not perform any statistical test on the 

changes of subsoil SOC between 2012 and 2019. 

Figure 5(d) shows the subsoil SOC changes (mean of 14.98 and standard deviation 

of 2.06 in 2012; and mean of 23.14 and standard deviation of 2.73 in 2019) at site A. 

Figure 5(e) shows the subsoil SOC changes (mean of 9.67 and a standard deviation 

of 1.64 in 2012; and mean of 22.30 and a standard deviation of 2.83 in 2019) at site B. 

Figure 5(f) shows the subsoil SOC changes (mean of 11.99 and standard deviation of 

3.22 in 2012; and mean of 22.63 and standard deviation of 2.71 in 2019) at both the 

sites A and B considered together, which presented an increase of 88.74% in SOC 

occurred over the course of seven years. 

Using a worldwide database from several published studies, West and Post (2002) 

reported that a significant increase in SOC occurred in the 0-0.07 and 0.07-0.15 m soil 

layers, while no significant increase in the 0.15-0.25 and 0.25-0.35 m layers when the 

tillage system was shifted from CT to NT. Additionally, the same authors reported that 

most of the sequestered carbon (~85%) was found in the first 0.07 m of soil depth. 

From another global analysis, Haddaway et al. (2017) observed that SOC content was 
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significantly higher under NT in the 0-0.15 m soil layer, compared to tillage systems. 

Also, the same authors reported that the intermediate intensity tillage (non-inversion 

tillage practice at 0-0.40 m soil layer) showed significantly higher SOC in 0-0.15 and 

0.15-0.30 m compared to high-intensity tillage systems (inversion or non-inversion 

tillage practice at until or below 0.40 m depth). In an experiment conducted in a 

Brazilian oxisol, Sá et al. (2001) showed that 22 years of NT (with crop rotation) had 

significantly higher SOC content in 0-0.025 and 0.025-0.05 m compared to 22 years of 

CT. Whereas the CT showed higher SOC in the 0.20-0.40 m depth range and did not 

show a significant difference in 0.05-0.10 and 0.10-0.20 m. In the present study, the 

combination of reduced tillage together with crop rotation, use of crop residues, and 

irrigation showed an increase in SOC content in the 0-0.20 m and 0.20-0.40 m soil 

depth. Since many studies reported divergent results on SOC accumulation layers 

under agriculture management systems, Angers and Eriksen-Hamel (2008) 

emphasized the importance of considering the entire soil profile (0-0.40 m) for SOC 

comparations. 

Figure 5(g) shows the SOC changes along the entire profile (mean of 18.75 and 

standard deviation of 2.34 in 2012; and mean of 23.92 and standard deviation of 1.95 

in 2019) at site A. Figure 5(h) shows the SOC changes along the entire profile (mean 

of 13.23 and standard deviation of 2.01 in 2012; and mean of 23.01 and standard 

deviation of 2.43 in 2019) at site B. Figure 5(i) shows the SOC changes along the entire 

profile (mean of 15.64 and standard deviation of 3.50 in 2012; and mean of 23.36 and 

standard deviation of 2.22 in 2019) at both the sites considered together, showing an 

increase of 49.36% occurring over the course of seven years. 

Figure 5(j) shows the SOC stratification ratio (ratio of topsoil SOC divided by the 

subsoil SOC) changes (mean of 1.51 and standard deviation of 0.16 in 2012; and mean 

of 1.08 and a standard deviation of 0.12 in 2019) at site A. Figure 5(k) shows the SOC 

stratification ratio changes (mean of 1.75 and standard deviation of 0.24 in 2012; and 

mean of 1.07 and a standard deviation of 0.12 in 2019) at site B. Figure 5(l) shows the 

SOC stratification ratio changes (mean of 1.65 and standard deviation of 0.24 in 2012; 

and mean of 1.07 and standard deviation of 0.11 in 2019) at both the sites A and B 

considered together.  

Again, when considering both the sites A and B together, the mean SOC 

stratification ratio decreased by 35.15% from 2012 to 2019. This may be explained by 

the greater increase of SOC in the subsoil compared to the topsoil layer. Regardless 



41 
 

of the decrease in SOC content with depth, the subsoil is recognized as a potential 

carbon sink (Alcántara et al., 2017) as it presents higher SOC stability compared to the 

topsoil layer (Luo et al., 2019). It is possible to increase SOM through reduced tillage 

and root growth, as indicated by Moore et al. (2019). Dietzel et al. (2017) mentioned 

that the crop root system produces a significant contribution to the SOC pool. These 

authors concluded that corn could produce more carbon at deeper depths, whereas 

prairies can generate more carbon at superficial soil depths. 

As it was not possible to confirm that the subsoil SOC sampling schemes are 

comparable, statistical tests were not used to analyze the changes in the subsoil, along 

the entire profile, and the stratification ratio. 
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Fig. 5. SOC changes in the topsoil (0 – 0.2 m), subsoil (0.2 – 0.4 m), along the entire 

profile (0 – 0.4m), and stratification ratio (topsoil/subsoil) at the study area over the 

course of the study years, considering the sites A and B individually and together. 

 

1.4  CONCLUSIONS 

 

The results from the research study presented in this article demonstrate that the 

multitemporal dataset obtained Sentinel-2 can be used to derive the most suitable 

spectral indices to estimate the topsoil SOC content in the study area. The use of the 

multitemporal imagery enabled to achieve higher accuracy in estimating the topsoil 

SOC relative to that obtained from the use of single-date images, as the relationship 

between topsoil SOC and spectral indices varied with the acquisition date of Sentinel-

2 images. Within the tested spectral indices, EVI2, MSAVI2, NDVI, and RVI provided 

the best correlations with SOC, which were very similar. Considering the indicated 

related to the topography, the elevation offered a significant correlation gain. 

NDVI and elevation were selected as the best spatial covariates in the study area. 

Their frequency distribution indicated that the two different SOC sampling schemes 

were representative of the study area. By investigating changes that occurred over the 

course of seven years, we observed a significant increase in the topsoil SOC. 

However, it was not possible to make inferences about the subsoil SOC from the 

topsoil SOC (2019 dataset), because its relationship showed a poor statistical 

coupling. 

The present study identified remotely sensed proxies to assess SOC across a field 

scale, which can be readily used by the farming community, land managers, agriculture 

consultants, and policy makers. The results also allowed clarifying that a few years of 

conservation practices can promote significant effects on the increase of SOC content. 

Future research should investigate the relationship between remote sensing data 

and topsoil SOC for areas characterized by soil variability, using remote sensing data 

with higher spatial resolution, and assess the time necessary to reverse the SOC gains 

resulting from conservation practices. Finally, future studies should also explore the 

relationship between SOC and the amount of water applied through the irrigation 

system. 
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Supplementary data 

 

Table S1  

5-year crop rotation at each study site. 

Location Crop Date of sowing  Date of harvest  

Site A 

Corn January 21, 2014 July 03, 2014 

Bean August 20, 2014 December 04, 2014 

Corn December 16, 2014 May 21, 2015 

Bean June 23, 2015 October 14, 2015 

Cotton October 15, 2015 May 07, 2016 

Corn August 28, 2016 February 09, 2017 

Corn February 14, 2017 July 30, 2017 

Bean August 23, 2017 December 14, 2017 

Potato The land was leased  

Soybean September 12, 2018 January 06, 2019 

Bean January 07, 2019 April 22, 2019 

Site B 

Corn December 26, 2013 May 30, 2014 

Bean  August 18, 2014 December 02, 2014 

Soybean December 09, 2014 April 06, 2015 

Bean July 18, 2015 November 11, 2015 

Cotton November 12, 2015 June 10, 2016 

Bean September 13, 2016 December 18, 2016 

Corn January 03, 2017 July 07, 2017 

Bean August 28, 2017 December 14, 2017 

Corn January 06, 2018 July 08, 2018 

Bean July 09, 2018 October 25, 2018 

Cotton December 05, 2018 April 22, 2019 
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CHAPTER 2 

MULTI-SCALE VARIABILITY OF SOIL ORGANIC CARBON AND TOTAL 

NITROGEN IN MATURE MICRO-IRRIGATED CITRUS ORCHARDS IN 

CALIFORNIA’S SAN JOAQUIN VALLEY  

 

ABSTRACT: The spatial variability of soil organic carbon (SOC) and soil total nitrogen 

(STN) influences physicochemical and biological soil properties, enhancing water 

retention, soil aggregation, the reservoir of plant nutrients, and biodiversity. The 

determination of SOC and STN levels are important for sustainable agricultural 

management, by their influence on soil fertility, soil health, agricultural productivity, and 

food security. In the present research, a multi-scale spatial distribution of SOC and 

STN in citrus orchards was studied, to investigate the representativeness of tree-scale, 

along transects, relative to orchard-scale. Two mature micro-irrigated citrus orchards 

in California’s San Joaquin Valley were selected, one with Page mandarin (Citrus 

reticulata) in Strathmore, and another with Washington navel orange (Citrus sinensis) 

in Ivanhoe. Both orchards are irrigated with micro-sprinklers, and the pruning residues 

are disposed on the inter-rows. The soil was sampled along transects, and it was 

divided into three sections: section α located at 0.6 m from the tree trunk, section β at 

1.2 m from the trunk (approximately below the canopy projection), and section γ 

located in the middle of the inter-row. In each section single samples were collected at 

two depths, from 0 to 0.05 m and from 0.05 to 0.4 m. A total of 20 transects were 

performed at the orchard in Strathmore, characterized by the presence of three soil 

groups, and six in Ivanhoe, which has one soil group. Additionally to the soil samples, 

plant tissue was collected for plant total carbon (PTC) and plant total nitrogen (PTN) 

analysis. In Ivanhoe, where there is a more homogeneous soil, no significant 

differences were found between the sections and the orchard at the studied soil layers. 

In Strathmore, the first five centimeters soil layer showed higher mean levels of SOC 

and STN at section β, whereas from 0.05 to 0.40 m, the higher mean levels of SOC 

and STN were found at section α. From 0 to 0.05 m the mean values of SOC at sections 

β and γ and STN at section γ were not statistically different from the mean value of the 

whole orchard. From 0.05 to 0.40 m and from 0 to 0.40 m there was no statistical 

difference between the sections and the orchard. Considering the three soil groups in 

Strathmore, significant statistical differences were found only in the top five centimeters 

of the soil, and no differences were found in the mean values of PTC and PTN along 
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with the soil groups. The present research provides support for future soil sampling 

procedures, projects on SOC and STN monitoring, and agricultural management in the 

study area. 

 

Keywords: Micro-sprinkler irrigation. Pruning residue. San Joaquin Valley. Soil health. 

Tulare county. 

 

RESUMO: A variabilidade espacial do carbono orgânico do solo (COS) e do nitrogênio 

total do solo (NTS) influencia as propriedades físico-químicas e biológicas do solo, 

aumentando a retenção de água, a agregação do solo, o reservatório de nutrientes 

para as plantas e a biodiversidade. A determinação dos níveis de SOC e STN são 

importantes para o manejo agrícola sustentável, por sua influência na fertilidade do 

solo, saúde do solo, produtividade agrícola e segurança alimentar. Na presente 

pesquisa, uma distribuição espacial multi-escala de COS e NTS em pomares de citros 

foi estudada, para investigar a representatividade da escala de árvore, ao longo de 

transectos, em relação à escala de pomar. Dois pomares cítricos micro-irrigados em 

San Joaquin Valley na Califórnia foram selecionados, um com Page mandarin (Citrus 

reticulata) em Strathmore, e outro com Washington navel orange (Citrus sinensis) em 

Ivanhoe. Ambos os pomares são irrigados com microaspersores, e os resíduos da 

poda são dispostos nas entrelinhas. O solo foi amostrado ao longo de transectos e 

dividido em três seções: seção α localizada a 0,6 m do tronco da árvore, seção β a 

1,2 m do tronco (aproximadamente abaixo da projeção da copa) e seção γ localizada 

no centro da entrelinha. Em cada seção, amostras individuais foram coletadas em 

duas profundidades, de 0 a 0,05 m e de 0,05 a 0,4 m. Um total de 20 transectos foi 

realizado no pomar em Strathmore, caracterizado pela presença de três grupos de 

solos, e seis em Ivanhoe, que possui um grupo de solo. Além das amostras de solo, 

material vegetal foi coletado para análise do carbono total da planta (CTP) e do 

nitrogênio total da planta (NTP). Em Ivanhoe, onde existe um solo mais homogêneo, 

não foram encontradas diferenças significativas entre as seções e o pomar nas 

camadas de solo estudadas. Em Strathmore, a primeira camada de cinco centímetros 

de solo apresentou maiores níveis médios de COS e NTS na seção β, enquanto de 

0,05 a 0,40 m, os maiores níveis médios de COS e NTS foram encontrados na seção 

α. De 0 a 0,05 m, os valores médios de COS nas seções β e γ e NTS na seção γ não 

foram estatisticamente diferentes do valor médio de todo o pomar. De 0,05 a 0,40 m 
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e de 0 a 0,40 m não houve diferença estatística entre os transectos e o pomar. 

Considerando os três grupos de solo em Strathmore, diferenças estatísticas 

significativas foram encontradas apenas nos cinco centímetros superiores do solo, e 

nenhuma diferença foi encontrada nos valores médios de CTP e NTP entre os grupos 

de solo. A presente pesquisa fornece suporte para procedimentos futuros de 

amostragem de solo, projetos de monitoramento de COS e NTS e manejo agrícola na 

área de estudo. 

 

Palavras-chave: Irrigação por microaspersão. Resíduo de poda. San Joaquin Valley. 

Saúde do solo. Tulare county. 

 

2.1 INTRODUCTION 

 

California is the leading state on agriculture production in the United States of 

America. The state produces food on about 9.9 million ha of agricultural land, 

whereupon 4.7 million ha are pastureland, and about 3.8 million ha are cropland 

(USDA-NASS, 2017). With 69,400 farms and ranches, California agriculture generated 

a total cash receipt of $49.9 billion over the production of a wide variety of commodities 

(CDFA, 2019). The top three agricultural counties in California are Fresno ($7.9 billion), 

Kern ($7.5 billion), and Tulare ($7.2 billion), with a total value of about $22.6 billion 

(CDFA, 2019).  

The citrus production in California accounted for 54% of the total country 

production, followed by Florida with 42%, and Texas and Arizona with 4% (USDA-

NASS, 2020). The counties of Fresno, Kern, and Tulare are leaders in the production 

of oranges (navel) and mandarins, being Tulare the leader for both ranks with a total 

acreage of about 26,673 hectares for oranges and 9,696 hectares for mandarins 

(CDFA, 2020a). These three counties are in the San Joaquin Valley, which is the major 

agricultural production region in the state of California.  

As an evergreen perennial crop, citrus requires additional water throughout the year 

to attend to the water needs in the Mediterranean climate of the region and to comply 

with the national and world food demands. However, San Joaquin Valley has been 

facing periodic droughts and environmental policies, resulting in significant declines in 

water supplies for the irrigated crops (MARINO et al., 2019). Soil organic carbon (SOC) 

and soil total nitrogen (STN) also play and an important role in agriculture productivity, 
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by providing nutrients for crop development and promoting the physical structure of 

soils (WANG et al., 2016). 

SOC is an important element of the solid fraction of soils, and it involves a mixture 

of plant and animal residues and microbial biomass under different stages of 

decomposition (LAL, 2018), and by-products from microbial processes (ANTHONY et 

al., 2020). The interest in SOC dynamics is increasing because it is the major indicator 

of soil fertility, and develops a crucial role in carbon dioxide sequestration (SCHILLACI 

et al., 2019). As an indicator of soil health, SOC is receiving significant attention from 

the farming community, state agencies, initiatives, and organizations, such as the Food 

and Agriculture Organization of the United Nations (FAO, 2020), the “4 per 1000” 

initiative (FRENCH MINISTRY OF AGRICULTURE & FOOD, 2020), and California’s 

Healthy Soils Initiative (CDFA, 2020c). 

Total nitrogen includes different forms of nitrogen, such as nitrate, nitrite, ammonia, 

ammonium, and organic nitrogen (EPA, 2013). The uptake assimilation of soil nitrogen 

by plants occurs in the forms of nitrate (NO3
-) and ammonium (NH4

+), which are 

essential components that can be used to produce nucleic acids, proteins, and 

chlorophylls (RUAN et al., 2016). As SOC, soil total nitrogen (STN) is an indicator of 

soil fertility, being associated with crop productivity and food security (ZHOU et al., 

2019). Therefore, reliable measurements and spatial analysis of SOC and STN are 

crucial for efficient agricultural management. 

There are many examples of studies about SOC and STN distribution conducted 

among different ecosystems, such as forests (MA et al., 2020; WANG et al., 2016), 

grassland and farmland (XUE; AN, 2018), shrub land (XUE; AN, 2018; WANG et al., 

2016), field crops (LIU et al., 2021; WANG et al., 2016), and apple orchards (ZHANG 

et al. 2021). Previous studies focused on SOC content and stock of citrus orchards 

considering different tree ages, soil sampling depths, and orchard management 

(CANALI et al., 2009; OLIVEIRA et al., 2015; GU et al., 2016; NOVARA et al., 2019). 

However, there are no examples of research regarding the distribution of SOC and 

STN across tree transects in citrus orchards.  

The general objective of this study was to characterize the multi-scale (tree and 

orchard) variability of SOC and STN over mature micro-irrigated citrus orchards, grown 

under the same soil conservation practice, in California’s San Joaquin Valley (USA). 

Additionally, the study aimed to verify if the citrus orchards result in similar spatial 
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patterns of SOC, STN, plant total carbon (PTC), and plant total nitrogen (PTN), across 

the soil groups. 

 

2.2  MATERIAL AND METHODS 

 

2.2.1 Description of the study area 

 

Two commercial citrus orchards were selected for this research, both located in 

Tulare County (in the southeastern portion of San Joaquin Valley), California. The first 

study site is a Page mandarin (Citrus reticulata) orchard in Strathmore, CA, while the 

second is a Washington navel orange (Citrus sinensis) orchard in Ivanhoe, CA (Figure 

1). 

 

Figure 1 - Overview of the study area, indicating the a) geographic location in 
Tulare county, state of California (USA); b) sampling locations at the 

orchard in Ivanhoe; c) sampling locations at the orchard in 
Strathmore (orange points represent the sampling locations in soil 

group 1, green in soil group 2, and blue in soil group 3) 

  
 

Both orchards are under a Mediterranean climate (California’s climate zone number 

13) and are under the same soil conservation practice. Both orchards are irrigated with 

micro-sprinklers (fanjets), with irrigation scheduling that is based on a combination of 

soil moisture monitoring and evapotranspiration (ET), using grass reference 

evapotranspiration (ETo) taken from the network of automated weather stations of the 

California Irrigation Management Information System (CIMIS), and crop coefficient 

(Kc) value around 0.7 throughout the irrigation season. The residues from pruning 

processes are mechanically shredded and left onto the ground of the inter-rows. 

The study site in Strathmore is located between the latitudes 36°10’02.45”N and 

36°10’09.53”N and the longitudes 119°01’22.70”W and 119°01’31.70”W, at an average 
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elevation of 142 meters. The orchard is four ha in size (200 m x 200 m) and consists 

of 11-year old trees planted at 2.5 m x 5.5 m spacing, with North-South row orientation, 

and with Paige variety grafted onto Carrizo citrange rootstock. The mandarin trees are 

planted on berms or ridges (raised mounds of soil), with around 0.4 m in height. The 

study site in Ivanhoe is located between the latitudes 36°23’09.67”N and 

36°23’14.10”N and the longitudes 119°14’26.10”W and 119°14’33.86”W, at an average 

elevation of 107 meters. The orchard is 2.2 ha in size (120 m x 185 m) and consists of 

20-year old trees planted at 3.0 m x 6.5 m spacing with East-West row orientation, and 

with Washington navel variety grafted onto Trifoliate rootstock.  

 

2.2.2 Soil parameters dataset 

 

The soil sampling scheme was selected using the Response Surface Sampling 

Design (RSSD) methodology with the ECe Sampling Assessment and Prediction 

(ESAP) software (LESCH et al., 2000), which is a free software (ESAP-RSSD) 

developed by the United States Department of Agriculture – Agriculture Research 

Service (USDA-ARS). The ESAP-RSSD determines the optimized soil sampling 

locations that best characterize the frequency statistics of the geospatial sensor data 

(SCUDIERO et al., 2019). 

For the orchard in Strathmore, multispectral imagery data, collected with an 

unmanned aerial vehicle (UAV), was used to identify 20 representative locations (see 

Scudiero et al., 2019 for additional information) (Figure 1c).  For the orchard in Ivanhoe, 

six soil sampling locations were selected using geospatial soil apparent electrical 

conductivity (ECa) measurements obtained with a handheld EM38 (Geonics Ltd.) in 

the vertical mode (e.g., sensing the 0-1.5m soil profile) connected to a GPS, according 

to recommendations provided by Corwin and Scudiero (2016) (Figure 1b). 

The field research team collected the soil samples on 10-12 December 2019, based 

on a transects survey to determine soil parameters (SOC and STN) and contrast the 

small scale (tree) characteristics with the larger scale (orchard) features. Each transect 

was divided into three sections: 1) section α was located at 0.6 m from the tree trunk; 

2) section β was at 1.2 m from the trunk (below the projection of the tree canopy); and 

3) section γ was in the center of the inter-row (Figure 2). At each section, the soil was 

sampled at two soil layers, from 0-0.05 m and 0.05-0.4 m, totaling six soil samples at 

each transect. Therefore, soil samples were collected from 20 transects (towards East) 
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at the orchard in Strathmore, and from six transects (towards North) at the orchard in 

Ivanhoe, totaling 156 soil samples (120 collected in Strathmore and 36 in Ivanhoe). 

Each sample had approximately 0.5 kg of soil. SOC and STN were analyzed by the 

UC Davis Analytical Laboratory (https://anlab.ucdavis.edu/), through a combustion 

method using a LECO TruMac CN Analyzer. Samples were also analyzed for 

gravimetric soil water content (SWC). 

 

Figure 2 - Representation showing the transect and the soil sampling sections 
(α, β, and γ) 

 
 

2.2.3 Plant tissue dataset 

 

In December 2019, concurrently with the soil survey, plant tissue samples were 

collected at the 20 trees in Strathmore and six trees in Ivanhoe. The sampling 

methodology was based on the document from Obreza et al. (2018) and the protocol 

recommended by the California Department of Food and Agriculture (CDFA, 2020b). 

Briefly, the leaves were sampled from each quadrant of the tree, from about 0.9 to 1.5 

m above the ground, and from the spring flush (medium-sized, and narrow and pointed 

appearance). The samples were analyzed for plant total carbon (PTC) and plant total 

nitrogen (PTN), using a LECO TruMac CN Analyzer from the UC Davis Analytical 

Laboratory. 

 

2.2.4 Data analysis 

 

The statistical analyses were performed using Excel (Microsoft Office 2016) and 

RStudio Version 1.3.959 (R CORE TEAM, 2020). The differences in soil parameters 

among the multi-scale were tested using the Kruskal-Wallis (KW) test (KRUSKAL; 
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WALLIS, 1952). The KW is a non-parametric test, that can be used instead of the 

classical analysis of variance (ANOVA) when the assumptions for a parametric test 

were not met. The differences across plant tissue parameters were also carried out 

using the KW test. Comparisons between means were performed by Kruskal-Wallis 

multiple comparison tests, with statistical significance at p-value < 0.05, using the 

package pgirmess version 1.6.9 (GIRAUDOUX, 2018) in the RStudio (R CORE TEAM, 

2020). Linear regressions were conducted to verify the relationship between SOC, 

STN, and SWC. 

 

2.3 RESULTS AND DISCUSSION 

 

2.3.1 Analysis for multi-scale SOC and STN 

 

The multi-scale SOC and STN were analyzed by contrasting the 

representativeness of a larger scale, characterized by the orchard, with a smaller 

scale, characterized by the tree transects (Figures 3 and 4). The orchard in Strathmore 

showed significantly greater mean values of SOC and STN from 0.05 to 0.40 m and 

from 0 to 0.40 m compared with the orchard in Ivanhoe. At the whole soil profile, the 

SOC mean value at Strathmore was 79.9% greater than in Ivanhoe, and the STN mean 

value at Strathmore was 31.4% greater than in Ivanhoe. From 0 to 0.05 m, SOC and 

STN mean values did not show a significant difference between the orchards.  
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Figure 3 - Boxplots of soil organic carbon (SOC, %) distribution along with the 
orchard and the tree scale (sampling sections α, β, and γ). Boxplots 
(a), (c), and (e) indicate the SOC distribution from 0 to 0.05 m, from 
0.05 to 0.40 m, and from 0 to 0.40 m, respectively, at the orchard in 

Strathmore. Boxplots (b), (d), and (f) indicate the SOC distribution at 
the same depths at the orchard in Ivanhoe. The boxes topped with 
lowercase letters indicate the multiple comparisons, from Kruskal–
Wallis multiple comparison tests, within the tree sampling sections, 

and the upper-case letters between the orchard and the sections. 
Different lowercase or upper-case letters indicate that the mean 
values are significantly different (p-value < 0.05). Boxes with no 

topped letters indicate a non-significant difference 
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Figure 4 - Boxplots of soil total nitrogen (STN, %) distribution along with the 
orchard and the tree scale (sampling sections α, β, and γ). Boxplots 
(a), (c), and (e) indicate the STN distribution from 0 to 0.05 m, from 
0.05 to 0.40 m, and from 0 to 0.40 m, respectively, at the orchard in 

Strathmore. Boxplots (b), (d), and (f) indicate the SOC distribution at 
the same depths at the orchard in Ivanhoe. The boxes topped with 
lowercase letters indicate the multiple comparisons, from Kruskal–
Wallis multiple comparison tests, within the sections and the upper-

case letters between the orchard and the sections. Different 
lowercase or upper-case letters indicate that the mean values are 

significantly different (p-value < 0.05). Boxes with no topped letters 
indicate a non-significant difference 

 

 
 

The orchard in Strathmore is predominantly characterized by loam and clay loam 

soil. Whereas in Ivanhoe, the orchard presents a sandier soil. Jagadamma and Lal 

(2010) found that the clay fraction of the soil accumulates more SOC, followed by the 

silt, and the sand fractions. Soil with higher concentrations of clay is prone to have a 

higher specific surface area for organic matter adsorption (POIRIER et al., 2020), being 

the clay particle the most active element in the development of organo-mineral 
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complexes (CHENU et al., 2016). The silt and clay-sized particles can protect soil 

organic matter from decomposition, due to the formation of aggregates between these 

elements (HASSINK, 1997). The observations of Zhang et al. (2016) from a study 

conducted along the Dan river valley in China, indicated that STN, ammonium (NH4
+), 

and nitrate (NO3
-) showed a negative correlation with sand, but a positive correlation 

with clay and silt. The mentioned findings are consistent with the results obtained in 

this research, where higher concentrations of SOC and STN were found in the orchard 

with a greater amount of clay. 

At the orchard in Strathmore, significant statistical differences were found for SOC 

from 0 to 0.05 m and from 0.05 to 0.40 m. From 0 to 0.05 m, the sampling sections α, 

β, and γ showed SOC mean values of 0.887%, 1.777%, and 1.322%, respectively. 

Sections β and γ were representatives of the orchard, which presented a mean value 

of 1.329%. From 0.05 to 0.40 m, the sections α, β and γ showed SOC mean values of 

0.629%, 0.532%, and 0.485%, respectively. At this soil layer, all the sampling sections 

were representative of the orchard, which presented a mean value of 0.548%. 

Considering the entire soil profile layer, from 0 to 0.40 m, no significant difference was 

detected for SOC within the tree sampling sections, and between the orchard and the 

sections. At this layer, the mean SOC values for the orchard and sections α, β, and γ, 

were 0.646%, 0.661%, 0.688%, and 0.589%, respectively. It indicates that the 

application of the pruning residues in the inter-rows showed a positive effect on the 

SOC content.  

At the same orchard, significant statistical differences were also found for STN from 

0 to 0.05 m and from 0.05 to 0.40 m. From 0 to 0.05 m, the sampling sections α, β, and 

γ showed STN mean values of 0.095 %,0.185%, and 0.129%, respectively. Only 

section γ was representative of the orchard, which presented a mean value of 0.136%. 

From 0.05 to 0.40 m, the sections α, β and γ showed STN mean values of 0.064%, 

0.055%, and 0.052%, respectively. At this soil layer, all the sampling sections were 

representative of the orchard, which presented a mean value of 0.057%. At the entire 

studied soil profile, from 0 to 0.40 m, no significant difference was detected within the 

tree transect sections, and among the orchard and the sections. At this soil profile, the 

mean STN values for the orchard and sections α, β, and γ, were 0.067%, 0.068%, 

0.071%, and 0.062%, respectively. 

 From 0 to 0.05 m, section β showed a higher mean value for SOC and STN 

content, whereas section α showed a lower mean value for both soil parameters. The 
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berms may have a significant influence on these results. The berms in heavier soils 

(clay and silt soils) can minimize the soil water holding capacity and the occurrence of 

the Phytophthora root rot, which can be caused under conditions of high soil moisture 

and deficient drainage (FABER; GOLDHAMER, 2014). Phytophthora species can 

cause Citrus gummosis in situations of moistened trunks, and it can be reduced by 

avoiding soil retention and guaranteeing aeration around the tree trunk (FABER; 

GOLDHAMER, 2014). In section α, SOC and STN maybe eventually lost from 

stormwater or irrigation runoff over the berms, towards the base of the berm at section 

β. Additionally, it was found pruning residues not only at section γ but also at section 

β. 

From 0.05 to 0.40 m and 0 to 0.40 m, the higher mean values for SOC and STN 

concentrations were found in sections α and β. The micro-sprinkler irrigation system 

delivers nutrients to the citrus trees through fertigation, where the required nutrients 

are applied under the canopy area. The maximum concentration of the citrus roots is 

located under the tree canopy. Generally, plant roots material interferes in the SOC 

pool, by adding organic carbon through dead roots and rhizodeposition (DIJKSTRA et 

al., 2020). Citrus trees have a matted layer of fibrous roots just below the soil surface, 

whose function is to absorb water and nutrients (FREELAND, 2016). These facts 

reflect the higher mean values of SOC and STN at the transect sampling sections 

below the citrus canopy.  

At the orchard in Ivanhoe, no statistical difference was detected between the 

orchard and the transects sections, and within the sections. Therefore, for the three 

examined soil depths, all the sampling sections (α, β, and γ) for SOC and STN were 

representative of the entire orchard. The frequency distribution of these parameters 

indicates that the orchard in Ivanhoe is more homogenous than the orchard in 

Strathmore. This result agrees with the smaller amount of sampling locations indicated 

by the ESAP-RSSD software. Considering the whole soil profile (0 to 0.40 m), the SOC 

mean values were similar across the boxplots (0.359% for the orchard, 0.363% for 

section α, 0.342% for section β, and 0.371% for section γ). The STN mean values were 

also similar across the boxplots from 0 to 0.40 m (0.051% for the orchard, 0.053% for 

section α, 0.049% for section β, and 0.052% for section γ).  

 

2.3.2 Analysis for soil groups  
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An analysis across the three distinct soil groups and each section of the transect 

were conducted to investigate the possible SOC and STN differences at the 

Strathmore’s citrus orchard (Figure 5). Significant statistical differences were found 

only in the first five centimeters of the soil. At this soil layer, the higher mean values of 

SOC and STN were found in section β, followed by section γ, and section α. No 

significant statistical differences were found in SOC and STN across the soil groups of 

each section. Additionally, the mean values of PTC and PTN were similar along with 

the soil groups, with no significant statistical differences. 

 

Figure 5 - Boxplots of soil organic carbon (SOC, %) from 0 to 0.05 m (a), from 
0.05 to 0.40 m (b), and from 0 to 0.40 m (c), soil total nitrogen (STN, 
%) from 0 to 0.05 m (d), from 0.05 to 0.40 m (e), and from 0 to 0.40 m 
(f) along the sections (α, β, and γ) and according to the soil groups 
(SG1 = soil group 1, SG2 = soil group 2, and SG3 = soil group 3) at 

Strathmore. The boxes topped with letters indicate the Kruskal-
Wallis multiple comparison within each soil group. Different letters 
indicate that the mean values are significantly different (p-value < 

0.05). Boxes with no topped letters indicate a non-significant 
difference 
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2.3.3 Relationship analysis between soil parameters 

 

Based on relationship analysis, the positive linear regressions between SOC and 

STN, SOC and SWC, and STN and SWC are illustrated in Figure 6. The regression 

between SOC and STN revealed a very strong relationship along the three soil layer 

depths at the orchard in Ivanhoe. At Strathmore’s orchard, a very strong relationship 

was found from 0 to 0.05 m, a strong from 0 to 0.40 m, and a moderate from 0.05 to 

0.40 m. 

The results indicate that the relationships between SOC and STN at the orchard in 

Ivanhoe (Figure 6b) are better coupled than the orchard in Strathmore (Figure 6a), 

which was expected as Ivanhoe has a more homogeneous soil. In general, there is a 

high correlation between SOC and TN in the soil, which enables us to make 

assumptions about SOC based on STN and vice versa (WINOWIECKI et al., 2015). 

The findings from this study are consistent with the results from other studies over 

different environments. Cheng et al. (2016) obtained a positive and very strong linear 

correlation (R2 = 0.99) in a rice paddy area in Japan, where the authors collected soil 

samples from 0 to 0.25 m. Xue et al. (2018) investigated the relationship between SOC 

and STN from 0 to 0.6 m of soil depth along different land uses in a watershed in China. 

The authors reported positive correlations in farmland (r = 0.61), abandoned farmland 

(r = 0.79), Shrub land (r = 0.82), and natural grassland (r = 0.93). Across different 

agroecosystems in China, Zhai et al. (2019) observed significant positive correlations 

from 0 to 0.1 m (R2 = 0.99), from 0.1 to 0.2 m (R2 = 0.75), and from 0.2 to 0.3 m (R2 = 

0.88). 

At Strathmore’s orchard, a very weak significant relationship was detected between 

SOC and SWC. A very weak significant relationship was found between STN and SWC 

from 0 to 0.05, and a non-significant relationship from 0.05 to 0.40 and from 0 to 0.40 

m. At Ivanhoe’s orchard, a weak significant relationship was observed between SOC 

and SWC. A moderate significant relationship was identified among STN and SWC 

from 0 to 0.05 m and a weak significant from 0.05 to 0.40 m and from 0 to 0.40 m. 
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Figure 6 - Linear regression between soil organic carbon (SOC, %) and soil 
total nitrogen (STN, %), SOC and soil water content (SWC, m3 m-3), 

and STN and SWC, from 0 to 0.05 m, 0.05 to 0.40 m, and 0 to 0.40 m, 
at Strathmore (a, c, and e) and Ivanhoe (b, d, and f). R2 represents the 

coefficient of determination. ***, ** and * denotes significant 
relationship at p-value < 0.001, p-value < 0.01 and p-value < 0.05, 

respectively 
 

 
 

2.4  CONCLUSIONS 

 

Regardless of the same soil conservation practice, the study areas revealed 

different patterns on SOC and STN. Such differences may be due to the soil groups in 
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the areas. Ivanhoe, which represents a more homogeneous area characterized by one 

soil group, did not show significant differences on SOC and STN levels. Whereas 

Strathmore, with three different soil groups, showed statistical differences. 

Characterizing the multi-scale variability of SOC and STN in mature macro-irrigated 

citrus orchards is relevant for the future project development of SOC and STN 

monitoring and best agricultural management practices. Future research should focus 

on the investigation of the spatial variability of SOC and STN stock, on multi-year 

comparisons, and on the impact of different conservation practices, such as the use of 

cover crops in the inter-rows. 
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GENERAL CONSIDERATIONS 

 

Towards the scenario of an increasing global population and climate change, 

maintaining and enhancing soil health are important goals to the achievement of 

sustainable agriculture, crop productivity, climate resilience, and food security. 

Conservation agricultural practices, such as no-till or reduced tillage, crop rotation, and 

retention of crop residues, tend to improve soil health by the increase in SOC levels, 

nutrient cycling, and soil biota. 

The conventional methods for SOC monitoring and evaluation are labor-intensive, 

time-consuming, and costly. This laborious task can be overcome by the application of 

remote sensing techniques, which can provide rapid and low-cost methods for SOC 

measurement. The adoption of multitemporal spectral indices analysis over Sentinel-2 

images provides a higher accuracy assessment of topsoil SOC proxies at the Brazilian 

study area, relative to the use of single-date images. 

As SOC, STN is also a key element for soil fertility, and for plant growth and 

development. Therefore, the spatial variability of both soil parameters is needed for 

monitoring and management issues. For an appropriate measurement, the soil 

samples should be representative of the entire studied area, which may vary with 

different factors, such as soil sampling depth and location, soil type, and agricultural 

management. 

In San Joaquin Valley (California), citrus orchards resulted in different spatial 

variability of SOC and STN. Although the orchards were under the same management, 

they were over different soil groups. Therefore, the representativeness of the sampling 

locations was different among the orchards, which straights the needs of sampling 

studies before the elaboration of projects, and agricultural and environmental 

management strategies development. 
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