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Abstract In engineering, a large number of structures may

be modeled as cantilevers. Due to their intrinsic character-

istics, some of these structures are sensitive to dynamic

actions. Gusts of wind are dynamic excitations for which the

fundamental frequency of vibration is an important factor

when calculating the structural response. Modeling the

effects of the axial force on the natural frequencies of a

structure usually results in systems of differential equations

that are not solvable from a practical engineering perspec-

tive. This article develops a simple mathematical expression

for calculating the fundamental frequency of cantilevered

structures, within small ranges, that considers the presence

of an axial demand. This expression has been validated by

dynamic laboratory testing.

Keywords Structures � Vibration � Validation �
Dynamical systems � Linearization

List of symbols

E Modulus of elasticity of the material, N/m2

e Displacement

d Elementary, infinitesimal

F Force, N

g Acceleration due to gravity, m/s2

I Moment of the section, m4

K Stiffness, N/m

L Length, length of the bar, m

N Normal force, N

m Mass (kg), mass rate, kg/m

q Coordinate

t Time

v Displacement

x Independent variable

Greek symbols

d Virtual work

P Total mass, generalized total mass, kg

/ Function

x Frequency, rd/s

s Pi number

q Density, kg/m3

Subscripts

0 Relative to elastic, lumped

I Relative to internal

g Relative to geometric

t Relative to time

1 Relative to the distributed mass

2 Relative to the generalized mass

Overwrites
0 Relative to derivate

. Relative derivate in relation to time
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1 Introduction

In general, studies of isolated bars are frequently related to

analyzing the stability of structural systems, Gambhir [13].

As mentioned by Mailybaev and Seyranian [23], the

influence of vibration on the stability of elastic systems is

important in engineering theory and applications. Cano and

Ochoa [6] maintain that the stability and dynamic behavior

of beams and beam-columns are of great importance in

structural dynamics, aerospace and earthquake engineering.

The vibration analysis and seismic response of framed

structures modeled as beams and columns have been

studied by many researchers and continue to be treated

extensively in the literature. Among these are problems

dealing with vibration of bars and studies done by Goel

[14, 15], Ferreira and Ewins [12] can be cited. Soares Filho

et al. [26] presented work concerned with the dynamic

elastic analysis of semi-rigid plane frames subjected to

wind pressures, where the frame was considered as a set of

contiguous bar elements, connected by rotational springs.

Systems consisting of cantilevered columns are useful

both for analyzing stability and for calculating the wind

forces in buildings. The standard procedure associates the

building with a discrete model of a column inlaid into the

base. The standards used for analyzing wind effects are

based on the natural frequency and modes of vibration,

principally the first mode.

Due to their characteristics, structures such as chimneys,

tall reservoirs and telecommunication poles are sensitive to

dynamic actions. When undergoing this type of excitation,

they can resonate with the load. Typically, these are tall

slim structures or structures subjected to high axial loads.

The axial compression forces reduce the stiffness and

influence the natural frequencies of the structure and they

cannot be ignored in many cases. In this regard, Wilson and

Habibullah [30] stated that further consideration of the

normal force in structural dynamics is a viable technique

for calculating the second-order effects because the effect

is linearized and the solution to the problem is obtained

directly and accurately, without interactions. It is valid for

situations where the vertical force due to the structure’s

weight and external loads remain constant during structural

movement and for situations where the lateral displace-

ments are small compared to the size. Structures are subject

to effects that they need to resist. In general, they should

stay reasonably close to their specifications during induced

movements. In other words, the movements of a structure

around their specification should be small. Therefore, a

dynamic analysis of geometric non-linearities constrained

by geometric stiffness is perfectly reasonable.

Specific studies on the effect of normal force on the

vibration of structural systems were presented by Laurence

[20]. Other researchers concerned with the issue were

Howson and Williams [16] who studied the natural fre-

quencies of frames with axially loaded Timoshenko

members. Mian and Zhi-da [24] evaluated the second-order

effect of an elastic circular shaft and by using asymptotic

expansion methods they confirm that the effect of axial

elongation and distortion of plane cross-section exists in an

elastic circular shaft during large torsion and give the

expressions of the axial force and the torque. For your turn,

Banerjeea and Williams [3] showed studies that evaluate

the change in vibrations modes for the first five natural

frequencies of axially loaded tapered members.

The objective of this article is to evaluate the influence

of axial force on the fundamental frequency of isolated bars

and to present a safe way to calculate the fundamental

frequency of any structure that can be satisfactorily mod-

eled as an element of a simple cantilever bar. This process

will result in a viable engineering solution. Although the

expressions developed in this paper will be familiar to

those accustomed to dealing with mechanical vibrations,

their final presentation is a bit unusual. Its simplicity allows

us to simultaneously consider the effect of an external force

applied upon the free extremity of the structure and the

structure’s self-weight, which produces a practical engi-

neering solution.

It is important to highlight that many engineering

models are complex and use expensive tools. In most

practical applications of engineering, the use of concise

and feasible models can lead to similar and even better

results.

This work is a preliminary investigation that assesses the

analytical results of a simplified mathematical solution by

comparison with dynamic laboratory tests. The method

developed here will be applied to determine the funda-

mental frequency of real structures and will motivate both

comparative studies of other analytical methods, such

as the finite elements method, and experimental field

investigations.

2 Mathematical model

The analytical formulation developed here is based on the

principle of virtual work combined with a technique similar

to that of Rayleigh [25]. Rayleigh assumed that a system

containing infinite degrees of freedom can be replaced by a

finite single degree of freedom (SDOF) system that

approximates their frequency.

Applications of the Rayleigh technique to mechanical

systems with vibration problems are found in a wide range

of scientific papers. Some of them are dedicated to the

study of plate vibrations, which was one of the problems

addressed by Rayleigh in his principal publication.

Biancolini et al. [4] applied the method to approximate the
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frequencies of orthotropic plates using and merging the

results obtained by other researchers who used a simple

numerical procedure employing a particular formulation of

the Rayleigh method. Cheung and Zhou [8] studied the free

vibration of thin orthotropic rectangular plates with inter-

mediate line supports in one or two directions. They used a

new set of admissible functions, which are the static

solutions of a point-supported beam under a series of sine

loads. Chiba and Sugimoto [9] used the so-called Ray-

leigh–Ritz method for the problem of a cantilever plate

attached to a ‘spring–mass’ system. They systematically

clarified the coupled vibration characteristics of the system

by thoroughly studying the effects of the ‘spring–mass’

attachment. Hu et al. [17] studied the problem of the

vibration characteristics of shells subjected to axial forces,

such as centrifugal forces, and used algebraic polynomial

functions as the functional form. Laura et al. [19] used the

Rayleigh–Ritz method to address the problem of vibrations

in a circular plate. Kandasamy and Singh [18] analyzed the

free vibration of isotropically skewed open circular cylin-

drical shells using a modified version of the Rayleigh–Ritz

method.

Problems similar to the study of vibrations of bars were

addressed by Wang [29] using a new displacement field

applied to the Euler–Bernoulli theory. Wang concluded

that it was an efficient unified approach for studying the

free vibration and buckling problems of both thick and thin

beams and plates. For their part, Zhou and Cheung [32]

used the Rayleigh method to calculate the frequencies of a

tapered Timoshenko beam under a Taylor series of static

load and the Rayleigh–Ritz method is applied to derive the

eigenfrequency equation.

It is important to observe that the technique developed

by Rayleigh and presented in his first book was only used

to calculate the fundamental frequency. Leissa [21] claims

that the precision obtained through this method depends

entirely on the functional form that is used to represent the

free vibration mode. If the exact shape were assumed, the

exact corresponding frequency would be generated by this

method. Moreover, she adds that the technique developed

by Rayleigh can be used to obtain frequencies for modes

higher than the Fundamental. Form functions were

addressed by Leung et al. [22] when using the dynamic

stiffness method in a harmonic vibration analysis of a

Timoshenko column.

It is interesting to note that the Ritz or Rayleigh–Ritz

method, which Leissa [21] considers to be an inappropriate

name, is considered to be an extension of Rayleigh’s

method and is used to obtain both fundamental and higher

vibration modes.

The basic concept behind the Rayleigh method is the

principle of conservation of energy in mechanical sys-

tems; therefore, it is applicable to linear and non-linear

structures, according to Clough and Penzien [10].

According to Temple and Bickley [27], the fundamental

principles developed by Rayleigh are applied both to sys-

tems with finite degrees of freedom and to continuous

systems. The purpose is to determine the fundamental

period of vibration and to analyze the stability of the elastic

systems with the precision required for engineering prob-

lems. To do this, the virtual works principles must be

described by adequate chosen of generalized coordinates at

the top of the bar and by a functional form that describes

the first mode of vibration. At the end of the calculation,

the movement equation is written in terms of the general-

ized coordinate, from which one can extract the general-

ized elastic and geometric properties of the system.

Consider a system containing just the horizontal degree

of freedom that is in undamped free movement with the

parameters shown in Fig. 1. This system is composed of

a prismatic bar made from an elastic-linear material

embedded in the base bearing its own weight and a mass on

the free extremity that is representative of the bodies fixed

to its top. The movement of the system does not alter the

orientation of the normal force N(x), which has to be taken

into consideration. A similar mathematical development

can be found in Clough and Penzien [10].

The work done by the external forces over the virtual

displacement is:

dWE ¼ �
ZL

0

fIðxÞdvðxÞdxþ NðxÞde ð1Þ

where fIðxÞ ¼ m1ðxÞ v
::ðx; tÞ represents the inertial force.

The work of the virtual internal forces is given by:

dWI ¼
ZL

0

Mðx; tÞdv00ðxÞdx ð2Þ

where dv00ðxÞ ¼ o2vðxÞ
ox2 :

L

m0

q(t)

x

N(x)

m1

v(x,t)

e(t)

Fig. 1 Parameters for developing the mathematical model
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To be able to find the axial displacement e(t), it is

necessary to take an infinitesimal element of the elastic line

of the bar. Then the shortening of the axis due to the axial

displacement will be:

ds� dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dv2

p
� dx ¼ dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dv

dx

� �2
s

� dx:

ð3Þ

The binomial development yields:

1þ dv

dx

� �2
 !1=2

¼ 1þ
dv
dx

� �2

2
�

dv
dx

� �4

8
þ

dv
dx

� �6

16
� � � �

Because the superior order terms dv

dx

� �2

are small when

compared to the unit, 1þ dv

dx

� �2
� �1=2

¼ 1þ
dv
dxð Þ

2

2
is an

acceptable approximation, which allows Eq. (3) to be

rewritten as:

ds� dx ¼ dx 1þ 1

2

dv

dx

� �2
" #

� dx ¼ 1

2

dv

dx

� �2

: ð4Þ

By integrating Eq. (4) into the entire beam, the

following equation is obtained:

eðtÞ ¼ 1

2

ZL

0

v0ðx; tÞ½ �2dx: ð5Þ

Because the parameters necessary for the solution of the

problem may be expressed as functions of the generalized

coordinate q and a form function /ðxÞ;

v x; tð Þ ¼ /ðxÞqðtÞ
v0ðx; tÞ ¼ /0ðxÞqðtÞ

v00ðx; tÞ ¼ /00ðxÞqðtÞ
€vðx; tÞ ¼ /ðxÞ€qðtÞ

_v00ðx; tÞ ¼ /00ðxÞ _qðtÞ

dvðx; tÞ ¼ /ðxÞdqðtÞ
dv0ðx; tÞ ¼ /ðxÞ0dqðtÞ

dv00ðx; tÞ ¼ /ðxÞ00dqðtÞ

de ¼
ZL

0

v0ðx; tÞdv0ðxÞdx

ð6Þ

is obtained.

Conveniently replacing Eqs. (5) and (6) in Eqs. (1) and

(2) yields

dWE¼ �€qðtÞ
ZL

0

m1 /ðxÞð Þ2dxþqðtÞ
ZL

0

NðxÞ /0ðxÞð Þ2dx

2
4

3
5dq

ð7Þ

and

dWI ¼ qðtÞ
ZL

0

EI /00ðxÞð Þ2dx

2
4

3
5dq ð8Þ

Equating Eqs. (7) and (8), the undamped free movement

equation may be written in terms of the generalized

coordinate:Y
€qðtÞ þ K0qðtÞ � KgqðtÞ ¼ 0 ð9Þ

where
Q

, K0 and Kg are the generalized mass and stiffness

described by a function of a chosen form function, as can

be seen here.

To consider the mass on the top of the column, the total

generalized mass is given by:
Y
¼ m0 þ m2 ð10Þ

with:

m2 ¼
ZL

0

m1 /ðxÞð Þ2 ð11Þ

The elastic and geometrical stiffnesses are:

K0 ¼
ZL

0

EI
d2/ðxÞ

dx2

� �2

dx ð12Þ

Kg ¼
ZL

0

NðxÞ d/ðxÞ
dx

� �2

dx ð13Þ

respectively.

For the model in Fig. 1, NðxÞ ¼ m0 þ m1ðL� xÞ½ �g,

with N(x) being the distributed normal internal force.

Assuming that the well-known trigonometric function

/ðxÞ ¼ 1� cos
px

2L

� �
ð14Þ

which can be found in Clough and Penzien [10] and

Timoshenko [28], represents the first buckling mode of the

model exactly, its validity is restricted to the surroundings

of the reference configuration.

Numerically solving the integrals in Eqs. (11) through

(13), the outcomes are the total generalized mass, the

generalized elastic stiffness, and the matrix of the geo-

metric stiffness, respectively, where m1 is the mass per

length unit and m0 is the concentrated mass on the top of

the bar:

Y
¼ m0 þ

1

2
Lm1

3p� 8

p
ð15Þ

K0 ¼
p4EI

32L3
ð16Þ

and

Kg ¼
1

16
g

2p2m0 þ p2 � 4ð Þm1L

L
ð17Þ
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The total generalized stiffness of the system is therefore:

K ¼ K0 þ Kg ð18Þ

The natural frequency is given by:

x ¼
ffiffiffiffiffi
KQ

s
ð19Þ

Using Eqs. (15) through (17) in Eq. (19) yields a

frequency equation that considers the influence of the axial

force, in Hertz:

f ¼ 1

2p

p4

32
EI
L3 þ p2

16
2m0þm1L

L

� �
� 1

4
m1

h i
g

m0 þ 3p�8
2p Lm1

0
@

1
A

1
2

ð20Þ

In Eq. (20), E is the modulus of elasticity of the material,

L is the length of the bar, I is the minor inertial moment of the

section and g is the acceleration due to gravity, whose signal

should be negative when the force is compressive. It is

obvious that the effects of the shear force on the deflection of

the bar were not considered in the previous development.

Two observations deserve some comment here. If other

masses exist within the system, they logically have to be

considered, thus adjusting Eq. (20). In cases where there is

variation in the geometry or in the elastic properties of the

structure, it is necessary to solve the integrals from Eqs. (11)

through (13) within the limits established for each interval.

The recent work of Yaman [31], the Adomian decom-

position method is used to determine the vibrations of the

beam/column with a variable rotation relative to the initial

straight axis, obtaining results that are compatible with the

finite elements method. Using Eq. (20) with the parameters

given by Yaman yields 3.2840 Hz, compared to his results

of 3.2532 Hz (a difference of less than 1 %).

3 Dynamic laboratory tests

Electrical strain gages and piezoelectric accelerometers

were used. The former were manufactured by Excel

Sensors [11] and the latter by Brüel & Kjaer [5]. The

arrangement adopted for connecting the extensometers to

the data acquisition system and the characteristics of the

equipment are given in Table 1.

The accelerometers were calibrated using a Brüel &

Kjaer type 4294 manual caliper driver and connected to the

acquisition system through a differential tension configu-

ration with a gain of 1.

The connection of the accelerometers to the data

acquisition system was preceded by the connection of the

accelerometer to the Brüel & Kjaer type 2525 amplifier.

The ADS-2000 automatic data acquisition system Aq-

Dados [1] was used with the AI-2161 conversing plates, an

AC-2122VA controlling plate (LYNX Informatics) and

16-bit resolution. The interface with the microcomputer

was achieved through ethernet networking. The connection

of the sensors to the data acquisition system was achieved

through input connectors located at the rear of the

equipment.

The test sample consisted of a nominally 1/200

(12.70 mm) by 1/800 (3.17 mm) flat metal bar that had two

metallic masses fixed to its free extremity by lateral pres-

sure. Its mass and the masses of the accelerometers and

their magnetic bases resulted in a total of 1,595 g on the

top of the rod.

Because the model of longitudinal elasticity was a steel

piece, it was assumed to be 205 GPa. The density of the

rod material was experimentally determined in the PCC/

USP materials laboratory using the helium pycnometry

technique. The relative density obtained was 8.19

(8,190 kg/m3). The other masses involved were measured

using an electronic scale.

The test sample was instrumented with three extens-

ometers and two accelerometers, according to the layout in

Fig. 2. The extensometers were glued to the extension of

the bar, and the accelerometers were attached to the mag-

netic bases.

With the metallic masses added to the rod, three posi-

tions were adopted to simulate the possible influences

of the axial load on the stiffness of the system. The first

Table 1 Characteristics of sensors

Dispositive

Strain gage Resistance Factor Arrangement Gain Excitation tension

120 X 2.1 � 3-wire

bridge

2,000 5 V

Accelerometer Model Sensitivity

(pC/g)

Frequency

interval

Resonance frequency

(kHz)

Residual noise

level (g)

Maximum operational

level (g)

Mass

(gm)

4393 3.1 0.1 at

16,500 Hz

55 0.52 5 2.4

4371 10 0.1 at

12,600 Hz

42 0.24 6 11
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position took the influence of the axial compressive force

into consideration. The set was positioned to compress the

bar with its own weight and with the vertical load produced

by the mass on the top. The second position considered the

influence of the axial traction force. The set was positioned

to generate traction force in the system, and the test sample

was inverted from the first position. The third position

analyzed the effect of no axial load upon the fundamental

frequency of the model, and the set was installed in the

horizontal position as a cantilever beam. Figure 3 illus-

trates the three positions used.

The test sample was fixed to the supporting device by

metal clamps. The same fixation pattern was used for all

the models. The contact surface of the inertial base was

carefully prepared to reduce imperfections and roughness.

The accelerometer cables were fixed to prevent interfer-

ence with the signal reading. The support ensemble pro-

vided safe inertial conditions for carrying out the tests.

Before excitation, the models were vertically leveled. The

support ensemble provided safe inertial conditions for

carrying out the tests.

The reference experimental length was visually con-

trolled and measured using a metallic tapeline (Fig. 4) to

compensate for the uncertainty in the real fixation point of

the models on the base and in the real position where

the axial force was applied. The same references were

maintained for the different positions. The length varied by

5 cm up to the physical limit of the possible fixation or up

to the maximum position consistent with the stability of the

ensemble.

In both tests, models with different positions and lengths

were excited by a random force of sufficient magnitude to

set the system into oscillatory motion. After the excitation,

the systems oscillated around the initial deformed position.

The signals in the time response were recorded and

subsequently analyzed. The fundamental frequency of the

models was obtained using the Fourier transform in

the AqDAnalysis 7 [2] program. The auto-spectrum of the

 Metal mass

Bar

12
00

 m
m

50
 m

m
Accelerometer BK 4371

Accelerometer BK 4393

Strain gage 3

Strain gage 2

Strain gage 1

Mass of the 
Body test

Accel. BK 4393

Accel. BK 4371

Cables

Magnetic 
Bases of 
accelerometers

Fig. 2 Instrumentation of the test sample and the details of the

accelerometer settings

Movement

 (a) compression 

Movement
(b) tension 

M
ov

em
en

t
(c) without axial effect 

Fig. 3 Positions adopted in the tests
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program was configured as follows: a Hanning-type com-

pensation window; a data window for calculating the

average spectrum; a fast-Fourier transform zoom equal

to 1; and the maximum resolution possible for the number

of samples.

It is important to note the conclusions of Carneiro [7],

who states that for small amplitudes, both experience and

theoretical solutions show the influence of the initial dis-

placement in relation to body length to be negligible and

that the influence of damping on the vibration period can

generally be ignored.

4 Results and conclusion

The objective of this work was to evaluate the influence of

axial forces on the first vibration frequency of isolated

columns and to establish a relatively simple mathematical

procedure to calculate this frequency. In other words, this

work deals with the identification of the first natural fre-

quency in cantilevered bars with non-linearities caused by

geometric effects.

Using this single-calculation procedure it is possible to

consider the influence of the normal force located on the

free extremity of the bar and the weight of the bar itself,

making it a simple and practical solution for use in routine

engineering applications without requiring sophisticated

computing resources. To validate the equation, a set of

dynamic tests was conducted in the laboratory.

The effect of a normal force on the frequency of a

column can be perceived through the numerical results

obtained using Eq. (20). For this purpose, we used the

elastic and geometric parameters of the bodies of the test

sample used in the laboratory tests and varied the length

from 0.15 to 5 m at short intervals. We plotted the graph in

Fig. 5, which relates the frequencies of the column with the

nature of the axial force.

The first factor to consider in this simulation goes back to

the effects of a compressive force and the requirement for

stability in the compressed bars. The highlighted aspect is

the instability of the bar that occurs when the frequency is

zero. This condition holds when it reaches a length of

1.1 m. If the effect of the compressive force were to be

ignored, the curve would follow the horizontal axis

asymptotically. The opposite occurs in the case of a tractive

effort because this effort favors stiffness, thus stabilizing the

system and increasing the frequency. The stiffness of the

structure is not modified in the absence of normal stress,

resulting in an intermediate curve between the two.

Table 2 shows the frequency variation of the column

according to the different levels of axial force. The intensity

of the normal force in these cases was obtained by varying

the generalized mass, according to Eqs. (10) and (11). This

variation produces a change both in strength and in the

generalized mass of the system, which reduces the fre-

quency of the bar while both the strength and the general-

ized mass of the system increase. Compared to the effort of

compression, traction produces a higher frequency. The

second column of Table 2 shows the frequency variation

with the slenderness of the column, which becomes unstable

when it reaches slenderness close to 1964.

To evaluate the sole influence of the axial force on

the first frequency of the column, the overall mass of the

system was kept unchanged. Only the intensity of the

normal force varied and was not associated, in this case,

Clamps

Inferior 
reference

Superior 
reference

V
ar

ia
bl

e

Mass

Bar

Fig. 4 Inferior reference length of the models

0

2

4

6

8

10

0 1 2 3 4 5

Length (m)

F
re

qu
en

cy
 (

H
z)

Compression axial force effect
Without axial force effect
Tension axial force effect

Fig. 5 Numerical simulation of the influence of the axial force
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with gravitational action. By varying the intensity of the

tensile force, an effort five times a variation of 0.46 % was

noted in the frequency of the smallest element, while

changing the force by a factor of 20 produced an increase

close to 35 % on the longest element. The results can be

seen in Table 3.

The analytical and experimental results are available in

Table 4. The graph in Fig. 6 shows the effect of the normal

force upon the frequency of the physical models.

The graphs in Figs. 7, 8 and 9 compare experimental

results with mathematical models for each influence posi-

tion of axial force.

Table 2 Influence of the axial load by analytical model

L (m) k Simplified mathematical model, frequencies (Hz)

Generalized axial compression load (N) Generalized axial tension load (N)

1 5 10 15 20 1 5 10 15 20

0.20 436 25.580 11.386 8.003 6.496 5.591 25.658 11.528 8.198 6.732 5.863

0.25 546 18.285 8.117 5.686 4.598 3.944 18.378 8.278 5.906 4.864 4.249

0.30 655 13.892 6.146 4.287 3.451 2.946 13.999 6.325 4.529 3.744 3.282

0.35 764 11.005 4.850 3.365 2.694 2.286 11.127 5.046 3.629 3.012 2.650

0.40 873 8.989 3.943 2.719 2.161 1.820 9.126 4.156 3.003 2.503 2.212

0.45 982 7.514 3.279 2.244 1.769 1.475 7.666 3.507 2.548 2.134 1.894

0.50 1,091 6.397 2.774 1.882 1.468 1.210 6.564 3.018 2.205 1.856 1.654

0.55 1,200 5.525 2.379 1.597 1.231 0.999 5.709 2.639 1.939 1.641 1.469

0.60 1,309 4.830 2.063 1.369 1.038 0.825 5.029 2.338 1.729 1.471 1.323

0.65 1,418 4.263 1.805 1.180 0.878 0.679 4.479 2.095 1.559 1.333 1.205

0.7 1,527 3.794 1.590 1.023 0.742 0.551 4.027 1.896 1.420 1.221 1.108

0.75 1,637 3.401 1.409 0.888 0.624 0.436 3.651 1.730 1.304 1.127 1.027

0.80 1,746 3.066 1.254 0.772 0.519 0.326 3.333 1.590 1.207 1.048 0.959

0.85 1,855 2.778 1.120 0.669 0.422 0.208 3.063 1.471 1.124 0.981 0.901

0.90 1,964 2.528 1.003 0.577 0.329 0.063i 2.831 1.369 1.053 0.923 0.851

Table 3 Influence of the axial load intensity

L (m) For the same generalized mass, frequencies (Hz)

Generalized axial tension load (N) Differences (%)

1 5 10 15 20 59 109 159 209

0.20 8.193 8.231 8.279 8.326 8.373 0.46 1.05 1.62 2.20

0.25 5.869 5.911 5.964 6.016 6.068 0.72 1.62 2.50 3.39

0.30 4.470 4.517 4.574 4.630 4.686 1.05 2.33 3.58 4.83

0.35 3.553 3.603 3.665 3.725 3.784 1.41 3.15 4.84 6.50

0.40 2.914 2.967 3.032 3.096 3.159 1.82 4.05 6.25 8.41

0.45 2.448 2.504 2.573 2.639 2.704 2.29 5.11 7.80 10.46

0.50 2.096 2.155 2.226 2.295 2.363 2.81 6.20 9.49 12.74

0.55 1.823 1.884 1.958 2.029 2.098 3.35 7.41 11.30 15.09

0.60 1.606 1.670 1.746 1.819 1.889 3.99 8.72 13.26 17.62

0.65 1.430 1.496 1.574 1.649 1.720 4.62 10.07 15.31 20.28

0.70 1.286 1.354 1.434 1.510 1.582 5.29 11.51 17.42 23.02

0.75 1.166 1.235 1.317 1.394 1.467 5.92 12.95 19.55 25.81

0.80 1.064 1.135 1.218 1.296 1.369 6.67 14.47 21.80 28.67

0.85 0.978 1.051 1.135 1.213 1.287 7.46 16.05 24.03 31.60

0.90 0.904 0.978 1.063 1.142 1.215 8.19 17.59 26.33 34.40
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Table 4 Experimental and

simplified mathematical model

results

L (m) Frequency (Hz)

Compressed bar Tensioned bar Bar as a beam

Experimental

result

Simplified

mathematical

model

Experimental

result

Simplified

mathematical

model

Experimental

result

Simplified

mathematical

model

0.20 6.3477 6.3276 6.5430 6.5656 6.6230 6.4480

0.25 4.4556 4.4729 4.7000 4.7395 4.3700 4.6080

0.30 3.2959 3.3520 3.5710 3.6446 3.4180 3.5020

0.35 2.5024 2.6122 2.6890 2.9291 2.7100 2.7760

0.40 1.9836 2.0925 2.3800 2.4321 2.2220 2.2690

0.45 1.6479 1.7096 1.9840 2.0710 1.8550 1.8990

0.50 1.3428 1.4167 1.7330 1.7992 1.6110 1.6200

0.55 1.1292 1.1855 1.5240 1.5888 1.4160 1.4030

0.60 0.9155 0.9983 1.3430 1.4221 1.2450 1.2300

0.65 0.7935 0.8429 1.2210 1.2875 1.1470 1.0890

0.70 0.6104 0.7110 1.1230 1.1770 1.0500 0.9730

0.75 0.4883 0.5965 1.0250 1.0851 0.9770 0.8770

0.80 0.3662 0.4946 0.9770 1.0075 0.9520 0.7950

0.85 0.3052 0.4011 0.9520 0.9414 0.8790 0.7250

0.90 0.8790 0.8845 0.8300 0.6650
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Fig. 6 Influence of a normal force on the experimental frequencies
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Fig. 7 Compressive force: experimental results and mathematical

model
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Fig. 8 Tension force: experimental results and mathematical model
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Fig. 9 Without normal force: experimental results and mathematical

model
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We conclude that the mathematical expression presented

in this article predicts the fundamental frequency of a

column inlaid in a base with an acceptable error of 3 %. It

is important to note that for the longer models, which are

subject to compression and act as beams, the initial refer-

ence configuration deviates from the assumptions of the

mathematical model. In these cases, it is necessary to

consider the normal force component that acts on the

deflection of the bent bar. Moreover, it is interesting to note

that the experimental activities carry uncertainties such as

the imperfect conditions of support, clamping pressure of

models, centralizations and uprights, initial deformations

of the samples, among others.

A rich comparison that can be made to demonstrate the

validity of the simplified process is a study using analysis

by finite element method (FEM). For FEM the equivalent

situation studied in this work correspond to a non-linear

dynamic analysis using the geometric portion in the com-

plete stiffness matrix of the system. This approach can be

seen in Table 5.

In conclusion, it was demonstrated that simplified

modeling with non-linear effects can obtain similar or

better results than the complex model. It is interesting to

note that the ease of access to sophisticated computational

tools has always given the impression that it is necessary to

model finite element by using CAD/CAE/CFD, giving

many degrees of freedom. However, many engineers often

forget that the basic physical fundamentals are able to

provide simple and inexpensive results, which can be very

effective for analysis.

Studies are being carried out to apply Eq. (20) to actual

structures. The results show that it is possible to use

Eq. (20) in real structures as long as the weighing criteria

are adapted to the geometry of the structure. Moreover, it is

possible to adapt Eq. (20) to cases where there are discrete

masses positioned along the length.
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