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Nuclear alignment: Classical dynamical model for the 2 sU- U system
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Dynamical properties of the U- U system at the classical turning point, specifically the distance of
closest approach, the relative orientations of the nuclei, and deformations have been studied at the sub-

Coulomb energy of E&,b =6.07 MeV/nucleon using a classical dynamical model with a variable moment

of inertia. Probability of favorable alignment for anomalous positron-electron pair emission through
vacuum decay is calculated. The calculated small favorable alignment probability value of 0.116 is found

to be enhanced by about 16%%uo in comparison with the results of a similar study using a fixed moment of
inertia as well as the results from a semiquantal calculation reported earlier.

PACS number(s): 25.70.Bc, 24.10.—i

I. INTRODUCTION

The narrow peaks observed in positron spectra from
the collision of two heavy nuclei at sub-Coulomb energies
[1]are found to correspond to events where electrons and
positrons are emitted back to back in the center of mass
of the colliding system. The e+ peaks are observed in a
narrow range of bombarding energies at the Coulomb
barrier (5.7 —6.07 MeV/nucleon). Several possible ex-
planations of the peak structure are discussed in Ref. [2].
Oberacker [3] has analyzed the effects of nuclear align-
ment on anomalous pair production using a semiquantal
method for the U- U system and found the probabili-
ty for favorable alignment to be only about 10%. A
purely classical dynamical study [4] of nuclear polariza-
tion effects, on the other hand, predicts the favorable
alignment probability to be almost 30% larger than that
predicted by Oberacker. In this paper, we present the re-
sults for the favorable alignment probability, calculated
by using a classical dynamical model with a
deformation-dependent semiclassical variable moment of
inertia. Since at sub-Coulomb energies the excitation en-

ergy of a U nucleus is only a few MeV, rotational de-
gree of freedom turns out to be the most important col-
lective mode of excitation. Using a variable moment of
inertia, which is consistent with the energies of low-lying
rotational energy states, one expects to account for the
softness of the nucleus as it rotates. We also include the
vibrational degree of freedom by including a deformation
potential in the Hamiltonian.

II. FORMALISM

determined by eleven coordinates (q, v=1, . . . , 11),
that is, the coordinates of relative motion (R,8,4), the
Euler angles defining the orientation of the intrinsic prin-
cipal axes of the nucleus with respect to the laboratory
frame, (8;,P;,g;, i=1,2), and the quadrupole deforma-
tions (P;, i=1,2) of the target and projectile nuclei. The
orientation of colliding nuclei at the distance of closest
approach is mainly determined by the infinite-range
Coulomb force. By scattering of U on U at energies
of E&,b=6 MeV/nucleon, one is probing only the outer
part of the nuclear interaction potential V„and it is seen
to have little inhuence on the nuclear alignment already
established at the turning point. As such, for determin-
ing the classical dynamical time evolution of the system
under study, we use an expansion of the Coulomb in-
teraction between homogeneous nonoverlapping charge
distributions up to quadratic term in deformation param-
eter as given in Eq. (A17) of Ref. [5] and do not consider
V„. The deformation potential is given by

(2)

The stiffness parameters C& and collective mass parame-
ters Dp defining the vibrational part of the kinetic energy
are taken from microscopic vibrational model [6].

The rotational kinetic energy is determined by inertia
parameters S(1) and J(2), associated with rotational de-
gree of freedom, of the target and the projectile nuclei,
respectively. We use the variable moment of inertia mod-
el [7] for the calculation of these parameters. In this
model, for a given spin J the moment of inertia SJ of the
nucleus is given by the real root of the cubic equation,

For the study of the dynamical evolution of the U-
U system, we consider the following Hamiltonian: SJ SJSD oJ(J+1)J0=0—, — (3)

H, ))=T+V„+V, + Vp .

The kinetic energy T and the potential energy V are
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~here 2'0 is the ground-state moment of inertia and the
parameter o. provides a measure of the softness of the nu-
cleus. The values of parameters, 30=67% /MeV and
cr =0.00091, are taken from Ref. [7]. The variable mo-
ment of inertia model is mathematicauy equivalent to the
two-parameter Harris model [8].

The time evolution of the coordinates is determined by
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the followin set of clg assical Hamiltonian equatio f
motion:

a ions o
b — 1 83

(4) C = 2.06

where 0 are the mmomenta, conjugate to coordinates q .V' Results from Ref. [3] and Ref. [4] are also shown the a

III. RESULTS AND DISCUSSION

8;=8,+b8, (~/2 8) +c 8(~ —/—2 8, )

variable moment of inertiaFrom our calculation with v

I), we obtain the parameter values

—1.65
(6)

(7)

For the fixed med moment of mertsa calculation (FMI) we get
~ ~

For the numerical solution of cou led e
have used the r

up e equations we
e predictor-corrector method cou led to th

Runge-Kutta a roachpproach. We ensure energy conservation
up to two decimal places along the tra'ector . Th
infinite ran e of
the c

g Coulomb force implies a spec' 1

choice of the initial relative distance R be
pecia care in

ge an projectile nuclei, at the time t=0. To get a
quantitative estimate of the efFect of the re ec o t e range of the

tance of cl
m potentia on the relevant coordinates at th d'-

closest approach, we have studied the variation
of these as a function of Rf R;, using a variable moment of
inertia as well as a Axed moment of inertia for U- U
central collision (l=0).', . The calculation has been carried
out for E& b=6.07 MeV/nu 1e /nucleon, initial deformations

—0.2 ' ' '
a ion angles02 =0.2, and initial orientat

, =40'. The relative coordinate R th
tation an le of

e onen-
ng e of the nucleus with respect to the z axis, 6„

and the deformation parameter, p, at the d'„a t e istance of
c osest approach between the target and the
have been lott

n e proJectile
p o ed as a function of R. as curve (1)

' F'
1(a)-(c). We n

in igs.
e notice that the critical point values of R„

p„and 8, are quite sensitive to the choice of R;. In par-
ticular, the range of variation of 0 as R.
o m, is very large. For example, the value of

at R, =700 fm is almost twice as
large as the 69 value of 7' for R =30 fm. C
s ows a similar variation for the case when a fixed mo-
ment of inertia value of 2 =674' /MeV (e ~ground-state mo-
ment of inertia for U) is used in th 1

resu ts indicate that the initial relative distance h ld b

g than 300 fm or else the results obtained may be
misleading. We choose R.=700 f f hm or t e calculation of
favorable orientation probability.

In Fig. 2(a), curves (1) and (2) show our results for the
orientation angle at the classical turning point, O„versus
initial orientation, 8;( =8& =82), for the U- U

' '
n = I. These curves have been obtained using a

parametrization as given in Ref. [4] tha
' fat is, or the range

g
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FIG. 1. a. ( ) The distance of closest approach R, vs the initial
separation R; between the tar et
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b usin a
moment of inertia calculation (VMI) h 1n w i e curve (2) is obtained

y using a fixed moment of inertia (FMI). (b) The orientation
angle at the classical turnin g point 8, vs the initial separation R;
or the initial conditions as in (a). (c) The def

c assics turning point p, vs the initial separation R; for the ini-

tial conditions as in (a).
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rameters b and c for these having been taken from Ref.
[4]. It is interesting to note that our FMI results, except
for a small deviation at low values of 8;, largely overlap
those from the semiquantal calculation of Ref. [3]. The
inclusion of variable moment of inertia is seen to dimin-
ish the maximum 58= 15.5', at 8; =40 for FMI by about
12%%uo. As such, the favored orientation probability is ex-
pected to enhance somewhat when VMI is used. We may
note that for 8, =40 the average value of angular
momentum associated with the rotational degrees of free-
dom at the turning point is J,= 18% for the VMI calcula-
tion. The earlier conclusion that the nuclei tend to align
themselves with 8, =82=90' is confirmed.

Figures 2(b) and (c) present the distance of closest ap-
proach R, and the deformati'on at the classical turning
point P, as a function of the orientation angle 8, . A sen-
sible degree of correlation between the orientation angle
and the value of other system coordinates at the classical
turning point is observed. The variation in the value of
R„as 8, varies from 0' to 90', is of the order of 1 fm.
The nuclear deformation, on the other hand, shows a
strong dependence on 8, being the largest for the belly-
to-belly and nose-to-nose configurations of the target and
the projectile nuclei, as observed in other calculations.
The mutual polarizing effect of the Coulomb interaction
between the target and projectile nuclei causes the mul-
tipole deformations at the classical turning point to be
much different from the ground-state ones.

As in Ref. [4], we assume that for an initial orientation,
8;, each nucleus has an orientation probability given by
dP =0.5sin8; d8;. Using Eq. [5], we obtain

165
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ec dP =0.5 sin8 1+b——2b8 +c ——8
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—2c8 ——8 d87T

c 2 c C (10)
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Our orientation probabilities, dP/(sin8, d8, ), are plotted
as a function of 8„along with those obtained from pa-
rametrization of the results [Eq. (5) and Eq. (10)] from
Ref. [3] and Ref. [4], in Fig. 3. The relative probability of
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FIG. 2. (a) The orientation angle at the distance of closest ap-
proach 8, vs the initial orientation, 8;(=8&=82), for the U-

'U central collision (1=0), at E&,b=6.07 MeV/nucleon. The
results are a plot of Eq. (5) with parameter sets described in the
text. (b) The distance of closest approach R, vs the orientation
angle 8, for initial orientations 8;(=8&=82) for the U- U
central collision (1=0). (c) The deformation at the distance of
closest approach, P, vs the orientation angle 8, for initial orien-
tations 8;{=81=82) for the U- U central collision (1=0).
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FIG. 3. Orientation probability, dP/(sin8, d8, ) [calculated

by using Eq. (10)] vs 8, for initial orientations 8;(=8,=82) for
U- U central collision (1=0),at El b =6.07 MeV/nucleon.
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0.91:0.20 from VMI calculation, for the occurrence of the
belly-to-belly configuration and the nose-to-nose
configuration, is smaller than the FMI prediction of
0.96:0.17 and the value 0.95:0.15 from Ref. [3]. It is,
however, much larger than the estimated value 0.68:0.28
obtained in Ref. [4]. Considering that the favorable an-
gles of approach for the nuclei must lie in the cones 0' to
30 and 145' to 180', we integrate the orientation proba-
bility, Eq. (10), in these cones to get the total favorable
alignment probability. It is found that our normalized
r'esult of 0.104 from FMI calculations, for one nucleus to
be aligned favorably, matches closely with the value of
about 0.1 reported by Oberacker, whereas the inclusion
of a variable moment of inertia gives a value of 0.116 that
is an enhancement of about 16% in comparison with the
same. The VMI calculation prediction for favorable
probability is, however, considerably lower than that
given in Ref. [4].

We conclude therefore that the classical dynamical ca1-
culation with a deformation-dependent moment of inertia
predicts a small enhancement in the favorable orientation
probability at the classical turning point for the U- U
system. As a consequence, the predicted nuclear cross
section for the e+ peak in U+ U is expected to be some-
what larger, but still much smaller than that from the ex-
periment. A fixed moment of inertia calculation, on the
other hand, is almost equivalent to the semiquantal calcu-
lation of Ref. [3]. These results are expected to also aft'ect

the cross-section estimates for the sub-Coulomb transfer
of one neutron in U- U, as these depend on the prob-
ability of occurrence at R, of the various oriented
configurations in collisions between various unpolarized
ions.
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