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Abstract We consider the well-known Sprott A sys-
tem, which is a special case of the widely studied Nosé—
Hoover oscillator. The system depends on a single real
parameter a, and for suitable choices of the parameter
value, it is shown to present chaotic behavior, even in
the absence of an equilibrium point. In this paper, we
prove that, for a # 0, the Sprott A system has neither
invariant algebraic surfaces nor polynomial first inte-
grals. For a > 0 small, by using the averaging method
we prove the existence of a linearly stable periodic
orbit, which bifurcates from a non-isolated zero-Hopf
equilibrium point located at the origin. Moreover, we
show numerically the existence of nested invariant tori
surrounding this periodic orbit. Thus, we observe that
these dynamical elements and their perturbation play
an important role in the occurrence of chaotic behavior
in the Sprott A system.
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1 Introduction and statement of the main results

In the last decades, several chaotic differential systems
have been reported in the literature, such as the Lorenz
system [18], Chen system [5], Lii system [19], Rossler
system [23] and many others. Recently, even differen-
tial systems without equilibrium points were shown to
have chaotic behavior [10,13,26,30,31].

In this paper, we consider the polynomial differential
system

i=y, y=-x-yz i=y-—a e))
wherea € R and the dot denotes derivative with respect
to the independent variable ¢, usually called time. In
[26], Sprott presented system (1) with a = 1 as Case
A in a list of nineteen distinct differential systems with
quadratic nonlinearities and having chaotic behavior. In
this way, this system is usually called Sprott A system.
Observe that for @ = 1 system (1) has no equilibrium
points. The Sprott A system is a very important differ-
ential system in nonlinear dynamics because, beyond
its theoretical importance, it has been used as source
of inspiration for finding many new rare chaotic flows,
see for instance [28].

From the Physical point of view, the Sprott A system
is a special case of the well-known and widely studied
Nosé—Hoover oscillator [8,21,22] as pointed out by
Hooverin [9]. Indeed, considering, fora > 0, the linear
change of variables
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x=vaq, y=+vap, z=¢ (2)
and takinga = « into system (1), it becomes equivalent
to the equations used in [8,22] to describe a single one-
dimensional harmonic oscillator, called Nosé—Hoover

oscillator, given by

Gg=p. p=-q—pE E=a(p’—1), 3)

where g and p are the coordinate and momentum of the
oscillator, respectively, & is a friction coefficient, and
« is a coupling positive real parameter (for details, see
[22]). More recently, some generalizations of this oscil-
lator were studied by many authors, see for instance
[27] and references therein.

In [22], Posch, Hoover and Vesely developed a
comprehensive analytical and numerical study of the
dynamics of system (3) using standard techniques, as
Lyapunov exponents and Poincaré phase space sec-
tions. In Sect. IIT of that work, among other facts, the
authors numerically identified the existence of several
types of periodic orbits as well as the existence of KAM
tori in the phase space of system (3), for certain posi-
tive values of the parameter «. They also realized that,
for larger values of «, both regular and chaotic solu-
tions can be generated and the regular solutions are
generally quasi-periodic and trace out KAM tori in the
phase space. Indeed, in Sect. IV of [22], by studying the
Poincaré sections, the authors showed that, for o suffi-
ciently large, system (3) presents large enclosed islands
of stability, consisting of regular orbits (periodic and
quasi-periodic), surrounded by chaotic seas. The frac-
tal dimension and Lyapunov instability of these chaotic
regimes were also studied in [22]. As fora # 0 systems
(1) and (3) are equivalent, these types of dynamics also
appear in system (1), as we shall see ahead.

In the present paper, we study analytical and numer-
ically three aspects of system (1): the nonexistence of
invariant algebraic surfaces and polynomial first inte-
grals for a # 0, which is proved using some results
of Darboux theory of integrability; the existence of a
(small) linearly stable periodic orbit bifurcating from
the origin, for a > 0 sufficiently small, which is proved
using the averaging method; and the existence of nested
invariant tori surrounding this periodic orbit. In this
way, we intend to present a more detailed study about
the interesting dynamical phenomena observed in sys-
tem (1) (and, consequently, of system (3)). As we are
considering system (1) from a theoretical point of view,
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we begin our study taking a = 0 (as in [20]). In this
case, system (1) is not equivalent to system (3), but
its phase space has an interesting geometric structure,
which we use as the starting point to develop our anal-
ysis.

Differential systems having chaotic behavior as sys-
tem (1) usually present a very complicated dynamics
and, consequently, are difficult to be studied. One of
the tools used to analyze their dynamics is the deter-
mination of algebraic surfaces embedded in R® which
are invariant under their flow. These surfaces are called
invariant algebraic surfaces, whose precise definition
is given below.

Let f € Clx, y, z] be a non-constant polynomial.
The surface f(x,y,z) = 0 is an invariant algebraic
surface of system (1) if there exists a polynomial K €
Clx, vy, z] such that

_pdf 0 RS
X =P +0T TR =

Kf, “)
where X = (P, Q, R) = (v, —x — yz, y*> —a) is the
vector field associated with system (1). The polyno-
mial K is called the cofactor of the invariant algebraic
surface f = 0. If K = 0, then we say that f is a
polynomial first integral of system (1).

In [20], Messias and Reinol proved that, for a = 0,
the phase space of the Sprott A system is foliated by the
invariant spheres xz+y2+z2 = r2, withr > 0, because
it has the polynomial first integral f(x,y,z) = x> +
y2 + z2. They also showed the existence of infinitely
many heteroclinic orbits of south pole—north pole type
on each invariant sphere, as shown in Fig. 1. Here, we
prove the following result.

Theorem 1 If a # 0 in differential system (1), then
the system has neither invariant algebraic surfaces nor
polynomial first integrals.

Theorem 1 is proved in Sect. 2. This result is also
valid for system (3) with & # 0, due to its equivalence
with system (1) in this case.

By varying the value of parameter a in system
(1), Messias and Reinol performed in [20] a detailed
numerical analysis of this system when the spheres
x? + y% 4+ z2 = r? are no longer invariant algebraic
surfaces of system (1); consequently, the heteroclinic
orbits are destroyed. For @ > 0 small enough, they
numerically detected the existence of nested invariant
tori in a neighborhood of the origin and, for larger val-
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Fig. 1 Flow of system (1) with a = 0 restricted to the invariant spheres x> + y? +z2 = r>fora0 <r < 2,br =2and ¢ r > 2. Note
that the heteroclinic orbits on the invariant spheres connect a pair of foci in (a), improper nodes in (b) and nodes in (c)

ues of a, these tori are surrounded by a chaotic sea. In
particular, they observed the occurrence of chaos even
fora < 1, more precisely for a = 0.4 (for more details
see [20]). The study developed here complements and
clarifies the results presented in [20,22] and helps to
better understand the interesting dynamics phenomena
observed in Sprott A system.

For a = 0, system (1) has a line of equilibria at the
z—axis and the origin is a non-isolated zero-Hopf equi-
librium point. We recall that an (isolated) equilibrium
point of a differential system in R is a zero-Hopf equi-
librium if it has one zero and a pair of purely imaginary
eigenvalues. As for a = 0 the origin of system (1) is a
non-isolated equilibrium point with eigenvalues 0 and
=+ i, we call it a non-isolated zero-Hopf equilibrium
point. In [17], by using the averaging theory of sec-
ond order, the authors proved the existence of one or
two limit cycles bifurcating from a non-isolated zero-
Hopf equilibrium point in certain families of three-
dimensional differential systems.

Here, by using the averaging theory of first order we
prove that, for a > 0 small enough, a small amplitude
periodic orbit bifurcates from the origin of system (1).
Moreover, by numerical simulations, we show the exis-
tence of nested invariant tori surrounding this periodic
orbit, as shown in Fig. 2. More precisely, the following
result holds.

Theorem 2 For a > 0 small enough, there exists a
linearly stable periodic orbit in the phase space of sys-
tem (1), which tends to the origin as a — 0 and it is
surrounded by nested invariant tori.

Theorem 2 is proved in Sect. 4. From Theorem 1, it
follows that the invariant tori surrounding the periodic
orbit are not algebraic surfaces. Also, the periodic orbit

and the nested invariant tori described in Theorem 2
are very small, as can be seen in Fig. 2. Indeed, they
bifurcate from the origin when the parameter value is
varied from a = 0 to a > 0 small; on the other hand,
they shrink into the origin as @ — 0. In this way, the
periodic orbit and the invariant tori of Sprott A system
are much smaller than the periodic orbits and invariant
tori of system (3), presented in Figs. 1 to 7 of [22]. It
happens because the geometric structure of the phase
space of Nosé—Hoover oscillator (3) witha = 0 is quite
different from the geometric structure of the Sprott A
system with a = 0, described above (for more details,
see [20]). In fact, for @ = 0 system (3) has the invariant
planes & = ¢ € R, on which the dynamics are given by
the following planar system

g=p, p=—q—pc.

Observe that, on the plane & = ¢ = 0, the origin is a
center. It can be shown that, for @ > 0 small, a periodic
orbit bifurcates from the circle x>4y? = 2 belonging to
this invariant plane (see [14]). Hence, the periodic orbit
of system (3) which exist for @ small is “big”, com-
pared to the periodic orbit of the Sprott A system with
small a. The difference in the scales of periodic orbits
and invariant tori of systems (1) and (3) are due to the
linear change of variables (2), which gives the equiva-
lence between these systems. Therefore, the change in
scale must be taken into account when comparing the
dynamics of Sprott A system and Nosé—Hoover oscil-
lator.

It is known that, generically, a zero-Hopf (or fold-
Hopf) bifurcation takes place in an isolated zero-Hopf
equilibrium point of a two-parameter family of three-
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Fig. 2 Nested invariant tori surrounding the periodic orbit of
system (1) fora = 10~4

dimensional differential systems. In a small neighbor-
hood of this type of equilibrium point, the unfolding can
exhibit different topological types of dynamics, as the
two parameters vary. Depending on the system, even
a branch of torus bifurcations (Neimark-Sacker bifur-
cation) can emanate from the zero-Hopf equilibrium
point and, in some cases, the zero-Hopf bifurcation can
imply a local birth of chaos, as stated for instance in
[1,2,25]. For more details about this type of bifurca-
tion, see [6,7,12,25]. System (1) depends on a single
real parameter a and, for a = 0, the origin is a non-
isolated zero-Hopf equilibrium point. Hence, it cannot
exhibit a complete unfolding of a classical zero-Hopf
bifurcation. Therefore, the bifurcation that occurs in the
origin of Sprott A system as the parameter a is varied is
one of the possible bifurcations which can occur in the
complete unfolding of such a degenerate equilibrium
point. In particular, it is different from the bifurcations
described in [17] for a non-isolated zero-Hopf equilib-
rium point.

We observe that the chaotic seas described in [20]
and in [22] arises due to the destruction of some invari-
ant tori surrounding the periodic orbit, as the parameter
a is varied. Hence, the emergence of a periodic orbit
from the origin and the existence of nested invariant
tori around it play an important role in the occurrence
of chaotic behavior in system (1).

This paper is devoted to prove Theorems 1 and 2,
and it is organized as follows. In Sect. 2, we prove
Theorem 1. In Sect. 3, we present some basic aspects
of the averaging theory, which will be used in Sect. 4 to
prove Theorem 2. Some concluding remarks are given
in Sect. 5. Furthermore, some numerical results are pro-
vided along the text, in order to study the chaotic behav-
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ior of system (1), to corroborate the analytical results
obtained and to show the existence of KAM tori.

2 Proof of Theorem 1

Consider a # 0 in system (1). Suppose that f = 0 is
an invariant algebraic surface of degree n > 1 of this
system with cofactor K = ko + k1 x + kyy + k3 2,
with kg, k1, kp, k3 € C. Assume that K is not identi-
cally zero. Take f as the sum of its homogeneous parts,
thatis f = Y ", fi, where each f; is a homogeneous
polynomial of degree i, fori =0, ..., n. Assume that
n > 1 (we can easily verify that system (1) has no
invariant planes). From the definition of invariant alge-
braic surface, f must satisfy equality (4), that is

af of 2 af
y$+(—x—yz)@+(y —a)g
=(ko+kix+ky+k3z) f. %)

Computing the terms of degree n+4-11in (5), we obtain

a a
_yzﬁ+y2ﬁ:(k].x+k2y+k3z)fn (6)
dy 0z

Solving this partial differential equation, we get
fa(x,y.2) = Cu(x, y* +2%)

§(x,y.2)
5 (2y2+2z2+22\/y2+z2) )

y

X exp (— ko arctan <X)) y_k3,
Z

where C, is an arbitrary function in the variables x and
y2+z%and g(x, y,2) = kix//y?+2z2. As f, is a
homogeneous polynomial of degree n, we must have
k1 = ko = 0and k3 = —m, with0 < m < n aninteger.
Hence, f,(x,y,2) = Cu(x, y* +2%) y™.

Now, computing the terms of degree n in (5), we
obtain

8fn—l 2 8fn—] afn afn
ye dy ty 0z +y3x xay

=ko fu —mz fu-1. 0

We consider two cases: m = 0 and m # 0. Assuming
that m = 0 in (7) and solving this partial differential
equation for f,_1, we get

J
Soo1(x,y,2) = Gy (x, y2 + zz) + a—{: arctan <§)

0fn
+h(y,2) (x — +ko fn> ,
dy
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where C,_1 is an arbitrary function in the variables x
and y2 + zz, and

1 n (Zy2 +222 4+ 22/ + 12)

2 +22 y

h(y,z) =
(®)

Since f,—1 is a homogeneous polynomial of degree
n — 1, we must have

0
2 ko =0,
dy

whose solution is
koy
fu(x,y,2) = Culx, z) exp (_ T) ’

where C,, is an arbitrary function in the variables x and
z. Hence, ko = 0, because f; is a homogeneous poly-
nomial. Thus, K = 0, what is a contradiction, since we
are considering K not identically zero.

Now, consider m # 0inthe partial differential equa-
tion (7). Without loss of generality, we can assume that
m = 1. Solving the partial differential equation for
Ja—1, we get

fn

foo1(x,9,2) = Com1 (6, Y2 +22) y — h(y,2) y .

z 9fn )
A A5 x I + k b

y2 + Z2 ( 8y 0 f n

where C,_1 is an arbitrary function in the variables x

and y% + z2, and h(y, z) is given by (8). Since f,_1 is
a homogeneous polynomial, we must have

df;
x5y Thofu=Fe.y.2) 7’ +2,
where F' is an arbitrary polynomial. The solution of
this partial differential equation is

ko
fa(x,y,2) = Cp(x, z) exp <_Ty>
) k(% (y2 +Z2) +2x2— 2koxy

+F(x, v,z
(x,y pE

’

where C, is an arbitrary function in the variables x and
z. Note that, in this case, f; is not a polynomial for
ko # 0. Consider F(x,y,z) = kj F(x,y,z), where
F is an arbitrary polynomial. Then, taking kyp = O,
we obtain that f;, = C,(x, z). As we also have that
fa(x,v,2) = Culx, y2 + z%) y™ (solution of the par-
tial differential equation (6)) and we are considering

m # 0, it follows that f;, = 0, which is a contradic-
tion, because by hypothesis f is a polynomial of degree
n. Therefore, for a # 0, system (1) has no invariant
algebraic surfaces.

Now, suppose that the cofactor K is identically zero,
that is f is a polynomial first integral of system (1).
Then, f satisfies equality (5) with ko = k1 = ko =
k3 = 0. In this case, computing the terms of degree n
in (5), we obtain

8fnfl 2 afnfl afn afn
z 3y +y 92 —|—y¥—x¥_0.
Solving this partial differential equation for f;,_1, we
obtain

fo1=Cpa(x, )’2 + Zz)
+ % arctan (X) + h(y,2)x %,
ox z dy

where C,,_1 is an arbitrary function in the variables x
and y% + z2, and h(y, z) is given by (8). As f,_1 is
a homogeneous polynomial, we must have df,/dx =
df,/0y = 0. Hence, f,(x,y,z) = cZ", with ¢ € C,
because f; is a homogeneous polynomial of degree n
which only depends on the variable z. Now, computing
the terms of degree n — 1 in (5), with kg = k| = kp =
k3 = 0, we obtain

8fn—2 2 8fn—2 8fn—l
vz dy +Y 0z Ty ox
o Oh

ay 0z

Solving this partial differential equation for f;,_», we
get

fa—2(x,y,2) = Cpoa(x, y* +2°)
Ofn—
+ J;n L arctan (X>

X z

afnfl +a % ) ’

ay 9z

where C,,_; is an arbitrary function in the variables x
and y2 + 72, and h(y, z) is given by (8). Since f,_»
is a homogeneous polynomial and remembering that
Ju(x,y,2) = cZ", we must solve the partial differen-
tial equation

+h(y, z) (x

whose solution is

n—1

Z
fo—1(x,y,2) =Ch_1(x,2) —acn Y .
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Since f,,—1 is a homogeneous polynomial, a # 0 (by
hypothesis) and n > 1, we must have ¢ = 0 and,
consequently, f,, = 0, what is a contradiction, because
f is a polynomial of degree n. Therefore, for a # 0,
system (1) has no polynomial first integrals. This ends
the proof of Theorem 1. O

3 Averaging theory of first order

In this section, we give a result from the averaging

theory, which will be used to prove the existence of the

periodic orbit stated in Theorem 2. A nice introduction

to this theory can be found in [24], while recent works

which extend and improve it are given in [3,4,15,16].
Consider the initial value problems

X = ¢ Fi(t,x) + &2 F(t,x,¢), x(0)=xp, 9)
and
y=¢g(), y(O) =xo, (10)

with x, y and x¢ in some open subset §2 of R",
t € [0,00) and ¢ € (0, g9], for some fixed ¢g > 0
sufficiently small. Assume that F| and F> are periodic
functions of period 7 in the variable #, and set

1 T
g(y)=7/ Fi(t,y)dt.
0

Denote by Dyg all the first derivatives of g and by Dxxg
all the second derivatives of g. Under these assump-
tions, the following result holds.

Theorem 3 Assume that Fy, DxFi, Dxx F1 and Dx F>
are continuous and bounded by a constant independent
of ¢ in [0, 00) x £ x (0, &), and that y(t) € 2 for
t € [0, 1/¢]. Then, the following statements hold.

1. Fort € [0, 1/¢], we have x(t) — y(t) = O(e) as
e — 0.

2. If p # Ois an equilibrium point of system (10) such
that det[Dyg(p)] # 0, then there exists a periodic
solution ¢(t, €) of period T for system (9) which
is close to p and such that $(0,e) — p = O(¢) as
e — 0.

3. The stability of the periodic solution ¢ (¢, €) is given
by the stability of the equilibrium point p.

For a proof of Theorem 3, see [6,29].
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4 Proof of Theorem 2

In this section, we use Theorems 3 to prove Theorem
2.

Proof of Theorem 2 Before applying Theorem 3 in dif-
ferential system (1), we need to write its linear part at
the origin into the real Jordan normal form. After a
rescaling of the time ¢, system (1) can be written as

X=-y, y=x+yz i=-y'+a (11)

Now, writing system (11) in cylindrical coordinates
(r,0,z), where x = r cos6, y = r sin0, it becomes
P =rz sin? 0,

6 =z sinf cosd + 1,

t=a—r?sin’6. (12)
Considering the change of variablesr = ¢ R,z = ¢ Z,
with ¢ = \/a > 0, system (12) can be written as

R = & R Z sin? 0,

6 =¢eZsinb cosb + 1,

Z =¢(1 — R? sin?0).

Taking 6 as the independent variable and doing the

Taylor expansion of order 2 of the obtained equations
ate = 0, we get

dR
50 —¢RZsin%0 + (9(82),

dz

== R? sin20) e + O(e?). (13)

Using the notation of Theorem 3, consider

< (2)

t=20,
T =2m,
F6. %) R Z sin’6
, X) = . .
! 1 — R2sin%0
In this way,
1

1 2 —RZ
g(y)=2—/ Fi@,ydo=| 2

T Jo l_ERz

We have that g(y) = 0 has the unique real solution
p = (R, Z) = (+/2,0) (remember that R > 0), which
satisfies det[ Dyg(p)] = 1 # 0. Then, by Theorem 3, it
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follows that, for ¢ > 0 sufficiently small, system (13)
has a periodic solution ¢(0,¢e) = (R0, ¢), Z(9, €))
such that ¢ (0, &) — (ﬁ, 0) as ¢ — 0. Moreover, the
eigenvalues of the matrix [Dyg(p)] are £i. Hence, the
obtained periodic solution is linearly stable, that is, any
solution close enough to this periodic solution remains
close enough forever, without tending to it.

Going back to differential system (1), we get that,
for a > 0 sufficiently small, such system has a periodic
solution of period approximately 27 given by

(a)

0.00004—

0.00002—

-0.00002—

-0.00004—

-0.010 -0.010

-0.005

x(t) = ~2a cost + O(a),
y(t) = —+/2a sint + O(a),
z(t) = O(a).
Note that this solution tends to the origin as a — 0.
Therefore, for a > 0 sufficiently small system (1) has
a linearly stable periodic orbit which emerges from the
origin. In Fig. 3 is drawn the periodic orbit of system
(1) for a > 0 small.

As the obtained periodic orbit is linearly stable,
orbits sufficiently close to it remain near of the periodic

(b)

0.015
0.0104

0.005

-0.005 4

-0.010+

-0.0154

Fig. 3 a Periodic orbit of system (1) near of the origin for a = 10~* and b its x-coordinate in function of the time ¢

0.005
Vv 0.015 0.015 X

0.02

X

-0.02

Fig. 4 a An orbit of system (1) with initial condition on one of the invariant tori and b its x-coordinate in function of the time ¢. The
orbit is dense and moves quasi-periodically on the invariant torus. Here, a = 107#
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orbit without tending to it. In this way, studying numer-
ically the dynamics of system (1) in a neighborhood of
the periodic orbit we observe the existence of nested
invariant tori. In Fig. 4 is drawn an orbit of system (1)
for a = 10™* with initial condition on one of these
invariant tori. This fact is corroborated by the Poincaré
sections in Fig. 6a—c, a central fixed point (representing
the periodic orbit) is surrounded by concentric closed

Fig. 5 a Orbits of system
(1) with initial condition on
an invariant torus (blue) and
in the chaotic sea (red) and
their projections b on the
xy-plane and ¢ on the
xz-plane. Parameter value:
a = 10*. (Color figure
online)

curves (nested invariant tori). Moreover, yet by numer-
ical simulations, we note that orbits are dense and move
quasi-periodically on these tori. O

The existence of nested invariant tori was also
observed in [20,22], and in the last one authors called
them KAM tori.

Fig. 6 Poincaré section of system (1) in a neighborhood of the periodic orbit for a a = 0.01, ba = 0.25 and ¢ a = 0.4. In cases
(a)—(c), we consider the same initial conditions, which are represented in different colors. (Color figure online)
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0.64

0.5+

0.6 0.7 0.8 0.9 1.0 1.1

Fig. 7 Regular islands in the Poincaré section of system (1) for a = 0.4 (Fig. 6¢)

4.1 Chaotic behavior

For suitable values of the parametera > 0, itis possible
to detect chaotic behavior in system (1) (see [20,26]).
In these cases, there is a chaotic sea coexisting with the
nested invariant tori described in Theorem 2. In Fig. 5
are drawn in red one orbit passing by the chaotic sea
and in blue one orbit belonging to one of the invariant
tori of system (1), for a = 0.4. The coexistence of
chaotic seas and invariant tori in the Sprott A system
was also observed in [11] for ¢ = 1 and in [22] for the
equivalent Nosé—Hoover oscillator for certain values of
the parameter «.

In Fig. 6 is drawn the Poincaré section of system
(1) in a neighborhood of the periodic orbit for different
parameters values, that is, @ = 0.01, a = 0.25 and

a = 0.4. The numerical simulations shown in Fig. 6
confirm the existence of nested invariant tori (repre-
sented by the closed curves ) around the periodic orbit
(represented by the central fixed point surrounded by
these closed curves). Encompassing the most external
invariant torus in that figure, we can see a “turbulent”
region which becomes chaotic for suitable choices of
the parameter. Indeed, for a = 0.25 (Fig. 6b) it is easy
to see some chaotic seas surrounding islands of regular
motions, formed by periodic and quasi-periodic orbits
on the invariant tori, which indicate the complicated
dynamics of system (1) and provide strong evidences
of chaotic behavior. This can also be observed, although
less evidently, for a = 0.4 (Fig. 6¢). For a better view-
ing of such islands in this case, see Fig. 7.
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Fig. 8 Orbit with initial (a)
condition (0, 0.04, 0) for a

0.047 S
a=0,ba=10"*and ¢ 1 y 22 \
-2 i 7 0.03] %% S 2N A
a = 10™~. The invariant 0.02-] ;“‘:’ﬁ—.—“ _.':‘e.
: <] Ko <>
sphere (a) evolves into an 0.01 ,‘0:0.‘—-——”0.« «.0::‘1
invariant torus (b) which T B3 e oY
o H < > <> /
ists 1l variati z ] ',0.%_,-—_—-_‘"% oo 5K
persists for small variations 0.01 W T
b ¢ . . .“ Y, > e = %
of the value of parameter a 0.02] K "‘ & = >4
~0.021 — =350 Y 0
(C) i N

5 Concluding remarks

In this paper, we prove that, for a # 0, the Sprott A
system, which is a special case of the Nosé—Hoover
oscillator, has neither invariant algebraic surfaces nor
polynomial first integrals. For a > 0 small, there exist
a linearly stable periodic orbit, which emerges from
a non-isolated zero-Hopf equilibrium point located at
the origin, and nested invariant tori around this periodic
orbit. The results obtained here confirm what is stated
in [29]: around a linearly stable periodic orbit, there
are tori on which the orbits move quasi-periodically.
Therefore, in synthesis, the concentric invariant spheres
which exist for the Sprott A system when a = 0 (see
[20]) evolve into nested invariant tori for a > 0 suffi-
ciently small (see Fig. 8). Note that from Theorem 1,
these tori are not invariant algebraic surfaces. For suit-
able choices of the parameter value a, it is possible to
detect chaotic behavior in system (1) [20,26], which
is corroborated by the Poincaré sections in Fig. 6a—
¢, where we can observe chaotic seas coexisting with
islands of regular motion. The same type of results was
numerically obtained in [22] for the Nosé—Hoover har-
monic oscillator, as pointed out along the text. We can
conclude that the existence of a periodic orbit bifurcat-
ing from the origin and nested invariant tori around it
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consists of basic dynamical elements which lead to the
occurrence of chaotic behavior in the Sprott A system
as well as in the Nosé—Hoover oscillator.
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