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The problem of signal tracking in discrete linear time invariant systems, in the presence of a
disturbance signal in the plant, is solved using a new zero-variation methodology. A discrete-time
dynamic output feedback controller is designed in order to minimize the H∞ norm between
the exogen input and the output signal of the system, such that the effect of the disturbance is
attenuated. Then, the zeros modification is used to minimize the H∞ norm from the reference
input signal to the error signal. The error is taken as the difference between the reference and the
output signal. The proposed design is formulated in linear matrix inequalities (LMIs) framework,
such that the optimal solution of the stated problem is obtained. The method can be applied to
plants with delay. The control of a delayed system illustrates the effectiveness of the proposed
method.

1. Introduction

In a control systems theory, the design of controller using pole placement of closed loop
discrete-time systems can be easily done. In [1] a controller using pole placement is used to
obtain an exact plot of complementary root locus, of biproper open-loop transfer functions,
using only well-known root locus rules. However, the problem of zero placement is not very
much studied by the control researchers. In [2] a discrete-time pole placement is obtained by a
control design technique that uses simple and multirate sample. The methodology proposed
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in [3] preserves the H2 state feedback controller optimality by pole placement in a Z plain
region specified in design. In the field of discrete-time systems pole placement we find [4],
where discrete adaptative controllers are designed considering arbitrary zero location. Also,
in [5] a class of nonmodeled dynamics is controlled using a zero placement.

In [6] a methodology is proposed using zero and pole placement for discrete-time
systems, to obtain the signal tracking and disturbance rejection, respectively. However, for
the signal tracking problem, when a state feedback estimator is proposed, a modification
occurs in H∞-norm value obtained with the initial controller that provides the disturbance
rejection. Themethodology proposed in this paper has the advantage of maintaining theH∞-
norm value obtained with the initial controller for the signal tracking problem.

The problem of signal tracking, in the presence of disturbance signal for continuous-
time plant, was solved in [7], using a zero variation methodology. A methodology with
a simpler mathematic formulation is proposed in [8]. The signal tracking problem with
disturbance rejection in discrete-time systems is solved by an analytic method in [9], however,
the mathematic formulation is complex and a frequency selective tracking is not presented as
proposed in this manuscript. In [10] the use of linear matrix inequalities (LMIs) is considered
in design of controllers, filters and stability study. Also, in [11], LMIs are used for the design
of a dynamic output feedback controller in order to guarantee the asymptotic stability of a
continuous-time system and minimize the upper bound of a given quadratic cost function.
Furthermore, the LMI formulation has been used in several engineering problems (see, e.g.,
[12–20]).

This manuscript proposes a formulation of a signal tracking with disturbance rejection
optimization problem for discrete-time systems in the linear matrix inequalities framework,
such that the optimal solution of the stated control problem is obtained. The proposedmethod
is simpler than the other tracking techniques, and the main result is that when the problem
is feasible the optimal solution is obtained with small computation effort, as the LMIs can
be solved using linear programming algorithms, with polynomial convergence. The software
MATLAB [21] is used to find the LMI solutions, when the problem is feasible. The control of
a delayed system illustrates the effectiveness of the proposed method.

2. Statement of the Problems

Consider a controllable and observable linear time-invariant multi-input multi-output
(MIMO) discrete-time system,

x(k + 1) = Ax(k) + Buu(k) + Bww(k),

y(k) = C1x(k),

z(k) = C2x(k), x(0) = 0, k ∈ [0;∞),

(2.1)

where A ∈ �n×n, Bu ∈ �n×p, Bw ∈ �n×q, C1 ∈ �m×n, C2 ∈ �m×n, x(k) is the state vector, y(k)
is the output vector, u(k) is the control input and w(k) is the disturbance input (exogenous
input).

Problem 1. The disturbance rejection problem for discrete-time systems, using the dynamic
output feedback of the system described in (2.1), is the following: minimize the upper bound
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Figure 1: Discrete-time optimal control system with pole placement and zero modification.

of H∞ norm from the exogenous input w(k) to the output z(k). In this context, the objective
is to design a controller H∞, Kc(z), that attenuates the effect of disturbance signal in the
output of the system. And in the tracking process, it is needful to design the controllers M
and N that minimize the H∞ norm between the reference input r(k) and the tracking error
r(k) − z(k).

Remark 2.1. The problems of weighted disturbance reduction and weighted reference
tracking are closely related to the above one and will be addressed in Section 5.

Remark 2.2. The block diagramof the control process used in this manuscript to solve Problem
1 is given in Figure 1, where Kc(z) = Cc(zI −Ac)−1Bc is a H∞ dynamic output feedback
controller, the controllersM andN were used to solve the zero variation problem in order to
obtain a tracking system, r(k) is the reference input signal.

The state space equation of the control system shown in Figure 1 can be written as:

[
x(k + 1)

xc(k + 1)

]
=

[
A BuCc

BcC1 Ac

][
x(k)

xc(k)

]
+

[
BuN

M

]
r(k) +

[
Bw

0

]
w(k),

y(k) =
[
C1 0

][ x(k)
xc(k)

]
,

z(k) =
[
C2 0

][ x(k)
xc(k)

]
,

e(k) = r(k) − z(k) = r(k) − [
C2 0

][ x(k)
xc(k)

]
.

(2.2)
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Rewriting the system (2.2) in a compact form, it follows that:

x(k + 1) = Amxm(k) + Bmr(k) + Bnw(k),

e(k) = −Cmx(k) +Dmr(k),

z(k) = Cmx(k),

(2.3)

where

xm(k) =

[
x(k)

xc(k)

]
, Am =

[
A BuCc

BcC1 Ac

]
, Dm = 1, (2.4)

Bm =

[
BuN

M

]
, Bn =

[
Bw

0

]
, Cm =

[
C2 0

]
. (2.5)

Using the Z-transform in order to solve the system (2.3), consider the initial conditions
equal to zero. One obtains the transfer function between input signals (reference input
and exogenous input) and the measured output of the system as showed in the following
equation:

Z(z) = Cm(zI −Am)−1BmR(z) + Cm(zI −Am)−1BnW(z). (2.6)

For the transfer function fromw(Z) to z(Z) in (2.6), theminimization ofH∞ norm is obtained
with the initial design of H∞ controller, that implies in the minimization of the perturbation
effect in to the system output.

Figure 1 shows the addition of the termMr(k) in the structure of theKc(z) controller.
The purpose of the controllerM is only to change the zeros of the transfer function from r(k)
to u(k) and it does not change the poles obtained in the initial design of Kc(z). The transfer
function from W(z) to Z(z) is not changed by N or M, according to (2.4) and (2.5). In this
way the performance of theH∞ norm controller is not affected.

For the optimal tracking design, the relation between error signal and reference signal
described in (2.7) is considered, making the perturbation signalW(z) equal to zero in (2.6),

Hm(z) =
E(z)
R(z)

= −Cm(zI −Am)−1Bm +Dm. (2.7)

In this case, using the zero modification one can design a tracking system that minimizes the
H∞ norm between the reference input r(k) and the tracking error r(k) − z(k). In Section 4,
motivated by the work in [22], we show that M and N modify the zeros from r(k) to u(k).
The process of the zerosmodification does not interfere in the disturbance rejection. Therefore
in agreement with (2.6), Bm has no influence on the transfer function from W(z) to Z(z). In
(2.6) one uses the zeros location, by the specifications of theN andM in Bm, in the process of
minimization of the H∞ norm of the transfer function between the reference signal and the
tracking error.
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3. H∞ Dynamic Output Feedback Controller Design

The following theorem leads to a new method to design the Kc(z) in a LMI framework,
and the goal is to attenuate the effects of exogenous signal in the output of discrete-time
systems. By using [23], a pole placement constraint region with radius r and center in (−q, 0)
is required and used in this work to provide the designer with an expedite way to keep the
controller gains within appropriate bounds.

Theorem 3.1. Consider the system (2.1) with dynamic output feedback by the H∞ upper bound
controller, Kc(z). Then the optimal solution of theH∞ norm between the input w(k) and the output
z(k), with pole placement in a region of radius r and center in (−q, 0) can be obtained from the solution
of the following LMI optimization problem,

‖H‖2∞ =min μ

s.t.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R I 0 Bw AR + BuCj A

I S 0 SBw Aj SA + BjC2

0 0 I Dn C2R C2

B′
w B′

wS D′
n μI 0 0

RA′ + C′
jB

′
u A′

j RC′
2 0 R I

A′ A′S +C′
2B

′
j C′

2 0 I S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0,

(3.1)

⎡
⎢⎢⎢⎢⎢⎣

−Rr −Ir AR + BuCj + Rq A + Iq

−Ir −Sr Aj + Iq SA + BjC1 + Sq

RA′ + C′
jB

′
u + Rq A′

j + Iq −Rr −Ir
Iq +A′ A′S + C′

1B
′
j + Sq −Ir −Sr

⎤
⎥⎥⎥⎥⎥⎦ < 0 (3.2)

[
R I

I S

]
> 0, (3.3)

where, R = R′ ∈ �n×n, S = S′ ∈ �n×n,Aj , Bj , Cj andDj in (3.1), (3.2), and (3.3) are the set of LMIs
optimization variables. The radius r and center in (−q, 0) are the pole placement constraints illustred
in Figure 2

For solution of (3.4): ψE′ = I − RS, where ψ and E′ can be obtained by L-U decomposition of
I − RS [24].

The H∞ compensator dinamic matrices Kc(z) = Cc(zI − Ac)−1Bc + Dc is obtained with the
solution of equation (3.4).

In (3.1), (3.2) and (3.3), one has the following change of variables:

Cj = Ccψ
′,

Bj = EBc,

Aj = (SA + EBcC1)R + (SBuCc + EAc)ψ ′.

(3.4)
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Figure 2: The pole placement region in the Z plane.

Proof. A realization of dynamic output feedback system Rwz is as followings:

Rwz = Ccl + (zI −Acl)−1Bcl, (3.5)

where

Acl =

[
A BuCc

BcC1 Ac

]
, Bcl =

[
Bw

0

]
, Ccl =

[
C2 0

]
. (3.6)

The optimization problem below described in LMI framework [25], is used to design theH∞
compensator with pole placement constraints

‖H‖2∞ =min μ

s.t.

⎡
⎢⎢⎢⎢⎢⎣

Q̌ 0 Bcl AclQ̌

0 I D CclQ̌

B′
cl D′ μI 0

Q̌A′
cl Q̌C

′
cl 0 Q̌

⎤
⎥⎥⎥⎥⎥⎦ > 0,

(3.7)

[ −rpQ̌ AclQ̌ + qQ̌

Q̌q + Q̌A′
cl −rpQ̌

]
< 0,

Q̌ = Q̌′ > 0,

μ > 0.

(3.8)

However, a high computational effort is needed to solve this problem, because the
optimization problems (3.7) and (3.8) are described as a solution of BMIs. Then, using a linear
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transformation, the problem can be easily solved, based on LMI framework. First, the matrix
Q̌ and its inverse are considered as follows

Q̌ =

[
R ψ

ψ ′ J

]
, Q̌−1 =

[
S E

E′ S

]
, (3.9)

where R = R′ ∈ �n×n, S = S′ ∈ �n×n, and

Q̌Γ2 = Γ1, with Γ1 =

[
R I

ψ ′ 0

]
, Γ2 =

[
I S

0 E′

]
. (3.10)

The condition (3.3) is obtained by considering the Lyapunov matrix Q̌ > 0 and
premultiplying and postmultiplying Q̌ by Γ′2 and Γ2, respectively. After, the condition (3.1)
is obtained premultiplying and postmultiplying the inequation (3.7) by (3.11) and (3.12),
respectively. Then, pre and postmultiplying (3.8) by (3.13) and (3.14), respectively, results in
condition (3.2)

⎡
⎢⎢⎢⎢⎢⎣

Γ′2 0 0 0

0 I 0 0

0 0 I 0

0 0 0 Γ′2

⎤
⎥⎥⎥⎥⎥⎦, (3.11)

⎡
⎢⎢⎢⎢⎢⎣

Γ2 0 0 0

0 I 0 0

0 0 I 0

0 0 0 Γ2

⎤
⎥⎥⎥⎥⎥⎦, (3.12)

[
Γ′2 0

0 Γ′2

]
, (3.13)

[
Γ2 0

0 Γ2

]
. (3.14)

The zero modification is showed in the next section.

Remark 3.2. In this paper, the methodology adopted to solve the pole location problem affords
the designer an expedite way to keep the controller gains within appropriate bounds, a key
requisite for implementation purposes.
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Figure 3: Zeros variation of the controlled system.

4. Zeros Variation

Motivated by the work in [22] the present paper uses the zero variation in order to obtain the
global optimum of H∞ norm to solve the tracking problem.

A controller that modifies the zeros from r(k) to u(k) is designed considering the
system (A,Bu, C1) as shown in Figure 3. The zeros of closed-loop system are allocated at
arbitrary places according to theM andN values, whereM ∈ �n×1 andN ∈ �1×1.

The plant is described by

x(k + 1) = Ax(k) + Bu(k),

y(k) = C1x(k).
(4.1)

The Z transform of (4.1) with zero initial condition, is

[zI −A]X(z) = BuU(z),

Y(z) = C1X(z).
(4.2)

A zero of the system is a value of z such that the system output is zero even with a nonzero
state-and-input combination. Thus if we are able to find a nontrivial solution for X(z0) and
U(z0) such that Y(z0) is null, then z0 is a zero of the system [22]. Combining the two parts of
(4.2) we must satisfy the following requirement:

[
ziI −A −Bu
C1 0

][
X(z)

U(z)

]
=

[
0

0

]
. (4.3)

Also, the compensator can be described as follows

xc(k + 1) = Acxc(k) + Bcuc(k), (4.4)

where uc(k) = C1x(k).
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A more general method to introduce r(k) is to add a termMr(k) to xc(k + 1) and also
a term Nr(k) to the control equation u(k) = Ccxc(k), as shown in Figure 3. The controller,
with these additions, becomes equal to:

xc(k + 1) = Acxc(k) + Bcuc(k) +Mr(k),

u(k) = Ccxc(k) +Nr(k).
(4.5)

Now, considering the controller (4.5), if there exists a transmission zero from r(k) to u(k),
then necessarily there exists a transmission zero from r(k) to y(k), unless a pole of the plant
cancels the zero. The equation to obtain zi from r(k) to u(k) (we let y(k) = 0 because we are
considering only the effects of r(k), then uc(k) = 0) in (4.5), is the following:

[
ziI −Ac −M
Cc N

][
xco

ro

]
=

[
0

0

]
. (4.6)

Because the coefficient matrix in (4.6) is square, the condition for a nontrivial solution is that
the determinant of this matrix must be zero. Thus we have

det

[
ziI −Ac −M
Cc N

]
= 0. (4.7)

Multiplying the second column of the matrix described in (4.7) at right by a nonzero matrix
N−1 and then adding to the first column of (4.7) the product of −Cc by the last column, we
have:

det

[
ziI −Ac +MN−1Cc −MN−1

0 1

]
= 0. (4.8)

And so, considering zi = z,

det
(
zI −Ac +MN−1Cc

)
= 0, (4.9)

where the modified zeros from r(k) to u(k) are the solutions z = zi. It is important to notice
that the gain N and the vector M do not only modify the system zeros but also are used to
obtain the optimal solution of the tracking problem.

5. Tracking Design

The solution of the tracking problem is based on the design of the matrices of the controller
M andN, that minimize the H∞ norm of (Am, Bm,−Cm, 1). Weighted frequency is added in
the tracking system in order to track signals in a frequency band specified in the design.
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E(z)
Hm(z)

Em(z) Ev(z)
V (z)

Figure 4: System structure to the tracking with frequency wheighted.

In tracking design with wheigthed frequency, the goal is to find a global solution that
optimize the problem described as follows:

min ‖Hm(z)V (z)‖∞, (5.1)

where V (z) = (Av, Bv, Cv,Dv) is a dynamic system designed to specify wheighted frequency
in the output. A stable, linear and time invariant system realizationHm = (Am, Bm,−Cm,Dm)
is considered as indicated in (2.7). Figure 4 illustrates the structure of inclusion of frequency
wheighted in the design of tracking system.

The system (2.4) can be represented by state variables in function of xm(k) and xv(k),
as follows:

[
xm(k + 1)

xv(k + 1)

]
=

[
Am 0

−BvCm Av

][
xm(k)

xv(k)

]
+

[
Bm

BvDm

]
r(k),

yv(k) =
[
0 Cv

][xm(k)
xv(k)

]
.

(5.2)

In addition, a possible state space realization of Ȟf = Hm(z)V (z) is:

[
Ǎf B̌f

Čf Ďf

]
=

⎡
⎢⎣

Am 0 Bm
−BvCm Av BvDm

0 Cv 0

⎤
⎥⎦. (5.3)

A metodology for the tracking design problem solution with wheigthed band is proposed in
Theorem 5.1 considering the elements of the compensator matrix already fixed.

Theorem 5.1. Considering the system with output filter (5.3), if there exist a solution for the LMI
described in (5.4) and (5.5), then the gainN and vectorM that minimize theH∞ norm from r(k) to
e(k) can be obtained

⎡
⎢⎢⎣
Q11 Q12 Q13

Q′
12 Q22 Q23

Q′
13 Q′

23 Q33

⎤
⎥⎥⎦ > 0, (5.4)

μ > 0. (5.5)



Mathematical Problems in Engineering 11

Proof. For the tracking design with band weighted, substitute Ǎf , B̌f , Čf , and Ďf in (5.3)
by (3.7). It results in the optimization problem described in (5.4) and (5.5). The gain N and
vector M are obtained from this process. The matrix Q is partitioned in the form Qij = Q′

ij ,
i, j = 1, 2, 3.

The theorem proposes that one can obtain an optimal zero location that guarantee the
global optimization of the tracking error H∞ norm. The proposed design is formulated in
linear matrix inequalities (LMIs) framework, such that the optimal solution is obtained.

The controller M and N are the optimal solution of (5.4) and (5.5) and minimize the
H∞ norm between the reference input signal r(k) and the tracking error signal r(k) − e(k).

‖H‖2∞ =min μ

s.t.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 0

Q′
12 Q22 Q23 0

Q′
13 Q′

23 Q33 0

0 0 0 I

N ′B′
u M′ B′

v I

Q12BuC′
c +Q11A′ Q12A′

c +Q11BcC
′
2 Q13A′

v −Q11C
′
2B

′
v −Q13C′

v

Q22BuC
′
c +Q

′
12A

′ Q22A
′
c +Q

′
12BcC

′
2 Q23A

′
v −Q′

12C
′
2B

′
v −Q23C

′
v

Q′
23BuC

′
c +Q

′
13A

′ Q′
23A

′
c +Q

′
13BcC

′
2 Q33A′

v −Q′
13C

′
2B

′
v −Q33C′

v

BuN AQ11 + BuCcQ
′
12 AQ12 + BuCcQ22 AQ13 + BuCcQ23

M BcC2Q11 +AcQ
′
12 BcC2Q12 +AcQ22 BcC2Q13 +AcQ23

Bv −BvC2Q11 +AvQ
′
13 −BvC2Q12 +AvQ

′
23 −BvC2Q13 +AvQ33

I −CvQ
′
13 −CvQ

′
23 −CvQ33

μI 0 0 0

0 Q11 Q12 Q13

0 Q′
12 Q22 Q23

0 Q′
13 Q′

23 Q33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0.

(5.6)

The filter has the goal of adjusting the controllersM andN for the selected frequency band.
Then the zero variation described in LMI framework considers the filter dynamics to adjust
the operation of the system tracking in this frequency band. However, in the implementation
or simulation of the tracking process control, the filter is discarded.
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The paper also proposes the statement of weighted disturbance minimization problem
that is achieved based on Theorems 3.1 and 5.1 demonstrations and uses the following
formulation:

‖H‖2∞ =min μ

s.t.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R I 0

I S 0

0 0 I

B′
w B′

wS 0

RA′ +C′
jB

′
u +A

′
fr + R

′C′
1B

′
fr A′

j C′
fr

A′ + C′
1B

′
fr A′S + C′

2B
′
j C′

2

Bw AR + BuCj +Afr + BfrC1R A + BfrC1

SBw Aj SA + BjC2

0 Cfr 0

μI 0 0

0 R I

0 I S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0,

⎡
⎢⎢⎢⎢⎢⎢⎣

−Rr −Ir
−Ir −Sr

RA′ + C′
jB

′
u + Rq +A

′
fr + RC

′
1B

′
fr A′

j + Iq

Iq +A′ + C′
1B

′
fr A′S + C′

1B
′
j + Sq

AR + BuCj + Rq +Afr + BfrC1R A + Iq + BfrC1

Aj + Iq SA + BjC1 + Sq

−Rr −Ir
−Ir −Sr

⎤
⎥⎥⎥⎥⎥⎦ < 0,

[
R I

I S

]
> 0.

(5.7)

The following examples illustrate the effectiveness of the proposed method.
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6. Example 1

Consider a tank temperature control system described in [22], with a zero-order hold. The
goal is to design a tracking system for flow control with disturbance attenuation. The model
of the delayed system [22] is,

H(s) =
e(−λ ∗ s)
s

a
+ 1

. (6.1)

A sampling period of 0.01 seconds is used in the design. The parameters a = 1 and λ = 0.005 s
are adopted in the design.

We found λ = 1 ∗ 0.01 − 0.5 ∗ 0.01, and therefore, l = 1 andm = 0.5.
Using the process to find the Z transform of a delayed continuous-time function (6.1),

the parameters are substituted and we obtain

H(z) =
(
1 − e−0.005

)z + (
e−0.005 − e−0.01)/(1 − e−0.005)

z
(
z − e−0.01) , (6.2)

or,

H(z) =
0.0050z + 0.0050
z2 − 0.9900z

. (6.3)

The state-space description of the system is

[
x1(k + 1)

x2(k + 1)

]
=

[
0.99 0

1 0

][
x1(k)

x2(k)

]
+

[
1

0

]
u(k) +

[
1

0

]
w(k),

y(k) =
[
0.005 0.005

][x1(k)
x2(k)

]
,

(6.4)

where x(k) is the state vector, u(k) is the control signal and w(k) is a disturbance signal in
the system.

The design of the tracking system must include operation for reference signals of low
frequencies (smaller than 0.1 rad/s). In such a case, the following filter J(z)was considered

J(z) =
(0.4500z + 0.4500) × 10−7

z2 − 1.9999z − 0.9999
. (6.5)

Using Theorem 3.1 the controller Kc(z) is designed for the system described in (6.4) and
showed in (6.6). This controller minimizes the H∞-norm of w(k) to z(k). In this design we
obtain a disk of radius r = 0.5 and center in q = 0.5 is used as a pole placement constraint:

Kc(z) =
−24.1395z− 4.6956
z2 − 0.2981z + 0.1392

. (6.6)
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Figure 5: Frequency response of Z(z)/W(z).
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Figure 6: Frequency response of E(z)/R(z).

The H∞-norm of w(k) to z(k) for the closed-loop system is 0.0342, implying the attenuation
of the effect of the disturbance signal in the system. Figure 5 illustrates the frequency response
of Z(z)/W(z).

To design a tracking system, the proposed zero-variation methodology given by (5.4)
and (5.5) were used and the H∞ norm of r(k) to e(k) was minimized considering the signal
r(k) with low frequencies (smaller than 0.1 rad/s). The obtained H∞-norm for all frequency
spectra was equal to 1.32, while for frequency band specified in the problem, the largest
magnitude of frequency response was 3.13 × 10−3). This implies that the tracking system
operated adequately in the frequency band specified in the problem.

Figure 6 illustrates the frequency response of E(z)/R(z) and one can verify that the
H∞-norm in frequency band follows the characteristcs of a tracking system. The M and N
optimum controller values were

M =

[
0.0088

−0.0030

]
, N = 31.4617. (6.7)
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Figure 8: Output of the system for ramp input.

In the simulation, an unit step input is considered. The simulation result is illustrated in
Figure 7.

In the second simulation we use the following ramp signal: r(kT) = 0.7kT with T =
0.01 s. The simulation results are illustrated in Figure 8.

Finally, an input signal r(kT) = sen(0.1kT) and a disturbance signalw(k)with random
amplitudes were simulated. The maximum amplitude of the random signal was equal to 1.
The simulation results are illustrated in Figure 9.

For this example, the zeros of the systemwhere −1; 0.4446+0.8004i and 0.4446−0.8004i.
The poles of the system with a feedback controller where 0.5004 + 0.3694i; 0.5004 − 0.3694i;
0.1436 + 0.2002i and 0.1436 − 0.2002i. It is possible to see that the poles of the system with a
feedback controller were allocated according to the circle constraint specification. The pole-
zero map is shown in Figure 10.
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Figure 10: Pole-zero map of the closed-loop system obtained withKc(z),M andN.

The example above shows the methodology effectiveness. The disturbance rejection
and the minimization of the tracking error for specified frequency band were reached. It was
showed that the methodology works properly for ramp, unit step and sinusoidal signals for
any frequency in the specified frequency band.

7. Example 2

Consider a discrete form of a continuous model plant that has a zero in the right-half plane. A
sampling period of 0.01 seconds is used in design. The state-space description for the system
is as follows:
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Continuous Model:

⎡
⎢⎢⎣
x1(t)

x2(t)

x3(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−14 −28 −48
1 0 0

0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1(t)

x2(t)

x3(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
1

0

0

⎤
⎥⎥⎦u(t) +

⎡
⎢⎢⎣
1

0

0

⎤
⎥⎥⎦w(t),

y(t) =
[
0 1 −90]

⎡
⎢⎢⎣
x1(t)

x2(t)

x3(t)

⎤
⎥⎥⎦.

(7.1)

Discrete Model:

⎡
⎢⎢⎣
x1(k + 1)

x2(k + 1)

x3(k + 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.868 −0.263 −0.448
0.009 0.999 −0.002
0 0.01 0.899

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1(k)

x2(k)

x3(k)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
0.0093

0

0

⎤
⎥⎥⎦u(k) +

⎡
⎢⎢⎣
0.0093

0

0

⎤
⎥⎥⎦w(k),

y(k) =
[
0 1 −90]

⎡
⎢⎢⎣
x1(k)

x2(k)

x3(k)

⎤
⎥⎥⎦,

(7.2)

where x(k) is the state vector, u(k) is the control signal and w(k) is a disturbance signal in
the system.

The design of the tracking system must include operation for reference signals of low
frequencies (down to 5 rad/s). In such a case, the filter F(z) was considered

F(z) =

(
0.033z2 + 0.127z + 0.031

) × 10−4

z3 − 2.999z2 + 2.805z − 0.905
. (7.3)

Using Theorem 3.1 the controller Kc(z) is designed for the system described in (7.2) and
shown in (7.4). This controller minimizes the H∞-norm ofw(k) to z(k). In this design a disk
of radius 0.85 and center in −0.1 is used as a pole placement constraint

Kc(z) =

(
2.38z2 − 3.63z + 1.44

) × 104

z3 + 3.75z2 + 15.77z + 9.79
. (7.4)
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Figure 11: Frequency response of Z(z)/W(z).
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Figure 12: Frequency response of E(z)/R(z).

The H∞-norm of w(k) to z(k) for the closed-loop system was 1.577∗ 10−3, implying the
attenuation of the effect of the disturbance signal in the system. Figure 11 illustrates the
frequency response of Z(z)/W(z).

To design a tracking system, the proposed zero-variation methodology (5.4) was
used in which the H∞ norm of r(k) to e(k) is minimized considering the signal r(k) with
low frequencies (down to 5 rad/s). The obtained H∞-norm for all frequency spectra was
equal to 1.8, while for frequency band specified in the problem, the largest magnitude of
frequency response was 0.031. This implies that the tracking system operated adequately in
the frequency band specified in the problem.

Figure 12 illustrates the frequency response of E(z)/R(z) and one can verify that the
H∞-norm in frequency band follows the characteristcs of a tracking system. The M and N
optimum parameters values were

M =

⎡
⎢⎢⎣
8.5 ∗ 10−7

1.87

194.6

⎤
⎥⎥⎦, N = 2746. (7.5)
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Figure 13: Output signal y(k) and input signal r(k) are almost overlapped.

Then, an input signal r(kT) = sen(0, 1kT) and a disturbance signal w(k) with random
amplitudes were simulated, and it was found that the maximum amplitude of the random
signal was equal to 1. The simulation results are illustrated in Figure 13.

8. Conclusion

In this manuscript, it is proposed a methodology to solve the tracking and disturbance
rejection problem applied to discrete-time systems. Considering Figure 1 the disturbance
signal acting in the plant can be attenuated by minimizing the H∞-norm from w(k) to
z(k), by using a dynamic feedback compensation. In the tracking process, a zero-variation
methodology is used in order to minimize the H∞-norm between the reference signal and
tracking error signal, where the tracking error is the diference between the reference signal
r(k) and system output signal z(k). In the tracking designwith disturbance rejection, the pole
placement is used to attenuate the disturbance signal effect, while the zero variation allows
the tracking. The zero modification do not interfere in the design of the disturbance rejection.
In the tracking process, the frequency band wheighted allows to choose the frequency band
on the reference input signal. The tracking method and disturbance rejection are based on
LMI framework. Then, when there exists a feasible solution the design can be obtained by
convergence polynomial algorithms [23, 25] available in the literature.

Acknowledgments

The authors gratefully acknowledge the partial financial support by FAPESP, CAPES and
CNPQ of Brazil.

References

[1] M. C. M. Teixeira, E. Assunção, R. Cardim, N. A. P. da Silva, and E. R. M. D. Machado, “On
complementary root locus of biproper transfer functions,” Mathematical Problems in Engineering, vol.
2009, Article ID 727908, 14 pages, 2009.

[2] M. De la Sen, “Pole-placement in discrete systems by using single and multirate sampling,” Journal of
the Franklin Institute B, vol. 333, no. 5, pp. 721–746, 1996.



20 Mathematical Problems in Engineering

[3] A. Saberi, P. Sannuti, and A. A. Stoorvogel, “H2 optimal controllers with measurement feedback for
discrete-time systems: flexibility in closed-loop pole placement,” Automatica, vol. 33, no. 3, pp. 289–
304, 1997.

[4] M. M’Saad, R. Ortega, and I. D. Landau, “Adaptive controllers for discrete-time systems with
arbitrary zeros: an overview,” Automatica, vol. 21, no. 4, pp. 413–423, 1985.

[5] W. C. Messner and C. J. Kempf, “Zero placement for designing discrete-time repetitive controllers,”
Control Engineering Practice, vol. 4, no. 4, pp. 563–569, 1996.
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edition, 2000.

[25] R. M. Palhares, R. H. C. Takahashi, and P. L. D. Peres, “H∞ and Ótimo H2 guaranteed costs
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