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Abstract

In the last years, the seeking for Majorana quasiparticles has been one of the hottest topics in condensed

matter physics, owing to its potential application for achieving fault-tolerant quantum computing pro-

cesses. Such exotic quasiparticles emerge as bound states at the ends of one-dimensional (1D) spinless

p-wave superconductors within topologically protected phases. An indicative of this so-called Majorana

bound states (MBSs) in these 1D systems is given by the emergence of a robust zero-bias conductance

peak (ZBCP) in tunneling spectroscopy measurements. However, other physical phenomena can give

rise to such a peak, as Kondo effect, disorder and Andreev bound states (ABSs), for instance. Concern-

ing this later, such states can stick at zero energy even when parameters as magnetic field or chemical

potential are changed, thus perfectly mimicking the MBSs hallmark. Hence, distinguishing between

trivial ABSs and topologically protected MBSs is one of the current key issues in the filed of Majorana

detection. Aiming to enlarge the discussion concerning the MBS-ABS distinction, in this thesis we study

the electronic transport features of a hybrid device composed by a quantum dot coupled to a topological

superconducting nanowire hosting MBSs at the ends, wherein the so-called degree of Majorana nonlo-

cality is taken into account. In this scenario [Phys. Rev. B 98, 075142 (2018)], we analyze the role

of the Fano interference phenomenon in the well-known Majorana oscillations, showing that both shape

and amplitude of such oscillatory patterns depend on the bias voltage, degree of MBSs nonlocality, and

Fano parameter of the system. We also demonstrate that the spin-resolved density of states of the dot

responsible for the zero-bias conductance peak strongly depends on the separation between the MBSs

and their relative couplings with the dot [Phys. Rev. B 99, 155159 (2019)], suggesting that spin-resolved

spectroscopy can be used as a tool for discriminating between ABSs and MBSs. It is worth noticing

that in both works we recover experimental profiles, at least qualitatively. Moreover, along the current

thesis we propose a quantum bit storing/reading mechanism [Phys. Rev. B 93, 165116 (2016)] and a

thermoelectrical hybrid device [Sci. Reports, 8, 2790 (2018)], both based on MBSs properties.

Keywords: Majorana bound states, topological superconducting nanowires, quantum dot, hybrid sys-

tems, Majorana nonlocality, zero-bias conductance peak.
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Resumo

Nos últimos anos, a busca pelas denominadas quasipartículas de Majorana tem sido um dos tópicos

que mais tem atraído atenção na área de Física da Matéria Condensada. Esse fato deve-se à sua po-

tencial aplicação em processos de computação quântica imunes a fenômenos de decoerência e portanto,

tolerante à falhas. Tais quasipartículas emergem como estados ligados, localizados nas bordas de super-

condutores spinless unidimensionais do tipo p-wave, quando esses encontram-se em uma fase topologi-

camente protegida. Nesses tipos de sistemas, em aparatos experimentais que envolvem espectroscopia de

tunelamento eletrônico, o surgimento de um pico na condutância, localizado na voltagem zero e robusto

perante variação de parâmetros do sistema, é um indicativo da presença dos chamados estados ligados

de Majorana. No entanto, outros fenômenos físicos, tais como efeito Kondo, desordem e estados liga-

dos de Andreev, por exemplo, podem dar origem a tal pico. No que diz respeito aos estados ligados de

Andreev, os mesmos podem permanecer na voltagem zero com certa robustez à variação de campo mag-

nético e potencial químico, emulando perfeitamente a assinatura dos estados de Majorana. Sendo assim,

distinguir experimentalmente os estados de Andreev triviais dos estados de Majorana topologicamente

protegidos é uma das questões fundamentais relacionadas a detecção de quasiparticulas de Majorana a

serem sanadas. Levando em conta tal cenário, na presente tese analisaram-se teoricamente as caracterís-

ticas de transporte eletrônico de um sistema híbrido, composto por um ponto quântico acoplado a um

nanofio supercondutor topológico com estados ligados de Majorana localizados em suas bordas, em que

o denominado grau de não-localidade de Majorana foi levado em consideração. Em uma primeira abor-

dagem [Phys. Rev. B 98, 075142 (2018)], estudou-se qual o papel da interferência Fano nas chamadas

oscilações de Majorana, onde pode-se constatar que a forma e a amplitude de tais oscilações são mod-

uladas por alguns fatores, tais como a voltagem aplicada no ponto quântico, o grau de não-localidade

de Majorana e o parâmetro de Fano em questão. No mesmo tipo de sistema [Phys. Rev. B 99, 155159

(2019)], demostrou-se também que o tipo de spin da densidade de estados no ponto quântico responsável

pelo pico em voltagem zero (assinatura Majorana) depende fortemente da separação entre os dois estados

de Majorana nas bordas do fio, bem como dos acoplamentos entre o nanofio e o ponto quântico. Essa

dependência sugere que medidas de transporte eletrônico com resolução de spin podem ser utilizadas

para identificar qual o mecanismo responsável pelo surgimento do pico em voltagem zero. Vale a pena

ressaltar que, em ambos os trabalhos, perfis experimentais conhecidos foram qualitativamente obtidos

em nossas simulações. Ademais, ao longo da presente tese foi proposto um mecanismo de armazena-

mento e leitura de bit quântico [Phys. Rev. B 93, 165116 (2016)], além de um dispositivo termoelétrico

híbrido [Sci. Reports, 8, 2790 (2018)], ambos baseados nas propriedades exóticas dos estados ligados de

Majorana.

Palavras-chave: estados ligados de Majorana, nanofios supercondutores topológicos, ponto quântico,

sistemas híbridos, não-localidade de Majorana, pico de condutância em voltagem zero.
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Chapter 1

Introduction

There is no doubt at all that the first half of the twentieth century was pivotal for the understanding of

the quantum nature of matter. In this period, despite substantial contributions of many genius of Physics,

as the Bohr atomic model in 1911, the Werner Heisenberg and his matrix formulation in 1925 and the

non-relativistic wave equation developed by Erwin Schördinger half a year later, there are two theoretical

breakthroughs proposed by the british physicist Paul Dirac which deserves special attention [1]. The first

one is related to the development of operators acting on the Hilbert space and can be considered the

genesis of quantum field theory. The second [2] concerns to the proposal of an equation which bears

his name: the relativistic version of Schördinger’s equation. Besides the conciliation between quantum

mechanics and special relativity, the Dirac equation allowed the prediction the antimatter, which was

confirmed four years later with the discovery of the positron by Carl Anderson in 1932 [3].

Figure 1.1: Portrait of the italian Physicist Ettore Ma-

jorana, who mysteriously disappeared on 25 March 1938

while was travelling by ship from Palermo to Naples. His

body was never found and his fate is inconclusive. The

last investigations concerning the case pointed out that

Majorana lived in Venezuela between 1955-1959. (Adapted

from: Wikipedia and Ref. [1])

Almost ten years after the Dirac’s prediction of antimat-

ter, the young italian physicist Ettore Majorana1 (Fig. 1.1)

solved the Dirac equation in terms of real solutions, allow-

ing the description of particles that are their own antiparti-

cles [4], unlike electrons and positrons. According to Ma-

jorana’s idea, these exotic particles could be neutrinos [2].

Interestingly enough, recent experimental advances in parti-

cle physics [6, 7] can reveal that neutrinos indeed are their

own antiparticles by measuring a process called neutrino-

less double-beta decay, which would lead to violation of the

conservation of lepton number, a fundamental law in nature

within the standard model.

For many years, the impact of Majorana’s solution for

Dirac equation remained obviously restricted to areas be-

longing to high energy physics [1, 2]. No one could imagine

that such a proposal would have a huge impact in a completely unexpected field: the condensed mat-

ter physics [8]. Nowadays, the searching for Majoranas in condensed matter systems has caused a true

healthy competition between researchers of such a field and undoubtedly has became one of “trend top-
1Quoting his advisor, Enrico Fermi : “There are several categories of scientists in the world; those of second or third rank do their best but

never get very far. Then there is the first rank, those who make important discoveries, fundamental to scientific progress. But then there are the
geniuses, like Galilei and Newton. Majorana was one of these”. (Source: Wikipedia)

1

https://en.wikipedia.org/wiki/Ettore_Majorana
https://en.wikipedia.org/wiki/Ettore_Majorana
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ics” in physics. The reason behind that comes from the possibility of applications of such Majorana

excitations as building blocks for fault-tolerant quantum computation owing to their exotic non-Abelian

exchange statistics [9] and even giant technology companies as Microsoft, for instance, have been in-

vesting a lot of money and efforts in this seek for Majorana fermions.

Motivated by such a flurry around the searching for Majoranas in condensed matter physics, as well

as by the intrinsic beauty of the theoretical physics in such a field, in this thesis we present our tiny con-

tribution to better understand the electronic transport mechanisms of Majorana fermions in condensed

matter, focusing on hybrid systems constituted by one dimensional p-wave superconducting nanowires

coupled to quantum dots. This understanding allowed us to provide new insights about Majorana detec-

tion protocols and propose new applications for such devices.

Basically, this thesis is a compendium of the main papers published along the PhD period and is

organized as follows:

• Chapter 2: we start with a brief introduction concerning the theoretical framework supporting the

emergence of the so-called Majorana bound states in 1D superconducting nanowires. In this sense,

we review the Kitaev toy model, which is considered the simplest Hamiltonian wherein isolated

Majorana zero-modes appears at the nanowire ends when the system enters into the topological

phase. Next, we explore the well-established features of quasi-1D Rashba nanowires in presence

of magnetic field and proximity effect, which have been considered the most promising platforms

to perform Majorana excitations. Lastly, we discuss the main tunneling spectroscopy conductance

experiments for Majorana detection in these quasi-1D hybrid devices.

• Chapter 3: we present the theoretical tool used in all our papers: the equation of motion (EOM)

technique applied to Anderson-type Hamiltonians. We start which a brief explanation concerning

Green’s functions followed by the EOM method. We also discuss the single impurity Anderson

Model by calculating the corresponding density of states via EOM within the Huubard-I approxi-

mation. The full version of the calculations related to our works can be seen in Appendices A and

B.

• Chapter 4: we show the published article Decay of bound states in the continuum of Majorana

fermions induced by vacuum fluctuations: Proposal of qubit technology [Phys. Rev. B 93, 165116

(2016)], wherein we have proposed a new way to read/storage the qubit information in a setup

composed by two semi-infinite Kitaev nanowires within the topological phase coupled to a quan-

tum dot between metallic reservoirs. It was found that such an exotic read/storage mechanism is

based on the interplay between vacuum fluctuations, Majorana quasiparticle excitations and for-

mation of bound states in the continuum.

• Chapter 5: we present the paper Tuning of heat and charge transport by Majorana fermions, [Sci.

Reports, 8 2790 (2018)]. In such a work, we have theoretically explored both electric and heat

transport features in a topological U-shaped Kitaev chain coupled to a quantum dot. We have

shown that the topological thermoelectric device works as a tuner electricity and heat owing to the

presence of Majorana bound states in the system. We emphasize that such work was subject of an

article at “Agência Fapesp” website and chosen as “Destaque em Física” by Sociedade Brasileira

de Física (SBF).

2

https://www.microsoft.com/en-us/quantum/technology
https://link.aps.org/doi/10.1103/PhysRevB.93.165116
https://link.aps.org/doi/10.1103/PhysRevB.93.165116
https://www.nature.com/articles/s41598-018-21180-9
https://www.nature.com/articles/s41598-018-21180-9
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• Chapter 6: another article entitled Majorana oscillations modulated by Fano interference and

degree of nonlocality in a topological superconducting nanowire-quantum dot system [Phys. Rev.

B 98, 075142 (2018)] is shown, wherein we have explored a T-shaped hybrid setup, allowing us to

determine the role of Fano interference processes in the so-called Majorana oscillations, discussed

previously in Sec. 2.3.

• Chapter 7: we present our most recent paper Spin-dependent zero-bias peak in a hybrid nanowire-

quantum dot system: Distinguishing isolated Majorana fermions from Andreev bound states [Phys.

Rev. B 99, 155159 (2019)]. In such a work, we have analysed a hybrid system composed by

a semiconducting nanowire with proximity-induced superconductivity coupled to a quantum dot.

We have shown that spin-resolved measuraments performed at the dot are able to solve one of

the key issues concerning the Majorana detection: distinguish between truly topological Majorana

bound states and the so-called trivial Andreev bound states.

It is worth mentioning that some results of the papers corresponding to chapters 5, 6 and 7 qual-

itatively resembles recent experimental data, once we have taken into account the so-called degree of

Majorana nonlocality. Such a concept is introduced in Sec. 2.4.2 (Fig. 2.9) and also discussed along the

aforementioned papers.

3

https://link.aps.org/doi/10.1103/PhysRevB.98.075142
https://link.aps.org/doi/10.1103/PhysRevB.98.075142
https://link.aps.org/doi/10.1103/PhysRevB.99.155159
https://link.aps.org/doi/10.1103/PhysRevB.99.155159
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Chapter 2

Majorana Fermions in Condensed Matter
Physcis

2.1 Overview

Distinct from high energy physics, Majorana fermions are not elementary particles in condensed

matter physics, but rather quasiparticle excitations [1–3]. Such Majorana quasiparticles must fulfill the

condition of a particle being equal to its own antiparticle, i.e, an electron equal to its correspondent hole,

which is expressed in the operator language as:

γ† = γ. (2.1)

By following this criteria, superconductors seems to provide a natural environment for the emergence of

such exotic excitations, since quasiparticles in a superconductor involve superpositions of electrons and

holes. It is worth mentioning that the Bogoliubov-de Gennes (BdG) and the Majorana equation share the

same structure [3–6]. However, the usual s-wave superconductivity is not sufficient for the appearance of

Majorana quasiparticles, once it arises due to paired electrons with opposite spins, breaking the condition

of Eq. (2.1). Such a trouble is overcome by considering “spinless” quasiparticles excitations to describe

superconductivity (time reversal symmetry is broken) [1].

The aforementioned spinless feature results in a p-wave superconductivity in one dimension or in

a px + ıpy superconductivity in two dimensional systems, where Majoranas emerge as edge states in

exotic topological superconducting phases. However, this does not seem to be useful, since p-wave

superconductors are very rare in nature: only the Sr2RuO4 [7, 8], ν = 5/2 fractional quantum Hall

state [9] and superfluid 3He [10–12] are known to allow such a exotic kind of pairing. The tables turned

in 2008, when Fu and Kane [13] demonstrated in a seminal paper that p-wave pairing can be induced by

an usual s-wave superconductor by the so-called proximity effect in the surface of a three dimensional

topological insulator. Following such a idea, just two years later Lutchyn et al [14] and Oreg et al [15]

independently showed that is possible to engineer a p-wave superconductor in a hybrid one dimensional

system composed by a semiconducting nanowire with strong Rashba spin-orbit interaction (SOI) close

to a s-wave superconductor and under external magnetic field. As will be seen later, such a 1D setup

exhibits a topological phase as the magnetic field exceeds a critical value, wherein Majorana zero-modes

(MZMs) emerge as bound states at the opposite ends of the superconducting nanowire.
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In what follows, we present some theoretical aspects concerning the emergence of MZMs in these 1D

topological superconducting nanowires (TSNWs) . After, we will discuss some experimental realizations

of such a device, which have been evolving since the first claim for Majorana observation in 2012.

2.2 The Kitaev Model

We start by reviewing the toy model proposed by Kitaev in 2001 [16], which is the simplest descrip-

tion of topological superconductivity in 1D spinless systems. Despite its simplicity, the Kitaev model has

profound implications, since MZMs emerge in an extremely intuitive fashion. Basically, Kitaev wrote

a Hamiltonian of a chain with N spinless fermions with a long-range-ordered p-wave pairing, which

reads [1]

H = −µ
N∑

j=1

c†jcj −
1

2

N−1∑

j=1

(
tc†jcj+1 + ∆cjcj+1 + h.c.

)
, (2.2)

wherein µ is the onsite chemical potential, t is the nearest-neighbor hopping strength and ∆ is the p-wave

pairing amplitude (assumed as real here). The operator c†j(cj) creates (annihilates) an electron in the site

j and obey the standard anticommutation relations for fermions [17]

[
ci, c

†
j

]
+

= δij and [ci, cj ]+ =
[
c†i , c

†
j

]
+

= 0, (2.3)

where δij is the Kronecker delta.

To understand how the non-trivial properties emerge in such a model, its instructive to rewrite the

fermionic operators of the Kitaev Hamiltonian [Eq. (2.2)] in terms of two Majorana operators γAj and

γBj as follows:

cj =
1

2
(γBj + ıγAj) and c†j =

1

2
(γBj − ıγAj). (2.4)

This means that an usual fermionic operator can be decomposed into real and imaginary parts, cor-

responding to Majorana fermions. In this sense, the Majorana can be interpreted as a “half-regular

fermion”. By using the standard anticommutators of Eq. (2.3), it is easy to verify that the Majorana

operators obey the following algebra [1]

[γαi, γβj ]+ = 2δαβδij , γ2
αj = (γ†αj)

2 = 1 and γαj = γ†αj . (2.5)

The last relation above ensures the Majorana condition of particle being equal to its own antiparticle

[Eq. (2.1)]. Using Eq. (2.4), the Hamiltonian [Eq. (2.2)] reads

H = −µ
2

N∑

j=1

(1 + ıγBjγAj)−
i

4

N−1∑

j=1

[(∆ + t) γBjγAj+1 + (∆− t) γAjγBj+1] . (2.6)

Let us now analyze two limiting cases of the Kitaev proposal [16]. The first one corresponds to

t = ∆ = 0, wherein the second term of Eq. (2.6) vanishes, i.e,

H = −µ
2

N∑

j=1

(1 + ıγBjγAj) , (2.7)

6
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Figure 2.1: Sketch of the Kitaev chain in both (a) trivial and (b) topological phases. (a) In the trivial phase [Eq. (2.7)]

Majorana operators of the same site are coupled to form a regular fermion. (b) In the topological regime [Eq. (2.8)], only

Majoranas of adjacent sites are coupled, leading to unpaired Majoranas at the end of the chain, which are completely absent of

the Hamiltonian. Adapted from [1]

which describes the trivial case, wherein two Majorana operators from same lattice site are coupled to

form a regular fermion [Fig. 2.1(a)]. Moreover, there is an energy cost of µ to introduce a spinless

fermion in the lattice. The second limiting situation arises when µ = 0 and ∆ = t 6= 0, described by the

following Hamiltonian:

H = −ı t
2

N−1∑

j=1

γBjγAj+1 = −ı t
2

(γB1γA2 + γB2γA3 + γB3γA4 + . . .+ γBN−1γAN ) , (2.8)

which represents the so-called topological phase, wherein only the Majorana fermions of adjacent lattice

sites are coupled [Fig. 2.1(b)]. The most important feature concerning this phase comes from the fact

that the Majorana operators γA1 and γBN at the end of the lattice are explicitly absent of the Hamiltonian

[Eq. (2.8)] and consequently, [H, γA1] = [H, γBN ] = 0 [3]. To enlighten the significance of such a

nontrivial property, let us rewrite Eq. (2.8) by introducing the following new fermionic operator [1, 3]:

dj =
1

2
(γAj+1 + ıγBj) and d†j =

1

2
(γAj+1 − ıγBj). (2.9)

In this new basis, the Hamiltonian within the topological phase becomes

H = t
N−1∑

j=1

(
d†jdj −

1

2

)
. (2.10)

This form seems to be very usual, since it diagonalizes the superconducting Hamiltonian, wherein an

energy t = ∆ must be payed to add a dj fermion at the lattice site. However, distinct from its original

proposal [Eq. (2.2)], such a diagonal form contains only N − 1 new operators, which means that a

fermionic degree of freedom is out of the Hamiltonian [Eq. (2.10)]. Remarkably, this missing operator

is formed by the unpaired Majorana bound sates (MBSs) situated at opposite ends of the Kitaev chain

[Fig. 2.1(b)], i.e,

f =
1

2
(γA1 + ıγBN ). (2.11)

7
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Although it seems just another ordinary Dirac operator, f (f †) shares some nontrivial features. First,

it has a highly non-local nature, since the MBSs are located far apart from each other. Second, such

fermionic operator is not in the Hamiltonian of Eq. (2.10) and therefore costs zero energy to be added or

removed in the topological chain. In other words, a pair of delocalized Majoranas can be created without

changing the energy of the ground state of the Eq. (2.8).

Bulk properties

In order to investigate the bulk properties of the Kitaev model and establish a relation with the BdG

Hamiltonian for superconductors, let us analyze the system in the k-momentum space within periodic

boundary conditions [1–3]. We start by rewriting the site space operators from original Hamiltonian

[Eq. (2.2)] in the momentum space considering a Fourier series as follows [17, 18]:

cj =
1√
N

∑

k

e−ıkxjck and c†j =
1√
N

∑

k

eıkxjc†k, (2.12)

wherein xj = ja, with the lattice parameter a. According to such a definition,

N∑

j=1

c†jcj =
N∑

j=1

1√
N

∑

k

eıkxjc†k
1√
N

∑

q

e−ıqxjcq =
N∑

j=1

1

N

∑

kq

eı(k−q)xjc†kcq,

=
∑

kq

c†kcq

N∑

j=1

1

N
eı(k−q)xj =

∑

kq

c†kcqδkq =
∑

k

c†kck, (2.13)

where we recognize the discrete Kronecker delta definition

δkq =
N∑

j=1

1

N
eı(k−q)xj =





0, if k 6= q

1, if k = q
. (2.14)

In the same way,

N−1∑

j=1

c†jcj+1 =
N−1∑

j=1

1√
N

∑

k

eıkxjc†k
1√
N

∑

q

e−ıqxj+1cq =
N−1∑

j=1

1

N

∑

k

eıkxj
∑

q

e−ıq(xj+a)c†kcq

=
∑

kq

e−ıqac†kcq

N−1∑

j=1

1

N
eı(k−q)xj =

∑

kq

e−ıqac†kcqδkq

=
∑

k

e−ıkac†kck (2.15)

and

c†j+1cj =
∑

k

eıkac†kck, (2.16)

with xj+1 = (j + 1)a = xj + a. Moreover,

8
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N−1∑

j=1

cjcj+1 =
N−1∑

j=1

1√
N

∑

k

e−ıkxjck
1√
N

∑

k

e−ıqxj+1cq =
N−1∑

j=1

1

N

∑

kq

e−ı(k+q)xj
∑

k

e−ıqackcq

=
∑

kq

∑

k

e−ıqackcq

N−1∑

j=1

1

N
e−ı(k+q)xj =

∑

kq

e−ıqackcqδk,−q

=
∑

k

eıkackc−k =
∑

k

e−ıkac−kck (2.17)

and

N−1∑

j=1

c†j+1c
†
j =

∑

k

eıkac†kc
†
−k. (2.18)

Thus, the Hamiltonian in the momentum space reads

H =
∑

k

εkc
†
kck −

∆

2

∑

k

(
e−ıkac−kck + eıkac†kc

†
−k

)
, (2.19)

with the kinetic energy εk = −µ − t cos(ka). Since our goal is to write such a Hamiltonian in a BdG

fashion [1, 5, 6], we make use of the following tricks:

∑

k

εkc
†
kck = =

1

2

∑

k

(εkc
†
kck + εkc

†
kck)

=
1

2

∑

k

[
εkc
†
kck + εk(1− ckc†k)

]

=
1

2

∑

k

(εkc
†
kck − ε−kc−kc

†
−k) +

1

2

∑

k

εk, (2.20)

∑

k

e−ıkac−kck =
1

2

∑

k

(e−ıkac−kck + e−ıkac−kck)

=
1

2

∑

k

(e−ıkac−kck − e−ıkackc−k)

=
1

2

∑

k

(e−ıkac−kck − eıkac−kck)

=
1

2

∑

k

(e−ıka − eıka)c−kck

= −
∑

k

ı sin(ka)c−kck (2.21)

and

eıkac†kc
†
−k =

∑

k

ı sin(ka)c†kc
†
−k. (2.22)

9
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Now, the Hamiltonian is written as

H =
1

2

∑

k

[
εkc
†
kck − ε−kc−kc

†
−k + ∆∗kc

†
kc
†
−k + ∆kc−kck

]
+

1

2

∑

k

εk. (2.23)

wherein ∆k = −ı∆ sin(ka) is the Fourier-transformed superconducting pairing energy [1]. In an equiv-

alent matrix representation (omitting the constant),

H =
1

2

∑

k

(
c†k c−k

)( εk ∆∗k
∆k −ε−k

)(
ck

c†−k

)
. (2.24)

In superconducting systems, is natural to define the Nambu spinors [17]

ψ†k =
(
c†k c−k

)
(2.25)

and finally

H =
1

2

∑

k

ψ†kHBdGψk, (2.26)

with

HBdG =

(
εk ∆∗k
∆k −ε−k

)
(2.27)

as being the BdG Hamiltonian, with the paring energy ∆k odd in k, indicating the p-wave superconduct-

ing nature.

Aiming to analyze the bulk properties, we calculate the energy spectrum of HBdG as follows:

|HBdG − E(k)I| = 0, (2.28)

wherein I is a 2x2 identity matrix and E(k) are the eigenstates associated to the corresponding BdG

Hamiltonian. Thus [1],

E(k)± = ±
√
ε2k + |∆k|2 = ±

√
(µ+ t cos(ka))2 + ∆2 sin2(ka). (2.29)

Figure 2.2 shows the bulk energy dispersion E(k) [Eq. (2.29)] of the Kitaev model for distinct phys-

ical situations, with the lattice parameter a = 1. Panel (a) reveals that a finite p-wave pairing opens

a gap of 2∆ at k = ±π
2 (orange curves) for |µ| < t (µ = 0). Moreover, E(k) is gapped (indepen-

dent of ∆k), when |µ| > t, as can be seen in panels (b) and (c) of the same figure. The former case

describes the weak pairing situation, while the latter is called strong pairing regime. Also according

to Eq. (2.29), the system will be gapless as the both elements of the square root vanishes simultane-

ously [3]. In this sense, |∆k| ≡ ∆ sin(ka) = 0 for k = 0,±π and the kinetic energy normal dispersion

εk = −µ − t cos(ka) is zero when k coincides with the Fermi momentum kF [εk(kF ) = 0], which is

fulfilled for −µ − t cos(ka) = 0. Thus, the gap closes for kF = 0,±π, which happens for µ = −t
[Fig. 2.2(d)] and µ = t [Fig. 2.2(e)], respectively.
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Figure 2.2: Bulk energy dispersion E(k) of the BdG Hamiltonian [Eq. (2.27)] for several values of chemical potential µ.

In panel (a), the green dashed curve depicts the case of ∆ = 0, while the opposite situation is described by the orange curve,

wherein a gap opens at k = ±π
2

(orange curves). Panels (b) and (c) corresponds to the trivial regime of gapped energy spectrum.

The phase boundaries at µ = ±t are shown in panels (d) e (e), in which the gap closes at k = 0 and ±π, respectively.

It should be emphasized that the transition between weak [|µ| < t, Fig. 2.2(a)] and strong [|µ| > t,

Fig. 2.2(b)-(c)] pairing regimes necessarily involves the closing of the bulk gap at µ = ±t. It is precisely

such a phase transition in which the gap closes that gives to the system its topological feature, wherein

unpaired MBSs emerge as zero modes in the weak regime [1, 3]. As will be seen in next section, such

a bulk gap closure behavior can be indeed verified in quasi-1D semiconducting nanowires with strong

Rashba SOI, close to a s-wave superconductor and under external magnetic field.

2.3 MZMs in quasi-one dimensional Rashba nanowires

As aforementioned in the beginning of the current chapter, in 2010 Lutchyn et al [14] and Oreg et

al [15] demonstrated the possibility of engineering exotic p-wave pairing through proximity effect in

quasi-1D semiconductors with strong SOI, as InAs and InSb, for instance. Such a theoretical prediction

paved the way for experimental achievements of topological superconductivity with MZMs features.

In order to understand better the manifestation of p-wave superconductivity in these devices, let us

start by considering a quasi-1D nanowire with SOI and Zeeman splitting in absence of the proximitized

s-wave superconductor, which is described by the following Hamiltonian [1, 3]

H =

∫
dxΨ†(x)H0Ψ(x), (2.30)

with

Ψ(x) =

(
ψ↑

ψ↓

)
, (2.31)
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and

H0 = Hkin +HRashba +HZeeman, (2.32)

wherein

Hkin =
p2
x

2m
− µ (2.33)

describes the kinetic energy of an electron of effective massm, with px ≡ −ı~∂x as being the momentum

operator and µ the chemical potential,

HRashba = −α
~
σypx (2.34)

and

HZeeman = EZσx (2.35)

stands for Rashba SOI interaction of strength α along the y−axis and Zeeman energy splitting EZ =

gµBB/2, respectively, wherein g is the nanowire’s g-factor, µB is the Bohr magneton and B is the

applied magnetic field along the x-axis1. Moreover, σx and σy are the Pauli matrices along x and y

directions, respectively2. Later on, we will see the importance of the perpendicularity between Rashba

and Zeeman fields.

According to the Schrödinger equation, H0Ψ = EΨ and thus one can found the eigenvalues E of

H0 with the correspondent eigenvectors Ψ. In order to solving such a equation, let us suppose that the

eigenvectors in k-space are two dimensional spinors given in terms of plane waves, i.e, Ψk(r) =φeikr =

(c1, c2)T eikr, wherein r is the radius of the quasi-1D nanowire [18]. First, let us find the eigenvalues:

|H0 − EI| = 0⇒
∣∣∣∣∣
εk − E ıαk + EZ

−ıαk + EZ εk − E

∣∣∣∣∣ =

(
0

0

)
, (2.36)

resulting in

E±(k) = εk ±
√

(αk)2 + E2
Z , (2.37)

with εk = ~2k2

2m − µ. By using such eigenvalues, we can now find the eigenvectors according to the

eigenvalue equation, which reads

[H0 − E±(k)I]Ψk(r) = 0⇒
(
εk − E±(k) ıαk + EZ

−ıαk + EZ εk − E±(k)

)(
c1

c2

)
= 0, (2.38)

giving rise to the following coupled equations:





(εk − E±(k)) c1 + (ıαk + EZ) c2 = 0,

(−ıαk + EZ) c1 + (εk − E±(k)) c2 = 0.
(2.39)

1For InSb, the typical values are m = 0.015me and α = 20meV · nm [20].
2σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.
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Now, let us write c1 in terms of c2
3:

c1 = − (ıαk + EZ)

(εk − E±(k))
c2 (2.40)

and consequently

Ψk(r) =

(
c1

c2

)
eikr ⇒ Ψk,±(r) = c2

(
− (ıαk+EZ)

(εk−E±(k))

1

)
eikr. (2.41)

Moreover, εk − E±(k) = ∓
√

(αk)2 + E2
Z . Thus,

Ψk,±(r) = c2


±

(ıαk+EZ)√
(αk)2+E2

Z

1


 eikr. (2.42)

According to the normalization condition |Ψk,±(r)|2 = 1 one can find c2 as follows:

|Ψk,±(r)|2 = Ψ∗k,±(r)Ψk,±(r) = c∗2

(
± (−ıαk+EZ)√

(αk)2+E2
Z

, 1
)
e−ikrc2


±

(ıαk+EZ)√
(αk)2+E2

Z

1


 eikr = 1⇒

|c2| =
1√
2
. (2.43)

Finally, the eigenvectors normalized by the finite length of the nanowire L, are given by

Ψk,±(r) =
1√
L
φk,±e

ikr, φk,± =
1√
2

(
±νk

1

)
, (2.44)

with νk = (ıαk+EZ)√
(αk)2+E2

Z

.

Figure 2.3 illustrates the energy dispersion E±(k) [Eq. (2.38)] of the Rashba nanowire with Zeeman

splitting for distinct situations. Panel (a) shows the simplest free electron case (α = EZ = 0) de-

scribed by two spin-degenerated parabolas shifted down by finite µ. The Rashba SOI breaks such a spin-

degeneracy along the k-axis by shifting the spin up and down parabolas by an amount of kSOI = mα/~2

and ESOI = mα2/2~2 in the energy axis, as shown in Fig. 2.3(b). Each spin species is aligned along the

y-axis, following the quantization direction defined the the Rashba coupling, i.e, σy. Hence, for EZ = 0,

the energy dispersion exhibits opposite spin directions associated to opposite momenta for a given value

of chemical potential and thus, only singlet states are allowed to form when a s-wave superconductor is

taken into account. An external magnetic field applied perpendicularly to Rashba intrinsic field fix this

issue [Fig. 2.3(c)]: for EZ 6= 0 there is an opening gap of 2EZ , which removes the spin-degeneracy at

k = 0. Moreover, when µ is within such a gap, the spin projection is now a mix of both spin up and

down directions due to the competition of Rashba (σy) and Zeeman fields (σx), yielding a canting angle

dependent of k and thus characterizing a helical spin state. It is precisely this behaviour that allows p-

wave pairing in the nanowire when placed next to s-wave superconductor, since the induced triplet states

are favoured due to the Zeeman energy splitting along σx.
3if we had considered the inverse, the result wouldn’t change.
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Figure 2.3: Energy spectrum of the quasi-1D Rashba nanowire in absence of superconducting proximity effect, given by

Eq. (A.42). (a): two spin-degenerated parabolas describing the free electron case with finite chemical potential µ. (b): the

Rashba SOI breaks the spin-degeneracy along the k-axis. Each parabola carries one spin projection (red arrows). (c): The

Zeeman splitting due to a magnetic field applied perpendicularly to the Rashba field removes the spin degeneracy at k = 0 and

opens a gap of size 2EZ . The spin projection is locked to k for µ within the energy gap, defining a helical state.

Figure 2.4: Basic scheme to induce p-wave superconductivity in the 1D semiconducting nanowire, described by the Hamil-

tonian of Eq. (A.51). Adapted from [1].

Aiming to analyze the energy spectrum of the nanowire when the proximity effect is taken into

account, let us consider the following Hamiltonian [1, 18]

Hsc =

∫
dx
(

∆ψ†↑,kψ
†
↓,−k + ∆∗ψ↓,−kψ↑,k

)
, (2.45)

describing the standard s-wave pairing of electrons with opposite spin and momenta within the Bardeen-

Cooper-Schrieffer (BCS) theory, with pairing potential ∆. The Hamiltonian representing the full system

(see Figure 2.4) now reads

H = H0 +Hsc, (2.46)

with H0 given by Eq. (2.32). Since the Hamiltonian describes a superconducting system, is convenient

to write it in a BdG form using the Nambu representation as follows [see Eqs. (2.24)-(2.27)]:

H =
1

2

∫
dxΨ(k)HBdGΨ(k), (2.47)
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with

Ψ(k) =




ψ↑,k

ψ↓,k

ψ†↑,−k
ψ†↓,−k




(2.48)

and

HBdG =

(
p2
x

2m
− µ

)
τz ⊗ σ0 −

α

~
(τz ⊗ σy)px + Ez(τz ⊗ σx) + ∆(τy ⊗ σy), (2.49)

wherein the τi and σi are the Pauli matrices acting on the electron-hole and spin subspaces, respectively.

In the equivalent matrix form,

HBdG =




εk (ıαk + EZ) 0 −∆

(−ıαk + EZ) εk ∆ 0

0 ∆ −εk (−ıαk + EZ)

−∆ 0 (ıαk + EZ) −εk



. (2.50)

Again, by solving the Schördinger equation HBdGΨ = EΨ and its corresponding eigenvalue equation,

one can find the following energy dispersion relation [3]:

E2
±(k) = ε2

k + (αk)2 + E2
Z + ∆2 ± 2

√
(EZ∆)2 + ε2

k(E
2
Z + α2k2). (2.51)

In Figure 2.5 we explore the role of the proximity effect in the energy spectrum of the Rashba

nanowire, given by Eq. (2.51). The free electron case is depicted in panel (a), wherein the inverted

parabola describes the kinetic energy of a hole which emerges in the spectrum owing to the Nambu

description [Eq. (2.48)]. As we have seen in previous situation [Fig. 2.3(b)], the finite Rashba SOI split

such parabolas along the k-axis, with a crossing point only at k = 0 [panel (b)]. Such a feature is

removed by the finite Zeeman splitting, since it opens a gap of 2EZ at k = 0 [panel (c)]. As can be

noticed in panel (d), the role of the induced superconducting pairing is to open a gap at the Fermi points,

indicated by red circles in panel (c).

In what follows, we investigate the competition between the Zeeman splitting EZ and the supercon-

ducting pairing potential ∆, both the mechanisms responsible for the gap opening process in the Rashba

proximitized nanowire. For this propose, it is appropriate to rewrite the Hamiltonian which describes the

superconducting pairing [Eq. (2.45)] in terms of

ψ(k) = φ−(k)ψ−(k) + φ+(k)ψ+(k), (2.52)

wherein the operators ψ±(k) annihilates states with momentum k in the upper/lower bands and φ±(k)

are the renormalized wavefunctions given by Eq. (2.44). Such upper/lower functions, in turn, can be

decomposed into two spinor components, i.e,

φ−(k) =

(
φ↑−(k)

φ↓−(k)

)
=

1√
2

(
−νk

1

)
and φ+(k) =

(
φ↑+(k)

φ↓+(k)

)
=

1√
2

(
+νk

1

)
, (2.53)
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Figure 2.5: Energy spectrum of proximitized Rashba nanowire for distinct cases. (a): free electron case, wherein the normal

and inverted parabolas represent the kinetic energy of an electron and a hole, respectively. (b): The SOI shifts the parabolas

along k-axis and cross with each other at k = 0. (c): The magnetic field opens a gap of 2EZ at k = 0. (d): A gap of 2∆ is

opened at the Fermi points (red circles) due to the induced pairing by proximity effect.

with νk = (ıαk+EZ)√
(αk)2+E2

Z

. Now, we can consider this spinorial representation in Eq. (2.52):

ψ↑(k) = φ↑−(k)ψ−(k) + φ↑+(k)ψ+(k) = 1√
2
νk [−ψ−(k) + ψ+(k)]

ψ↓(k) = φ↓−(k)ψ−(k) + φ↓+(k)ψ+(k) = 1√
2

[ψ−(k) + ψ+(k)] .
(2.54)

In this helical basis, Eq. (2.45) reads [3]

Hsc =

∫
dk

2π

[
∆p

+(k)

2
ψ†+(k)ψ†+(−k) +

∆p
−(k)

2
ψ†−(k)ψ†−(−k) +

∆s(k)

2
ψ†+(k)ψ†−(−k) + h.c.

]
,

(2.55)

wherein one can see the emergence of

∆p
∓(k) =

±ıαk∆√
(αk)2 + E2

Z

and ∆s(k) =
EZ∆√

(αk)2 + E2
Z

, (2.56)

which explicitly describe distinct pairing processes at the nanowire owing to interplay between the the

Zeeman splitting (EZ), Rashba SOI (α) and proximity effect ∆. The first one accounts for the pairing

between between states of the same lower/upper (∓) band, while the second mix states of distinct bands.

Furthermore, ∆p
∓(k) is odd function of k, thus describing a p-wave paring, while ∆s(k) is even, which

corresponds to a s-wave superconductivity process.

Moreover, one can verify how the topological superconductivity emerges in the proximitized Rashba

nanowire by analyzing the gap opening process in the energy spectrum given by Eq. (2.51), which comes

from distinct superconducting pairings [Eq. (2.56)] for finite ∆. In this sense, it can be shown that a
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Figure 2.6: Energy spectrum of the proximitized Rashba nanowire for increasing values of Zeeman energy splitting. The

critical value EZc =
√
µ2 + ∆2 points out the topological transition.

topological phase transition occurs for a critical Zeeman energy splitting [1]

EZc =
√
µ2 + ∆2 (topological criterion). (2.57)

Let us label the inner and outer gaps in such spectrum as ∆1(lower momentum gap) and ∆2 (higher

momentum gap), respectively. Panel (a) of Figure 2.6 shows that ∆1 = ∆2 = ∆ for EZ = 0. However,

as EZ approaches the critical value [panel (b)], the lower momentum gap ∆1 starts to close, followed

by a complete closing at EZ = EZc [panel (c)] and reopening for EZ > EZc [panel (d)], while ∆2

keeps finite and approximately constant for all Zeeman energy values. Such a closing and reopening of

∆1, also known as gap inversion, is the fingerprint of the topological transition, wherein the nontrivial

superconducting phase (EZ > EZc) hosts MZMs at the nanowire ends, protected by an effective gap

∆eff = Min(∆1,∆2) [3].

One can make a clear connection between the Rashba nanowire within the topological phase and

the Kitaev p-wave superconducting chain with periodic boundary conditions by considering the regime

of stronger magnetic fields (EZ � mα2,∆) [3], wherein the upper band of the energy spectrum is

projected out of the problem. In this situation, the full Hamiltonian in the helical basis reads

H =

∫
dk

2π

{
ξk−ψ

†
−(k)ψ−(k) +

[
∆p
−(k)

2
ψ†−(k)ψ†−(−k) + h.c.

]}
, (2.58)

with ξk− = εk−
√

(αk)2 + E2
Z and ∆p

−(k) = ıαk∆√
(αk)2+E2

Z

is the pairing potential with p-wave symmetry

(odd function in k). In this scenario, one can rewrite the Hamiltonian in a BdG form as

HBdG =

[
ξk− ∆p

−(k)

∆p∗
− (k) ξ−k−

]
, (2.59)

17



Chapter 2. Majorana Fermions in Condensed Matter Physcis

with the following energy spectrum

E(k) = ±
√
ξ2
k− + |∆p

−(k)|2. (2.60)

Thus,

H =
1

2

∫
dk

2π
Ψ(k)HBdGΨ(k), with Ψ(k) =

(
ψ−(k)

ψ†−(−k)

)
. (2.61)

Formidably, the energy dispersion given by Eq. (2.60) has the same p-wave superconducting nature of

the Kitaev toy model [Eq. (2.29)], ensuring that the Rashba proximitized nanowire in the topological

phase (EZ � EZc) indeed hosts p-wave superconductivity with protected MBSs.

It should be mentioned that the MBSs are not strictly zero-modes in realistic nanowires with finite

length L, once the Majorana wave function [21]

ψ(x) ∼ e−
x
ξM e±ikF x (2.62)

exponentially decays into the nanowire, wherein kF and ξM are the Fermi wave vector and is the super-

conducting coherence length associated to the MBSs, respectively. Thus, the MBSs residing at opposite

ends of the nanowire can hybridize with each other, yielding a fermionic quasiparticle excitation with

energy [22–26]

δE ∼ ~2kF e
−2L
ξM

mξM
cos(kFL), (2.63)

wherein m is the effective electron’s mass in the nanowire. Such a finite overlap leads to an energy split-

ting of the associated zero modes and its magnitude depends on the ratio L/ξM , whose the Majorana

coherence length ξM ∼ 2
(
EZ
∆

)
lSOI [21, 27], with the spin-orbit length lSOI = ~2

mα . Therefore, for

finite-length nanowires within the topological phase, the energy spectrum can exhibit an oscillatory pat-

tern around the zero energy as a function of the magnetic field. This phenomenon is known as Majorana

oscillations and we have investigated it in one of our papers, as we shall see in chapter 6.

2.4 Experimental detection of Majorana bound states in semiconducting
proximitized nanowires

Based on the theoretical background of previous sections, we have realized the possibility of achiev-

ing p-wave superconductivity in a quasi-1D semiconducting nanowire by considering the following key

ingredients: strong Rashba SOI coupling, induced superconducting pairing and external magnetic field

perpendicular to the Rashba field. When such components are put together in the right way, a topological

superconducting phase of p-wave nature emerges with MBSs as zero-energy modes at the opposite ends

of the proximitized nanowire.

In present section, we shall see that the “p-wave Majorana recipe” indeed works in the labora-

tory. Although other setups have been proposed to accomplish MBSs, such as superconductor-normal-

superconductor (Joshepson) junctions [28, 29], Coulomb blockade effect in the so-called Majorana is-

lands [30, 31], proximitized edges of 2D topological insulators [32] and atomic magnetic chains [33–37],

we will focus just on quasi-1D semiconducting nanowires of previous section (Sec. 2.3). In these kind of
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systems, the so-called zero-bias anomaly (ZBA) in tunneling spectroscopy measurements is considered

the hallmark which testifies the presence of the MBSs [1–3]. We shall realize, however, that nowadays

the key issue concerning these experiments is to make sure that the Majorana excitations were indeed

accomplished at the nanowire and besides that, how to distinguish them from other subgap excitations,

as trivial Andreev levels [38–44], Kondo effect [45, 46] and disorder [47], for instance.

2.4.1 First generation

The first claim of Majorana observation in semiconducting nanowires with strong Rashba SOI, Zee-

man splitting and induced superconductivity by proximity effect was done by Prof. Kouwenhoven’s

group in 2012 [20]. A scanning electron microscope image of the so-called Delft experiment is shown

in left panel of Figure 2.7: an Indium antimonide (InSb) semiconducting nanowire with strong Rashba

SOI is placed between normal-metallic (N) and superconducting (S) electrodes. While distinct tunnel

barriers (1 to 4 in the figure) vary the nanowire electron density between the N and S leads, an external

magnetic field B is applied parallel to such a wire. As we discussed in previous section, when this a

field exceeds the critical value EZc =
√
µ2 + ∆2, the system experiences a topological phase transition

with emergence of MBSs at the ends of the nanowire. Right panel shows differential conductance curves

for increasing magnetic fields in 10mT steps. For B = 0 there are two peaks at V = ±250µeV (green

arrows), indicating the formation of a gap due to induced superconductivity in the InSb nanowire owing

to proximity effect to S electrode. For a range of magnetic fields between 100 and 400mT , a subgap

ZBA emerges is such conductance profiles, thus suggesting that the MBSs were created in the nanowire.

Other experiments verified similar behaviour [48–51].

Although the promising results of Delft experiment have generated an initial excitement in the sci-

entific community, it was not long before the first objections came to light, since the following relevant

features of the experiment disagreed with theory [14, 15]: (i) the amplitude of the zero-bias peak was of

≈ 0.05G0, which is much smaller than the theoretical prediction G = G0 = 2e2/h; (ii) there was no

data showing the gap inversion which characterizes the topological phase transition (see Fig. 2.6 of pre-

vious section); (iii) the spin-orbit length lSOI ≈ 200nm (α = 0.2eV · Å) generated a relevant Majorana

coherence length ξM when compared to the length of the nanowire section close to the superconductor,

leading to overlapped MBSs [see Eq. (2.63)] and hence, an oscillatory pattern around zero energy should

be verified. However, the Majorana oscillations were absence in the experimental data. Both (i) and (ii)

issues can be explained by considering the formation of multiple subbands in the nanowire [23], while

the absence of Majorana oscillations can be understood by taken into account strong Coulomb repulsion

in the system [24].

Another relevant issue in the results of Delft experiment comes from the fact that another physical

phenomena can give rise to the ZBA. Disorder, for instance, can creates subgap states around the zero-

energy, mimicking the signature of the MBSs [52–54]. However, these disorder effects are fragile against

the change of parameters, as the magnetic filed, which discards such a possibility in the experimental data

[Fig. 2.7(right panel)]. Other mechanism that can generates ZBAs is the Kondo effect [45, 46]. Such a

phenomenon becomes more relevant for situations wherein a quantum dot is formed in the nanowire by

depleting gates. In this situation, there is a competition between the superconducting proximity effect

(singlet ground state) and the Coulomb repulsion (doublet ground state) in the quantum dot, which is

controlled by the ratio ∆/TK , with Tk is the Kondo temperature [55]. Thus, for ∆� TK a Kondo peak
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Figure 2.7: Left panel: Scanning electron microscope of the hybrid device from Delft experiment [20]. A semiconducting

InSb nanowire is placed between S (niobium titanium nitride-NbTiN) and N (gold) reservoirs and is depleted by the gates

numbered 1 to 4. The green line indicates the tunnel barrier between the contacts. Right panel: Differential conductance

measurements at distinct magnetic fields B. A subgap ZBA emerges for B between 100 and 400mT , indicating the presence

of MBSs at the opposite ends of the nanowire. Typical estimated parameters are the induced superconducting gap ∆ =

250µeV , the Rashba coupling α = 0.2eV · Å and the Zeeman energy splitting EZ/B ≈ 1.5meV/T (g-factor g ≈ 50). The

measurements were performed at T = 50mK . Source: Ref. [3].

emerges at zero energy. Nevertheless [56], one can distinguish the ZBAs coming from Kondo and MBSs

by analyzing the splitting of the Kondo peak under increasing magnetic field.

Moreover, in hybrid devices of Fig. 2.7 (left), the transport between normal and superconducting

segments is given by Andreev reflection processes [57], which can yields either the so-called Andreev

bound states (ABSs) or Yu-Shiba-Rusinov (YSR) states [58–60]. These states can stick at zero energy

for a wide range of magnetic fields 4, thus mimicking exactly the ZBA signature of the MBSs [61].

Distinguish Andreev from Majorana bound sates is nowadays one of the greatest challenges in Majorana

hybrid devices, since they are indistinguishable for local conductance measurements [62].

2.4.2 Second generation

The criticism to the results from Delft boosted relevant improvements in the fabrication of hybrid

setups, such as the epitaxial growth of superconducting cells on the surface of the nanowire [63] or high-

quality semiconductor-superconductor interfaces [64, 65], for instance. These advances have allowed to

obtain cleaner hybrid devices, with very good induced hard gaps and almost perfect Andreev reflection

processes.

The aforementioned experimental progress could be verified in 2016 at Prof. Charles Marcus lab

(Copenhagen) [68], wherein a native quantum dot at the end of the nanowire [66, 67] allowed to obtain

detailed transport features of the Majorana hybrid device [Fig. 2.8(a)]. It was shown, for instance, that the

MBSs can emerge from coalescing ABSs when either a gate voltage (chemical potential) or a Zeeman

field is applied to the nanowire [Fig. 2.8(b)-(c)]. However, such a finding was promptly challenged

by Das Sarma et al [62], who theoretically proved that trivial ABSs can indeed mimic the Majorana

signature, as we have discussed in the section above.

Also at Charles Marcus lab [69], such a native quantum dot structure was recently used as a spec-

troscopy tool to experimentally investigate the so-called degree of Majorana non-locality [70, 71] (Fig-

ure 2.9). According to such a proposal, it is possible to quantify “how non-local” are the MBSs at the
4The range of magnetic fields is of order of the broadening of the ABSs resonances, i.e, δB ∼ ΓA.
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Figure 2.8: (a) Scanning electron micrograph of the hybrid device from the Copenhagen experiment [68]. The blue part

indicates the epitaxial growth of Al directly performed in two or there facets of the hexagonal semiconducting Indium arsenide

(InAs) nanowire. The Ti/Au and Ti/Au/V are the metal and superconducting leads, respectively. The white brace indicates the

quantum dot region, which spontaneously emerges due to disorder or band-bending. A magnetic field is applied parallel to the

nanowire axis. (b) Differential conductance as a function of both sorce-drain voltage VSD and magnetic field, wherein the two

initial ABSs merges at B = 0.75T into a stable zero-bias peak, which remains robust up to B = 2T . (c) Line cut plots from

panel (b), showing the differential conductance for distinct values of B. The measurements were performed at T = 20mK.

Adapted from Ref. [68]

Figure 2.9: (a) Scheme of a native quantum dot coupled to γL and γR MBSs, with finite hybridization δ between then.

The dot couples with both Majoranas end modes due to finite size effects and displacement of the Majorana wave functions by

tunning external magnetic field or chemical potential of the nanowire. Panels (b) and (c) show the expected low-energy spectrum

of the nanowire as a function of the quantum dot gate voltage Vdot for overlapped and well separated MBSs, respectively. For

the hybridized Majoranas (b), the zero-energy state is perturbed by the quantum dot states (anticrossing points). The energies

ε
M(D)
± provide the information related to the degree of nonlocality Ω2 =

εM−
εD−

∣∣∣ sin 1
2
θL

sin 1
2
θR

∣∣∣ ≈ tR
tL

, with the canting angles θL
and θR related the spin-texture of left and right MBSs [69, 70], respectively. (d) False color micrograph of the hybrid device,

wherein part the InAs nanowire (green) is partially covered by epitaxial Al (blue). The quantum dot region is indicated by the

dashed circle. (e) Differential conductance at B = 1T , in agreement with the prediction of panel (b). Adapted from Ref. [69]
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opposite ends of the superconducting section of the nanowire by analyzing the typical differential con-

ductance profiles showing anticrossings between the quantum dot and MBSs. The information coming

from such a degree of nonlocality can settle the intriguing issue concerning the distinction between trivial

zero-energy Andreev levels and highly nonlocal MBSs. Furthermore, the spin structure of the Majorana

wave functions also can be experimentally accessed.

2.4.3 Outlook

There is no doubt that there was a remarkable progress concerning the Majorana detection since

the original Fu and Kane proposal [13]. The second generation of proximitized Rashba nanowires, for

instance, have shown better signatures of MBSs, as well as how to differentiate between the zero-bias

peak emerging from Majorana excitations and those from other sub-gap mechanisms. Moreover, further

advance was performed in other experimental platforms, as high energy frequency measurements in

Josephson junctions based on quantum spin Hall insulators [72, 73], ferromagnetic atomic chains on

top of superconductors [33–37], STM measurements of vortices in superconductor-topological insulator

heterostructures [74] and graphene-based hybrid systems [75, 76].

All this outstanding progress points out that the recipe works, i.e, the p-wave superconductivity can

be achieved through proximity effect and time reversal symmetry break, allowing to create and measure

Majorana excitations in a variety of platforms. However, there is a long way to achieve the holy grail

of exponentially protected topological qubits based on Majorana physics. The next and more tangible

challenge to be overcome is demonstrating the spacial nonlocality of MBSs and finding better ways to

differentiate the Majorana signatures from other many-body phenomena, as we have discussed along

sec. 2.4. The second and hardest challenge to be shot down is demonstrating the exotic non-Abelian

braiding statistics in Majorana-based devices and how to control such a process for performing quantum

computing operations, which will raise the bar of the research area. As we shall see along the following

chapters, part of our work is basically focused in helping to beat the first challenge.
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Chapter 3

Mathematical formalism

In what follows, we will present the theoretical tools employed in all our works: the equation of mo-

tion (EOM) technique using the Green’s functions formalism at equilibrium [1–3] applied to Anderson-

type Hamiltonians [4]. Such a framework allows us to compute, for instance, the density of electronic

states (DOS) of an impurity adsorbed in a metallic host or, equivalently, the DOS of a quantum dot

between metallic reservoirs. This quantity provides important information concerning the electronic

transport, once the differential conductance through a given impurity/dot within the Landauer-Büttiker

formalism reads [1]

G =
2e2

h

∫
dω

(
−∂fF
∂ω

)
πΓρd(ω), (3.1)

wherein 2e2/h is the quantum of conductance, fF is the Fermi-Dirac distribution, Γ is known as Ander-

son parameter [4] and

ρ(ω) = −
(

1

π

)
Im [Grdd(ω)] (3.2)

is the related DOS, with GRdd(ω) as being the retarded Green’s function of a quantum dot/impurity in the

spectral (energy) domain ω. As we shall see later on, such a quantity describes the electron propagation

behaviour through the system in question.

3.1 Green’s function formalism and the equation of motion technique

The Green’s functions formalism are widely employed to solve linear differential equations in many

branches of Physics and Mathematics [5]. In the context of classical physics, for instance, one can use the

Green’s functions as a solution of linear differential equations with Dirac delta inhomogeneous source

and homogeneous boundary conditions. A practical example is the Poisson’s equation∇2ϕ = −ρ/ε0 [1],

connecting a given charge density distribution ρ with its electric potential ϕ. In quantum mechanics,

the Green’s functions formalism allows to obtain the eigenvalues of a given Hamiltonian with external

potential associated to the Schördinger equation [1]. In this picture, the Green’s functions are also known

as a propagators, since they describe the time evolution of the related wave function from a given time

and position to another time and space points [3].

Despite extensive discussion concerning distinct uses of Green’s functions in many-particle physics,

here we focus on the definition of retarded Green’s functions, which are specifically used for obtaining
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Chapter 3. Mathematical formalism

the DOS [Eq. (3.2)] via EOM technique. Such a kind of function is defined for fermions as1 [1]:

GR(rσt, r′σ′t′) = −ıθ(t− t′)〈[ψσ(rt), ψ†σ(r′t′)]+〉, (3.3)

wherein θ(t − t′) is the Heaviside function, being non-zero only for t > t′, which means that such a

Green’s function provide the information of the system after it has been perturbed. Moreover, [..., ...]+

holds the anticommutation relation for fermions belonging to a given Hamiltonian and

〈[ψσ(rt), ψ†σ(r′t′)]+〉 = Z−1Tr{e−βH [ψσ(rt), ψ†σ(r′t′)]+}, (3.4)

i.e, it represents the thermal average between the annihilation and creation operators ψσ(..., ...) and

ψ†σ(..., ...) respectively, with Z = Tr{e−βH} as being the partition function, wherein β = 1
kBT

. By

defining |n〉 as an eigenstate of the Hamiltonian H with associated energy En, one can write Eq. (3.3) as

GR(rσt, r′σ′t′) = −ıθ(t− t′)
∑

n

Z−1e−βEn〈n|[ψσ(rt), ψ†σ(r′t′)]+|n〉. (3.5)

Here one can explicitly notice the propagating character of such Green’s functions: they compute the

amplitude of a particle at initial point (r′, t′) evolving to the position r and time t.

In order to calculate the corresponding DOS associated to a given Hamiltonian H , one should get

the retarded Green’s function in the spectral domain ω. One way of achieving this is to employ the EOM

technique, which consists of determining the time evolution of a given Green’s function, followed by a

Fourier transform. As an example, we consider a retarded Green’s function which relates two fermionic

operators ci and cj belonging to H [1], i.e,

GR(it, jt′) ≡ GRci;cj (t, t′) = −ıθ(t− t′)〈[ci(t), c†j(t′)]+〉, (3.6)

wherein the position dependency was omitted for sake of simplicity. Let us derive such a Green’s function

with respect to time t:

∂tG
R
ci;cj (t, t

′) = −ı∂tθ(t− t′)〈[ci(t), c†j(t′)]+〉
+ (−ı)θ(t− t′)〈[∂tci(t), c†j(t′)]+〉
= −ıδ(t− t′)〈[ci(t), c†j(t′)]+〉
+ (−ı)θ(t− t′)〈[−ı[ci(t), H], c†j(t

′)]+〉, (3.7)

wherein we employed the Heisenberg picture ∂tci(t) = −ı[ci(t), H] to evolve the operator in the time

domain. In the last line of Eq. (3.7), one can see that the Hamiltonian will determine the new set of

Green’s functions, once it depends on the commutator of the operator ci with H . Furthermore, Eq. (3.7)

can be written as

∂tG
R
ci;cj (t, t

′) = −ıδ(t− t′)〈[ci(t), c†j(t′)]+〉+ (−ı)GR[ci,H];cj
(t, t′). (3.8)

In order to apply the Fourier transform, let us now multiply the both sides of Eq. (3.8) by ei(ω+ı0+)t and
1We assume ~ = 1.
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integrate over all the temporal domain t:

∫
dt∂tG

R
ci;cj (t, t

′)ei(ω+ı0+)t = −ı
∫
dtδ(t− t′)〈[ci(t), cj(t′)]+〉ei(ω+ı0+)t

+ (−ı)
∫
dtGR[ciH];cj

(t, t′)ei(ω+ı0+)t. (3.9)

The left-hand-side of the equation above can be solved by using partial integration

∫
udv = uv −

∫
vdu, (3.10)

with u = eiωt and dv = ∂tG
R
ci;cj (t, t

′)dt, yielding

∫
dt∂tG

R
ci;cj (t, t

′)eiωt = GRci;cj (t, t
′)eiωt − ıω

∫
GRci;cj (t, t

′)eiωtdt

= −ıω
∫
GRci;cj (t, t

′)eiωtdt, (3.11)

with ω ≡ ω + ı0+. Thus, Eq. (3.9) is reduced to

−ıω
∫
GRci;cj (t, t

′)eiωtdt = −ı
∫
dtδ(t− t′)〈[ci(t), cj(t′)]+〉ei(ω+ı0+)t

+ (−ı)
∫
dtGR[ciH];cj

(t, t′)ei(ω+ı0+)t. (3.12)

By using the definition of Fourier transform GR(ω) =
∫
dtGRci;cj (t, t

′)eiωtdt and the Dirac-delta prop-

erty, the expression above reads

ωGRci;cj (ω) = δij +GR[ciH];cj
(ω), (3.13)

or in the Zubarev notation [3]

ω〈〈ci; c†j〉〉 = δij + 〈〈[ci, H]; c†j〉〉. (3.14)

The Eqs. (3.13) and (3.14) ensure that the calculation of GRci;cj (ω) gives rise to a new Green’s function

GR[ciH];cj
(ω), whose the dynamics is determined by the Hamiltonian of the system.

3.2 The Single Impurity Anderson Model (SIAM)

By a way of example, we will apply the EOM technique in the celebrated model proposed by P.

W. Anderson 2 in 1961 [4], which describes the formation of a local magnetic moment of a magnetic

ion embedded in a non-magnetic metallic host (Fig. 3.1). According to the Anderson proposal, only

the external shell of the magnetic ion contributes for the charge transport process, which is typically the

d-shell. Thus, the magnetic impurity is described by the Hamiltonian

Himp = εdσndσ + Und↑nd↓, (3.15)

2Was awarded the Nobel Prize in Physics in 1977, “for their fundamental theoretical investigations of the electronic struc-
ture of magnetic and disordered systems.” Source: Nobel Prize website
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Figure 3.1: Sketch of the
model described by Anderson:
an atom with localized magnetic
moment is adsorbed in a non-
magnetic metallic host. V stands
for the hybridization strength be-
tween the former and the later.

wherein ndσ = d†σdσ is the number operator for d-electrons with spin σ and

energy εdσ. Moreover, U stands for the correlation strength between electrons

of the impurity with opposite spins. Is exactly such a repulsion which can

gives rise to local magnetic moments for a certain set of model parameters.

Furthermore,

Hhost =
∑

kσ

εkc
†
kσckσ (3.16)

describes the non-magnetic metallic host, wherein the operators c†kσ (ckσ) cre-

ates (annihilates) electrons with spin σ, wave-vector k and energy εk. The

Coulomb interaction can be neglected in the host Hamiltonian, once the states which form the conduc-

tion band are s-states and therefore, more extended in space [1].

The electrons of the metallic host overlap with those ones occupying the d-state of magnetic impurity,

giving rise to the Hamiltonian

Hhyb =
∑

kσ

V (d†σckσ + h.c.), (3.17)

with hybridization amplitude V . Thus, the SIAM is fully modelled as

H = Hhost +Himp +Hhyb. (3.18)

Besides its simplicity, the SIAM has a very complicated full solution due to the interacting term [Eq. (3.15)],

as we shall see. However, it has been employed to describe a variety of strong correlated systems in con-

densed matter.

Now, let us making use of the EOM technique3 to obtain the DOS of the ion impurity [Eq. (3.2)].

According to Eq. (3.14):

ω〈〈dσ; d†σ〉〉 = 1 + 〈〈[dσ, H]; d†σ〉〉 (3.19)

with

[dσ, H] = [dσ, Hhost] + [dσ, Himp] + [dσ, Hhyb]. (3.20)

Let us calculate each of these commutators separately, using the following anticommutation relations for

fermions

[dσ, d
†
σ̃]+ = δσσ̃, [ckσ, c

†
qσ̃]+ = δkqδσσ̃, (3.21)

[dσ, dσ̃]+ =[d†σ, d
†
σ̃]+ = 0 and (3.22)

[ckσ, cqσ̃]+ =[c†kσ, c
†
qσ̃]+ = 0. (3.23)

Starting with

[dσ, Hhost] = [dσ,
∑

k

εkc
†
kσckσ] = 0, (3.24)

once the operators of the ion impurity and host belong to distinct subspaces. We also must compute

[dσ, Himp] = [dσ,
∑

σ̃

εdσ̃d
†
σ̃dσ̃ + Und↑nd↓], (3.25)

3The full calculations related to our works are shown in Appendices A and B.
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[dσ,
∑

σ̃

εdσ̃d
†
σ̃dσ̃] =

∑

σ̃

εdσ̃(dσd
†
σ̃dσ̃ − d

†
σ̃dσ̃dσ)

=
∑

σ̃

εdσ̃(dσd
†
σ̃dσ̃ + d†σ̃dσdσ̃)

=
∑

σ̃

εdσ̃(dσd
†
σ̃dσ̃ + δσσ̃dσ̃ − dσd†σ̃dσ̃)

= εdσdσ, (3.26)

[dσ, Und↑nd↓] = U(dσd
†
↑d↑d

†
↓d↓ − d

†
↑d↑d

†
↓d↓dσ)

= U(dσd
†
↑d↑d

†
↓d↓ + d†↑d↑d

†
↓dσd↓)

= U(dσd
†
↑d↑d

†
↓d↓ + δ↓σd

†
↑d↑d↓ − d

†
↑d↑dσd

†
↓d↓)

= U(dσd
†
↑d↑d

†
↓d↓ + δ↓σd

†
↑d↑d↓ + d†↑dσd↑d

†
↓d↓)

= U(dσd
†
↑d↑d

†
↓d↓ + δ↓σd↓d

†
↑d↑ + δ↑σd↑d

†
↓d↓ − dσd

†
↑d↑d

†
↓d↓))

= Udσndσ̄, (3.27)

with σ̄ as being the opposite of σ. Lastly,

[dσ, Hhyb] = [dσ,
∑

q,σ̃

V (d†σ̃cqσ̃ + c†qσ̃dσ̃)]

=
∑

q,σ̃

V (dσd
†
σ̃cqσ̃ − d

†
σ̃cqσ̃dσ)

+
∑

q,σ̃

V (dσc
†
qσ̃dσ̃ − c

†
qσ̃dσ̃dσ)

=
∑

q,σ̃

V (dσd
†
σ̃ + d†σ̃dσ)cqσ̃

+
∑

q,σ̃

V (−dσdσ̃c†qσ̃ − dσ̃dσc
†
qσ̃)

=
∑

q,σ̃

V [dσ, d
†
σ̃]+cqσ̃ −

∑

q,σ̃

V [dσ, dσ̃]+c
†
qσ̃

= V
∑

q

cqσ. (3.28)

Thus,

[dσ, H] = εdσdσ + V
∑

q

cqσ + Udσndσ̄ (3.29)

and consequently,

(ω − εdσ)〈〈dσ; d†σ〉〉 = 1 + V
∑

k

〈〈ckσ; d†σ〉〉+ U〈〈dσndσ̄; d†σ〉〉. (3.30)

As can be noticed, the running of EOM has generated new Green’s functions, which in principle can be
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found by applying again the same technique. Thus, let us compute 〈〈ckσ; d†σ〉〉:

ω〈〈ckσ; d†σ〉〉 = 〈〈[ckσ, H]; d†σ〉〉, (3.31)

with

[ckσ, H] = εkckσ + V dσ, (3.32)

yielding

(ω − εk)〈〈ckσ; d†σ〉〉 = V 〈〈dσ; d†σ〉〉. (3.33)

Now, let us substitute Eq. (3.33) into Eq. (3.30):

(ω − εdσ)〈〈dσ; d†σ〉〉 = 1 + V 2
∑

k

〈〈dσ; d†σ〉〉
(ω − εk)

+ U〈〈dσndσ̄; d†σ〉〉. (3.34)

Since ω ≡ ω + ı0+, the sum over k can be separated into correspondent real and imaginary parts (See

Appendix A), which leads to

(ω − εdσ + ıΓ)〈〈dσ; d†σ〉〉 = 1 + U〈〈dσndσ̄; d†σ〉〉, (3.35)

wherein Γ = πV 2
∑

k ρ0 is the self-energy contribution from the metallic host and ρ0 = 1/2D, with

D as being the characteristic band half-width of the metal. This self-energy term represents the way in

which the impurity “feels” the presence of the host, leading to a renomalization of its energy levels. The

quantity Γ also is known as Anderson parameter [4] and are related to the electron exchange rate between

the impurity and the host via Fermi’s golden rule as follows [6]:

τ =
~

2Γ
, (3.36)

with τ as being the electron lifetime in a given state of the impurity. As we will see later, Γ provides

the half width at half maximum (HWHM) of the peaks in the DOS related to possible states at the

impurity [6]. Therefore, broader peaks describes states in which the electron lifetime is shorter.

Let us continue to apply the EOM for obtaining 〈〈dσ; d†σ〉〉. According to Eq. (3.35), the four-operator

Green’s function 〈〈dσndσ̄; d†σ〉〉 should be computed. Such kind of Green’s function describes a many-

particle interaction owing to the presence of the correlation (U 6= 0). Using the definition of Eq. (3.14)

again,

ω〈〈dσndσ̄; d†σ〉〉 = 〈[dσndσ̄, d†σ]+〉+ 〈〈[dσndσ̄, H]; d†σ〉〉, (3.37)

which leads to (see Appendix B)

(ω − εdσ − U)〈〈dσndσ̄; d†σ〉〉 = 〈ndσ̄〉+ V
∑

k

〈〈ckσndσ̄; d†σ〉〉+ V
∑

k

〈〈d†σ̄ckσ̄dσ; d†σ〉〉

− V
∑

k

〈〈c†kσ̄dσ̄dσ; d†σ〉〉, (3.38)

with the occupation average

〈ndσ̄〉 = −
(

1

π

)∫
dωfF (ω)Im[〈〈dσ̄; d†σ̄〉〉]. (3.39)
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As can be seen in Eq. (3.38), the running of the EOM procedure in the four-operator Green’s function

has generated new many-particle Green’s functions. If we apply the EOM in each of them, we will

get new Green’s functions of same type and by running EOM in such functions, we will obtain again

new Green’s functions. In other words, the successive application of the EOM technique in many-

particle Green’s functions leads to an infinite growth of the system of coupled functions and thus, some

approximation method becomes necessary to close the calculations. In this sense, we employ the well-

established Hubbard-I truncation scheme [7], which allows to catch the Coulomb blockade peaks [1], also

known as Hubbard peaks. Like every approximation in Physics, the Hubbard-I also has a disadvantage: it

is unable to pick up the features of Kondo effect [8], once it throws away the Green’s functions containing

spin-flip processes between the host and the magnetic impurity. Hence, the Hubbard-I is valid only for

T � TK , wherein TK is the characteristic Kondo temperature. It should be emphasized that a full

description of the Kondo scattering process only can be obtained by the Numerical Renormalization

Group (NRG) method [9, 10], developed by Keneth G. Wilson4 in the 1970s.

Now, let us effectively apply the Hubbard-I approximation. The first step consists of transforming

the many-particle Green’s functions 〈〈d†σ̄ckσ̄dσ; d†σ〉〉 and 〈〈c†kσ̄dσ̄dσ; d†σ〉〉 in an average of two operators

multiplied by a single particle Green’s functions and evaluate 〈〈ckσndσ̄; d†σ〉〉 with the EOM technique.

From Eq. (3.38),

(ω − εdσ − U)〈〈dσndσ̄; d†σ〉〉 = 〈ndσ̄〉+ V
∑

k

〈〈ckσndσ̄; d†σ〉〉+ V
∑

k

〈d†σ̄ckσ̄〉〈〈dσ; d†σ〉〉

− V
∑

k

〈c†kσ̄dσ̄〉〈〈dσ; d†σ〉〉. (3.40)

Since 〈d†σ̄ckσ̄〉 = 〈c†kσ̄dσ̄〉, the equation above reads

(ω − εdσ − U)〈〈dσndσ̄; d†σ〉〉 = 〈ndσ̄〉+ V
∑

k

〈〈ckσndσ̄; d†σ〉〉. (3.41)

Also according to EOM (see Appendix B),

(ω − εk)〈〈ckσndσ̄; d†σ〉〉 = V 〈〈dσndσ̄; d†σ〉〉+ V 〈〈d†σ̄ckσ̄ckσ; dσ〉〉
− V 〈〈c†kσ̄dσ̄ckσ; dσ〉〉. (3.42)

At this point of the process, we apply the second step of the Hubbard-I truncation scheme, by considering

that

〈〈d†σ̄ckσ̄ckσ; dσ〉〉 = 〈d†σ̄ckσ̄〉〈〈ckσ; dσ〉〉,
〈〈c†kσ̄dσ̄ckσ; dσ〉〉 = 〈c†kσ̄dσ̄〉〈〈ckσ; dσ〉〉 (3.43)

and consequently,

(ω − εk)〈〈ckσndσ̄; d†σ〉〉 = V 〈〈dσndσ̄; d†σ〉〉. (3.44)

4The Nobel Prize in Physics 1982 was awarded to Wilson “for his theory for critical phenomena in connection with phase
transitions”, related to the NRG technique.
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Chapter 3. Mathematical formalism

Figure 3.2: (a) Schematic DOS of an impurity (dot) adsorbed in a non-magnetic metallic host [Eq. (3.39)] described by

the Anderson Hamiltonian [Eq. (3.18)] for the particle-hole symmetric regime 2εdσ + U = 0. Both the peaks describe the

Coulomb blockade physics acting within the impurity. The broadening of such peaks are given by the self-energy Γ owing to

the coupling between the discrete state of the impurity and the continuum which describes the non-magnetic host. (b) if an

electron with a spin up (↑) for instance, is added at the level εdσ , another electron with opposite spin down (↓) cannot be placed

at the same energy level due to the Coulomb repulsion, thus opening a second electronic channel at εdσ + U .

By substituting Eq. (3.44) into Eq. (3.41), we obtain

(ω − εdσ − U + ıΓ)〈〈dσndσ̄; d†σ〉〉 = 〈ndσ̄〉 (3.45)

wherein we recognize the definition of Anderson parameter [Eq. (3.34)]. Finally, by substituting Eq. (3.45)

into Eq. (3.35) and performing some algebra, we get the following well-known expression for the Green’s

function describing an impurity embedded in a non-magnetic metallic host within the Hubbard-I approx-

imation [1]:

GRdσ;dσ(ω) =
1− 〈ndσ̄〉

ω − εdσ + ıΓ
+

〈ndσ̄〉
ω − εdσ − U + ıΓ

, (3.46)

with the corresponding DOS ρσimp(ω) = −( 1
π )Im[GRdσ;dσ(ω)], i.e,

ρσimp(ω) =

(
1

π

)
(1− 〈ndσ̄〉)Γ

(ω − εdσ)2 + Γ2
+

(
1

π

) 〈ndσ̄〉Γ
(ω − εdσ − U)2 + Γ2

. (3.47)

As can be seen in Figure 3.2(a), the first term of Eq. (3.47) gives rise to a lorentizian peak centered at

εdσ, with its height and width modulated by (1−〈ndσ̄〉)5 and Γ, respectively. Such a peak represents the

DOS related for adding an electron with a given spin σ when the impurity (quantum dot) level is empty

[Fig. 3.2(b)]. The second term of Eq. (3.47) describes another lorentizian structure with same width∝ Γ,

but with its amplitude modulated by 〈ndσ̄〉. This second peak, centered at εdσ + U , represents the DOS

for adding an electron with opposite spin σ̄ when the impurity (dot) is already occupied [Fig. 3.2(b)].

These two structures in Fig. 3.2(a) are known as Hubbard peaks and describe the physics of Coulomb
5The self-consisted integrals of the occupation averages [Eq. (3.39)] were numerically computed via Python 3.6.9, using

scipy.quad package.
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blockade regime.

The application of the Hubbard-I truncation scheme showed above corresponds to a simplest and

well-known situation related to the original Anderson Hamiltonian. As we shall see in chapter 7, the

presence of other terms in the system Hamiltonian, as those ones which describe electron hopping

processes or superconducting pairing, leads to a more intricate calculations, once more many-particle

Green’s functions arise from these new physical mechanisms.
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Chapter 4

Decay of bound states in the continuum of
Majorana fermions induced by vacuum
fluctuations: Proposal of qubit technology

L. S. Ricco, Y. Marques, F. A. Dessotti, R. S. Machado, M. de Souza, and A. C. Seridonio, Phys. Rev. B

93, 165116. Published April 14, 2016.

4.1 Overview and Remarks

As we have discussed in sec. 1, in recent years, the seeking for Majorana quasiparticles in condensed

matter systems has attracted a huge attention of both theoretical and experimental physicists [2, 13],

owing to its exotic non-Abelian exchange statistics [3], which opens the possibility of building Majorana-

based qubits to realize fault-tolerant topological quantum computing [4–7] operations. In this sense,

quantum apparatus which betake of Majorana quasiparticles(MQPs) properties have been acquired the

status of the next generation of nanodevices and are expected to be responsible for the next technological

breakthrough within the field of quantum information.

By considering this fruitful background, we have proposed theoretically a nanodevice [please, see

Fig.1 of the corresponding paper (sec. 4.2)] constituted by two semi-infinite topological Kitaev wires [4]

coupled to a quantum dot (QD), which is hybridized with metallic leads. Such a setup have allowed us

to reveal an innovative method for reading the information trapped in the Majorana-based qubit. This

new mechanism make use of the so-called bound states in the continuum (BICs) [8–10] to manipulate

the information through the device. Basically, when the Kitaev wire-dot couplings are asymmetric, the

BICs decay into the energy continuum and thus, the information can be read at the QD-leads part of

the system. Our findings also revealed that such a decay process occurs when the vacuum of the qubit

state fluctuates [11], instead of the usual unbalance mechanism of decaying owing to Fano interference

phenomena [9, 10].

4.1.1 Methodology

In order to obtain the density of states(DOS) of the non-local fermions f composed by MQPs η1

and η2, localized at the edges of the semi-infinite Kitaev wires, as well as the transmittance through the

36

https://link.aps.org/doi/10.1103/PhysRevB.93.165116
https://link.aps.org/doi/10.1103/PhysRevB.93.165116


Chapter 4. Decay of bound states in the continuum of Majorana fermions induced by vacuum
fluctuations: Proposal of qubit technology

QD, we have employed the equation-of-motion (EOM) approach (See Chapter 3.1), aiming to find the

suitable retarded Green’s functions in the energy domain ω, since

DOSab = − 1

π
Im(Gra,b(ω)), (4.1)

where Gra,b(ω) represents the retarded Green’s function in the energy domain (spectral Green’s func-

tion) for the fermionic operators a and b of the Hamiltonian (Eq.(2) of the published article). We

also introduced T = −ΓIm(Gr
d†d) as the transmittance through the QD, with Γ as being the Ander-

son broadening[13]. It’s interesting to note that the poles of spectral Green’s function allow to obtain the

information about the system electronic excitations[14]. The calculations concerning the EOM applied

to the present system Hamiltonian can be found in Appendix A.

Experimentally, the DOS can be accessed by zero-bias conductance measurements, as the Landauer-

Büttiker formula states. More details can be found in the published article below.
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Decay of bound states in the continuum of Majorana fermions induced by vacuum
fluctuations: Proposal of qubit technology

L. S. Ricco1, Y. Marques1, F. A. Dessotti1, R. S. Machado1, M. de Souza2,∗ and A. C. Seridonio1,2
1Departamento de F́ısica e Qúımica, Unesp - Univ Estadual Paulista, 15385-000, Ilha Solteira, SP, Brazil

2IGCE, Unesp - Univ Estadual Paulista, Departamento de F́ısica, 13506-900, Rio Claro, SP, Brazil

We report on a theoretical investigation of the interplay between vacuum fluctuations, Majorana
quasiparticles (MQPs) and bound states in the continuum (BICs) by proposing a new venue for
qubit storage. BICs emerge due to quantum interference processes as the Fano effect and, since
such a mechanism is unbalanced, these states decay as regular into the continuum. Such fingerprints
identify BICs in graphene as we have discussed in detail in Phys. Rev. B 92, 245107 and 045409
(2015). Here by considering two semi-infinite Kitaev chains within the topological phase, coupled
to a quantum dot (QD) hybridized with leads, we show the emergence of a novel type of BICs,
in which MQPs are trapped. As the MQPs of these chains far apart build a delocalized fermion
and qubit, we identify that the decay of these BICs is not connected to Fano and it occurs when
finite fluctuations are observed in the vacuum composed by electron pairs for this qubit. From the
experimental point of view, we also show that vacuum fluctuations can be induced just by changing
the chain-dot couplings from symmetric to asymmetric. Hence, we show how to perform the qubit
storage within two delocalized BICs of MQPs and to access it when the vacuum fluctuates by means
of a complete controllable way in quantum transport experiments.

PACS numbers: 72.10.Fk 73.63.Kv 74.20.Mn

I. INTRODUCTION

An astonishing aftermath in the underlying framework
of quantum theory is the possibility of fluctuations within
the corresponding quantum field describing the vacuum,
in which pairs of virtual particles pop up leading to
counterintuitive phenomena. In this regard, the Casimir
effect1 is the most known picture in Physics arising from
the straight outcome of vacuum fluctuations. In partic-
ular, the Casimir effect manifests itself as an attractive
force between two reflecting, plane and parallel plates,
even when external fields are entirely absent.

On the ground of condensed matter Physics, we make
explicit that the interplay between vacuum fluctuations
and Majorana quasiparticles (MQPs)2 is accomplishable
by the setup proposed in Fig. 1, where we find peculiar
bound states in the continuum (BICs)3 for a pair of semi-
infinite Kitaev chains2,4–8 in the topological phase and
coupled to a quantum dot (QD) connected to leads. Con-
cerning on BICs, they were pioneering predicted by von
Neumann and Wigner in 19293 as quantum states for
electrons described by localized square-integrable wave
functions appearing in the continuum of those delocal-
ized and exhibiting infinite lifetimes for such electrons.
Hence, electrons within BICs do not decay into the con-
tinuum acting as fully invisible states from the perspec-
tive of conductance measurements. The issue on BICs
had a revival after the works of Stillinger and Herrick in
19759, followed by the experimental realization made by
Capasso and co-workers in 1992, concerning semiconduc-
tor heterostructures10. Noteworthy, BICs are expected
to emerge in several systems as in graphene11–13, op-
tics and photonics14–17, setups characterized by singular
chirality18, Floquet-Hubbard states due to strong oscil-
lating electric field19 and driven by A.C. fields20.

Figure 1. (Color online) For a off-resonance QD with the
Fermi level of the top (T) and bottom (B) leads, together
with couplings λ1 = λ2, BICs of the MQPs η1 and η2 emerge.
V is the hybridization of the QD with the leads. The vacuum
of electron pairs for the quibt f fluctuates when λ1 ≡ (t+∆) 6=
λ2 ≡ (t − ∆), thus inducing the decay of the BICs into the
system continuum of energies.

In this paper, we show that the setup proposed in
Fig. 1 enables the observation of an unprecedented phe-
nomenon: vacuum fluctuations yielding the decay of
BICs into the continuum, in which the building blocks
of the former are MQPs for qubit storage. We highlight
two setups considered proper platforms for MQPs in Ki-
taev chains as well as for the experimental achievement
of our proposal: i) an s-wave superconductor nearby a
semiconducting nanowire where two magnetic fields exist
perpendicular to each other, wherein one of them arises
from the spin-orbit coupling of the semiconductor, while
the second is applied externally to freeze the spin de-
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gree of freedom of the system and to ensure topologi-
cal superconductivity21, and ii) magnetic chains on top
of superconductors characterized by a strong spin-orbit
parameter22,23. Moreover, MQPs are expected to rise
among several setups as the fractional quantum Hall state
with filling factor ν = 5/224, in three-dimensional topo-
logical insulators25 and at the center of superconducting
vortices as well26–28.
To the best of our knowledge, the works up to date

published in the literature have focused mainly on BICs
assisted by Fano interference11,12,14,15. The so-called
Fano effect is a quantum inference phenomenon, wherein
transport channels compete for the electron tunneling,
mainly via a continuum of energies hybridized with dis-
crete levels of nanoscale structures29,30. Here, as an al-
ternative we propose that quantum fluctuations in the
vacuum of electron pairs arising from the regular fermion

and qubit f composed by the MQPs η1 = η†1 and η2 = η†2,
cf. shown in Fig.1, give rise to the decay of these peculiar
BICs, the so-called quasi BICs. Otherwise, the BICs of
MQPs remain intact.
In order to present our proposal in a comprehen-

sive way, we begin by defining the qubit f as follows:
f = 1√

2
(η1 + iη2) and f † = 1√

2
(η1 − iη2), in which the

occupations

< f †f † >=

ˆ +∞

−∞
dεDOSf†f† =< ff >=

ˆ +∞

−∞
dεDOSff

= 0 (1)

can be found31, here expressed in terms of the densities
DOSf†f† and DOSff , since the pairings f

†f † and ff are
not allowed in the system when both the Kitaev chains
considered are equally coupled to the QD. Later on, such
densities will be deduced from our model Hamiltonian.
Furthermore, we will clarify that vacuum fluctuations can
be tunable experimentally. To that end, we should take
into account asymmetric Kitaev chain-dot couplings and
a off-resonance QD with the Fermi level of the leads, since
the symmetric case prevents vacuum fluctuations thus
ensuring the qubit storage as MQPs delocalized at the
edges of the Kitaev chains as sketched in Fig. 1. Hence,
by means of BICs of MQPs, we propose a novel manner of
qubit storage when a single QD and controllable vacuum
fluctuations are accounted.

II. THE MODEL

To give a theoretical description of the setup depicted
in Fig. 1 describing two semi-infinite Kitaev chains within
the topological phase and connected to a QD coupled to
leads, we employ an extension of the Hamiltonian in-
spired on the original proposal from Liu and Baranger,
which is a spinless model to ensure topological supercon-
ductivity Ref. [32]:

H =
∑

αk

ε̃αkc
†
αkcαk + ε1d

†
1d1 + V

∑

αk

(c†αkd1 +H.c.)

+
(t+∆)√

2
(d1 − d†1)η1 + i

(∆− t)√
2

(d1 + d†1)η2, (2)

where the electrons in the lead α = T,B are described

by the operator c†αk (cαk) for the creation (annihilation)
of an electron in a quantum state labeled by the wave
number k and energy ε̃αk = εk − µα, with µα as the

chemical potential. For the QD coupled to leads, d†1 (d1)
creates (annihilates) an electron in the state ε1. V stands
for the hybridizations between the QD and the leads. The
QD couples asymmetrically to the Kitaev chains with
tunneling amplitudes proportional to (t + ∆) ≡ λ1 and
(t − ∆) ≡ λ2, respectively for the left and right MQPs

η1 and η2. We stress that the prefactors 1/
√
2 and i/

√
2,

respectively for λ1 and λ2 constitute a convenient gauge
that changes the last two terms of Eq. (2) into td1f

† −
td†1f +∆f †d†1 −∆fd1 = td1f

† +∆f †d†1 +H.c., when the
representation f is adopted. As a result, we can notice
that the electrons within f and d1 beyond the normal
tunneling t between them, become bounded as a Cooper
pair with binding energy ∆. Particularly, with ∆ 6= 0 we
will verify that the BICs here proposed decay into the
continuum due to the emergence of these paring terms.
In what follows, we use the Landauer-Büttiker formula

for the zero-bias conductance G32. Such a quantity is
given by:

G =
e2

h
Γ

ˆ

dε

(
∂fF
∂ε

)
Im(G̃d†

1d1
), (3)

where Γ = 2πV 2
∑

k δ(ε − εk) is the Anderson
broadening33, fF stands for the Fermi-Dirac distribu-
tion, G̃d†

1d1
is the retarded Green’s function for the QD

in energy domain ε, obtained from the time Fourier

transform of G̃B†A =
´

dτGB†Ae
i
~ (ε+i0+)τ . Furthermore,

we introduced T = −ΓIm(G̃d†
1d1

) as the transmittance

through the QD. GB†A = − i
~θ(τ)Tr{̺[A(τ),B†(0)]+}

corresponds to the Green’s function in time domain τ,
here expressed in terms of the density matrix ̺ for Eq. (2)
and the Heaviside function θ (τ) . From GB†A, it is possi-
ble to find the expectation value < B†A >=

´

dεDOSB†A
by using DOSB†A = − 1

π Im(GB†A) as the corresponding
density of states, similarly to Eq. (1) for the vacuum.
Particularly for Eq. (3), we used A = B = d1 and to cal-

culate G̃d†
1d1

together with other Green’s functions, we

should employ the equation-of-motion (EOM) method31

summarized as follows: ωG̃B†A = (ε + i0+)G̃B†A =

[A,B†]+ + G̃B†[A,H]. As a result, we find

(ε− ε1 + iΓ)G̃d†
1d1

= 1− tG̃d†
1,f

−∆G̃d†
1,f

† , (4)

in addition to the Green’s functions G̃d†
1,f

and G̃d†
1,f

† . Ac-

cording to the EOM approach, we also have ωG̃d†
1,f

=
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(∆G̃d†
1,d

†
1
− tG̃d†

1,d1
), ωG̃d†

1,f
† = (tG̃d†

1,d
†
1
− ∆G̃d†

1,d1
) and

G̃d†
1,d

†
1
= −2t∆K̃G̃d†

1,d1
, in which K̃ = [ε+ ε1−K(t,∆)+

iΓ]−1K, K(t,∆) = [ε2+2iε0+− (0+)2]−1ω(t2 +∆2) and
K = [ε2 +2iε0+ − (0+)2]−1ω. Consequently, the Green’s
function of the QD reads

G̃d†
1d1

=
1

ε− ε1 + iΓ− ΣMQPs
, (5)

where ΣMQPs = K(t,∆) + (2t∆)2KK̃ accounts for the
self-energy due to the MQPs connected to the QD and
DOS11 = − 1

π Im(G̃d†
1d1

) is the density of states for the

QD. Particularly for t = ∆ = λ√
2
, the expressions for K̃

and ΣMQPs found in Ref. [32] are recovered.
To perceive the emergence of BICs in the Kitaev chains

and vacuum fluctuations, we need to find the densities
for the MQPs η1 and η2, namely DOSη1 = − 1

π Im(G̃η1η1)

and DOSη2 = − 1
π Im(G̃η2η2), together with DOSff =

− 1
π Im(G̃ff ) and DOSf†f† = − 1

π Im(G̃f†f†), in which the

latter allows to determine the occupations < f †f † > and
< ff > as Eq. (1) ensures for the vacuum of electron
pairs. Thus the EOM gives rise to

G̃η1η1 =
1

2
(G̃f†f† + G̃ff† + G̃f†f + G̃ff ) (6)

and

G̃η2η2 =
1

2
(−G̃f†f† + G̃ff† + G̃f†f − G̃ff ) (7)

for the Green’s functions of the MQPs, with

ωG̃f†f† = (tG̃f†d†
1
−∆Gf†d1

) (8)

and

ωG̃ff = (−tG̃fd1 +∆G̃fd†
1
) (9)

for those describing the aforementioned vacuum. To close
the system of Green’s functions above-described, we cal-
culate via EOM the following ωG̃ff† = (1 + tG̃fd†

1
−

∆Gfd1), ωG̃f†f = (1 − tG̃f†d1
+ ∆G̃f†d†

1
), ωG̃f†d1

=

−t(1+2∆2K̃)G̃d†
1d1

, ωG̃fd1 = −∆(1+2t2K̃)G̃d†
1d1

, G̃f†d†
1
=

∆K̃K−1ω−1 − 2t∆K̃Gf†d1
and G̃fd†

1
= tK̃K−1ω−1 −

2t∆K̃Gfd1 .
Thus based on the theoretical framework developed

up to here, shortly thereafter we will discuss the role
of Eqs.(5), (6) and (7) in the connection with the novel
qubit technology proposed in this paper.
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Figure 2. (Color online) (a) DOS of the QD in resonance
with the Fermi level of the leads (εF ≡ 0) when the Kitaev
chains are absent: a Lorentzian shape is observed. (b) DOSs
of the MQPs by neglecting the couplings to the leads: a Delta
function profile appears instead. Details in the main text.

III. RESULTS AND DISCUSSION

In the simulations discussed here we adopt T = 0
and the Anderson broadening Γ = 2πV 2

∑
k δ(ε − εk)

as the energy scale for the parameters from the system
Hamiltonian of Eq. (2). In order to make explicit the
phenomenon of qubit storage ruled by vacuum fluctua-
tions, due to the Kitaev chains connected to the QD, we
should begin by analyzing the cases in which both are
decoupled from each other (λ1 = λ2 = 0). Within this
situation, but for the QD in resonance with the Fermi
level of the metallic leads (ε1 = εF ≡ 0), the standard
Lorentzian shape depicted in Fig. 2(a) for the DOS en-

coded by DOS11 = − 1
π Im(G̃d†

1d1
) as a function of en-

ergy ε is verified. In the panel (b) of the same figure,

we find coincident profiles for DOSη1 = − 1
π Im(G̃η1η1)

and DOSη2 = − 1
π Im(G̃η2η2) describing the DOSs of the

MQPs, respectively found at the edges of the Kitaev
chains 1 and 2 nearby the QD. Once the MQPs are zero-
energy modes for discrete states, the curves of DOSη1 and
DOSη2 are indeed Dirac delta functions as expected, due
to the absence of leads connected to the Kitaev chains.
These Delta functions represent the complete storage of
the qubit f composed by the MQPs η1 and η2, since the
zero broadening of such DOSs point out that the electron
within f has an infinite lifetime and does not decay into
the QD. Below, we will see that such a scenario is modi-
fied when the Kitaev chain-QD couplings are turned-on,
i.e., λ1 = λ2 6= 0.

Fig. 3(a) treats the symmetric regime λ1 = λ2 = 10Γ,
in which the QD is still in resonance with the leads Fermi
level. As both the QD and MQPs are zero-energy modes
and share the same DOS profile (DOSη1 = DOSη2 =
DOS11), the outcome of this set is to exhibit the same
splitting of the zero-peak, which was originally centered
at the Fermi energy as showed in Figs.2(a) and (b). Once
the zero-peak is splitted, one can propose a manner of
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Figure 3. (Color online) (a) Scenario of Figs.2(a) and (b)
modified when the Kitaev chain-QD symmetric couplings are
turned-on: as the QD and the MQPs are in resonance, their
DOSs split equally. (b) For the QD off-resonance, a new struc-
ture composed by four peaks emerges only in the DOSs for
the MQPs. (c) Visualization of the red and blue shifts of
the peaks found in (b) by placing the QD very far from the
resonance.

controlling this splitting within the DOS11. The way we
have found is by placing the QD off-resonance in respect
with the leads Fermi level. This picture can be visualized
in Fig. 3(b) for the dashed-red curve with ε1 = −Γ, where
we can perceive the red and blue shifts of the peaks. On
the other hand, the response of the MQPs due to the
tuning of ε1 is fully different compared to the QD: the
original pattern given by a pair of peaks for the MQPs
appearing in Fig. 3(a) evolves towards a novel structure,
where four peaks emerge as depicted by the dotted and
solid blue curves of Fig. 3(b). Note that this novel pat-
tern is not well resolved for ε1 = −Γ yet, since the peaks
within each pair of peaks are found partially merged.
However, if we consider ε1 = −2.5Γ as in Fig. 3(c), the
visibility of the four peaks becomes more pronounced and
they appear completely resolved. We should draw atten-
tion in the manner that the pairs of peaks in the DOSs for
the MQPs evolve from the pattern observed in Fig. 3(b)
to that in panel (c). To reveal the underlying mechanism
of such an electron-hole asymmetry, we should focus on
panels (a)-(c) of Fig. 4 and, in particular, Eqs.(6) and (7)

for DOSη1 = − 1
π Im(G̃η1η1) and DOSη2 = − 1

π Im(G̃η2η2),
respectively.
Still in the symmetric regime λ1 = λ2 = 10Γ, we

see that only G̃ff† and G̃f†f rise in Fig. 4(a) respec-

tively via the DOSff† = − 1
π Im(G̃ff†) and DOSf†f =

− 1
π Im(G̃f†f ), while G̃f†f† and G̃ff contributes with

DOSf†f† = DOSff = 0 as aftermath of the vacuum

< f †f † >=< ff >= 0 for the electron pairs. Besides,
the structure of four peaks firstly displayed in Fig. 3(c)
and together with Fig. 4(b) for the MQPs η1 and η2 con-
sidering ε1 = −3.5Γ, then make explicit that the un-
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Figure 4. (Color online) Symmetric regime of Kitaev chain-
QD couplings: (a) DOSs for electrons within the qubit f and
absence of vacuum fluctuations outlined by the vertical arrow;
(b) DOSs for the QD and MQPs in absence of vacuum fluctu-
ations; (c) transmittance profile with BICs appearing denoted
by dashed-vertical arrows, i.e., the lacking of the correspond-
ing peaks found at the same positions within panel (b) for the
DOSs of the MQPs is a BIC fingerprint, since these states do
not contribute to the quantum transport. Only the peaks of
the DOS for the QD remain in the transmittance. Asym-
metric regime of Kitaev chain-QD couplings: (d) the vacuum
fluctuates around the BICs verified in (c) and the DOSs for
f also change; (e) DOSs for the QD and MQPs in presence
of vacuum fluctuations; (f) As aftermath of the fluctuations
observed in (d) which are denoted by arrows, the BICs of
MQPs found in panel (c) decay as quasi BICs. They are
found outlined by dashed-vertical arrows as we can visualize
in the transmittance profile.

matched profiles of the DOSff† and DOSf†f play the
role of two spectral functions analogous to the possibili-
ties DOS↑ and DOS↓, due to spin-imbalance in ferromag-
netic systems. Based on this, we can realize the features
within Fig. 4(c), where the peaks appearing in the trans-

mittance T = −ΓIm(G̃d†
1d1

) determined by Eq.(3) do not

correspond to those found in panel (a) for the DOSf†f ,
but just to those from DOSff† . Equivalently, from those
four peaks observed in Fig. 4(b) for the MQPs, solely two
of them decay into the QD, thus contributing to the con-
ductance. As a result, the peaks within DOSη1 = DOSη2

that do not appear in T correspond to BICs of MQPs,
which constitute the building blocks of the delocalized
qubit f characterized by the two peaks found in Fig. 4(a)
for the DOSf†f . These invisible peaks arising from the
DOSf†f in T , then provide a novel manner of qubit stor-
age, wherein despite the coupling λ1 = λ2 = 10Γ of the
Kitaev chains with the QD, the decay of the state f is
completely prevented. Such a forbiddance, we should
highlight, occurs when the vacuum < f †f † >=< ff >=
0 does not fluctuate [Fig. 4(a)]. In what follows, we will
show that when < f †f † >=< ff > 6= 0, just in the vicin-
ity of BICs, the suppression of the qubit storage occurs
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Figure 5. (Color online) Symmetric regime of Kitaev chain-
QD couplings: in panels (a), (b) and (c) we see the density
plots of the DOSs for the MQPs and transmittance spanned
by the axis ε1 and ε. Panel (c) for the transmittance shows
only two bows from the set of four bows found in (a) and (b)
describing the DOSs of the MQPs. The lack of such bows in
the transmittance then denotes BICs of MQPs. Asymmetric
regime of Kitaev chain-QD couplings: panels (d) and (e) are
similar to (a) and (b), but in panel (f) quasi BICs appear as
light bows in the transmittance in respect with those verified
in panels (d) and (e).

and hence, the decay of the BICs as quasi BICs is allowed
appearing thought out the transmittance.

To fluctuate the vacuum considered, it is demanded
asymmetric couplings λ1 6= λ2 by means of ∆ = 10Γ
and t = 0.8Γ, for instance. As a net effect we have
DOSf†f† = DOSff 6= 0 corresponding to fluctuations

in the vacuum < f †f † >=< ff > 6= 0 around the BICs,
which appear pointed out by black arrows in Fig. 4(d). In

such a situation, pairing terms d1f + f †d†1 appear, which
allow the correlations above to become finite. Conse-
quently, the profiles for DOSη1 and DOSη2 become dis-
tinct as showed in Fig. 4(e), resulting in the detection of
the BICs by means of the quasi BICs, which appear as
unpronounced states indicated by dashed-red arrows in
Fig. 4(f). Noteworthy, the quasi BICs are placed exactly
at the positions of the BICs found in Fig. 4(c). Moreover,
it is worth noticing in opposite to the unbalance of Fano
interference as the underlying mechanism for the rising
of quasi BICs reported in graphene systems11,12, here we

identify that vacuum fluctuations of the electron pairs de-
scribed by the expectation value < f †f † >=< ff > 6= 0
as the trigger for the decay of these peculiar BICs of
MQPs. When it occurs, the information within the qubit
is read via transmittance.
To summarize the results presented up to here, we

wrap up them in the density plots of T spanned by the
axis ε1 and ε appearing in Fig. 5, where panels (a)-(c) and
(d)-(e) designate respectively, the symmetric and asym-
metric regimes of couplings between the QD and the Ki-
taev chains. Panels (a), (b), (d) and (e) of the same
figure, in particular, share a main characteristic: all of
them exhibit the structure of four peaks previously re-
ported, which appear as four bows in the density plot
format. As just two bows from the set of four found in
Figs.5(a) and (b) are displayed in (c), those absent are
then BICs of MQPs, while the light pair of bows in (f)
represent quasi BICs.

IV. CONCLUSIONS

In summary, we have proposed a setup based on two
semi-infinite Kitaev chains presenting MQPs at their
edges both coupled to a single QD crossed by a current
due to source and drain reservoirs of electrons, in which
BICs of MQPs are revealed as building blocks for the
storage of a delocalized qubit. For absence of fluctuation
in the vacuum of electron pairs as aftermath of the de-
localized fermion and qubit builded by these MQPs, the
BICs do not decay into the system continuum and are
still unperceived by conductance measurements, which
then ensure the storage. Fluctuations of the aforemen-
tioned vacuum then trigger the decay of such states as
quasi BICs. Distinct from the standard BICs formed
by Fano effect11,12,14,15, the corresponding for MQPs are
ruled by vacuum fluctuations, thus constituting a novel
phenomenon. Experimentally speaking, it can be feasible
just by tuning the Kitaev chain-dot couplings from sym-
metric (intact BICs where the qubit is found) to asym-
metric (vacuum fluctuations induced), when the QD is
off-resonance with the Fermi energy of the metallic leads.
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5.1 Overview and remarks

As already discussed in previous chapters, setups based on the Majorana exotic physics have been

keeping the status of next generation of technological nanodevices within electronic transport and quan-

tum computing fields.

By considering this prolific scenario, we have proposed a device composed by a topological U-

shaped Kitaev wire, hosting Majorana fermions(MFs) at their edges, which are coupled to a quantum dot

via (∆− t) and (∆+ t) strengths. The main idea was to analyse theoretically how the electronic and heat

transport are affected by the presence of the Majoranas [1–4]. In this sense, we have found that, for MFs

wave functions weakly overlapped (finite U-shaped wire), slight deviations from the superconducting-

metallic boundary phase (t = ∆) lead to the displacement of resonance positions in the electrical and

thermal conductances simulations. Such a distinct behavior characterizes the capacity of tuning heat and

electricity across the quantum dot. This feature is also revealed in the relevant thermoelectric quanti-

ties [5], as the thermopower (Seebeck coefficient) and figure of merit, as well as the periodic violation

of the Wiedemann-Franz law. The intriguing heat/charge tunability observed in the device comes from

the exotic Majorana ability of building a non-local fermion state. Such a delocalized quasiparticle is

responsible for the transport in the system when the asymmetric coupling regime (t 6= ∆) is taken into

account. More details can be found in the paper at sec. 5.3.

It is worth mentioning that such a work was highlighted by the Fapesp Agency website (Nanodis-

positivo termoelétrico é baseado em férmions de Majorana) and by the Brazilian Physical Society (Sin-

tonizador termoelétrico assistido por férmions de Majorana). Moreover, the paper was ranked in the list

of the Top 100 most highly accessed physics articles in 2018, according to nature.com web analytics.
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5.2 Methodology

At first, we have employed the same approach used in the previous chapters, i.e, the EOM

technique to find the spectral Green’s functions of the system, in order to obtain the transmittance through

the quantum dot. Particularly, the Green’s function of the dot can be obtained by following the steps of

Appendix B, by considering the spinless case within the non-interacting picture (U = 0).

The procedure described above enabled us to calculate the thermoelectric coefficients Ln [1, 2],

which depends upon the transmittance according to the Eq.(2) of the paper. The electrical and thermal

conductances, as well as the thermopower, Wiedemann-Franz law and figure of merit were obtained from

relations with Ln.
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Tuning of heat and charge transport by Majorana fermions
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We investigate theoretically thermal and electrical conductances for the system consisting of a
quantum dot (QD) connected both to a pair of Majorana fermions residing the edges of a Kitaev
wire and two metallic leads. We demonstrate that both quantities reveal pronounced resonances,
whose positions can be controlled by tuning of an asymmetry of the couplings of the QD and a pair
of MFs. Similar behavior is revealed for the thermopower, Wiedemann-Franz law and dimensionless
thermoelectric figure of merit. The considered geometry can thus be used as a tuner of heat and
charge transport assisted by MFs.

∗ correspondent author: seridonio@dfq.feis.unesp.br
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Figure 1. (a) The sketch of the geometry we consider. Topological U-shaped Kitaev wire with a pair of MFs ηA and ηB is
placed in contact with a QD, which is connected as well to two metallic reservoirs. The coupling of the QD to the MFs is
asymmetric and is characterized by tunneling matrix elements λA and λB , while coupling to the metallic leads is symmetric and
is characterized by the tunneling matrix element V . ε2 denotes the coupling between two MF states. (b) Equivalent auxiliary
setup (Kitaev dimer) resulting from the mapping of the original system onto the system with nonlocal fermion residing in QD2.
t is tunneling matrix element between the QDs 1 and 2, ∆ is the binding energy of the Cooper pair delocalized between them.

INTRODUCTION

Majorana fermions (MFs) are particles that are equivalent to their antiparticles. The corresponding concept
was first proposed in the domain of high-energy physics, but later on existence of the elementary excitations of
this type was predicted for certain condensed matter systems. Particularly, MFs emerge as quasiparticle excitations
characterized by zero-energy modes[1, 2] appearing at the edges of the 1D Kitaev wire[3–7]. Kitaev model is used to
describe the emerging phenomena of p-wave and spinless topological superconductivity.

Kitaev topological phase can be experimentally achieved in the geometry consisting of a semiconducting nanowire
with spin-orbit interaction put in contact with s-wave superconducting material and placed in external magnetic
field[8, 9]. Other condensed matter systems were also proposed as candidates for the observation of MFs. They include
ferromagnetic chains placed on top of superconductors with spin-orbit interaction[10, 11], fractional quantum Hall
state with filling factor ν = 5/2 [12], three-dimensional topological insulators[13] and superconducting vortices[14–16].

MFs residing at the opposite edges of a Kitaev wire are elements of a robust nonlocal qubit which appears to be
immune to the environment decoherence. This attracted the interest of the researchers working in the domain of
quantum information and transport, as systems with MFs [17–19] can be in principle used as building blocks for the
next generation of nanodevices, [20, 21] including current switches [20] and quantum memory elements[21]. At the
same time, similar systems were proposed as thermoelectric nanodevices [22–25].

In this work, following the proposals of thermoelectric detection of MF states [22–25], we explore theoretically
zero-bias thermal and electrical transport through one particular geometry consisting of an individual QD coupled
both to a pair of MFs and metallic leads as shown in the Fig.1(a). The MFs reside at the edges of a topological
U-shaped Kitaev wire, similar to the case of Ref.[19]. The QD coupling to the MFs is considered to be asymmetric,
while coupling to the metallic leads is symmetric, and MFs are supposed to overlap with each other. The results of our
calculations clearly show that thermoelectric conductance, thermopower, Wiedemann-Franz law[26] and dimensionless
thermoelectric figure of merit (ZT) as function of the QD electron energy demonstrate resonant behavior. Moreover,
the position of the resonance can be tuned by changing the coupling amplitudes between the QD and the MFs, which
allows the system to operate as a tuner of heat and charge assisted by MFs.
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MODEL

For theoretical treatment of the setup depicted in the Fig. 1(a), we use the Hamiltonian proposed by Liu and
Baranger[27]:

H =
∑

αk

εkc
†
αkcαk + ε1d

†
1d1 + V

∑

αk

(c†αkd1 +H.c.) + λA(d1 − d†1)ηA + λB(d1 + d†1)ηB + iε2ηAηB, (1)

where the electrons in the leads α = H,C (for hot and cold reservoirs, respectively) are described by the operators

c†αk (cαk) for the creation (annihilation) of an electron in a quantum state labeled by the wave number k and energy

εk. For the QD d†1 (d1) creates (annihilates) an electron in the state with the energy ε1. The energies of both electrons
in the leads and QD are counted from the chemical potential µ (we consider only the limit of small source-drain bias,
thus assuming that chemical potential is the same everywhere). V stands for the hybridization between the QD and
the leads. The asymmetric coupling between the QD and MFs at the edges of the topological U-shaped Kitaev wire
is described by the complex tunneling amplitudes λA and λB . Introduction of an asymmetry in the couplings can
account for the presence of the magnetic flux which can be introduced via Peierls phase shift [27]. ε2 stands for the
overlap between the MFs.

Without the loss of generality, we can put: λA = (t+∆)√
2

and λB = i (∆−t)√
2

, respectively for the left (ηA = η†A) and

right (ηB = η†B) MFs, and introduce an auxiliary nonlocal fermion d2 = 1√
2
(ηA + iηB) [20, 21]. The expressions for

λA = |λA|eiφA and λB = |λB |eiφB constitute a convenient gauge for our problem. We put φA = 0 and φB = (n+ 1
2 )π

with integer n = 0, 1, 2, . . . corresponding to the total flux through the ring of Fig. 1. This parameter is experimentally
tunable by changing the external magnetic field. This fact gives certain advantages to our proposal with respect to the
previous works with asymmetric couplings between a single QD and a pair of MFs at the ends of a topological Kitaev
wire[28–31]. According to Ref.[32] the parameter ε2 describing the overlap between the MFs depends on magnetic

field in an oscillatory manner, the amplitudes |λA| = t+∆√
2

and |λB | = |∆−t|√
2

demonstrate the same behavior (see

Sec.III-A of Ref.[30]) and thus external magnetic field affects not only the relative phase between λA and λB but their
absolute values as well. To fulfill the condition |λB | < |λA| one should place the QD closer the MF ηA than to the
MF ηB.
We map the original Hamiltonian into one where the electronic states d1 and d2 are connected via normal tunneling

t and bounded as delocalized Cooper pair, with binding energy ∆:

H =
∑

αk

εkc
†
αkcαk + V

∑

αk

(c†αkd1 +H.c.) + ε1d
†
1d1 + ε2d

†
2d2 + (td1d

†
2 +∆d†2d

†
1 +H.c.)− ε2

2
. (2)

This expression represents a shortened version of the microscopic model for the Kitaev wire corresponding to the
Kitaev dimer (see Fig.1(b)). As it was shown in the Refs.[33] and [34] this model allows clear distinguishing between
topologically trivial and Majorana-induced zero-bias peak in the conductance.
In what follows, we use the Landauer-Büttiker formula for the zero-bias thermoelectric quantities Ln[22, 23]:

Ln =
1

h

ˆ

dε

(
−∂fF

∂ε

)
εnT , (3)

where h is Planck’s constant, Γ = 2πV 2
∑

k δ(ε − εk) is Anderson broadening[35] and fF stands for Fermi-Dirac
distribution. The quantity

T = −ΓIm(G̃d1d1) (4)

is electronic transmittance through the QD, with G̃d1d1 being retarded Green’s function for the QD in the energy

domain ε, obtained from the Fourier transform G̃AB =
´

dτGABe
i
~ (ε+i0+)τ , where

GAB = − i

~
θ(τ)Tr{̺[A(τ),B†(0)]+} (5)

corresponds to the Green’s function in time domain τ, expressed in terms of the Heaviside function θ (τ) and thermal
density matrix ̺ for Eq. (1).
Experimentally measurable thermoelectric coefficients can be expressed via L0,L1 and L2 as:

G = e2L0, (6)



4

K =
1

T
(L2 −

L2
1

L0
) (7)

and

S = −(
1

eT
)
L1

L0
(8)

for the electrical and thermal conductances and thermopower, respectively (T denotes a temperature of the system).
We also investigate the violation of Wiedemann-Franz law, given by

WF =
1

T
(
K

G
), (9)

in units of Lorenz number L0 = (π2/3)(kB/e)
2 and corresponding behavior of the dimensionless figure of merit [22, 23]

ZT =
S2GT

K
. (10)

For Eq. (4), we use equation-of-motion (EOM) method[36] summarized as follows:

(ε+ i0+)G̃AB = [A,B†]+ + G̃[A,H]B, (11)

with A = B = d1.
As our Hamiltonian given by Eqs. (1) and (2) is quadratic, the set of the EOM for the single particle Green’s

functions can be closed without any truncation procedure [37]. We find the following four coupled linear algebraic
equations:

(ε− ε1 − Σ)G̃d1d1 = 1− tG̃d2d1 −∆G̃d†
2d1

, (12)

where Σ = −iΓ is the self-energy of the coupling with the metallic leads

G̃d2d1 = +
∆G̃d†

1d1

(ε− ε2 + i0+)
− tG̃d1d1

(ε− ε2 + i0+)
, (13)

G̃d†
2d1

= − ∆G̃d1d1

(ε+ ε2 + i0+)
+

tG̃d†
1d1

(ε+ ε2 + i0+)
(14)

and

G̃d†
1d1

= −2t∆K̃G̃d1d1 , (15)

with

K̃ =
KMFs

ε+ ε1 − Σ−K−
, (16)

KMFs =
(ε+ i0+)

[ε2 − ε22 + 2iε0+ − (0+)2]
(17)

and

K± =
(ε+ i0+)(t2 +∆2)± ε2(t

2 −∆2)

[ε2 − ε22 + 2iε0+ − (0+)2]
. (18)

This gives the Green’s function of the QD:

G̃d1d1 =
1

ε− ε1 − Σ− ΣMFs
, (19)

where the part of self-energy

ΣMFs = K+ + (2t∆)2K̃KMFs (20)
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describes the hybridization between MFs and QD.
Importantly, for the low temperatures regime, the substitution of Eq. (19) into Eq. (3) and its decomposition into

Sommerfeld series [23, 26] allows to get analytical expressions for thermoelectric coefficients:

G

G0
=

K

G0L0T
≈ T |ε=0 , (21)

S ≈ eL0T
1

T
dT
dε

∣∣∣∣
ε=0

, (22)

where

T =
Γ̃2

[ε− ε1 −K+ − (2t∆KMFs)2(ε+ε1−K−)
(ε+ε1−K−)2+Γ2 ]2 + Γ̃2

, (23)

with

Γ̃ = [1 +
(2t∆KMFs)

2

(ε+ ε1 −K−)2 + Γ2
]Γ. (24)

Comparison of the Eqs. (21) and (22) allows us to conclude that the peak values of the electric conductance are
reached when S = 0 for which dT /dε = 0 which happens when

ε1 =
(t2 −∆2)

ε2
. (25)

As we will see below, fulfillment of this condition corresponds to the presence of an electron-hole symmetry in the
system. Note that as ε2 enters in the denominator of the Eq. (25), even slight differences between t and ∆ will be
enough to change drastically the position of the resonance if hybridization between the MFs is small.

RESULTS AND DISCUSSION

In our further calculations, we scale the energy in units of the Anderson broadening Γ = 2πV 2
∑

k δ(ε− εk)[35]
and take the temperature of the system kBT = 10−4Γ. The Anderson broadening Γ defines the coupling between the
QD and the metallic leads, which is assumed to be symmetrical for a sake of simplicity.
We start our analysis from the case when only a single MF (ηA) is coupled to the QD. In terms of the amplitudes

t,∆ this corresponds to t = ∆. To be specific, we fix t = ∆ = 4Γ. Looking at Eq. (2), we see that the terms d1d
†
2+H.c.

and d†2d
†
1 + H.c. enter into Hamiltonian with equal weights, and thus we are in the superconducting (SC)-metallic

boundary phase.
Fig.2(a) shows the electrical conductance G = e2L0 scaled in units of the conductance quantum G0 = e2/h as

a function of the QD energy level ε1, for several coupling amplitudes ε2 between the MFs. Note that, if MFs are
completely isolated from each other (ε2 = 0), the conductance reveals a plateau with G = G0/2 whatever the value
of ε1 (black line), and similar trend is observed in the thermal conductance shown in the Fig. 2(b). The effect is due
to the leaking of the Majorana fermion state into the QD[38]. The MF zero-mode becomes pinned at the Fermi level
of the metallic leads, but within the QD electronic-structure. With increase of the coupling between the wire and
the QD, the MF state of the Kitaev wire leaks into the QD. As a result, a peak at the Fermi energy emerges in the
QD density of states (DOS), while in the DOS corresponding to the edge of the wire the corresponding peak becomes
gradually suppressed. Consequently, the QD effectively becomes the new edge of the Kitaev wire. This scenario was
reported experimentally in the Ref.[9].
To get resonant response of the thermoelectric conductances one should consider the case ε2 6= 0, corresponding

to the splitting of the MF zero-bias peak. The resonant behavior of G and K can be understood as arising from the
presence of an auxiliary fermion d2, in the Hamiltonian [Eq. (2)], whose energy ε2 is now detuned from the Fermi
level (see inset of Fig. 2(b)). In this case, the regular fermion state instead of the corresponding half-fermion provided
by MF ηA gives the main contribution to the charge and heat current. In this scenario, filtering of the electricity and
heat emerges: the maximal transmission occurs at ε1 = 0. Our Figs.2(a) and (b) recover the findings of Fig.5(a) in
Ref.[23]. Our work, however, have an important novel dimension: we demonstrate that even small deviations of the
system from the SC-metallic boundary phase which can be achieved by the control of the asymmetry of the couplings



6

Figure 2. Electrical and thermal conductances of the system corresponding to SC-metallic boundary phase, t = ∆ = 4Γ:
(a) Electrical conductance as function of the QD energy level ε1 for several ε2 values of the couplings between MFs. (b)
Corresponding thermal conductance. For both cases the resonance at the Fermi energy ε1 = 0 occurs if ε2 6= 0. For ε2 = 0 the
conductance plateau is observed (see main text for the corresponding discussion). The inset shows the equivalent circuit with
an auxiliary fermion d2 constructed from MFs ηA and ηB (red half-circles).

Figure 3. Electrical and thermal conductances as functions of the QD energy level outside SC-metallic boundary phase. Slight
deviations from the condition t = ∆, result in the shift of the resonance peak for the electrical (panel (a)) and thermal (panel
(b)) conductances. The corresponding resonances are blueshifted for t > ∆ and redshifted for t < ∆ as compared to the case
of the SC-metallic boundary phase. Insets show the equivalent circuit with auxiliary fermion d2 constructed from MFs ηA and
ηB (red half-circles).

allows realization of the efficient tuners of electricity and heat. This effect is shown in the Figs. 3(a) and (b). As
one can see, even small detuning of the coefficient t from the value t = ∆ leads to substantial blueshift (for the case
t > ∆) or redshift (for the case t < ∆) of the conductance resonances. Such sensitivity is a direct consequence of the
Eq. (25) defining the position of the resonances.

To shed more light on the effect of the tuning of charge and heat transport in the system, we make a plot of the
quantity T = −ΓIm(G̃d1d1) appearing in the Eq. (3) and Eq. (4), as function of ε1 and ε, see Figs.4(a)-(d). Fig.4(a)
corresponds to the case t = ∆, ε2 = 0. One can recognize a “cat eye”-shaped central structure, corresponding to the
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Figure 4. Transmittance T spanned by the axes of ε1 and ε. Panels (a) and (b) show the regime corresponding to SC-metallic
boundary phase with t = ∆, for ε2 = 0 and finite ε2, respectively. Panel (a) reveals characteristic “cat eye”-shaped central
structure at the Fermi level responsible for the onset of the conductance plateau. Panel (b) exhibits a double-fork structure
responsible for the resonant character of the conductance for ε2 6= 0. Introduction of the asymmetry of the QD to MFs coupling
leads to the vertical shift of the double-fork feature resulting in the blueshift (panel (c)) or redshift (panel (d)) of the resonant
conductance curve. The bright arcs visualized in all panels represent poles of the Green’s function of the QD.

vertical line at ε = 0. Everywhere along this line T = constant, which according to the Eq. (21) means that changes
in ε1 do not affect the conductance. This corresponds well to the conductance plateau in the Fig. 2. If ε2 is finite,
the “cat eye” structure transforms into a double-fork profile as it is shown in the Fig. 4(b). Note that in this case,
movement along the vertical line corresponding to ε = 0 lead to the change of the function T , which according to
the Eq. (21) leads to the modulation of the conductance. The maximal value is achieved at the point ε1 = 0, which
corresponds well to the resonant character of the curves shown in the Fig.2. The introduction of the finite value of ε2
and the asymmetry of the coupling between the QD and MFs (t 6= ∆) leads to the shifts of the double-fork structure
either upwards by ε1 scale for t > ∆ (panel (c), blueshift of the resonant curves in the Fig.3) or downwards by ε1
scale for t < ∆ (panel (d), redshift of the resonant curves in the Fig.3). It should be noted that similar results to the
transmittance were reported both theoretically (Ref.[30]) and experimentally (Ref.[31]) for the geometry of a linear
Kitaev wire with a QD attached to one of its ends placed between source and drain metallic leads. Differently from
the case considered in our work, the authors account for the spin degree of freedom and particularly for Ref.[31],
they evaluate the dependence of the conductance on the energy level of the QD and magnetic field, while we further
analyze ǫ and asymmetry of couplings dependencies relevant for the understanding of the tuner regime. Despite the
distinct geometry and spinless regime, our results and those reported in Refs.[30,31] are in good correspondence with
each other, thus validating the mechanism pointed out in Refs.[30,32] of field-assisted overlapping between MFs and
tunnel-couplings with the QD.

The possibility to tune electric and thermal conductances opens a way for tuning the thermopower (S), Wiedemann-
Franz law (WF ) and dimensionless figure of merit (ZT ) as it is shown in the Figs.5(a)-(c). In the Fig.5(a) the
dependence of the thermopower on ε1 is demonstrated. If t > ∆, at ε1 = 0, S > 0 and the setup behaves as a tuner
of holes. On the contrary, for t < ∆, at ε1 = 0, S < 0 and the setup behaves as a tuner of electrons. Figs.5(b) and
(c) illustrate the violation of WF law and the behavior of the dimensionless thermoelectric ZT , respectively. Note
that ZT does not reach pronounced amplitudes, i.e, ZT < 1[26], even for finite values of G and K as dependence on
S2 prevails if we take into account Eq. (21) into Eq. (10).

CONCLUSIONS

In summary, we considered theoretically thermoelectric conductances for the device consisting of an individual
QD coupled to both pair of MFs and metallic leads. The charge and heat conductances of this system as functions of
an electron energy in the QD reveal resonant character. The position of the resonance can be tuned by changing the



8

0.75

1.00

1.25

1.50

W
F

/(
L

0)

T = 10
-4Γ ∆ = 4.0Γε

2
 = 0.05Γ

-1.2
-0.6
0.0
0.6
1.2
1.8
2.4
3.0

 TUNER OF
     HOLES

t =  3.95Γ   
      4.0Γ 
      4.05Γ 

(b)

 

S
/(

k B
/e

) (a)

 TUNER OF
ELECTRONS

-20 -10 0 10 20
0.0

0.1

0.2

0.3

Z
T

ε
1
/Γ

(c)

Figure 5. (a) Thermopower (S), (b) Wiedemann-Franz law (WF ) and (c) the figure of merit (ZT ) as function of the QD energy
level ε1 for several ε2 values of the couplings between MFs. Deviation from the condition t = ∆ leads to the shift of the curves.

degree of asymmetry between the QD and the MFs, which allows us to propose the scheme of the tuner of heat and
charge. Thermopower, Wiedemann-Franz law and the figure of merit are found to be sensitive to the asymmetry of
the coupling as well. Our findings will pave way for the development of thermoelectric nanodevices based on MFs.
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Chapter 6

Majorana oscillations modulated by Fano
interference and degree of nonlocality in a
topological superconducting
nanowire-quantum dot system

L. S. Ricco, V. L. Campo Jr.,I. A. Shelykh and A. C. Seridonio, Phys. Rev. B 98, 075142. Published

August 28, 2018.

6.1 Overview and remarks

As already discussed in previous chapters, setups based on Majorana exotic physics have been keep-

ing the status of next generation of quantum bits. As also briefly mentioned in Sec. 2, hybrid systems,

composed by a quasi-one-dimensional nanowire with strong spin-orbit coupling, placed nearby s-wave

superconductors, have been considered the most suitable platform to explore Majorana quasiparticles

properties [1–4]. Under an applied magnetic field parallel to the intrinsic spin-orbit field, such a system

enters into a p-wave superconducting topological phase, wherein a pair of zero-energy MBS emerges at

the nanowire ends [4].

According to Liu and Baranger proposal [5], for a QD side-coupled to a Kitaev nanowire, the experi-

mental signature of an isolated MBS is the emergence of a zero-bias peak(ZBP) with e2/2h amplitude in

conductance profiles through the QD. Although the ZBP prediction already has been observed in a series

of experiments [6–10], questionings whether such a peak emerges inside a truly topological phase still

remains [11–14]. In this context, the ZBP splitting in conductance measurements, followed by an oscil-

latory pattern as a function of applied magnetic field, which are known as Majorana oscillations, have

been looked upon as a smoking gun to claim the presence of MBSs and the transition to the topological

phase [11, 15, 16].

Taking such a prolific scenario into account, we have investigated the influence of Fano interference

process in the so-called Majorana oscillations in a hybrid T-shaped device, consisting of a quantum dot

between metallic leads and side-coupled to a topological superconducting nanowire (TSNW) hosting

Majorana bound states (MBSs) at opposite ends. as expected, we have observed a oscillatory pattern of
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differential conductance as a function of external magnetic field, applied parallel to nanowire. However,

both the amplitude and shape of such oscillations depend on the bias-voltage, Fano parameter of system

and the so-called degree of Majorana nonlocality, which was previously discussed in sec. 2.4. We also

have found the experimentally reported “bowtie” and “diamond” line shapes in differential conductance

as a function of both bias-voltage and dot energy level [Ref.16 of published paper]. We believe that our

findings can improve the comprehension of Majorana oscillations in hybrid nanowires and also can be

used to estimate the degree of Majorana nonlocality and its topological properties. For more details,

please see the paper below (sec. 6.3).

6.2 Methodology

We have employed the same approach used in previous chapters, i.e, the EOM technique (see

Sec. 3.1), which allowed us to find the spectral Green’s function for the QD Grdd(ω) (see Appendix B,

for spinless configuration, U = 0 and δM ≡ εM (l, B)), in order to obtain the transmittance T (ω). In

linear response regime, the zero-bias conductance depends on transmittance as follows [18]:

G(eV ) =
e2

h

∫ (
−∂fF (ω, eV )

∂ω

)
T (ω)dω, (6.1)

where e2/h is the quantum of conductance and fF is the Fermi-Dirac distribution function. For low

temperature regime(T → 0) [18],

G(eV ) ≈ e2

h
T (eV ). (6.2)

The pivotal difference between this work and those found in previous chapters is the overlap function

between MBSs, given by [16]:

εM(l, B) =
E0√
b
e−l/2b cos(l

√
b) (6.3)

where, b = B/E0, l =
√

2mE0L/~, with B being the Zeeman field applied longitudinally to the

nanowire, L the wire length, E0 = (2mα2∆2/~2)1/3, α the spin-orbit constant and ∆ the supercon-

ducting gap induced in the wire [16]. We have adopt E0 ≈ 0.23 meV, the wire length L = 1 µm, and

Anderson broadening Γ ≈ 0.17E0, which are in agreement with both experimental [6–8] and theoretical

estimations [15, 17].
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We explore theoretically the influence of Fano interference in the so-called Majorana oscillations in
a T-shaped hybrid setup formed by a quantum dot (QD) placed between conducting leads and side-
coupled to a topological superconducting nanowire (TSNW) hosting zero-energy Majorana bound
states (MBSs) at the ends. Differential conductance as a function of the external magnetic field
reveals oscillatory behavior. Both the shape and amplitude of the oscillations depend on the bias-
voltage, degree of MBSs non-locality and Fano parameter of the system determining the regime of
interference. When the latter is such that direct lead-lead path dominates over lead-QD-lead path
and the bias is tuned in resonance with QD zero-energy, pronounced fractional Fano-like resonances
are observed around zero-bias for highly non-local geometries. Further, the conductance profiles
as a function of both bias-voltage and QD energy level display “bowtie” and “diamond” shapes,
in qualitative agreement with both previous theoretical and experimental works. These findings
ensure that our proposal can be used to estimate the degree of MBS non-locality, thus allowing to
investigate their topological properties.

I. INTRODUCTION

Ideas borrowed from high energy physics became ubiq-
uitous in the domain of condensed matter. The con-
cepts of quasi-relativistic particles in graphene and other
Dirac materials, acoustic analogs of black holes in Bose-
Einstein condensates, AdS-CFT duality in the theory of
the quantum phase transitions are now among standard
tools used by condensed matter specialists. Some of these
concepts still remain playground for theoreticians; the
others on the contrary appeared to be of high experimen-
tal relevance and even paved way to novel applications
in the domains of nanoelectronics and quantum comput-
ing. Among these latter are Majorana quasiparticles 1,2

which are currently considered as highly perspective can-
didates for practical realization of fault-tolerant quantum
computation process3.

In the domain of condensed matter, Majorana quasi-
particles appear in hybrid systems composed by a quasi-
one-dimensional semiconducting nanowire with strong
spin-orbit coupling placed nearby s-wave superconduc-
tors4–7. In this configuration, when magnetic (Zeeman)
field is applied parallel to the wire, the latter enters
into p-wave topological superconducting (SC) phase and
a pair of gapless (zero-energy) Majorana bound states
(MBSs) is formed at the nanowire edges7. To analyze
the MBSs transport properties in hybrid systems with
topological superconducting nanowire (TSNW), in sev-
eral theoretical works was proposed the use of quantum
dots(QDs) as tunneling spectrometers to reveal MBSs
signatures and topological transitions 8–13 . Experiments
on hybrid TSNW with a QD also were performed14,15.

According to Liu and Baranger prediction8, the experi-
mental signature of the onset of an isolated MBS is zero-
bias peak (ZBP) with e2/2h amplitude in the conduc-
tance profile of a system consisting of an individual QD
side-coupled to a TSNW.

Despite experimental observations of the quantized
ZBP in sophisticated devices with hybrid TSNWs 14–20,
questions regarding its amplitude and emergence inside
a truly topological phase still remain11,12,21–24. Indeed,
only the observation of ZBP itself is not sufficiently for
asserting that the system is into the topological regime,
hosting robust MBSs. In this context, non-local Ma-
jorana features11,12, as well as ZBP splitting, followed
by the appearance of an oscillatory pattern in the dif-
ferential conductance as function of an applied mag-
netic field21,25,26 have been viewed as smoking guns of
the MBSs manifestation in the topologically non-trivial
regime.

In the current work, we investigate the role of Fano in-
terference processes in the so-called Majorana oscillations
in a T-shaped nanodevice, consisting of a single-level QD
placed between the conducting leads and side-coupled to
a TSNW hosting MBSs at the ends (Fig. 1). We also
explore features of the system when the Majorana non-
locality is taken into account, by considering the coupling
λ2 between the QD and lower MBS (see Fig. 1). The de-
gree of Majorana non-locality η was previously defined by
Prada et al.12 as the ratio between the lower and upper
QD-MBSs coupling strengths, i.e., η2 = |λ2|/|λ1|. When
η → 0 (|λ2| � |λ1|), the MBSs are highly non-local,
thus presenting the holy grail for the quantum compu-
tation: the topological protection feature. Ref. [12] also
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Figure 1. Sketch of the T-shaped geometry considered in the
present paper: a single-level QD with energy εd is hybridized
symmetrically (V) with source-drain (S/D) conducting leads
and side-coupled (λ1) to a TSNW of length L, hosting zero-
energy MBSs at the edges (half-filled red circles). The cou-
pling λ2 between the QD and MBS-2 is also taken into account
due to the finite length of topological nanowire. Leads are also
coupled with each other directly (VSD). External magnetic
field B (light blue arrow) is applied parallel to the direction
of the wire. The value of Zeeman splitting induced by mag-
netic field is considered to be large enough to achieve the
full spin polarized regime in the setup. The QD-leads system
operates as a tunneling spectrometer, allowing to investigate
the properties of the MBSs by differential conductance mea-
surements as a function of the external magnetic field and
bias-voltage between leads. The presence of lead-lead tun-
neling path allows to explore how Fano interference process
affects the MBSs signatures.

proposed a protocol to estimate experimentally such a
degree of non-locality, which was recently performed by
Deng et al.15 in a TSNW, with a QD working as spec-
trometer. The ratio between QD-MBSs couplings also
can define the “topological quality factor”, being stated
by Clarke11 as Q = 1 − η2. In this context, the higher
topological quality occurs when Q ≈ 1.

It is worth mentioning that T-shaped setups with QDs
are suitable geometries to investigate the well-known
Fano effect27–30, once they have the key ingredients for
its emergence: a localized state coupled to the continuum
and distinct tunneling channels. Fano interference phe-
nomenon can be used to explore Majorana properties, as
theoretically proposed in earlier works9,13,31,32.

In the current proposal, the quantities which define the
tunneling conductance spectroscopy are Zeeman field,
bias-voltage between the leads, energy level of QD, cou-
plings between the MBSs and QD and Fano parameter,
describing the relative importance of the direct lead-lead
and lead-QD-lead tunneling paths. The conductance as a
function of the magnetic field reveals pronounced oscilla-
tory pattern, which are both dependent on Fano regime
of interference and MBSs non-local features. In a nut-
shell, when the direct lead-lead tunneling prevails, the
Majorana oscillations are suppressed at zero-bias and re-

veal unexpected fractional Fano-like resonances as a func-
tion of bias-voltage between the leads. The degree of
MBSs non-locality also influences the behavior of such
oscillations, which are attenuated as the local feature is
increased (lower topological quality factor). We also re-
port the ability to identify experimentally such a degree
of non-locality in conductance measurements by chang-
ing the energy level of QD. Our results are in agreement
with Ref. [12], despite differences between their system
and ours, which will be discussed in due course.

This work is organized as follows: in Sec. II we present
the theoretical model describing the system of Fig. 1.
We also show the expression for zero-bias conductance
and corresponding transmittance through the QD, which
was obtained via equation of motion (EOM) technique.
In Sec. III we show and discuss our findings, which are
summarized in Sec. IV.

II. THE MODEL

The setup we consider is depicted in Fig. 1 and can be
described by the following spinless model Hamiltonian8:

H =
∑

α,k

ξα,kc
†
α,kcα,k + εdd

†d+ V
∑

α,k

(c†α,kd+ H.c)

+ VSD
∑

k,l

(c†S,kcD,l + H.c) +HM, (1)

where the operator c†α,k(cα,k) creates an electron (hole)

in the metallic lead α = S/D (Source/Drain) with wave-
number k and energy ξα,k = εk−µα, where µα is chemical
potential and µS − µD = eV is the bias-voltage between
the leads. The operator d†(d) creates an electron (hole)
in the energy level εd of the QD, which is symmetrically
coupled to the leads with coupling constant V. The lead-
lead coupling constant is VSD. No charging effect was
taken into account in the QD energy level, since the MBS
signatures remain in presence of Coulomb repulsion and
possible Kondo physics, as Ruiz-Tijerina et al.33 have
shown.

Considering the even and odd conduction operators
ce,k = cS,k cos θ + cD,k sin θ and co,k = cS,k sin θ −
cD,k cos θ, with tan θ = 1, Eq. (1) can be rewritten as

H =
∑

k

εkc
†
e,kce,k + εdd

†d+
√

2V
∑

k

(c†e,kd+ H.c)

+ VSD
∑

k,q

c†e,kce,q +HM +Ho, (2)

wherein Ho =
∑
k εkc

†
o,kco,k−VSD

∑
k,q c

†
o,kco,q describes

the odd conduction states, which are decoupled from the
QD9.

The term34

HM = ıεMγ1γ2 + λ1(d− d†)γ1 + λ2(d+ d†)γ2 (3)



3

is the effective model Hamiltonian for a TSNW hosting
zero-energy MBSs γi at the ends7. The Majorana opera-

tors have following algebra 1: [γi, γj ]+ = δij , γ
†
i(j) = γi(j).

The parameter εM ≡ εM(l, B) = E0√
b
e−l/2b cos(l

√
b) de-

scribes the overlapping of unpaired gapless MBSs at
the opposite sides of the wire26, where b = B/E0,
l = L

√
2mE0/~ with B being longitudinal Zeeman field

(light-blue arrow in the Fig. 1), L the length of the wire,
E0 = (2mα2∆2

SC/~2)1/326, α is spin-orbit constant and
∆SC is the induced SC gap in the wire. The presence
of the term cos(l

√
b) in εM is responsible for the oscil-

latory pattern in conductance as function of the mag-
netic field. The couplings between the upper/lower MBSs
and the QD are given by λ1 and λ2, respectively34. As
known, the Hamiltonian of Eq. (3) can be rewritten with
usual fermion operators1 f , since γ1 = 1√

2

(
f + f†

)
and

γ2 = ı√
2

(
f† − f

)
. To see how HM stays in the fermionic

basis, please see Ref. [34].

The differential conductance of the system is given by
the following expression35:

G(eV ) =
e2

h

∫ (
−∂fF (ω, eV )

∂ω

)
T (ω)dω =

e2

h
T (eV ),

(4)
where e2/h is quantum of conductance and fF is Fermi-
Dirac distribution function. The last equality holds for
T = 0. T (ω) is the transmittance across the system
which can be obtained using equation of motion (EOM)
method35,36, yielding:

T (ω) = Tb +
√
TbRbΓ̃Re [Grdd(ω)]

− (1− 2Tb)
Γ̃

2
Im [Grdd(ω)] , (5)

where Γ̃ = Γ/(1 + x) is dot-lead effective coupling, Γ =
2πV2

∑
k ρ0 is Anderson broadening37, x = (πVSDρ0)2,

ρ0 =
∑
k δ(ω − εk) is the density of states (DoS) of the

leads, Tb = 4x/(x + 1)2 and Rb = 1 − Tb are the back-
ground transmittance and reflectance, respectively9,38.

We also define the Fano parameter30 qb =
√
Rb

Tb = (1−x)
2
√
x

.

For asymmetric couplings between the QD and leads39,
Ho of Eq. (2) remains decoupled from the QD, with
tan θ = VS/VD. The only differences are an effective An-
derson broadening Γ′ = 2ΓSΓD/(ΓS + ΓD) and an effec-

tive QD-even conduction band coupling V ′ =
√
V2
S + V2

D

instead of
√

2V.

To calculate the spectral retarded Green’s function of
the QD Grdd(ω) in the Eq. (5), we use again EOM tech-
nique, which allows us to get the following expression:

Grdd(ω) =
1

ω+ − εd − Σ− ΣMBSs(ω)
, (6)

where Σ = −(
√
x + ı)Γ/(1 + x), ΣMBSs(ω) = K+(ω) +

(|λ1|2 − |λ2|2)K̃(ω)K(ω) is the part of self-energy pro-

vided by the presence of MBSs8,9, K̃(ω) = K(ω)/(ω+ +
εd + Σ∗ −K−(ω)), K(ω) = ω+/[(ω+)2 − ε2M] and

K±(ω) =
ω+(|λ1|2 + |λ2|2)∓ 2εM|λ1||λ2|

[(ω+)2 − ε2M]
, (7)

with ω+ = ω + ı0+. Imaginary part of the Green’s func-
tion given by Eq. (6) defines the DoS of the QD,

ρdot(ω) = − 1

π
Im[Grdd(ω)]. (8)

III. RESULTS AND DISCUSSION

We investigate the effects of applied longitudinal Zee-
man field on differential conductance of the system re-
stricting ourselves to the temperature T = 0. Our goal
is to analyze the changes in the conductance oscillation
patterns introduced by the bias-voltage between leads for
distinct Fano regimes of interference and couplings be-
tween the QD and MBSs. The tuning of QD-lower MBS
coupling strength |λ2| allows to study the degree of MBS
non-locality η, as discussed in Sec. I. Concerning the Fano
interference process, one should discriminate between the
cases when tunneling between the leads goes preferably
via QD as intermediate (x = 0, qb → ∞, Tb = 0) and
the opposite case when direct lead-lead tunneling pre-
vails (x = 1, qb = 0 Tb = 1). Intermediary situations
are also considered (0 < x < 1). The parameters of
the system are taken as: E0 ≈ 0.23 meV the wire length
L = 1 µm, and Anderson broadening Γ ≈ 0.17E0. This
is in agreement with both experiment14,16,17 and existing
theoretical estimations10,25.

Before discussing in detail our findings, we define the
Zeeman critical value Bc, corresponding to b = (π/2l)2,
as the value in which MBSs begin to overlap with each
other. It is important to mention that the Hamilto-
nian which describes the system [Eq. (1)] is an effective
model that previously takes into account a Zeeman field
to break the spin degeneracy, thus ensuring the spinless
feature considered here and appearance of MBSs. Besides
this field, intrinsic to the model, there is an applied lon-
gitudinal Zeeman field B in the TSNW, which overlaps
the MBSs for B > Bc and is responsible for oscillatory
pattern in the conductance, as we shall see.

A. Majorana Oscillations and Fano interference

In this section, we study the role of Fano interference
effect in the Majorana oscillations emerging in differen-
tial conductance, for εd = 0. Fig. 2 shows the differen-
tial conductance as a function of both eV and Zeeman
field, considering different TSNW-QD couplings(|λ1|) for
the case when lead-QD-lead tunneling path is dominant
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Figure 2. (a)-(c): Plots of differential conductance [Eq. (4)]
as a function of the Zeeman field B and bias-voltage eV for
the case when lead-QD-lead tunneling path is dominant (x =
0, qb → ∞) and |λ2| = 0. The QD energy level εd = 0, the
values of TSNW-QD coupling are |λ1| = 0.1E0, 0.5E0 and
E0 = 1.0E0. (d) Differential conductance at eV = 10−6E0 as
function of the Zeeman field, for distinct values of TSNW-QD
coupling |λ1|. (e) Differential conductance as a function of eV
for several values of the Zeeman field.

(x = 0, qb → ∞) and |λ2| = 0. In such a case the MBSs
can overlap via εM, but the wire is long enough to ensure
that there is no connection between the MBS-2 and QD
(See Fig. 1). If the value of magnetic field is below crit-
ical, B < Bc, we observe typical plateau in differential
conductance with G = e2/2h, which indicates that MBSs
remain isolated from each other. When magnetic field ex-
ceeds the critical value, B > Bc, an oscillatory pattern in
differential conductance as function of the magnetic field
arises. The value of the conductance oscillates between
the minimal value of e2/2h and maximal value which in
certain cases can reach e2/h. This latter points to a reg-
ular fermion signature arising due to the finite overlap
between the MBSs8.

These effects become visible at the panel (d), where the
differential conductance is plotted as function of the mag-
netic field for eV = 10−6E0: the oscillations between iso-
lated MBSs (εM → 0, G → e2/2h) and nonlocal fermion
state formed by overlapping MBSs (G → e2/h) are clearly
visible. The increase of TSNW-QD coupling λ1 broad-
ens the dips in the conductance and decreases the ampli-
tudes of the oscillations. Note however, that for big val-
ues of magnetic field the maxima of the conductance still
reach the values of the conductance quantum. Effects of
the overlap between MBSs assisted by Zeeman field are
clearly seen at panel (e), where differential conductance
is plotted versus eV . Indeed, for certain values of B (cor-
responding e.g. to dashed-blue and dotted purple lines),
conductance reaches maximum value at eV = 0, which is
a signature of a regular fermion state, whereas for other
values of Zeeman field (corresponding e.g. to red filled

and dash-dotted black lines), G has minima at eV = 0,
which corresponds to the case of isolated MBSs.

The change of the Fano interference regime to the case
where qb = 0, corresponding to the dominance of the
direct lead-lead tunneling, brings dramatic changes in
the differential conductance pattern, as can be seen at
Fig. 3. Two qualitatively new phenomena are observed
here as compare to the case qb → ∞. First, at eV = 0,
G = e2/2h and is independent on the values of |λ1| and
applied field B. Moreover, differential conductance as
function of bias-voltage reveals fractional Fano-like reso-
nances around eV = 0 with intriguing minimal and max-
imal values equal to e2/4h and 3e2/4h 31,38. Similar frac-
tional Fano interference process was already reported by
Barański et al.32 in a T-shaped geometry with a QD be-
tween metallic and superconducting leads, side-coupled
to a MBS. In such a system, the fractional interferomet-
ric behavior is related to the presence of MBS in the sys-
tem, which scatters the electron waves, changing their
phase32. We highlight that the fractional oscillatory pat-
tern reported here only can be verified for low temper-
atures (T ≤ mK). Otherwise, the thermal effects can
smear out such Fano-like resonances, making the effect
unobservable.

We also examine the corresponding dimensionless QD
DoS for the case qb = 0. The results are shown in the
Fig. 4 for |λ1| = 1.0E0. As it can be clearly seen, DoS re-
veal the resonant asymmetric pattern, which is inverted
with respect to the pattern observed in the differential
conductance: the dips in the DoS correspond to the peaks
in G and vice versa. This inversion is a straight aftermath
of the system electrical charge conservation: in the lead-
lead Fano regime the better is localization of the electron
on the dot the poorer is the conductance. In order to
catch both charge conservation and fractional Fano-like
lineshapes, we present horizontal line cuts of the color
plot of the Fig. 4(a) along red, blue and black horizon-
tal bars, as shown in the Fig. 4(b). As can be seen,
for both values of B > Bc considered (dashed blue and
dash-dotted black lines), the amplitudes of the fractional
profile remain the same.

To understand better the fractional Fano interference
process, we analyze differential conductance as a func-
tion of eV for several values of coupling between the QD
and lower MBS (|λ2|), which allows to verify how the
fractional feature is modified by decreasing the degree of
MBS non-locality12. Fig. 5 shows that, for smaller val-
ues of |λ2|, the fractional lineshape persists with slight
changes in amplitude. However, for |λ2| = 10−2E0 (pur-
ple dashed-line) the fractional resonances invert and, for
bigger values, vanish. This behavior suggests that the
fractional Fano effect appears just for high degrees of
MBS non-locality, i.e, |λ2| ≤ 10−2E0 � |λ1|, yielding
η = 0.1.

Fig. 6 shows the differential conductance as a function
of eV for distinct Fano interference processes (0 < x < 1).
When the lead-QD-lead path is dominant (x = 0), the
conductance reaches maximum e2/h, indicating that the
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Figure 3. (a)-(b): Plots of differential conductance [Eq. (4)] as
function of the Zeeman field B and eV , for the case when di-
rect lead-lead tunneling path is dominant (x = 1, qb = 0) and
|λ2| = 0. The QD energy level εd = 0, the values of TSNW-
QD coupling are |λ1| = 0.1E0, 0.5E0, and E0 = 1.0E0. (d)
Differential conductance as function of eV for several values
of Zeeman field. Conductance reveals sharp resonant asym-
metric profile.
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Figure 4. (a) Dimensionless DoS of the QD for the case of
the dominant direct lead-lead tunneling (x = 1, qb = 0) as a
function of the Zeeman field and eV , with |λ1| = 1.0E0 and
|λ2| = 0. (b) Dimensionless DoS of the QD as function of eV
for three different values of the magnetic field, corresponding
to the colored horizontal bars at the panel (a).

MBSs are overlapped via Zeeman field (εM (B) 6= 0). As
we enhance the direct lead-lead transport, the Fano-like
fractional resonance begins to take shape. Such a behav-
ior can be verified for x ≥ 0.15(qb ≤ 1.10). For higher
values of x, which describes the predominance of direct
lead-lead tunneling (x ≥ 0.75(qb ≤ 0.14)), the fractional
resonances becomes more evident, showing the same line-
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Figure 5. Differential conductance [Eq. (4)] as function of eV
for the situation which the fractional Fano-like resonances are
present(x = 1, qb = 0). Several values of the coupling between
the QD and the lower MBS are considered(|λ2|).
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Figure 6. Differential conductance [Eq. (4)] as function of eV
for the several Fano regimes of interference (0 ≤ x ≤ 1) and
highly non-local situation (|λ2| � |λ1|).

shape, with small deviations in amplitude. These fea-
tures state that the fractional Fano interference effect
takes place when direct lead-lead tunneling process is
dominant over those lead-QD-lead, thus indicating that
the measurement system (metallic leads and QD) can
distort the MBSs local/non-local signatures due to inter-
ference phenomena.

In order to have an overview about the influence of
Fano interference in the Majorana oscillations, in Fig. 7
we analyze the differential conductance for eV = 0 as
a function of Zeeman field, considering several values
of x(qb). For the highly non-local situation (|λ2| = 0,
η = 0) [Fig. 7(a)], we verify that as x increases, the am-
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Figure 7. Differential conductance [Eq. (4)] as function of
Zeeman field, for eV = 0 and several Fano regimes of inter-
ference (0 ≤ x ≤ 1). In panel (a) the coupling between the
QD and the lower MBS is neglected |λ2 = 0|, while in (b) is
considered.
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Figure 8. Differential conductance [Eq. (4)] as function of
Zeeman field, for eV = 0 and several values of |λ2|. Panel (a)
exhibits the Fano regime x = 0, while (b) and (c) show the
situation for x = 1 and x = 0.5, respectively.

plitude of oscillations are suppressed until total quench
for x = 1 (qb = 0). Thereby, the enhancement of direct
lead-lead tunneling process (x ≥ 0.95) can destroy the
oscillatory behavior at zero-bias voltage (eV = 0), hid-
ing the information about the overlap between MBSs via
Zeeman field. The suppression of oscillations amplitude
is also verified for |λ2| 6= 0, even for a high degree of
MBSs non-locality (η ∼ 10−3), as depicted in Fig. 7(b).
The main difference is that for the finite |λ2| situation,
the oscillatory pattern is not completely quenched for
x = 1.

Fig. 8 exhibits how the degree of MBSs non-locality af-

fects the Majorana oscillations at zero-bias voltage. The
oscillatory behavior is well defined just for higher non-
local situations in all the three interference processes con-
sidered here [(a)x = 0, (b)x = 1.0 and (c)x = 0.5]. As
we decrease the Majorana non-local property (enhancing
|λ2|), the oscillation pattern is totally suppressed due to
the MBSs peak splitting, which points out that the MBSs
can experience each other. The data indicates that for
|λ2| = 0.1E0 (orange solid line), yielding η = 0.32, the os-
cillatory pattern is completely absent, which shows that
the presence of well-defined oscillations at eV = 0 in the
differential conductance as a function of Zeeman field is
a feature of highly non-local MBSs (η → 0). These find-
ings suggest that our device can work as a fine tunneling
spectrometer to investigate the non-local MBSs features,
once it catches changes in oscillations amplitude appear-
ing in differential conductance at zero-bias, even for small
values of η.

B. Degree of MBS non-locality and experimental
protocol

In Sec. I, we recall the concept of degree of MBSs non-
locality η proposed by Prada et al.12, who also indicated
a protocol to measure it in a QD-TSNW hybrid system.
Such a theoretical proposal was followed by its exper-
imental achievement by Deng et al.15. We also intro-
duced that η is related to a topological quality factor, as
stated in Ref. [11]. In this subsection, we present that our
simplest effective Hamiltonian (spinless carriers, absence
of charging effect and additional ABSs) is also able to
catch the information of the degree of MBSs non-locality
using the same protocol previously proposed12,15. Be-
fore presenting our findings, it is worth mentioning that
the QD setup in our device is distinct from the origi-
nal proposal12. Here, the transport is through the QD,
placed between metallic leads and side-coupled to the
TSNW, while in previous works11,12,14,15,26, the trans-
port is through the QD-TSNW system, placed between
metallic and superconducting leads. Furthermore, in
such works the QD belongs to the nanowire structure
and, therefore is not a separated entity as in our device.

Fig. 9 shows contour plots of differential conductance
as a function of bias-voltage eV and QD energy level εd,
for several values of εM(B) and |λ2|. The QD energy level
can be experimentally accessed by a gate potential Vd,
which can be tuned separately from the gate voltage eV
between metallic leads by changing both in a compen-
satory way15. Panel (a) describes the higher non-local
situation, i.e., there is no overlap between the MBSs
(εM(B) = |λ2| = 0). This highly non-local property is
characterized by a plateau at G(eV = 0) = e2/h, inde-
pendent from the value of εd. It is known from previous
works14,24 that Andreev bound states (ABSs) can trans-
mute in a topological MBS as they become merged at
zero-energy. However, the ABSs also can coalesce form-
ing near-zero energy mid-gap states in a nontopological
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ε-dot ε-MBS

εM

Figure 9. Differential conductance [Eq. (4)] as function of
both QD energy level εd and bias voltage eV . Panel (a) shows
the highly non-local situation of isolated MBSs (εM(B) =
|λ2| = 0). (b) exhibits a non-local situation, wherein the
εM(B) is dominant (“bowtie” overlapping MBSs in Ref. [12]),
while (c) and (d) show the case correspondent to “diamond”
of same reference, described by the dominance of |λ2| over
εM(B). The difference between (c) and (d) is the degree of

MBSs non-locality η =
√
|λ2|/|λ1|, with |λ1| = 1.0E0 for all

the situations considered. The values ε−dot and ε−MBS allows to
obtain experimentally η ≈ Ω.

regime, mimicking MBS signatures. Such ABSs analysis
does not belong to scope of this work, since no additional
ABSs were included.

Now, let us consider the situation in which MBSs over-
lap with each other via εM(B) � |λ2|. We verify in
panel (b) the “bowtie” pattern, in qualitative agreement
with the same situation reported in Fig. 4(b) of Ref. [12]
and 3(b) of Ref. [15]. As indicated in Fig. 9(b), such
a measurement is able to provide the value of εM(B),
which is ≈ 0.12E0 for B = 3.5E0. Figs. 9(c)-(d) de-
pict the situation wherein εM(B) � |λ2|, which reveal
information about the degree of MBSs non-locality using
the same protocol previously stated12: Ω ≈ η can be ob-
tained experimentally by the ratio ε±MBS/ε

±
dot. Let us pick

out the values indicated in Fig. 9(d): ε−MBS ≈ −0.30E0

and ε−dot ≈ −1.5E0. Since Ω2 = ε−MBS/ε
−
dot

12,15, we
find Ω ≈ 0.45, in agreement with the theoretical pa-
rameters adopted (|λ2| = 0.2E0, |λ1| = 1.0E0 and

η =
√
|λ2|/|λ1| = 0.45). In such panels, we also con-

firm the “diamond” shape, which was previously verified
in Figs. 4(d) and 3(c) of Refs. [12] and [15], respectively.
By comparing panels (c) and (d), it can be noticed that
the enhancement of Ω, i.e., the reduction of MBSs non-
local properties, is characterized by the opening of the
“diamond” shape. Qualitative agreement between our
results of Fig. 9 and those found in Ref. [12], which were
experimentally verified in Ref. [15], evidence that our de-
vice can be used to explore the MBSs non-local proper-
ties.

IV. CONCLUSIONS

To summarize, we studied Majorana oscillations in a
T-shaped hybrid device composed by a QD embedded
between a pair of conducting leads and side-coupled to
a TSNW hosting zero-energy MBSs at its ends. Analyz-
ing the differential conductance profiles of the system as
a function of the applied Zeeman field and bias-voltage
eV between the leads, we found that Majorana oscilla-
tions are very sensitive to the changes of the regime of
Fano interference and degree of Majorana non-locality
η. This latter can be tuned by changing the coupling
between the QD and lower MBS. Unexpected fractional
Fano-like resonances were unveiled for high non-local sit-
uations (η → 0), in the regime where direct lead-lead
tunneling prevails. Moreover, differential conductance as
a function of both bias-voltage and energy level of QD
revealed “bowtie” and “diamond” shapes, in qualitative
agreement with the original theoretical proposal12, de-
spite differences between the models. Such correspon-
dences indicate that our device also can be used as a
tunneling spectrometer to obtain experimentally the de-
gree of Majorana non-locality and investigate its topo-
logical properties following the same protocol proposed
by Prada et al.12 and experimentally performed by Deng
et al.15.
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Chapter 7

Spin-dependent zero-bias peak in a hybrid
nanowire-quantum dot system:
Distinguishing isolated Majorana fermions
from Andreev bound states

L. S. Ricco, M. de Souza, M. S. Figueira, I. A. Shelykh and A. C. Seridonio, Phys. Rev. B 98, 075142.

Published August 24, 2018

7.1 Overview and Remarks

The current work concerns the detection of Majorana bound states (MBSs) in hybrid nanowire-

quatum dot devices. The pivotal difference between such a work and those found in previous sections

is the full spin description in our system Hamiltonian, instead of a spinless model adopt in our earlier

papers. Parallel to this, we also have considered the Coulomb repulsion between the charge carries at dot

energy level (intradot correlation). As we already have done in sec. 6, the coupling of dot with both MBSs

was kept, as well as the direct overlap between them. The consideration of all this ingredients allowed us

to theoretically analyze a physical system more faithful to recent experimental devices and also propose

a way to solve a key issue in the area of Majorana detection: Differentiate the truly topological MBSs

from the so-called Andreev bound states (ABSs). For further information, please see the paper at end of

this chapter. We also present some supplementary results.

7.2 Theoretical Model and density of states calculations

In this section we will provide some details concerning the theoretical calculations of the Green’s

function of quantum dot, which are in a summarized way in the paper. The full procedure can be found

in Appendix B, at the end of current thesis.

Let us start by writing the Hamiltonian which describes the hybrid system that is being considered
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[please, see Fig. 1 of draft]:

H =
∑

kσ

εkσe
†
kσekσ +

∑

σ

εdσndσ + Und↑nd↓

+
√

2V
∑

kσ

(e†kσdσ + d†σekσ) +HNw, (7.1)

where ndσ = d†σdσ is the number operator for electrons in the QD single-level and e†kσ(ekσ) depicts

electrons (holes) in the normal (N) lead with wave number k, spin σ =↑, ↓ and energy εkσ. The energy

level of QD is εdσ = εd−σVZ , wherein VZ is the Zeeman energy splitting induced by external magnetic

field and U accounts for the charging energy. The dot is coupled to N-lead with strength
√

2V . HNw

represents the effective model Hamiltonian for a SC nanowire hosting MBSs γi at opposite ends and

coupled to the QD and is given by:

HNw = ıδMγLγR + (λLdσ − λ∗Ld†σ)γL + (λRdσ + λ∗Rd
†
σ)γR, (7.2)

wherein the Majorana operators γi are self-conjugated (γi = γ†i ) and obey the algebraic relation {γi, γj} =

δij . The dot is coupled to left and right MBSs, with hoppings λL and λR, respectively. The direct hy-

bridization δM between MBSs is the same which we have adopt in Sec. 6.3, i.e,

δM =
e−l/2b√

b
cos(l

√
b)E0, (7.3)

which is function of both Zeeman energy splitting b = VZ/E0 and SC nanowire length l. This theoretical

prediction can be related to experiments by choosing the energy scale E0 =
(
2m∗α2∆2

SC/~2
)1/3 and

l = L
√

2m∗E0/~, where L is the actual SC nanowire length, m∗ is the electron effective mass, α is

spin-orbit constant and ∆SC is the induced SC gap.

As already have established in previous sections, HNw [Eq. (7.2)] can be rewritten in a regular

fermionic basis, since a Majorana excitation can be decomposed into a pair of fermionic operators, i.e,

γL = (f↑ + f †↑)/
√

2 and γR = ı(f †↑ − f↑)/
√

2. In such a basis, HNw becomes into

HNw = δM

(
f †↑f↑ −

1

2

)
+ thp

∑

σ

(dσf
†
↑ + f↑d

†
σ) + ∆

∑

σ

(dσf↑ + f †↑d
†
σ) (7.4)

wherein the hopping term thp and the binding energy between the delocalized Cooper pair ∆ are given

by thp = (|λL| − |λR|)/
√

2 and ∆ = (|λL|+ |λR|)/
√

2, respectively.

Our goal is to obtain the total density of states (DOS) in the QD, which reads:

DOS(ω) = πΓ
∑

σ

ρσ(ω), (7.5)

where the constant Γ = 2πV 2ρ0 is the QD-N lead effective coupling, with ρ0 being the DOS of lead. The

quantity ρσ(ω) = − 1
π Im[Gr,σd,d(ω)] accounts for DOS per spin orientation, which depends on the retarded

Green’s function of the QD Gr,σd,d(ω) in spectral domain ω. To obtain such a function, we apply the EOM

procedure as described in Sec. 3.1. We remember the reader that this technique can be summarized as

71



Chapter 7. Spin-dependent zero-bias peak in a hybrid nanowire-quantum dot system: Distinguishing
isolated Majorana fermions from Andreev bound states

Figure 7.1: Green’s functions Tree showing a bird’s eye view of evolution of each Green’s function under application of
EOM technique. The functions with a red X were thrown away due to Hubbard-I truncation scheme.

follows

(ω + ıη+)Grcicj (ω) = δij + 〈〈[ci,H]; c†j〉〉, (7.6)

for single-particle Green’s functions, where ci(j) are fermionic operators belonging to Hamiltonian H,

which obeys the usual anticommutation relations {ci(j), ci(j)} = {c†i(j), c
†
i(j)} = 0 and {ci, c†j} = δi,j

Thus, for the Green’s function of dot:

(ω + ıη+)Grdσdσ(ω) = 1 + 〈〈[dσ, H]; d†σ〉〉, (7.7)

where H is the Hamiltonian of Eq. (7.1). after calculating [dσ, H], one gets:

(ω − εdσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω) +
√

2V
∑

k

Grekσdσ(ω)

− thp
∑

σ̃

δσσ̃G
r
f↑,dσ(ω)−

∑

σ̃

δσσ̃∆Gr
f†↑ ,dσ

(ω), (7.8)

wherein we can notice the presence of new Green’s functions, which will be computed by applying the

EOM again.

However, we drawn attention for the Green’s function of four operatorsGrdσndσ̄ ,dσ(ω), which emerges

due to many-particle correlations nd,σnd,σ̄ introduced by Coulomb charging energy in the system Hamil-

tonian [Eq. (7.1)], as we have discussed in chapter 3. As can be seen in Appendix B, the calculation of

such a many-particle Green’s function via EOM yields new ones, which, in turn generate new many-

particle Green’s functions. In other words, successive application of EOM in this kind of Green’s func-

tions will generate an infinite chain of others Green’s functions and thus, the system can not be closed.

Here, we apply the Hubbard-I truncation scheme, which allows us to describe better the Coulomb block-

ade regime. For suitable discussion, we kindly ask the reader to see the paper version of our paper at the

end of this chapter and also go back to chapter 3.

Instead of present a step-by-step calculation of Green’s functions of Eq. (7.8) with the truncation
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Chapter 7. Spin-dependent zero-bias peak in a hybrid nanowire-quantum dot system: Distinguishing
isolated Majorana fermions from Andreev bound states

procedure, below we present a scheme of the complete set of Green’s functions to show how the system

has grown by applying the EOM approach and in what point it was needed to truncate. We properly

called this scheme of “The Green’s functions Tree”. Detailed calculations can be seen in Appendix B.

The final Green’s function of dot is shown in Eq. (17) of the paper.

7.3 Published Paper
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Hybrid system composed by a semiconducting nanowire with proximity-induced superconductivity
and a quantum dot at the end working as spectrometer was recently used to quantify the so-called
degree of Majorana nonlocality [Deng et al., Phys.Rev.B, 98, 085125 (2018)]. Here we demonstrate
that spin-resolved density of states of the dot responsible for zero-bias conductance peak strongly
depends on the separation between the Majorana bound states (MBSs) and their relative couplings
with the dot and investigate how the charging energy affects the spectrum of the system in the
distinct scenarios of Majorana nonlocality (topological quality). Our findings suggest that spin-
resolved spectroscopy of the local density of states of the dot can be used as a powerful tool for
discriminating between different scenarios of the emergence of zero-bias conductance peak.

I. INTRODUCTION

The possibility of achieving of fault-tolerant quantum
computing with qubits based on Majorana bound states
(MBSs)1,2 started a new era in the domains of mesoscopic
physics and quantum information. These exotic non-
Abelian excitations3 emerge as topologically protected
mid-gap zero-energy modes in so-called topological su-
perconductors4,5. The topological protection stems from
the separation between individual MBSs, i.e, nonlocal-
ity, which is also responsible for the immunity of a setup
against local perturbations and consequent loss of the in-
formation due to the processes of decoherence3,6. How-
ever, it should be noticed that, for practical realizations
of quantum computing systems, the MBSs qubit becomes
vulnerable to the decoherence process caused by local
perturbations when coupled to environment7,8, which can
lead to unwelcome errors in the processing of quantum
information.

Topological superconductivity can be realized ex-
perimentally in hybrid superconductor-semiconductor
nanowires with induced proximity effect in the presence
of strong spin-orbit coupling and external magnetic field,
favoring the formation of superconducting (SC) triplet
states 9,10. In these hybrid devices, manifestation of a
robust zero-bias conductance peak (ZBCP) has been con-
sidered as an experimental signature of the presence of
highly nonlocal MBSs emerging at the opposite ends of a
nanowire11–15. However, it was argued later on that other
physical mechanisms such as disorder16, Kondo effect17,18

and formation of Andreev bound states (ABSs)19–28 can
be responsible for the appearance of analogs of ZBCP.
In particular, there is ongoing controversy29 whether
near zero-energy ABS, constituted by weakly overlapping
MBSs, can mimic robust 2e2/h ZBCP 22,23. Overall,
there is currently consensus that observation of ZBCP

Figure 1. Sketch of the system consisting of a hybrid super-
conducting (SC) nanowire (blue region) coupled to a quantum
dot (QD) with energy level εd, which can be tuned by appli-
cation of an external gate voltage VDot. The QD is coupled
to both Majorana bound states (MBSs) γL and γR at the
opposite ends of SC nanowire with strengths λL and λR, re-
spectively. The MBSs may be hybridized with each other by
δM in the presence of an external magnetic field applied lon-
gitudinally (purple arrow) due to the finite size effects. The
QD levels are broadened due to the coupling Γ with a normal
metallic lead N.

only is not enough to guarantee the presence of topolog-
ically protected MBSs in the system.

A possible way to clarify the origin of ZBCP is perform-
ing tunneling spectroscopy of a quantum dot (QD)30,31 is
assumed to be coupled to both ends of SC nanowire. In
this type of experiment one can access the so-called de-
gree of Majorana nonlocality14,32,33 characterizing “how
topological” are MBSs and distinguish between the cases
of well-separated MBS and near zero-energy ABSs (over-
lapping MBSs)13,21,34,35.

Distinct from earlier works 13,14,32,33,36, in the present
paper we analyze how charging energy of the QD single-
level coupled to a normal lead affects the energy spectrum
of the device sketched in the Fig. 1. To account for the
correlation effects we go beyond the Hartree-Fock mean-
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field approximation used by Prada et al32 for larger Zee-
man fields, applying the method developed by Hubbard37

to treat the charging energy which allows us to recover
qualitatively the recent experimental profiles reported by
Deng et al14 for a set of tunable parameters. In this
sense, we demonstrate that for highly nonlocal MBSs, a
plateau at zero-energy is formed in the QD density of
states in the wide range of the values of the dot level and
charging energies. In the case of strongly overlapping
MBSs forming an ABS, the spectrum is strongly modi-
fied and this plateau disappears. Moreover, changes in
MBSs degree of nonlocality strongly affect spin resolved
density of states of QD, which means that spectroscopic
experiment with spin-polarized local probe38–43 will al-
low to identify whether ZBCP is induced by topological
MBSs or ABSs (overlapping Majoranas).

II. THE MODEL

The effective Hamiltonian describing the device de-
picted in Fig. 1 takes the following form32,36

H =
∑

kσ

εkσe
†
kσekσ +

∑

σ

εdσndσ + Und↑nd↓

+
√

2V
∑

kσ

(e†kσdσ + d†σekσ) +HNw, (1)

where ndσ = d†σdσ is the operator of the number of
the electrons residing in the single-level QD, the opera-

tors e†kσ(ekσ) correspond to the creation of the electrons
(holes) in the normal (N) lead36 with wave vector k, spin
σ =↑, ↓ and energy εkσ. The energy of an electron in
the QD is spin dependent, εdσ = εd − σVZ , where VZ
is Zeeman energy splitting induced by an external mag-
netic field. U is the charging energy of the QD. The dot
is coupled to the normal lead N with coupling strength√

2V .
To describe the SC-nanowire hosting a pair of MBSs

γi at the opposite ends and coupled to the QD, we use
low-energy effective model developed by Prada et. al32,
and characterized by the following Hamiltonian:

HNw = ıδMγLγR + (λLdσ − λ∗Ld†σ)γL

+ (λRdσ + λ∗Rd
†
σ)γR (2)

where self-conjugated operators γi = γ†i describe local-
ized Majorana fermions and obey the algebraic relation
{γi, γj} = δij

1,4–6. HNw can be rewritten in the reg-
ular fermionic basis, since Majorana operators can be
decomposed into pairs of normal fermionic operators,

γL = (f↑ + f†↑)/
√

2 and γR = ı(f†↑ − f↑)/
√

2. The dot is
coupled to the left and right MBSs, with coupling con-
stants λL and λR, respectively. The direct hybridization
δM between MBSs reads44,45

δM =
e−l/2b√

b
cos(l

√
b)E0, (3)

which is the function of both Zeeman energy splitting b =

VZ/E0, E0 =
(
2m∗α2∆2

SC/~2
)1/3

and l = L
√

2m∗E0/~
with L being the length of the wire, m∗ being electrons ef-
fective mass, α the spin-orbit coupling constant and ∆SC

the induced SC gap44. The degree of MBSs nonlocality
η can be defined as ratio between QD-MBSs right/left
coupling strengths32:

η2 =
|λR|
|λL|

(4)

This parameter can be experimentally accessed through
the measurement of the conductance as a function of the
gate potential changing the energy of a QD and drain-
source voltage14 and estimated as the ratio between en-
ergy values in which the Majorana and QD states are on
resonance (anticrossing points)32, η2 ≈ ε±MBS/ε

±
QD [See

Fig 2(d-f)].

A. Density of states calculations

Our main goal is to investigate how the spectral prop-
erties of the QD accessible in spin-resolved measurements
are changing when the degree of MBSs nonlocality char-
acterized by the parameter η32 is modified. Hence, it is
suitable to evaluate the total density of states (DOS) in
the QD, which reads:

DOS(ω) = πΓ
∑

σ

ρσ(ω), (5)

where the constant Γ = 2πV 2ρ0 is the QD-N lead effec-
tive coupling46, with ρ0 being the DOS of the lead. The
quantity

ρσ(ω) = − 1

π
Im[Gr,σd,d(ω)] (6)

denotes the DOS corresponding to a given spin orienta-
tion, which is determined by the retarded Green’s func-
tion of the QD Gr,σd,d(ω) in the spectral domain. The

application of the equation of motion (EOM) method47

leads to the following equation (Appendix A):

(ω+ − εdσ − ΣU=0
M,σ + ıΓ)Gr,σd,d(ω) = 1 + UGrdσndσ̄,dσ (ω)

+U(|λL|2 − |λR|2)K̄σGr
d†σndσ̄,dσ

(ω),

(7)

where ω+ = ω+ i0+, ΣU=0
M,σ = K1 + (|λL|2− |λR|2)2KK̄σ

is the self-energy36 due to QD-MBSs hybridization in the
absence of the charging energy, and

K =
1

2

(
1

ω+ + δM
+

1

ω+ − δM

)
, (8)



3

K̄σ =
1

2

(
K

ω+ + εdσ −K2 + ıΓ

)
, (9)

K1 =
1

2
·
[

(|λL| − |λR|)2

ω+ − δM
+

(|λL|+ |λR|)2

ω+ + δM

]
(10)

and

K2 =
1

2
·
[

(|λL| − |λR|)2

ω+ + δM
+

(|λL|+ |λR|)2

ω+ − δM

]
. (11)

The presence of the two-particle operator corresponding
to the charging energy term in the Hamiltonian [Eq. (1)]
leads to the appearance of the two particle Green’s func-
tions in the Eq. (7). The iterative application of the EOM
procedure to such higher order functions will produce
an infinite chain of the equations which should be trun-
cated at some point47. Distinct from the earlier work32

in which the charging energy of the dot was accounted for
using a mean-field approximation, here we take a step fur-
ther by following Hubbard-I truncation scheme37. This
allows us to account for the appearance of the so-called
Hubbard peaks and thus describe better the physics of
Coulomb blockade regime. Note, however, that in our ap-
proach Kondo-type correlations are fully neglected, and
it is applicable only if TK/∆SC ' 0.632 or T � TK ,
wherein TK is the Kondo temperature17,18. Further de-
tails of the calculations can be found in the Appendix
B.

After Hubbard-I truncation, the two-particle Green’s
functions take the following form:

Grdσndσ̄ ;dσ (ω) =
〈ndσ̄〉

ω+ − εdσ − U − ΣU6=0
M,σ + ıΓ

, (12)

and

Gr
d†σndσ̄dσ

(ω) = −(|λL|2 − |λR|2)K̄σ
UG

r
dσndσ̄,dσ

(ω), (13)

wherein

〈ndσ̄〉 =

∫ 0

−∞
dωρσ̄(ω) (14)

gives the occupation number of the dot per spin σ̄ (op-
posite to σ) at T = 0. The self-energy term provided by
the presence of MBSs and charging energy U is given by

ΣU6=0
M,σ = K1 + (|λL|2 − |λR|2)2KK̄σ

U (15)

where

K̄σ
U =

1

2
· K

ω+ + εdσ + U +K2 + ıΓ
(16)

After some algebra we get from Eqs. (7), (12) and (13)
the following expression for the retarded Green’s function

of the dot:

Gr,σd,d(ω) =
λ(ω, σσ̄)− U(|λL|2 − |λR|2)2M(ω, σσ̄)

ω+ − εdσ − ΣU=0
M,σ + ıΓ

(17)

with

λ(ω, σσ̄) = 1 +
U〈ndσ̄〉

ω+ − εdσ − U − ΣU6=0
M,σ + ıΓ

(18)

and

M(ω, σσ̄) =
〈ndσ̄〉K̄σK̄σ

U

ω+ − εdσ − U − ΣU6=0
M,σ + ıΓ

. (19)

III. RESULTS AND DISCUSSION

We investigate the energy spectrum of the device de-
picted in Fig. 1 analyzing the DOS of the QD [Eq. (5)] as
a function of spectral frequency ω and dot energy level
εd for several regimes corresponding to the different ra-
tios between the parameters of the system. The relevant
parameters of our model, in units of E0, are the charg-
ing energy U , hybridization λL(λR) between the dot and
MBS(left/right) and Zeeman energy splitting VZ , which
modulates the direct overlap δM between the MBSs at
the opposite nanowire ends. The length of the SC was
chosen as L ≈ 0.1lµm, in accordance with the results
presented in the Ref. 44. The occupation numbers for
each spin [Eq. (14)] were self-consistently computed. In
all the situations, the QD-left MBS coupling strength is
kept fixed (λL = 1.0E0). Concerning the charging energy
strength U , we follow Prada et al.32 effective Hamilto-
nian, assuming that U > ∆.

Fig. 2(a) corresponds to the highest nonlocal situation
(η = 0), where SC nanowire is long enough (L ≈ 2.0µm)
to ensure formation of isolated MBSs at the ends (δM =
0). In this regime, the dot couples only with the left MBS
(λR = 0). As predicted by the earlier works14,32,33, the
Majorana states remain unperturbed under variations of
the QD energy level, since the latter can not cross the
topologically protected zero-energy MBSs.

For shorter wires (L ≈ 0.4µm), Fig. 2(b), DOS of the
dot reveals the so-called “bowtie” profile, characteristic
to the regime when the overlap between MBSs is finite
and the dot is only weakly hybridized with rightmost
Majorana (λL, δM � λR)32. In this situation the topo-
logical protection is absent and the energies of the over-
lapping MBSs are strongly perturbed in the vicinity of
the resonance with the QD state. The splitting of near-
zero states is ruled by direct hybridization between MBSs
2δM (See yellow bar in the panel (b)).

Fig. 2(c) demonstrates the spectra for the case of the
local fermionic zero-mode (δM = 0 and η = 1), cor-
responding to the highest localization of MBSs (lowest
topological quality factor33), for which any pronounced
structure at ω = 0 is absent.
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ϵ+
QD

ϵ+
MBS

ϵ-QD
ϵ-MBS

Figure 2. Color scale plots of the DOS of a QD as a function
of QD energy level εd and spectral frequency ω for distinct
regimes. In all situations we chose U = 5E0 and λL = 1.0E0.
(a) highly nonlocal isolated MBSs (δM = λR = 0) for
VZ = 0.8E0 and L = 2.0 µm; (b) bowtie profile, wherein
VZ = 1.72E0, L = 0.4 µm, δM = 0.12E0 and λR = 0.003E0.
(c) regular fermionic zero mode (λL = λR = E0, δM = 0),
with L = 0.4 µm and VZ = 1.38E0; (d)-(f) diamond profiles
(δM � λR, λL), with actual nanowire length L = 0.4 µm.
Panel (d) exhibits the situation for VZ = 1.4E0, δM =
0.004E0 and λR = 0.03E0. In (e) we have set VZ = 1.5E0,
δM = 0.04E0 and λR = 0.25E0, while in panel (f) VZ = 1.6E0,
δM = 0.08E0 and λR = 0.5E0.

The panels (d)-(f) of the Fig. 2 correspond to the case
of the shorter SC nanowires (L ≈ 0.4µm), for which
δM 6= 0 but δM � λR. This regime corresponds to the
situation wherein the wave function describing the right
MBS moves towards the QD due to the application of the
magnetic field15,23. One can notice the presence of the
previously reported “diamond” profiles14,32. Fig. 2(d)
shows the diamond lineshape for a quasi-ideal case of
the isolated MBSs (η = 0.17), while panels (e) and (f)
illustrate the situations where the nonlocal feature was
suppressed by enhancing λR and, consequently η. The
loss of the nonlocality (η → 1) is related to the displace-
ment of the right MBS (γR) wave function towards the
left MBS, increasing the overlap between such states and
enhancing the hybridization λR of right Majorana mode
with the dot state. By comparing the Figs. 2(d)-(f), it
can be noticed that ABS formation due to the strong lo-
calization of the right MBS near the QD gives rise to the
disintegration of the diamond shapes. In other words,
the closer ε±MBS is to ε±QD (See panels (d) and (f)), the
higher is the local nature of MBSs and the lower is the
topological quality of the device.

It is worth noting that the results presented in
the Fig. 2 differ from analogous results of the earlier
works14,32 due to the presence of extra crossing points
appearing in the middle region of all the panels. This
feature is direct outcome of the theoretical treatment af-
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Figure 3. Color scale plots of the DOS of a QD as a function
of QD energy level εd and spectral frequency ω for distinct
regimes. In all situations we chose λL = 1.0E0. Left panels
show (a)isolated MBSs, (c)bowtie and (e)diamond profiles,
corresponding to the cases illusrtated by Fig. 2(a), (b) and
(e), respectively, but for the distinct values of Zeeman split-
ting VZ and charging energy U . Right panels reproduce the
corresponding left ones in the reduced gray scale.

forded by Hubbard-I approximation37 to charging energy
term of the system Hamiltonian [Eq. (1)]. It is known
that such approximation makes the condition of the tran-
sition to ferromagnetic state more restrictive compared
to Hartree-Fock mean-field approximation, since it ac-
counts for the higher order correlations thus reducing the
energy of non-magnetic states with respect to ferromag-
netic ones37. For this reason, Hartree-Fock mean-field
approximation works well for larger Zeeman fields, as pre-
viously noticed by Prada et al32. However, within such
a mean-field approach for any value of VZ , the informa-
tion about correlated motion of electrons is only taken
into account with the mean occupation48. Hubbard-I
decoupling scheme accounts for such correlated motion,
which gives rise to the appearance of the so-called Hub-
bard peaks at εdσ and εdσ + U , describing the regime
of the Coulomb blockade. From the experimental per-
spective, the work of Deng et al14 shows the validity of
the Hartree-Fock approach, since such an experiment was
performed under relatively larger Zeeman fields, which
are enough to resolve the QD spin-degrees of freedom.
In this work, by using the Hubbard I decoupling scheme,
we predict the system behavior in the scenario of weaker
Zeeman splitting, which could be addressed in future ex-
periments.

Detuning of the parameters VZ and U from the value
corresponding to the Figs. 2(a), (b) and (e) allows
us to recover low-energy spectrum theoretically pre-
dicted within the Hartree-Fock mean-field approxima-
tion32, which was experimentally verified by Deng et.
al14, thus ensuring the comprehensiveness of the ap-
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Figure 4. Density of states as a function of the QD level εd
at ω = 0 for (a) isolated MBSs, (b) bowtie and (c) diamond
configurations. Plots for several values of charging energy
[U = 2.5E0 (blue squares), 5E0 (magenta triangles) and 7.5E0

(green crosses)] are presented.

proximation employed here. Figs. 3(a)-(b) illustrate the
case of isolated MBSs, but with VZ lower than that of
Fig. 2(a). Such a Zeeman splitting is unable to resolve
spin up and down states of the QD. Consequently, instead
of a four-peak structure, profiles with only two peaks re-
sembling those presented in the Fig. 4(d) of the Ref. 14
appear. Figs. 3(c)-(d) show bowtie profiles correspond-
ing to VZ = 2.5E0 and U = 20E0 and comparable to
those presented in the Fig. 3(b) of Ref. 14. In the cor-
responding scenario only two peaks are present as well,
since higher charging energy sets other peaks outside the
considered range of εd. Increase of the value of U results
in the profiles shown in the Figs. 3(e)-(f) corresponding
to the diamond situation shown in the Fig. 2(e) and com-
parable to those presented in the Fig. 3(c) of the Ref. 14.

Fig 4 shows the DOS of the dot as a function of QD
level εd at ω = 0 for (a) isolated MBSs, (b) bowtie and
(c) diamond situations, for distinct strengths of the dot
charging energy [U = 2.5E0 (blue squares), 5E0 (ma-
genta triangles) and 7.5E0 (green crosses) ]. In the high-
est nonlocal case [Fig 4(a)], the insensitivity of the zero
frequency peak to the tuning of the QD level and varia-
tions of the dot charging energy is verified14,32,33. There
is a plateau in the total DOS characteristic to ZBCP.
This scenario breaks down for the possible situation of
the formation of ABS due to the overlap between MBSs
[Fig 4(b-c)]. In this case the plateau in the DOS is de-
stroyed and positions of the peaks change with variations
of both position of the dot level εd and charging energy
U . Fig 4(b) describes a linecut at ω = 0 for the bowtie
configuration, wherein the four resonances for U = 5E0

(magenta triangles) correspond to the anticrossings be-
tween the dot level and near zero-energy states appearing
in the Fig 2(b) (indicated by magenta rectangles). These
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Figure 5. (a)-(d): (a)-(d): total DOS as a function of ω for
MBSs (corresponding to the Fig.2(a)) for various values of εd
corresponding to the vertical dashed white lines in Fig. 2(a).
(e)-(h) spin resolved DOS ρσ(ω) for same parameters as in
the panels (a)-(d)
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Figure 6. (a)-(d): total DOS as a function of ω for bowtie
profile (corresponding to the Fig.2(b)) for various values of εd
corresponding to the vertical dashed white lines in Fig. 2(b).
(e)-(h) spin resolved DOS ρσ(ω) for same parameters as in
the panels (a)-(d)

anticrossing points (resonance positions) are strongly de-
pendent on the charging energy, since near zero-energy
ABS, which can be a trivial non-protected state, is af-
fected by the QD energy levels. Similar behavior is found
for a diamond profile with degree of nonlocality η = 0.5,
as it is shown in the Fig. 4(c). Moreover, the plateau
depicted in the Fig. 4(a) also allows to distinguish the
Majorana ZBCP from that induced by usual Kondo ef-
fect, since Kondo resonance only appears when a QD is
single occupied, εd < εF , as verified by one of us in the
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Figure 7. (a)-(d): total DOS as a function of ω for diamond
profile for various values of εd corresponding to the vertical
dashed white lines in Fig. 2(e). (e)-(h) spin resolved DOS
ρσ(ω) for same parameters as in the panels (a)-(d)

Ref. 49 (see Fig. 1(g)-(i) of that paper).

The impact of each spin component to the total DOS
is presented in the Figs. 5, 6 and 7 for isolated MBSs,
bowtie [Fig.2(b)] and diamond [Fig.2(e)] configurations,
respectively. Panels (a)-(d) of the Fig. 5 show the DOS
of the dot for isolated MBSs configuration [Fig.2(a)] as
a function of ω for several values of εd indicated by the
white dashed lines in the Fig. 2(a). As can be seen, a
peak at ω = 0 emerges for all values of the dot energy
as observed in the panels (a)-(d). Panels (e)-(h) of the
same figure reveal that zero-peak structure in the total
DOS is spin degenerated: at ω = 0, ρ↑ = ρ↓.

This degeneracy is broken when MBSs overlap (δM 6=
0) and the dot hybridizes with the rightmost Majorana
(λR 6= 0) as well, as it is demonstrated for the bowtie
configuration in the Fig. 6. In this case a zero-peak struc-
ture in the total DOS emerges only when εd crosses zero-
energy as it happens in the panel (b). In this case DOS
around ω = 0 becomes spin sensitive, ρ↑ 6= ρ↓, as one can
verify from the panel (f), thus suggesting the situation of
the spin-dependent transport.

Diamond configuration also displays spin-dependent
behavior, as it is shown in the Fig. 7. However, there
is a remarkable difference from the bowtie case: the near
zero-energy two-peaks having σ =↑ are no longer pinned
and merge with one another at ω = 0 [panels (e) and (g)]
for certain values of εd, giving rise to zero-peak struc-
ture in the DOS, as displayed in the panels (a) and (c).
Such a feature is consistent with the picture of coalescing
ABSs (overlapped MBSs), which can mimic the behav-
ior MBSs under certain conditions21–23,34,35. It also can
be verified for the situations where the QD level does
not shift the near-zero peaks describing ABSs towards
ω = 0 [panels(f) and (h)] and consequently there is no
peak structure at zero-energy in DOS [panels (b) and

-6
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0

AR
(

)

(a)

 Bowtie, d = 10E0
 [Fig. 6(a)-(e)]

=
=

-0.4 -0.2 0.0 0.2 0.4
[E0]

-10

-5

0

AR
(

)

(b)

 Diamond, d = 4.8E0
 [Fig. 7(c)-(g)]

Figure 8. DOS related to AR processes for each spin compo-
nent, wherein two representative situations were considered.
Panel (a) depicts the same case of Figs. 6(a)-(e), while panel
(b) is related to Figs. 7(c)-(g).

(d)].
It is worth noting that the presence of ABSs in the

total DOS of a QD [Eq. (5)] in the results presented in
the Figs. 4, 6 and 7 can be confirmed by the computation
of the anomalous Green’s function Gr

f†
↑ ,dσ

(ω). The latter

enters into the Green’s function of the QD according to
the Eq. (A4), describes the correlation between QD (d†σ)
and SC nanowire appearing due Andreev reflection (AR)
20,50,51 and can be defined in the time domain as:48

Gr
f†
↑ ,dσ

(t− t′) = −ıθ(t− t′)〈{f†↑(t), d†σ(t′)}〉, (20)

wherein θ(t − t′) is Heaviside function, {..., ...} denotes

anticommutator and f†↑ corresponds to the creation of a
non-local fermion in SC nanowire, which is formed by the
linear combination of the left (γL) and right (γR) MBSs,

i.e, f†↑ = (γL − ıγR)/
√

2 and f↑ = (γL + ıγR)/
√

2.
AR can take place through different transport chan-

nels, once QD is coupled to the both ends of a nanowire
(λL and λR 6= 0). The presence of the coupling asymme-
try can give rise to the appearence of Fano antiresonances
36,52–54 as it can be seen in the Fig. 8, where we illustrate
AR process by plotting ρσAR(ω) = −Im{Gr

f†
↑ ,dσ

(ω)}/π for

two representative “bowtie” and “diamond” configura-
tions (see Figs. 6(a)-(e) and 7(c)-(g), respectively).

IV. CONCLUSIONS

We presented the theoretical study of MBSs nonlocal-
ity in the hybrid device sketched in the Fig. 1. It was
analyzed in detail how the charging energy affects spin
resolved DOS of a QD coupled with MBSs. For highly
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nonlocal MBSs there is a plateau at zero-energy in the
QD density of states for any values of the dot level and
charging energy. For overlapping MBSs the spectrum
of the dot is strongly modified. It was shown that the
zero-peak structure in the DOS reveals pronounced spin
dependence if MBSs become hybridized. Our findings
suggest that a spin-dependent local probe may be used
as a tool to resolve an outstanding problem in experimen-
tal Majorana physics: discriminating between the cases
when ZBCP is due to the isolated MBSs or ABSs.
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Appendix A: Quantum dot Green’s function
derivation

In this Appendix we present the main steps concerning
on derivation of Eq. (7) via EOM technique. It is known
that such a method can be summarized according to47,48

(ω + ı0+)Grcicj (ω) = {ci, c†j}+Gr[ci,H];cj
(ω), (A1)

wherein ci(j) is a fermionic operator belonging to Hamil-
tonian H. Hence, the Green’s function of QD is given
by:

(ω + ı0+)Grdσdσ (ω) = 1 +Gr[dσ,H];dσ
, (A2)

with

[dσ, H] = εdσdσ + Udσndσ̄ +
√

2V
∑

k

ekσ

− λ
∑

σ̃

δσσ̃f↑ − λ′
∑

σ̃

δσσ̃f
†
↑ , (A3)

where f†↑(f↑) stands for creation(annihilation) of a non-
local fermion in the hybrid SC nanowire, since it can
be rewritten as a linear combination of MBSs at op-
posite ends of the nanowire. Within this picture, the
coupling strengths between the QD and the nonlocal
fermionic site are given by λ = (|λL| − |λR|)/

√
2 and

λ′ = (|λL| + |λR|)/
√

2, respectively. Eq (A3) allows to

write that

(ω+ − εdσ)Grdσdσ (ω) =

1 + UGrdσndσ̄,dσ (ω) +
√

2V
∑

k

Grekσdσ (ω)

−λ
∑

σ̃

δσσ̃G
r
f↑,dσ (ω)− λ′

∑

σ̃

δσσ̃G
r
f†
↑ ,dσ

(ω), (A4)

with ω+ → ω + ı0+. The three last Green’s functions
also are obtained through straightforward application of
EOM technique [Eq. (A1)], being respectively given by:

Grekσdσ (ω) =
√

2V
∑

k

1

(ω+ − εkσ)
Grdσdσ (ω), (A5)

(ω+ − δM)Grf↑dσ (ω) =

−λ
∑

σ̃

Grdσ̃dσ (ω) + λ′
∑

σ̃

Gr
d†σ̃dσ

(ω) (A6)

and

(ω+ + δM)Gr
f†
↑dσ

(ω) =

λ
∑

σ̃

Gr
d†σ̃dσ

(ω)− λ′
∑

σ̃

Grdσ̃dσ (ω). (A7)

Substituting Eqs. (A5), (A6) and (A7) into Eq. (A4), we
find
(
ω+ − εdσ + ıΓ− λ2

ω+ − δM
− λ′2

ω+ + δM

)
Grdσdσ (ω) =

1 + UGrdσndσ̄,dσ (ω)− (2λλ′)KGr
d†σdσ

(ω),

(A8)

where K is given by Eq. (8) and Γ is the Anderson param-
eter46. We now evaluate the Green’s function Gr

d†σdσ
(ω),

getting the following result:

(
ω+ + εdσ + ıΓ− λ2

ω+ + δM
− λ′2

ω+ − δM

)
Gr
d†σdσ

(ω) =

−UGr
d†σndσ̄dσ

(ω)− (2λλ′)KGrdσdσ (ω).

(A9)

Substituting into Eq. (A8) and recognizing K̄σ [Eq. (9)],
K1[Eq. (10)] and K2[Eq. (11)], is now easy to show that
Eq. (A8) becomes into Eq. (7).

Appendix B: Hubbard-I Approximation

We now evaluate the two particle Green’s functions of
Eq. (7) according to EOM. Following Eq. (A1), we have

(ω+ ıη+)Grdσndσ̄,dσ (ω) = 〈ndσ̄〉+Gr[dσndσ̄,H];dσ
(ω). (B1)
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Deriving the commutator

[dσndσ̄, H] = εdσdσndσ̄ + Udσndσ̄

+
√

2V
∑

k

(−e†kσ̄dσ̄dσ+d†σ̄ekσ̄dσ + ekσndσ̄)

+λ
∑

σ̃

(−δσ̃σ̄dσ̄f†↑dσ+δσ̃σ̄f↑d
†
σ̄dσ − δσ̃σf↑ndσ̄)

+λ′
∑

σ̃

(−δσ̃σ̄dσ̄f↑dσ+δσ̃σ̄f
†
↑d
†
σ̄dσ − δσ̃σf†↑ndσ̄), (B2)

we find

(ω+ − εdσ − U)Grdσndσ̄,dσ (ω) = 〈ndσ̄〉
+
√

2V
∑

k

Grekσndσ̄,dσ (ω) +
√

2V
∑

k

Gr
d†σ̄ekσ̄dσdσ

(ω)

−
√

2V
∑

k

Gr
e†kσ̄dσ̄dσ,dσ

(ω)− λ
∑

σ̃

δσ̃σG
r
f↑ndσ̄dσ (ω)

+λ
∑

σ̃

δσ̃σ̄G
r
f↑d

†
σ̄dσdσ

(ω)− λ
∑

σ̃

δσ̃σ̄G
r
dσ̄f

†
↑dσdσ

(ω)

−λ′
∑

σ̃

δσ̃σG
r
f†
↑ndσ̄dσ

(ω) + λ′
∑

σ̃

δσ̃σ̄G
r
f†
↑d

†
σ̄dσ;dσ

(ω)

−λ′
∑

σ̃

δσ̃σ̄G
r
dσ̄f↑dσdσ (ω). (B3)

At this point we apply the Hubbard-I decoupling
scheme37 by considering the following approximations:

Gr
d†σ̄ekσ̄dσdσ

(ω) ≈ 〈d†σ̄ekσ̄〉Grdσdσ (ω), (B4)

Gr
e†kσ̄dσ̄dσ,dσ

(ω) ≈ 〈e†kσ̄dσ̄〉Grdσdσ (ω), (B5)

Gr
a↑d

†
σ̄dσdσ

(ω) ≈ 〈a↑d†σ̄〉Grdσdσ (ω), (B6)

Gr
dσ̄a

†
↑dσdσ

(ω) ≈ 〈dσ̄a†↑〉Grdσdσ (ω), (B7)

Gr
a†↑d

†
σ̄dσ;dσ

(ω) ≈ 〈a†↑d
†
σ̄〉Grdσdσ (ω), (B8)

and

Grdσ̄a↑dσdσ (ω) ≈ 〈dσ̄a↑〉Grdσdσ (ω). (B9)

Taking into account that 〈d†σ̄ekσ̄〉 = 〈e†kσ̄dσ̄〉, 〈a↑d
†
σ̄〉 =

〈dσ̄a†↑〉 and 〈a†↑d
†
σ̄〉 = 〈dσ̄a↑〉, Eq. (B3) becomes into

(ω+ − εdσ − U)Grdσndσ̄,dσ (ω) = 〈ndσ̄〉
√

2V
∑

k

Grekσndσ̄,dσ (ω)− λ
∑

σ̃

δσ̃σG
r
f↑ndσ̄dσ (ω)

−λ′
∑

σ̃

δσ̃σG
r
f†
↑ndσ̄dσ

(ω). (B10)

As can be seen in the procedure above, we threw away the
Green’s functions which describe spin-flip mechanisms
between the QD level and the metallic lead, thus lead-
ing to the impossibility of catching Kondo-type correla-
tions47,48.

The other two-particle Green’s functions of equation
above also are found with the EOM, followed by approx-
imations introduced by Hubbard-I procedure. Hence, we
get

Grekσndσ̄,dσ (ω) =
√

2V
∑

k

1

(ω+ − εkσ)
Grdσndσ̄,dσ (ω),

(B11)

(ω+ − δM)
∑

σ̃

δσ̃σG
r
f↑ndσ̄,dσ (ω) =

−λGrdσndσ̄,dσ (ω) + λ′Gr
d†σndσ̄,dσ

(ω)

(B12)

and

(ω+ + δM)
∑

σ̃

δσ̃σG
r
f†
↑ndσ̄,dσ

(ω) =

λGr
d†σndσ̄,dσ

(ω)− λ′Grdσndσ̄,dσ (ω),

(B13)

allowing us to find that

(ω+ − εdσ − U −K1 + ıΓ)Grdσndσ̄,dσ (ω) = 〈ndσ̄〉
−(2λλ′)KGr

d†σndσ̄,dσ
(ω). (B14)

By adopting the same procedure described above, we
evaluate Gr

d†σndσ̄,dσ
(ω), resulting in Eq. (13), which al-

lows us to rewrite Eq. (B14) as expressed in Eq. (12). It
is worth noting that turning off the QD-MBSs couplings
(λ = λ′ = 0) in Eq. (B14) and Eq. (7) allows us to recover
the well-known Hubbard solution for Green’s function of
QD37,48

Grdσdσ (ω) =
1− 〈ndσ̄ 〉

ω+ − εdσ + ıΓ
+

〈ndσ̄ 〉
ω+ − εdσ − U + ıΓ

.

(B15)

∗ corresponding author: luciano.silianoricco@gmail.com
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Chapter 7. Spin-dependent zero-bias peak in a hybrid nanowire-quantum dot system: Distinguishing
isolated Majorana fermions from Andreev bound states

Figure 7.2: (a) Color scale plot of density of states for a QD under external magnetic field coupled to a normal lead as a
function of QD energy level εd and spectral frequency ω. (b) Line cut in the above panel at ω = 0 (dashed line in (a)). The
arrows indicate the spin of each possible QD state. (c) Total occupation number of the QD state obtained by self-consistent
numerical calculation [Eq. (14) of draft], showing a singlet-doublet-singlet transition.

7.4 Supplementary Results

To ensure the validity of our calculations, in Fig. 7.2(a) a color scale plot of DOS is shown

for a QD under external magnetic field coupled to a normal lead as a function of spectral frequency ω

and QD energy level εd. The two structures at negative εd correspond to the spin up and down states,

respectively, since εdσ = εd − σVZ , wherein VZ is the Zeeman energy splitting induced in the QD

level due to external magnetic field. Due to the presence of charging energy U , a second possible state

emerges at positive QD energies, which is also splitted up by the external field. Panel (b) of same

figure exhibits a linecut in the above panel at ω = 0 (dashed red line in (a)), which shows a four peak

structure reflecting both the Coulomb blockade physics and Zeeman splitting processes. The arrows

indicate the spin of each possible QD state. Total occupation number of the QD state obtained by self-

consistent numerical calculation [Eq. (14) of draft] is depicted in Fig.7.2(c), showing a singlet-doublet-

singlet transition. At first negative εd the dot presents double occupancy with opposite spins, forming a

singlet state (〈nd↑〉 = 〈nd↓〉 = 1). For intermediary values of εd (white background) the spin degeneracy

is broken by the Coulomb charging energy (〈nd↑〉 6= 〈nd↓〉), giving rise to a doublet state. At positive

energy levels the dot is empty, (〈nd↑〉 = 〈nd↓〉 = 0), which depicts a singlet state again.

Density of states as a function of ω keeping fixed εd = −2.5E0 in the Anderson symmetric regime

(U = 5E0) is displayed in Fig. 7.3, considering distinct physical situations. Inset shows DOS of each

case in low-energy spectrum. The gray triangles describe the simplest situation of a QD-N lead system

decoupled from the SC nanowire (λL = λR = 0), corresponding to the same situation explored in
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Chapter 7. Spin-dependent zero-bias peak in a hybrid nanowire-quantum dot system: Distinguishing
isolated Majorana fermions from Andreev bound states
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Figure 7.3: Density of states as a function of ω with εd = −2.5E0 in the Anderson symmetric regime
(U = 5E0), for distinct physical situations. The curves where shifted for better visualization.

Fig. 7.2. The emergence of a four resonances characterizes the presence of both charging and Zeeman

energies, being localized at εdσ = εd − σVZ and εdσ = εd + U − σVZ . When the nanowire is long

enough to ensure ideal condition of highly nonlocal MBSs (black line, δM = 0, λR = 0), the emergence

of a zero-bias peak is verified. However, for smaller nanowire lengths and λR � δM , which is equivalent

to diamond profiles of Fig. 2(d-f) of draft, a peak splitting is verified due to displacement of right MBS

towards to left MBSs and finite overlap between them. These near-zero-energy resonances evidently

changes with increasing η [Eq. (4) of draft] (blue dash-dotted, green and magenta lines), leading to

a stronger peak splitting, which characterizes the enhancement of local nature of MBSs (formation of

ABS) and therefore loss of topological protection. The extreme situation (red line) wherein λL = λR and

δM = 0, describes a local fermion with zero-energy. For δM � λR (teal dotted curve), corresponding to

bowtie situation of Fig. 2(c) of draft, a two-peak structure is also verified, wherein the distance between

them (strength of splitting) is modulated by the direct overlap δM between MBSs.
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Chapter 8

Conclusions

Throughout this thesis, we have studied the electronic transport features of a hybrid device composed

by a quantum dot coupled to a topological superconducting nanowire hosting Majorana bound states at

the ends. In a nutshell, we have shown that such a setup can be used to enlarge the discussion concerning

the Majorana controversial detection, as well as having potential to be applied to the next generation of

quantum devices. Related to this applications:

• In chapter 4, we have demonstrated that a setup composed by a quantum dot between two topolog-

ical superconducting nanowires within the topological phase can work as a qubit storage mecha-

nism, wherein the information is trapped by means of the so-called bound states in the continuum;

• In chapter 5, we have explored the thermoelectrical properties of a quantum dot coupled to both

ends of a U-shaped Kitaev nanowire and between metallic reservoirs. Basically, we have shown

that is possible to tune the heat and charge through the system by changing the coupling strengths

between the nanowire and the quantum dot.

Regarding the Majorana detection:

• In chapter 6, we have studied the role of Fano interference processes in the so-called Majorana

oscillations for a T-shaped hybrid setup, wherein the quantum dot hybridizes with both ends of the

topological superconducting nanowire, i.e, when the degree of Majorana nonlocality is taken into

account. We have demonstrated that both the amplitude and shape of the Majorana oscillations

depend on the bias-voltage, Fano parameter of system and the degree of Majorana nonlocality;

• In chapter 7, we have shown that the spin-resolved density of states of the quantum dot responsible

for the zero-bias conductance peak strongly depends on the overlap between the MBSs at opposite

ends of the topological superconducting nanowire and consequently, of the degree of Majorana

nonlocality. Such a main finding suggests that spin-resolved measurements can be employed for

distinguishing the trully topological Majorana bound states from the so-called Andreev bound

states, for instance.
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Appendix A

Obtaining the DOS of Majorana
quasiparticles

In this Appendix, we provide the calculations concerning the Green’s functions which describes the

DOS of Majorana quasiparticles, by employing the EOM approach (Sec. 3). The results were employed

to yield the findings of Sec. 4.

The DOS for Majorana operators η1 and η2 are given by:

ρ̃η1η1(ε) = −
(

1

π

)
Im
{
G̃η1η1(ε)

}
(A.1)

and

ρ̃η2η2(ε) = −
(

1

π

)
Im
{
G̃η2η2(ε)

}
, (A.2)

wherein the correspondent system is described by the follow Hamiltonian in the regular fermionic basis

H =
∑

k

εkc
†
ekcek + ε1d

†
1d1 +

√
2

N V
∑

k

(c†ekd1 +H.c.) +
VBT
N
∑

kq

c†ekceq

+ εM

(
f †f − 1

2

)
+
λA√

2

(
d1f
† + fd†1

)
+
λB√

2

(
d1f − d†1f †

)
, (A.3)

with λA/
√

2 ≡ t and λB/
√

2 ≡ ∆ in the paper (Sec 4.2).

As can be seen in Eqs. (A.1) and (A.2) we should calculate the Green Functions for Majoranas η1

and η2, given by

Gη1η1(t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
η1(t), η†1(0)

]
+

∣∣∣∣ r
〉

(A.4)

and

Gη2η2(t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
η2(t), η†2(0)

]
+

∣∣∣∣ r
〉

(A.5)

respectively, with the Majorana operators

η1 =
1√
2

(f † + f), (A.6)
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Appendix A. Obtaining the DOS of Majorana quasiparticles

and

η2 = i
1√
2

(f † − f) (A.7)

rewritten in terms of a regular fermion operator f , with η1(2) = η†1(2).

A.1 Finding the Green’s Function for the Majorana Quasiparticle η1

[
η1(t), η†1(0)

]
+

= η1(t)η1(0) + η1(0)η1(t) (A.8)

η1(t)η1(0) =
1√
2

(f †(t) + f(t))
1√
2

(f †(0) + f(0))

=
1

2

(
f †(t)f †(0) + f †(t)f(0) + f(t)f †(0) + f(t)f(0)

)
(A.9)

η1(0)η1(t) =
1√
2

(f †(0) + f(0))
1√
2

(f †(t) + f(t))

=
1

2
(f †(0)f †(t) + f †(0)f(t) + f(0)f †(t) + f(0)f(t)) (A.10)

[
η1(t), η†1(0)

]
+

=
1

2

(
f †(t)f †(0) + f †(t)f(0) + f(t)f †(0) + f(t)f(0)

)

+
1

2
(f †(0)f †(t) + f †(0)f(t) + f(0)f †(t) + f(0)f(t))

=
1

2

(
f †(t)f †(0) + f †(0)f †(t)

)
+

1

2

(
f †(t)f(0) + f †(0)f(t)

)

+
1

2

(
f(t)f †(0) + f(0)f †(t)

)
+

1

2
(f(t)f(0) + f(0)f(t))⇒

[
η1(t), η†1(0)

]
+

=
1

2

[
f †(t), f †(0)

]
+

+
1

2

[
f †(t), f(0)

]
+

+
1

2

[
f(t), f †(0)

]
+

+
1

2
[f(t), f(0)]+ . (A.11)

By substituting Eq. (A.11) in (A.4), we obtain:

87



Appendix A. Obtaining the DOS of Majorana quasiparticles

Gη1η1(t) =
1

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f †(0)

]
+

∣∣∣∣ r
〉

+
1

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f(0)

]
+

∣∣∣∣ r
〉

+
1

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f(t), f †(0)

]
+

∣∣∣∣ r
〉

+
1

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r
∣∣[f(t), f(0)]+

∣∣ r
〉
, (A.12)

Gη1η1(t) =
1

2
Gf†f (t) +

1

2
Gf†f†(t) +

1

2
Gff (t) +

1

2
Gff†(t). (A.13)

Let us calculate the first Green function, namely Gf†f (t), defined as

Gf†f (t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f †(0)

]
+

∣∣∣∣ r
〉
. (A.14)

By applying the Equation of Motion (EOM) method, we obtain:

∂tGf†f (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f †(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
∂tf
†(t), f †(0)

]
+

∣∣∣∣ r
〉
. (A.15)

We have to evolve the fermionic operator in the time, by using the Heisenberg equation:

∂tf
† (t) = (− i

~
)
[
f †,H

]

= (− i
~

)

[
f †,
∑

k

εkc
†
ekcek

]
+ (− i

~
)
[
f †, ε1d

†
1d1

]
+ (− i

~
)

[
f †,
√

2V
∑

k

(c†ekd1 +H.c.)

]

+ (− i
~

)


f †, VBT

∑

kq

c†ekceq


+ (− i

~
)

[
f †, εM

(
f †f − 1

2

)]
+ (− i

~
)

[
f †,

λA√
2

(
d1f
† + fd†1

)]

+ (− i
~

)

[
f †,

λB√
2

(
d1f − d†1f †

)]
, (A.16)

Due to the commutation relation with fermionic operators which belong to distinct Hilbert spaces,

the equation above becomes:
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Appendix A. Obtaining the DOS of Majorana quasiparticles

∂tf
† (t) = (− i

~
)
[
f †,H

]

= (− i
~

)

[
f †, εM

(
f †f − 1

2

)]
+ (− i

~
)

[
f †,

λA√
2

(
d1f
† + fd†1

)]

+ (− i
~

)

[
f †,

λB√
2

(
d1f − d†1f †

)]
, (A.17)

Now we calculate the commutators:

[
f †, εM

(
f †f − 1

2

)]
= f †εM

(
f †f − 1

2

)
− εM

(
f †f − 1

2

)
f †

= εMf
†f †f − εMf †ff † = εMf

†f †f − εMf †
(

1− f †f
)

= εMf
†f †f − εMf † + εMf

†f †f

= εMf
†f †f − εMf † − εMf †f †f = −εMf †. (A.18)

λA√
2

[
f †,
(
d1f
† + fd†1

)]
=

λA√
2

(f †
(
d1f
† + fd†1

)
−
(
d1f
† + fd†1

)
f †)

=
λA√

2
(f †d1f

† + f †fd†1 − d1f
†f † − fd†1f †)

=
λA√

2
(−d1f

†f † + f †fd†1 + d1f
†f † + ff †d†1)

=
λA√

2
(f †fd†1 + ff †d†1) =

λA√
2

(f †f + ff †)d†1

=
λA√

2
d†1. (A.19)

λB√
2

[
f †,
(
d1f − d†1f †

)]
=

λB√
2

(
f †
(
d1f − d†1f †

)
−
(
d1f − d†1f †

)
f †
)

=
λB√

2

(
f †d1f − f †d†1f † − d1ff

† + d†1f
†f †
)

=
λB√

2

(
−d1f

†f + d†1f
†f † − d1ff

† − d†1f †f †
)

=
λB√

2

(
−d1f

†f − d1ff
†
)

= −λB√
2
d1

(
f †f + ff †

)

= −λB√
2
d1. (A.20)

Thus,
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∂tf
† (t) = (− i

~
)
[
f †,H

]

= +(− i
~

)(−εM )f † + (− i
~

)
λA√

2
d†1 + (− i

~
)(−λB√

2
)d1

(A.21)

∂tGf†f (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f †(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)εM (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f †(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)
λA√

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f †(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)
λB√

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d1(t), f †(0)

]
+

∣∣∣∣ r
〉
⇒

∂tGf†f (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f †(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)εMGf†f (t) + (− i
~

)
λA√

2
G
d†1f

(t)− (− i
~

)
λB√

2
Gd1f (t).

(A.22)

By performing the Fourier transform (− i
~)(ε+ iδ)G̃AB(ε) =

∫
dt∂tGAB(t)e−

i
~ (ε+iδ)t,we obtain:

(ε+ εM + iδ)G̃f†f (ε) =
λA√

2
G̃
d†1f

(ε)− λB√
2
Gd1f (ε). (A.23)

Now, let us calculate Gf†f†(t) by the same EOM approach:

Gf†f†(t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f(0)

]
+

∣∣∣∣ r
〉

(A.24)

∂tGf†f (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
∂tf
†(t), f(0)

]
+

∣∣∣∣ r
〉
. (A.25)

But we already have found ∂tf †(t) according to the Heisenberg equation, as one can see in Eq.

(A.21):

∂tf
† (t) = (− i

~
)
[
f †,H

]

= +(− i
~

)(−εM )f † + (− i
~

)
λA√

2
d†1 + (− i

~
)(−λB√

2
)d1.

(A.26)
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Therefore,

∂tGf†f†(t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)εM (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)
λA√

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)
λB√

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r
∣∣[d1(t), f(0)]+

∣∣ r
〉
⇒

∂tGf†f†(t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)εMGf†f†(t) + (− i
~

)
λA√

2
G
d†1f
†(t)− (− i

~
)
λB√

2
Gd1f†(t).

(A.27)

After of apply the Fourier transform in Eq. (A.27), we find

(ε+ εM + iδ)G̃f†f†(ε) = 1 +
λA√

2
G̃
d†1f
†(ε)−

λB√
2
Gd1f†(ε). (A.28)

We also should calculate Gff (t), definite as

Gff (t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f(t), f †(0)

]
+

∣∣∣∣ r
〉
. (A.29)

∂tGff (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f(t), f †(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
∂tf(t), f †(0)

]
+

∣∣∣∣ r
〉
. (A.30)

∂tf (t) = (− i
~

) [f,H]

= (− i
~

)

[
f,
∑

k

εkc
†
ekcek

]
+ (− i

~
)
[
f, ε1d

†
1d1

]
+ (− i

~
)

[
f,
√

2V
∑

k

(c†ekd1 +H.c.)

]

+ (− i
~

)


f, VBT

∑

kq

c†ekceq


+ (− i

~
)

[
f, εM

(
f †f − 1

2

)]
+ (− i

~
)

[
f,
λA√

2

(
d1f
† + fd†1

)]

+ (− i
~

)

[
f,
λB√

2

(
d1f − d†1f †

)]
, (A.31)
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∂tf (t) = (− i
~

) [f,H]

= (− i
~

)

[
f, εM

(
f †f − 1

2

)]
+ (− i

~
)

[
f,
λA√

2

(
d1f
† + fd†1

)]

+ (− i
~

)

[
f,
λB√

2

(
d1f − d†1f †

)]
, (A.32)

εM

[
f,

(
f †f − 1

2

)]
= εM

(
f

(
f †f − 1

2

)
−
(
f †f − 1

2

)
f

)
= εM

(
ff †f − f †ff

)

= εM

((
1− f †f

)
f − f †ff

)
= εM

((
1− f †f

)
f − f †ff

)

= εM

(
f − f †ff + f †ff

)
= εMf. (A.33)

λA√
2

[
f,
(
d1f
† + fd†1

)]
=

λA√
2

(
f
(
d1f
† + fd†1

)
−
(
d1f
† + fd†1

)
f
)

=
λA√

2

(
fd1f

† + ffd†1 − d1f
†f − fd†1f

)

=
λA√

2

(
−d1ff

† − ffd†1 − d1f
†f + ffd†1

)
= −λA√

2
d1

(
ff † + f †f

)
= −λA√

2
d1.

(A.34)

λB√
2

[
f,
(
d1f − d†1f †

)]
=

λB√
2

(
f
(
d1f − d†1f †

)
−
(
d1f − d†1f †

)
f
)

=
λB√

2

(
fd1f − fd†1f † − d1ff + d†1f

†f
)

=
λB√

2

(
−d1ff + d†1ff

† + d1ff + d†1f
†f
)

=
λB√

2
d†1

(
ff † + f †f

)
=
λB√

2
d†1. (A.35)

∂tf (t) = (− i
~

) [f,H]

= (− i
~

)εMf + (− i
~

)

(
−λA√

2

)
d1 + (− i

~
)
λB√

2
d†1,

(A.36)

∂tGff (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f(t), f †(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)εM (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f(t), f †(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)
λA√

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d1(t), f †(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)
λB√

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f †(0)

]
+

∣∣∣∣ r
〉

(A.37)
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∂tGff (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
f(t), f †(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)εMGff (t)− (− i
~

)
λA√

2
Gd1f (t) + (− i

~
)
λB√

2
G
d†1f

(t)

(A.38)

According to the Fourier transform, we have

(ε− εM + iδ) G̃ff (ε) = 1− λA√
2
G̃d1f (ε) +

λB√
2
G̃
d†1f

(ε)

(A.39)

Similarly, we obtain G̃ff†(ε):

(ε− εM + iδ) G̃ff†(ε) = −λA√
2
G̃d1f†(ε) +

λB√
2
G̃
d†1f
†(ε)

(A.40)

We can regroup the mean equations up to now:

G̃f†f (ε) =
λA√

2

G̃
d†1f

(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f (ε)

(ε+ εM + iδ)
, (A.41)

G̃f†f†(ε) =
1

(ε+ εM + iδ)
+
λA√

2

G̃
d†1f
†(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f†(ε)

(ε+ εM + iδ)
, (A.42)

G̃ff (ε) =
1

(ε− εM + iδ)
− λA√

2

G̃d1f (ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f

(ε)

(ε− εM + iδ)
,

(A.43)

G̃ff†(ε) = −λA√
2

G̃d1f†(ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f
†(ε)

(ε− εM + iδ)

(A.44)

and

Gη1η1(t) =
1

2
Gf†f (t) +

1

2
Gf†f†(t) +

1

2
Gff (t) +

1

2
Gff†(t). (A.45)

On the time domain:
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G̃η1η1(ε) =
1

2
G̃f†f (ε) +

1

2
G̃f†f†(ε) +

1

2
G̃ff (ε) +

1

2
G̃ff†(ε). (A.46)

By substituting Eqs. (B.31), (A.42), (A.43) and (A.44) in Eq. (A.46), we obtain:

G̃η1η1(ε) =
1

2


λA√

2

G̃
d†1f

(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f (ε)

(ε+ εM + iδ)




+
1

2


 1

(ε+ εM + iδ)
+
λA√

2

G̃
d†1f
†(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f†(ε)

(ε+ εM + iδ)




+
1

2


 1

(ε− εM + iδ)
− λA√

2

G̃d1f (ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f

(ε)

(ε− εM + iδ)




+
1

2


−λA√

2

G̃d1f†(ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f
†(ε)

(ε− εM + iδ)




=
1

2

(
1

ε+ εM + iδ
+

1

ε− εM + iδ

)

+
1

2
√

2

(
λA

ε+ εM + iδ
+

λB
ε− εM + iδ

)
G̃
d†1f

(ε)

+
1

2
√

2

(
λA

ε+ εM + iδ
+

λB
ε− εM + iδ

)
G̃
d†1f
†(ε)

− 1

2
√

2

(
λA

ε− εM + iδ
+

λB
ε+ εM + iδ

)
G̃d1f (ε)

− 1

2
√

2

(
λA

ε− εM + iδ
+

λB
ε+ εM + iδ

)
G̃d1f†(ε) (A.47)

G̃η1η1 = K +
1

2
√

2

(
λA

ε+ εM + iδ
+

λB
ε− εM + iδ

)(
G̃
d†1f

+ G̃
d†1f
†

)

− 1

2
√

2

(
λA

ε− εM + iδ
+

λB
ε+ εM + iδ

)(
G̃d1f + G̃d1f†

)

(A.48)

Notice that we have to find four new Green functions. We start with G̃
d†1f

:

G
d†1f

(t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f †(0)

]
+

∣∣∣∣ r
〉
. (A.49)

∂tGd†1f (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f †(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
∂td
†
1(t), f †(0)

]
+

∣∣∣∣ r
〉

(A.50)
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∂td
†
1 (t) = (− i

~
)
[
d†1,H

]

= (− i
~

)

[
d†1,
∑

k

εkc
†
ekcek

]
+ (− i

~
)
[
d†1, ε1d

†
1d1

]
+ (− i

~
)

[
d†1,
√

2V
∑

k

(c†ekd1 +H.c.)

]

+ (− i
~

)


d†1, VBT

∑

kq

c†ekceq


+ (− i

~
)

[
d†1, εM

(
f †f − 1

2

)]
+ (− i

~
)

[
d†1,

λA√
2

(
d1f
† + fd†1

)]

+ (− i
~

)

[
d†1,

λB√
2

(
d1f − d†1f †

)]
, (A.51)

∂td
†
1 (t) = (− i

~
)
[
d†1,H

]

= (− i
~

)
[
d†1, ε1d

†
1d1

]
+ (− i

~
)

[
d†1,
√

2V
∑

k

(c†ekd1 +H.c.)

]

+ (− i
~

)

[
d†1,

λA√
2

(
d1f
† + fd†1

)]
+ (− i

~
)

[
d†1,

λB√
2

(
d1f − d†1f †

)]

(A.52)

ε1

[
d†1, d

†
1d1

]
= ε1

(
d†1d
†
1d1 − d†1d1d

†
1

)
= ε1

(
d†1d
†
1d1 − d†1

(
1− d†1d1

))

= ε1

(
−d†1d†1d1 − d†1 + d†1d

†
1d1

)
= −ε1d

†
1 (A.53)

√
2V
∑

k

[
d†1, (c

†
ekd1 +H.c.)

]
=
√

2V
∑

k

(
d†1(c†ekd1 + d†1cek)− (c†ekd1 + d†1cek)d

†
1

)

=
√

2V
∑

k

(
d†1c
†
ekd1 + d†1d

†
1cek − c†ekd1d

†
1 − d†1cekd†1

)

=
√

2V
∑

k

(
−c†ekd

†
1d1 − d†1d†1cek − c†ekd1d

†
1 + d†1d

†
1cek

)

=
√

2V
∑

k

(
−c†ek

)(
d†1d1 + d1d

†
1

)
= −
√

2V
∑

k

c†ek (A.54)

λA√
2

[
d†1,
(
d1f
† + fd†1

)]
=

λA√
2

(
d†1

(
d1f
† + fd†1

)
−
(
d1f
† + fd†1

)
d†1

)

=
λA√

2

(
d†1d1f

† − fd†1d†1 + d1d
†
1f
† + fd†1d

†
1

)

=
λA√

2

(
d†1d1 + d1d

†
1

)
f † =

λA√
2
f † (A.55)
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λB√
2

[
d†1,
(
d1f − d†1f †

)]
=

λB√
2

(
d†1

(
d1f − d†1f †

)
−
(
d1f − d†1f †

)
d†1

)

=
λB√

2

(
d†1d1f + d†1d

†
1f
† + d1d

†
1f − d†1d†1f †

)

=
λB√

2

(
d†1d1 + d1d

†
1

)
f =

λB√
2
f (A.56)

∂td
†
1 (t) = (− i

~
)
[
d†1,H

]

= −(− i
~

)ε1d
†
1 − (− i

~
)
√

2V
∑

k

c†ek + (− i
~

)
λA√

2
f † + (− i

~
)
λB√

2
f

(A.57)

∂tGd†1f (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f †(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)ε1

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f †(0)

]
+

∣∣∣∣ r
〉}

− (− i
~

)
√

2V
∑

k

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
c†ek(t), f

†(0)
]

+

∣∣∣∣ r
〉}

+ (− i
~

)
λA√

2

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f †(0)

]
+

∣∣∣∣ r
〉}

+ (− i
~

)
λB√

2

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f(t), f †(0)

]
+

∣∣∣∣ r
〉}

(A.58)

∂tGd†1f (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f †(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)ε1Gd†1f (t)− (− i
~

)
√

2V
∑

k

G
c†ekf

(t) + (− i
~

)
λA√

2
Gf†f (t) + (− i

~
)
λB√

2
Gff (t)

(A.59)

By performing the Fourier transform we obtain:

(ε+ ε1 + iδ) G̃
d†1f

(ε) = −
√

2V
∑

k

G̃
c†ekf

(ε) +
λA√

2
G̃f†f (ε) +

λB√
2
Gff (ε)

(A.60)

Therefore, we have to calculate G̃
c†ekf

(ε), definite in the time domain as:
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G
c†ekf

(t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
c†ek(t), f

†(0)
]

+

∣∣∣∣ r
〉

(A.61)

∂tGc†ekf (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
c†ek(t), f

†(0)
]

+

∣∣∣∣ r
〉

+ (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
∂tc
†
ek(t), f

†(0)
]

+

∣∣∣∣ r
〉

(A.62)

∂tc
†
ek (t) = (− i

~
)
[
c†ek,H

]

= (− i
~

)

[
c†ek,

∑

k

εkc
†
ekcek

]
+ (− i

~
)
[
c†ek, ε1d

†
1d1

]
+ (− i

~
)

[
c†ek,
√

2V
∑

k

(c†ekd1 +H.c.)

]

+ (− i
~

)


c†ek, VBT

∑

kq

c†ekceq


+ (− i

~
)

[
c†ek, εM

(
f †f − 1

2

)]
+ (− i

~
)

[
c†ek,

λA√
2

(
d1f
† + fd†1

)]

+ (− i
~

)

[
c†ek,

λB√
2

(
d1f − d†1f †

)]
, (A.63)

∂tc
†
ek (t) = (− i

~
)
[
c†ek,H

]

= (− i
~

)

[
c†ek,

∑

k

εkc
†
ekcek

]
+ (− i

~
)

[
c†ek,
√

2V
∑

k

(c†ekd1 +H.c.)

]

+ (− i
~

)


c†ek, VBT

∑

kq

c†ekceq




(A.64)

[
c†ek,

∑

p

εpc
†
epcep

]
=

∑

p

εp

(
c†ekc

†
epcep − c†epcepc†ek

)
=
∑

p

εp

(
c†ekc

†
epcep − c†ep

(
δpk − c†ekcep

))

=
∑

p

εp

(
c†ekc

†
epcep − δpkc†ep − c†ekc†epcep

)
= −

∑

k

εkc
†
ek. (A.65)
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[
c†ep,
√

2V
∑

k

(c†ekd1 +H.c.)

]
=
√

2V
∑

k

(
c†ep(c

†
ekd1 + d†1cek)− (c†ekd1 + d†1cek)c

†
ep

)

=
√

2V
∑

k

(
c†epc

†
ekd1 + c†epd

†
1cek − c†ekd1c

†
ep − d†1cekc†ep

)

=
√

2V
∑

k

(
−c†epc†ekd1 − d†1c†epcek + c†ekc

†
epd1 − d†1cekc†ep

)

=
√

2V
∑

k

d†1

(
c†epcek + cekc

†
ep

)
= −
√

2V
∑

k

d†1. (A.66)

VBT

[
c†ek,

∑

pq

c†epceq

]
= VBT

∑

pq

(
c†ekc

†
epceq − c†epceqc†ek

)
= VBT

∑

pq

(
c†ekc

†
epceq − δqkc†ep + c†epc

†
ekceq

)

= VBT
∑

pq

(
−c†ekc†epceq − δqkc†ep + c†epc

†
ekceq

)
= −VBT

∑

kq

c†ek (A.67)

∂tc
†
ek (t) = (− i

~
)
[
c†ek,H

]

= −(− i
~

)
∑

k

εkc
†
ek − (− i

~
)
√

2V
∑

k

d†1 − (− i
~

)VBT
∑

kq

c†ek

(A.68)

∂tGc†ekf (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
c†ek(t), f

†(0)
]

+

∣∣∣∣ r
〉

− (− i
~

)
∑

k

εk

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
c†ek(t), f

†(0)
]

+

∣∣∣∣ r
〉}

− (− i
~

)
√

2V
∑

k

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f †(0)

]
+

∣∣∣∣ r
〉}

− (− i
~

)VBT
∑

kq

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
c†ek(t), f

†(0)
]

+

∣∣∣∣ r
〉}

(A.69)

After applying the Fourier transform, we find:

(ε+ εk + iδ)G̃
c†ekf

(ε) = −
√

2V G̃
d†1f

(ε)− VBT
∑

q

G̃
c†eqf

(ε)

(A.70)

But,
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∑

k

G̃
c†ekf

(ε) = −
√

2V
∑

k

G̃
d†1f

(ε)

(ε+ εk + iδ)
− VBT

∑

k

G̃
c†eqf

(ε)

(ε+ εk + iδ)
⇒

[
1 + VBT

∑

k

1

(ε+ εk + iδ)

]∑

k

G̃
c†ekf

(ε) = −
√

2V
∑

k

1

(ε+ εk + iδ)
G̃
d†1f

(ε)⇒

∑

k

G̃
c†ekf

(ε) =
−
√

2V
∑

k
1

(ε+εk+iδ)

1 + VBT
∑
k

1
(ε+εk+iδ)

G̃
d†1f

(ε). (A.71)

By substituting Eq. (A.71) in (A.60) we find:

(ε+ ε1 + iδ) G̃
d†1f

(ε) = −
√

2V



−
√

2V
∑

k
1

(ε+εk+iδ)

1 + VBT
∑
k

1
(ε+εk+iδ)

G̃
d†1f

(ε)


+

λA√
2
G̃f†f (ε) +

λB√
2
Gff (ε)

=




2V 2
∑

k
1

(ε+εk+iδ)

1 + VBT
∑
k

1
(ε+εk+iδ)

G̃
d†1f

(ε)


+

λA√
2
G̃f†f (ε) +

λB√
2
Gff (ε) (A.72)

We know from other calculations that
∑

k
1

(ε+εk+iδ) = πρ0(q̄− i), where ρ0 is the DOS of leads and

q̄ is the intrinsic Fano parameter. Thus, Eq. (A.72) becomes:

(ε+ ε1 + iδ) G̃
d†1f

(ε) =

[
2V 2πρ0(q̄ − i)

1 + VBTπρ0(q̄ − i) G̃d†1f (ε)

]
+
λA√

2
G̃f†f (ε) +

λB√
2
Gff (ε)

(A.73)

In the wide band limit, q̄ → 0 and therefore

(ε+ ε1 + iδ) G̃
d†1f

(ε) =

[ −i2V 2πρ0

(1− iVBTπρ0)
G̃
d†1f

(ε)

]
+
λA√

2
G̃f†f (ε) +

λB√
2
Gff (ε)

=

[ −i2V 2πρ0 (1 + iVBTπρ0)

(1− iVBTπρ0) (1 + iVBTπρ0)
G̃
d†1f

(ε)

]
+
λA√

2
G̃f†f (ε) +

λB√
2
Gff (ε)

=

[−i2V 2πρ0 (1 + iVBTπρ0)

1 + (VBTπρ0)2 G̃
d†1f

(ε)

]
+
λA√

2
G̃f†f (ε) +

λB√
2
Gff (ε)

=

[
(
√
x− i) Γ

1 + x
G̃
d†1f

(ε)

]
+
λA√

2
G̃f†f (ε) +

λB√
2
Gff (ε)

= (A.74)

where we use x = (VBTπρ0)2 and Γ = 2V 2πρ0 as Anderson parameter. Furthermore,

Σ̃ = −(
√
x− i)

1 + x
Γ (A.75)

and due this Eq. (A.74) becomes:
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(ε+ ε1 + iδ) G̃
d†1f

(ε) = −Σ̃G̃
d†1f

(ε) +
λA√

2
G̃f†f (ε) +

λB√
2
Gff (ε),

(
ε+ ε1 + Σ̃

)
G̃
d†1f

(ε) =
λA√

2
G̃f†f (ε) +

λB√
2
Gff (ε).

(A.76)

Now, let´s calculate G̃
d†1f
†(ε) :

G
d†1f
†(t) = (− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f(0)

]
+

∣∣∣∣ r
〉
. (A.77)

∂tGd†1f†(t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
∂td
†
1(t), f(0)

]
+

∣∣∣∣ r
〉

(A.78)

∂td
†
1 (t) = (− i

~
)
[
d†1,H

]

= −(− i
~

)ε1d
†
1 − (− i

~
)
√

2V
∑

k

c†ek + (− i
~

)
λA√

2
f † + (− i

~
)
λB√

2
f

(A.79)

∂tGd†1f†(t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)ε1

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f(0)

]
+

∣∣∣∣ r
〉}

− (− i
~

)
√

2V
∑

k

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
c†ek(t), f(0)

]
+

∣∣∣∣ r
〉}

+ (− i
~

)
λA√

2

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f(0)

]
+

∣∣∣∣ r
〉}

+ (− i
~

)
λB√

2

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r
∣∣[f(t), f(0)]+

∣∣ r
〉
}

(A.80)
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∂tGd†1f†(t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
d†1(t), f(0)

]
+

∣∣∣∣ r
〉

− (− i
~

)ε1Gd†1f†(t)− (− i
~

)
√

2V
∑

k

G
c†ekf

†(t) + (− i
~

)
λA√

2
Gf†f†(t) + (− i

~
)
λB√

2
Gff†(t)

(A.81)

By performing the Fourier transform we obtain:

(ε+ ε1 + iδ) G̃
d†1f
†(ε) = −

√
2V
∑

k

G̃
c†ekf

(ε) +
λA√

2
G̃f†f†(ε) +

λB√
2
Gff†(ε)

(A.82)

According to Eqs. (A.74) and (A.75) we obtain:

(
ε+ ε1 + Σ̃

)
G̃
d†1f
†(ε) =

λA√
2
G̃f†f†(ε) +

λB√
2
Gff†(ε)

(A.83)

Now, we will calculate G̃d1f , definite on the time domain on:

Gd1f (t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
d1(t), f †(0)

]
+

∣∣∣∣ r
〉
. (A.84)

∂tGd1f (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
d1(t), f †(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
∂td1(t), f †(0)

]
+

∣∣∣∣ r
〉
. (A.85)

∂td1 (t) = (− i
~

) [d1,H]

= (− i
~

)

[
d1,
∑

k

εkc
†
ekcek

]
+ (− i

~
)
[
d1, ε1d

†
1d1

]
+ (− i

~
)

[
d1,
√

2V
∑

k

(c†ekd1 +H.c.)

]

+ (− i
~

)


d1, VBT

∑

kq

c†ekceq


+ (− i

~
)

[
d1, εM

(
f †f − 1

2

)]
+ (− i

~
)

[
d1,

λA√
2

(
d1f
† + fd†1

)]

+ (− i
~

)

[
d1,

λB√
2

(
d1f − d†1f †

)]
, (A.86)
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∂td1 (t) = (− i
~

) [d1,H]

= (− i
~

)
[
d1, ε1d

†
1d1

]
+ (− i

~
)

[
d1,
√

2V
∑

k

(c†ekd1 +H.c.)

]

+ (− i
~

)

[
d1,

λA√
2

(
d1f
† + fd†1

)]
+ (− i

~
)

[
d1,

λB√
2

(
d1f − d†1f †

)]

(A.87)

[
d1, ε1d

†
1d1

]
= ε1

(
d1d
†
1d1 − d†1d1d1

)
= ε1

((
1− d†1d1

)
d1 − d†1d1d1

)

= ε1

(
d1 − d†1d1d1 + d†1d1d1

)
= ε1d1 (A.88)

[
d1,
√

2V
∑

k

(c†ekd1 + d†1cek)

]
=
√

2V
∑

k

(
d1(c†ekd1 + d†1cek)− (c†ekd1 + d†1cek)d1

)

=
√

2V
∑

k

(
d1c
†
ekd1 + d1d

†
1cek − c†ekd1d1 − d†1cekd1

)

=
√

2V
∑

k

(
c†ekd1d1 + d1d

†
1cek − c†ekd1d1 + d†1d1cek

)

=
√

2V
∑

k

(
d1d
†
1cek + d†1d1cek

)
=
√

2V
∑

k

cek

(A.89)

λA√
2

[
d1,
(
d1f
† + fd†1

)]
=

λA√
2

(
d1

(
d1f
† + fd†1

)
−
(
d1f
† + fd†1

)
d1

)

=
λA√

2

(
d1d1f

† + d1fd
†
1 − d1f

†d1 − fd†1d1

)

=
λA√

2

(
−d1d1f

† − fd1d
†
1 + d1d1f

† − fd†1d1

)

=
λA√

2

(
−fd1d

†
1 − fd†1d1

)
= −λA√

2
f (A.90)

λB√
2

[
d1,
(
d1f − d†1f †

)]
=

λB√
2

(
d1

(
d1f − d†1f †

)
−
(
d1f − d†1f †

)
d1

)

=
λB√

2

(
d1d1f − d1d

†
1f
† − d1fd1 + d†1f

†d1

)

=
λB√

2

(
−d1d1f − d1d

†
1f
† + d1d1f − d†1d1f

†
)

= −λB√
2
f † (A.91)
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∂td1 (t) = (− i
~

) [d1,H]

= (− i
~

)ε1d1 + (− i
~

)
√

2V
∑

k

cek − (− i
~

)
λA√

2
f − (− i

~
)
λB√

2
f †

(A.92)

∂tGd1f (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
d1(t), f †(0)

]
+

∣∣∣∣ r
〉

+ (− i
~

)ε1

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d1(t), f †(0)

]
+

∣∣∣∣ r
〉}

+ (− i
~

)
√

2V
∑

k

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
cek(t), f

†(0)
]

+

∣∣∣∣ r
〉}

− (− i
~

)
λA√

2

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f(t), f †(0)

]
+

∣∣∣∣ r
〉}

− (− i
~

)
λB√

2

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f †(0)

]
+

∣∣∣∣ r
〉}

. (A.93)

∂tGd1f (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r
∣∣[d1(t), f(0)]+

∣∣ r
〉

+ (− i
~

)ε1Gd1f (t) + (− i
~

)
√

2V
∑

k

Gcekf (t)− (− i
~

)
λA√

2
Gff (t)

− (− i
~

)
λB√

2
Gf†f (t) (A.94)

By using the Fourier transform property, we obtain:

(ε− ε1 + iδ) G̃d1f (ε) =
√

2V
∑

k

G̃cekf (ε)− λA√
2
G̃ff (ε)− λB√

2
G̃f†f (ε)

(A.95)

As one can see in the relation above, we should calculate G̃cekf (ε).

Gcekf (t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
cek(t), f

†(0)
]

+

∣∣∣∣ r
〉

(A.96)
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∂tGcekf (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
cek(t), f

†(0)
]

+

∣∣∣∣ r
〉

+ (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
∂tcek(t), f

†(0)
]

+

∣∣∣∣ r
〉

(A.97)

∂tcek (t) = (− i
~

) [cek,H]

= (− i
~

)

[
cek,

∑

k

εkc
†
ekcek

]
+ (− i

~
)
[
cek, ε1d

†
1d1

]
+ (− i

~
)

[
cek,
√

2V
∑

k

(c†ekd1 +H.c.)

]

+ (− i
~

)


cek, VBT

∑

kq

c†ekceq


+ (− i

~
)

[
cek, εM

(
f †f − 1

2

)]
+ (− i

~
)

[
cek,

λA√
2

(
d1f
† + fd†1

)]

+ (− i
~

)

[
cek,

λB√
2

(
d1f − d†1f †

)]
, (A.98)

∂tcek (t) = (− i
~

) [cek,H]

= (− i
~

)

[
cek,

∑

k

εkc
†
ekcek

]
+ (− i

~
)

[
cek,
√

2V
∑

k

(c†ekd1 +H.c.)

]

+ (− i
~

)


cek, VBT

∑

kq

c†ekceq




(A.99)

[
cek,

∑

p

εpc
†
epcep

]
=

∑

p

εp

(
cekc

†
epcep − c†epcepcek

)
=
∑

p

εp

((
δkp − c†epcek

)
cep − c†epcepcek

)

=
∑

p

εp

(
δkpcep − c†epcekcep + c†epcekcep

)
=
∑

k

εkcek (A.100)

[
cek,
√

2V
∑

p

(c†epd1 +H.c.)

]
=
√

2V
∑

p

(
cek(c

†
epd1 + d†1cep)− (c†epd1 + d†1cep)cek

)

=
√

2V
∑

p

(
cekc

†
epd1 + cekd

†
1cep − c†epd1cek − d†1cepcek

)

=
√

2V
∑

p

(
cekc

†
epd1 + d†1cepcek + c†epcekd1 − d†1cepcek

)

=
√

2V
∑

p

(
cekc

†
ep + c†epcek

)
d1 =

√
2V
∑

p

d1 (A.101)
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[
cek, VBT

∑

pq

c†epceq

]
= VBT

∑

kq

(
cekc

†
epceq − c†epceqcek

)

= VBT
∑

kq

((
δkp − c†epcek

)
ceq − c†epceqcek

)

= VBT
∑

kq

(
δkpceq + c†epceqcek − c†epceqcek

)

= VBT
∑

q

ceq (A.102)

∂tcek (t) = (− i
~

) [cek,H]

= (− i
~

)
∑

k

εkcek + (− i
~

)
√

2V
∑

p

d1 + (− i
~

)VBT
∑

q

ceq

(A.103)

∂tGcekf (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
cek(t), f

†(0)
]

+

∣∣∣∣ r
〉

+ (− i
~

)
∑

k

εk

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
cek(t), f

†(0)
]

+

∣∣∣∣ r
〉}

+ (− i
~

)
√

2V
∑

k

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
d1(t), f †(0)

]
+

∣∣∣∣ r
〉}

+ (− i
~

)VBT
∑

q

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
ceq(t), f

†(0)
]

+

∣∣∣∣ r
〉}

(A.104)

∂tGcekf (t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
cek(t), f

†(0))
]

+

∣∣∣∣ r
〉

+ (− i
~

)εkGcekf (t) + (− i
~

)
√

2V
∑

k

Gd1f (t) + (− i
~

)VBT
∑

q

Gceqf (t)

(A.105)

By performing the Fourier transform we obtain:

(ε− εk + iδ) G̃cekf (ε) =
√

2V
∑

k

G̃d1f (ε) + VBT
∑

q

G̃ceqf (ε)

(A.106)

We can rewrite the expression above in a better way:
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(ε− εk + iδ)
∑

k

G̃cekf (ε) =
√

2V
∑

k

G̃d1f (ε) + VBT
∑

k

G̃ceqf (ε)⇒

G̃cekf (ε) =
√

2V
∑

k

G̃d1f (ε)

(ε− εk + iδ)
+ VBT

∑

q

G̃ceqf (ε)

(ε− εk + iδ)
⇒

[
1− VBT

∑

k

1

(ε− εk + iδ)

]
G̃cekf (ε) =

√
2V
∑

k

1

(ε− εk + iδ)
G̃d1f (ε),

(A.107)

Using the same definition that we applied in Eq. (A.73) we obtain:

∑

k

G̃cekf (ε) =

√
2V πρ0(q̄ − i)

1− VBTπρ0(q̄ − i) G̃d1f (ε). (A.108)

By substituting Eq. (A.108) in Eq. (A.95) we find:

(ε− ε1 + iδ) G̃d1f (ε) =
√

2V

[ √
2V πρ0(q̄ − i)

1− VBTπρ0(q̄ − i) G̃d1f (ε)

]
− λA√

2
G̃ff (ε)− λB√

2
G̃f†f (ε)

=

[
2V 2πρ0(q̄ − i)

1− VBTπρ0(q̄ − i) G̃d1f (ε)

]
− λA√

2
G̃ff (ε)− λB√

2
G̃f†f (ε). (A.109)

Applying the wide band limit condition, we have

(ε− ε1 + iδ) G̃d1f (ε) =

[ −i2V 2πρ0

1 + iVBTπρ0
G̃d1f (ε)

]
− λA√

2
G̃ff (ε)− λB√

2
G̃f†f (ε)

=

[ −i2V 2πρ0(1− iVBTπρ0)

(1 + iVBTπρ0) (1− iVBTπρ0)
G̃d1f (ε)

]
− λA√

2
G̃ff (ε)− λB√

2
G̃f†f (ε)

=

[
2V 2πρ0(−i− VBTπρ0)

1 + (VBTπρ0)2 G̃d1f (ε)

]
− λA√

2
G̃ff (ε)− λB√

2
G̃f†f (ε)

=

[−2V 2πρ0(VBTπρ0 + i)

1 + (VBTπρ0)2 G̃d1f (ε)

]
− λA√

2
G̃ff (ε)− λB√

2
G̃f†f (ε)

=
−(
√
x+ i)Γ

1 + x
G̃d1f (ε)− λA√

2
G̃ff (ε)− λB√

2
G̃f†f (ε), (A.110)

But we can define:

Σ =
−(
√
x+ i)Γ

1 + x
(A.111)

and therefore
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(ε− ε1 − Σ + iδ) G̃d1f (ε) = −λA√
2
G̃ff (ε)− λB√

2
G̃f†f (ε),

= (A.112)

The last step in this stage is calculate G̃d1f† :

Gd1f†(t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r
∣∣[d1(t), f(0)]+

∣∣ r
〉
. (A.113)

∂tGd1f†(t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r
∣∣[d1(t), f(0)]+

∣∣ r
〉

+ (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r
∣∣[∂td1(t), f(0)]+

∣∣ r
〉
. (A.114)

∂td1 (t) = (− i
~

) [d1,H]

= (− i
~

)ε1d1 + (− i
~

)
√

2V
∑

k

cek − (− i
~

)
λA√

2
f − (− i

~
)
λB√

2
f †

(A.115)

∂tGd1f†(t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r
∣∣[d1(t), f(0)]+

∣∣ r
〉

+ (− i
~

)ε1

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r
∣∣[d1(t), f(0)]+

∣∣ r
〉
}

+ (− i
~

)
√

2V
∑

k

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r
∣∣[cek(t), f(0)]+

∣∣ r
〉
}

− (− i
~

)
λA√

2

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r
∣∣[f(t), f(0)]+

∣∣ r
〉
}

− (− i
~

)
λB√

2

{
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f(0)

]
+

∣∣∣∣ r
〉}

. (A.116)

∂tGd1f†(t) = (− i
~

)δ(t)Z−1
∑

r

e−βEr
〈
r
∣∣[d1(t), f(0)]+

∣∣ r
〉

+ (− i
~

)ε1Gd1f†(t) + (− i
~

)
√

2V
∑

k

Gcekf†(t)− (− i
~

)
λA√

2
Gff†(t)

− (− i
~

)
λB√

2
Gf†f†(t) (A.117)
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By applying the Fourier transform:

(ε− ε1 + iδ) G̃d1f†(ε) =
√

2V
∑

k

G̃cekf†(ε)−
λA√

2
G̃ff†(ε)−

λB√
2
G̃f†f†(ε)

(A.118)

and using the definitions of Eq. (A.110) and (A.111) we find:

(ε− ε1 − Σ + iδ) G̃d1f†(ε) = −λA√
2
G̃ff†(ε)−

λB√
2
G̃f†f†(ε).

(A.119)

A.1.1 Summary of mean relations

One can write down the following main relations obtained so far:

G̃η1η1 = K +
1

2
√

2

(
λA

ε+ εM + iδ
+

λB
ε− εM + iδ

)(
G̃
d†1f

+ G̃
d†1f
†

)

− 1

2
√

2

(
λA

ε− εM + iδ
+

λB
ε+ εM + iδ

)(
G̃d1f + G̃d1f†

)
,

(A.120)

(
ε+ ε1 + Σ̃

)
G̃
d†1f

(ε) =
λA√

2
G̃f†f (ε) +

λB√
2
Gff (ε),

(A.121)

(
ε+ ε1 + Σ̃

)
G̃
d†1f
†(ε) =

λA√
2
G̃f†f†(ε) +

λB√
2
Gff†(ε),

(A.122)

(ε− ε1 − Σ + iδ) G̃d1f (ε) = −λA√
2
G̃ff (ε)− λB√

2
G̃f†f (ε),

= (A.123)

(ε− ε1 − Σ + iδ) G̃d1f†(ε) = −λA√
2
G̃ff†(ε)−

λB√
2
G̃f†f†(ε)

(A.124)
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G̃f†f (ε) =
λA√

2

G̃
d†1f

(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f (ε)

(ε+ εM + iδ)
, (A.125)

G̃f†f†(ε) =
1

(ε+ εM + iδ)
+
λA√

2

G̃
d†1f
†(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f†(ε)

(ε+ εM + iδ)
, (A.126)

G̃ff (ε) =
1

(ε− εM + iδ)
− λA√

2

G̃d1f (ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f

(ε)

(ε− εM + iδ)
,

(A.127)

and

G̃ff†(ε) = −λA√
2

G̃d1f†(ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f
†(ε)

(ε− εM + iδ)
.

(A.128)

A.1.2 Grouping terms

In order to obtain G̃η1η1[see Eq. (A.120)], we have to regroup some expressions. Let’s start with

G̃
d†1f

, where we have to use Eqs. (A.125) and (A.127):

(
ε+ ε1 + Σ̃

)
G̃
d†1f

(ε) =
λA√

2


λA√

2

G̃
d†1f

(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f (ε)

(ε+ εM + iδ)




+
λB√

2


 1

(ε− εM + iδ)
− λA√

2

G̃d1f (ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f

(ε)

(ε− εM + iδ)




=
λB√

2

1

(ε− εM + iδ)
+

1

2


λ2

A

G̃
d†1f

(ε)

(ε+ εM + iδ)
− λAλB

Gd1f (ε)

(ε+ εM + iδ)
,




+
1

2


−λAλB

G̃d1f (ε)

(ε− εM + iδ)
+ λ2

B

G̃
d†1f

(ε)

(ε− εM + iδ)




=
λB√

2

1

(ε− εM + iδ)
− λAλB

[
1

2

(
1

ε− εM + iδ
+

1

ε+ εM + iδ

)]
Gd1f (ε)

+
1

2

[
λ2
A

1

(ε+ εM + iδ)
+ λ2

B

1

(ε− εM + iδ)

]
G̃
d†1f

(ε) (A.129)
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(
ε+ ε1 + Σ̃

)
G̃
d†1f

(ε) =
λB√

2

1

(ε− εM + iδ)
− λAλB

[
1

2

(
1

ε− εM + iδ
+

1

ε+ εM + iδ

)]
Gd1f (ε)

+
λ2
A

2

[
1

(ε+ εM + iδ)
+

(
λ2
B

λ2
A

)
1

(ε− εM + iδ)

]
G̃
d†1f

(ε)

=
λB√

2

1

(ε− εM + iδ)
− λAλB

[
1

2

(
1

ε− εM + iδ
+

1

ε+ εM + iδ

)]
Gd1f (ε)

+
λ2
A

2

[
(ε− εM + iδ)λ2

A + (ε+ εM + iδ)λ2
B

(ε+ εM + iδ) (ε− εM + iδ)λ2
A

]
G̃
d†1f

(ε)

=
λB√

2

1

(ε− εM + iδ)
− λAλB

[
1

2

(
1

ε− εM + iδ
+

1

ε+ εM + iδ

)]
Gd1f (ε)

+
1

2

[
(ε+ iδ)

(
λ2
A + λ2

B

)
− εM (λ2

A − λ2
B)

ε2 − ε2
M + i2εδ − δ2

]
G̃
d†1f

(ε). (A.130)

(
ε+ ε1 + Σ̃

)
G̃
d†1f

(ε) =
λB√

2

1

(ε− εM + iδ)
− λAλBKGd1f (ε) +K−G̃d†1f (ε)

(A.131)

where we used K = 1
2

(
1

ε−εM+iδ + 1
ε+εM+iδ

)
and K− = 1

2

[
(ε+iδ)(λ2

A+λ2
B)−εM (λ2

A−λ
2
B)

ε2−ε2M+i2εδ−δ2

]
. Thus,

(
ε+ ε1 + Σ̃−K−

)
G̃
d†1f

(ε) =
λB√

2

1

(ε− εM + iδ)
− λAλBKGd1f (ε) (A.132)

Now we will obtain G̃
d†1f
† . To this end we have to employ Eqs. (A.126) and (A.128):

(
ε+ ε1 + Σ̃

)
G̃
d†1f
†(ε) =

λA√
2


 1

(ε+ εM + iδ)
+
λA√

2

G̃
d†1f
†(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f†(ε)

(ε+ εM + iδ)




+
λB√

2


−λA√

2

G̃d1f†(ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f
†(ε)

(ε− εM + iδ)




=
λA√

2

1

(ε+ εM + iδ)
+

1

2


λ2

A

G̃
d†1f
†(ε)

(ε+ εM + iδ)
− λAλB

Gd1f†(ε)

(ε+ εM + iδ)




+
1

2


−λAλB

G̃d1f†(ε)

(ε− εM + iδ)
+ λ2

B

G̃
d†1f
†(ε)

(ε− εM + iδ)




=
λA√

2

1

(ε+ εM + iδ)
+

1

2

[
λ2
A

1

(ε+ εM + iδ)
+ λ2

B

1

(ε− εM + iδ)

]
G̃
d†1f
†(ε)

− λAλB

[
1

2

(
1

ε+ εM + iδ)
+

1

ε− εM + iδ

)]
Gd1f†(ε) (A.133)

Using the definitions of K and K−, Eq. (A.133) becomes:

(
ε+ ε1 + Σ̃

)
G̃
d†1f
†(ε) =

λA√
2

1

(ε+ εM + iδ)
+K−G̃d†1f†(ε)

− λAλBKGd1f†(ε) (A.134)
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(
ε+ ε1 + Σ̃−K−

)
G̃
d†1f
†(ε) =

λA√
2

1

(ε+ εM + iδ)
− λAλBKGd1f†(ε).

(A.135)

Now, we will calculate G̃d1f :

(ε− ε1 − Σ + iδ) G̃d1f (ε) = −λA√
2


 1

(ε− εM + iδ)
− λA√

2

G̃d1f (ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f

(ε)

(ε− εM + iδ)




+ −λB√
2


λA√

2

G̃
d†1f

(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f (ε)

(ε+ εM + iδ)
,




= −λA√
2

1

(ε− εM + iδ)
− λAλB

[
1

2

(
1

ε+ εM + iδ
+

1

ε− εM + iδ

)]
G̃
d†1f

(ε)

+
1

2

[
λ2
A

1

(ε− εM + iδ)
+ λ2

B

1

(ε+ εM + iδ)

]
G̃d1f (ε)

= −λA√
2

1

(ε− εM + iδ)
− λAλBKG̃d†1f (ε)

+ K+G̃d1f (ε), (A.136)

where we define K+ = 1
2

[
(ε+iδ)(λ2

A+λ2
B)+εM (λ2

A−λ
2
B)

ε2−ε2M+i2εδ−δ2

]
. Furthermore,

G̃
d†1f

(ε) =

λB√
2

1
(ε−εM+iδ)(

ε+ ε1 + Σ̃−K−
) − λAλBK̃Gd1f (ε) (A.137)

with K̃ = K

(ε+ε1+Σ̃−K−)
. Thus,

(ε− ε1 − Σ + iδ) G̃d1f (ε) = −λA√
2

1

(ε− εM + iδ)
− λAλBK




λB√
2

1
(ε−εM+iδ)(

ε+ ε1 + Σ̃−K−
) − λAλBK̃Gd1f (ε)




+ K+G̃d1f (ε)

= −λA√
2

1

(ε− εM + iδ)
− λB√

2

λAλBK̃

(ε− εM + iδ)
+ (λAλB)2KK̃Gd1f (ε)

+ K+G̃d1f (ε) (A.138)

(ε− ε1 − Σ− ΣMFs) G̃d1f (ε) = −λA√
2

(1 + λ2
BK̃)

(ε− εM + iδ)
(A.139)

where ΣMFs = K+ + (λAλB)2KK̃. At last, we have to obtain G̃d1f† :
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(ε− ε1 − Σ + iδ) G̃d1f†(ε) = −λA√
2


−λA√

2

G̃d1f†(ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f
†(ε)

(ε− εM + iδ)




− λB√
2


 1

(ε+ εM + iδ)
+
λA√

2

G̃
d†1f
†(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f†(ε)

(ε+ εM + iδ)
,




= −λB√
2

1

(ε+ εM + iδ)
− λAλB

[
1

2

(
1

ε+ εM + iδ
+

1

ε− εM + iδ

)]
G̃
d†1f
†(ε)

+
1

2

[
λ2
A

1

(ε− εM + iδ)
+ λ2

B

1

(ε+ εM + iδ)

]
G̃d1f†(ε)

= −λB√
2

1

(ε+ εM + iδ)
− λAλBKG̃d†1f†(ε) +K+G̃d1f†(ε)

(A.140)

But according to Eq. (B.104):

G̃
d†1f
†(ε) =

λA√
2

1
(ε+εM+iδ)(

ε+ ε1 + Σ̃−K−
) − λAλBK̃Gd1f†(ε).

(A.141)

By substituting Eq. (A.141) in Eq. (B.109) we find:

(ε− ε1 − Σ + iδ) G̃d1f†(ε) = −λB√
2

1

(ε+ εM + iδ)
+K+G̃d1f†(ε)

− λAλBK




λA√
2

1
(ε+εM+iδ)(

ε+ ε1 + Σ̃−K−
) − λAλBK̃Gd1f†(ε)




= −λB√
2

1

(ε+ εM + iδ)
− λAλBK̃

λA√
2

1

(ε+ εM + iδ)

+ (λAλB)2KK̃Gd1f†(ε) +K+G̃d1f†(ε) (A.142)

Finally:

(ε− ε1 − Σ− ΣMFs) G̃d1f†(ε) = −λB√
2

(1 + λ2
AK̃)

(ε+ εM + iδ)
(A.143)

A.1.3 Summary of Results for G̃η1η1

The Green’s function for the Majorana quasiparticle η1 is given by
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G̃η1η1 = K +
1

2
√

2

(
λA

ε+ εM + iδ
+

λB
ε− εM + iδ

)(
G̃
d†1f

+ G̃
d†1f
†

)

− 1

2
√

2

(
λA

ε− εM + iδ
+

λB
ε+ εM + iδ

)(
G̃d1f + G̃d1f†

)
,

(A.144)

wherein

G̃d1f (ε) =
−λA√

2

(1+λ2
BK̃)

(ε−εM+iδ)

(ε− ε1 − Σ− ΣMFs)
, (A.145)

G̃d1f†(ε) =
−λB√

2

(1+λ2
AK̃)

(ε+εM+iδ)

(ε− ε1 − Σ− ΣMFs)
, (A.146)

G̃
d†1f

(ε) =

λB√
2

1
(ε−εM+iδ)(

ε+ ε1 + Σ̃−K−
) − λAλBK̃Gd1f (ε) (A.147)

and

G̃
d†1f
†(ε) =

λA√
2

1
(ε+εM+iδ)(

ε+ ε1 + Σ̃−K−
) − λAλBK̃Gd1f†(ε),

(A.148)

with

ΣMFs = K+ + (λAλB)2KK̃, (A.149)

K̃ =
K(

ε+ ε1 + Σ̃−K−
) , (A.150)

K± =
1

2

[
(ε+ iδ)

(
λ2
A + λ2

B

)
± εM (λ2

A − λ2
B)

ε2 − ε2
M + i2εδ − δ2

]
(A.151)

and

K =
1

2

(
1

ε− εM + iδ
+

1

ε+ εM + iδ

)
. (A.152)

A.2 Finding the Green’s Function for the Majorana Quasiparticle η2

In order to obtain ρ̃η2η2(ε), we should calculate G̃η2η2 , given by:
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Gη2η2(t) = (− i
~

)θ(t)Z−1
∑

r

e−βEr
〈
r

∣∣∣∣
[
η2(t), η†2(0)

]
+

∣∣∣∣ r
〉
, (A.153)

where

η2 = i
1√
2

(f † − f). (A.154)

Thus, we have to calculate
[
η2(t), η†2(0)

]
+

as follows:

[
η2(t), η†2(0)

]
+

= η2(t)η2(0) + η2(0)η2(t) (A.155)

η2(t)η2(0) = i
1√
2

(f †(t)− f(t))i
1√
2

(f †(0)− f(0)) = −1

2
(f †(t)f †(0)− f †(t)f(0)− f(t)f †(0) + f(t)f(0))

=
1

2
(−f †(t)f †(0) + f †(t)f(0) + f(t)f †(0)− f(t)f(0)) (A.156)

η2(0)η2(t) = i
1√
2

(f †(0)− f(0))i
1√
2

(f †(t)− f(t)) = −1

2

(
f †(0)f †(t)− f †(0)f(t)− f(0)f †(t) + f(0)f(t)

)

=
1

2

(
−f †(0)f †(t) + f †(0)f(t) + f(0)f †(t)− f(0)f(t)

)
(A.157)

[
η2(t), η†2(0)

]
+

=
1

2
(−f †(t)f †(0) + f †(t)f(0) + f(t)f †(0)− f(t)f(0))

+
1

2

(
−f †(0)f †(t) + f †(0)f(t) + f(0)f †(t)− f(0)f(t)

)

= −1

2

(
f †(t)f †(0) + f †(0)f †(t)

)
+

1

2

(
f †(t)f(0) + f †(0)f(t)

)

+
1

2

(
f(t)f †(0) + f(0)f †(t)

)
− 1

2
(f(t)f(0) + f(0)f(t))

= −1

2

[
f †(t), f †(0)

]
+

+
1

2

[
f †(t), f(0)

]
+

+
1

2

[
f(t), f †(0)

]
+

− 1

2
[f(t), f(0)]+ (A.158)

[
η2(t), η†2(0)

]
+

= −1

2

[
f †(t), f †(0)

]
+

+
1

2

[
f †(t), f(0)

]
+

+
1

2

[
f(t), f †(0)

]
+
− 1

2
[f(t), f(0)]+

(A.159)

By substituting Eq.(A.159) in Eq. (A.153) we obtain:
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Gη2η2(t) = −1

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f †(0)

]
+

∣∣∣∣ r
〉

+
1

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f †(t), f(0)

]
+

∣∣∣∣ r
〉

+
1

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r

∣∣∣∣
[
f(t), f †(0)

]
+

∣∣∣∣ r
〉

− 1

2
(− i

~
)θ(t)Z−1

∑

r

e−βEr
〈
r
∣∣[f(t), f(0)]+

∣∣ r
〉

(A.160)

Thus,

Gη2η2(t) = −1

2
Gf†f (t) +

1

2
Gf†f†(t) +

1

2
Gff (t)− 1

2
Gff†(t)

(A.161)

G̃η2η2(ε) = −1

2
G̃f†f (ε) +

1

2
G̃f†f†(ε) +

1

2
G̃ff (ε)− 1

2
G̃ff†(ε)

(A.162)

But we already have obtained the Green functions above, which are given by:

G̃f†f (ε) =
λA√

2

G̃
d†1f

(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f (ε)

(ε+ εM + iδ)
, (A.163)

G̃f†f†(ε) =
1

(ε+ εM + iδ)
+
λA√

2

G̃
d†1f
†(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f†(ε)

(ε+ εM + iδ)
, (A.164)

G̃ff (ε) =
1

(ε− εM + iδ)
− λA√

2

G̃d1f (ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f

(ε)

(ε− εM + iδ)
,

(A.165)

G̃ff†(ε) = −λA√
2

G̃d1f†(ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f
†(ε)

(ε− εM + iδ)

(A.166)

Therefore,
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G̃η2η2(ε) = −1

2


λA√

2

G̃
d†1f

(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f (ε)

(ε+ εM + iδ)




+
1

2


 1

(ε+ εM + iδ)
+
λA√

2

G̃
d†1f
†(ε)

(ε+ εM + iδ)
− λB√

2

Gd1f†(ε)

(ε+ εM + iδ)




+
1

2


 1

(ε− εM + iδ)
− λA√

2

G̃d1f (ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f

(ε)

(ε− εM + iδ)
,




− 1

2


−λA√

2

G̃d1f†(ε)

(ε− εM + iδ)
+
λB√

2

G̃
d†1f
†(ε)

(ε− εM + iδ)




=
1

2

[
1

(ε+ εM + iδ)
+

1

(ε− εM + iδ)

]

+
1

2

[
λB√

2

1

(ε− εM + iδ)
− λA√

2

1

(ε+ εM + iδ)

]
G̃
d†1f

(ε)

+
1

2

[
λB√

2

1

(ε+ εM + iδ)
− λA√

2

1

(ε− εM + iδ)

]
G̃d1f (ε)

+
1

2

[
λA√

2

1

(ε+ εM + iδ)
− λB√

2

1

(ε− εM + iδ)

]
G̃
d†1f
†(ε)

+
1

2

[
λA√

2

1

(ε− εM + iδ)
− λB√

2

1

(ε+ εM + iδ)

]
Gd1f†(ε) (A.167)

G̃η2η2(ε) = K − 1

2

[
λA√

2

1

(ε+ εM + iδ)
− λB√

2

1

(ε− εM + iδ)

]
G̃
d†1f

(ε)

+
1

2

[
λA√

2

1

(ε+ εM + iδ)
− λB√

2

1

(ε− εM + iδ)

]
G̃
d†1f
†(ε)

− 1

2

[
λA√

2

1

(ε− εM + iδ)
− λB√

2

1

(ε+ εM + iδ)

]
G̃d1f (ε)

+
1

2

[
λA√

2

1

(ε− εM + iδ)
− λB√

2

1

(ε+ εM + iδ)

]
Gd1f†(ε) (A.168)

G̃η2η2(ε) = K +
1

2

[
λA√

2

1

(ε+ εM + iδ)
− λB√

2

1

(ε− εM + iδ)

]
(G̃
d†1f
† − G̃d†1f )

+
1

2

[
λA√

2

1

(ε− εM + iδ)
− λB√

2

1

(ε+ εM + iδ)

]
(Gd1f† − G̃d1f ) (A.169)

wherein G̃
d†1f
, G̃d1f G̃d†1f† and Gd1f†are given by the same expressions previously calculated, as can be

seen in Sec.A.1.3.
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DOS of the Quantum Dot for the
Interacting Spinfull Model within
Hubbard-I Approximation

B.1 Single particle Green’s functions (two operators)

Let us apply the EOM approach to obtain an expression for the Green’s function of quantum dot:

(ω + ıη+)Grdσdσ(ω) = 1 + 〈〈[dσ,He]; d†σ〉〉 (B.1)

(ω + ıη+)Grdσdσ(ω) = 1 + 〈〈[dσ,Hlead]; d†σ〉〉+ 〈〈[dσ,Hdot]; d
†
σ〉〉+ 〈〈[dσ,Hdot-lead]; d†σ〉〉

+ 〈〈[dσ,HM]; d†σ〉〉 (B.2)

(ω + ıη+)Grdσdσ(ω) = 1 + 〈〈[dσ,Hdot]; d
†
σ〉〉+ 〈〈[dσ,Hdot-lead]; d†σ〉〉

+ 〈〈[dσ,HM]; d†σ〉〉 (B.3)

[dσ,Hdot] =
∑

σ̃

εdσ̃[dσ, d
†
σ̃dσ̃] + U [dσ, nd↑nd↓] (B.4)
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∑

σ̃

εdσ̃[dσ, d
†
σ̃dσ̃] =

∑

σ̃

εdσ̃

(
dσd

†
σ̃dσ̃ − d

†
σ̃dσ̃dσ

)

=
∑

σ̃

εdσ̃

((
δσσ̃ − d†σ̃dσ

)
dσ̃ − d†σ̃dσ̃dσ

)

=
∑

σ̃

εdσ̃

(
δσσ̃dσ̃ − d†σ̃dσdσ̃ − d

†
σ̃dσ̃dσ

)

=
∑

σ̃

εdσ̃

(
δσσ̃dσ̃ + d†σ̃dσ̃dσ − d

†
σ̃dσ̃dσ

)

= εdσdσ. (B.5)

U [dσ, nd↑nd↓] = U (dσnd↑nd↓ − nd↑nd↓dσ)

= U
(
dσd

†
↑d↑d

†
↓d↓ − d

†
↑d↑d

†
↓d↓dσ

)

= U
((
δσ↑ − d†↑dσ

)
d↑d
†
↓d↓ − d

†
↑d↑d

†
↓d↓dσ

)

= U
(
δσ↑d↑d

†
↓d↓ − d

†
↑dσd↑d

†
↓d↓ − d

†
↑d↑d

†
↓d↓dσ

)

= U
(
δσ↑d↑d

†
↓d↓ + d†↑d↑dσd

†
↓d↓ − d

†
↑d↑d

†
↓d↓dσ

)

= U
(
δσ↑d↑d

†
↓d↓ + d†↑d↑

(
δσ↓ − d†↓dσ

)
d↓ − d†↑d↑d

†
↓d↓dσ

)

= U
(
δσ↑d↑d

†
↓d↓ + δσ↓d

†
↑d↑d↓ − d

†
↑d↑d

†
↓dσd↓ − d

†
↑d↑d

†
↓d↓dσ

)

= U
(
δσ↑d↑d

†
↓d↓ + δσ↓d

†
↑d↑d↓ + d†↑d↑d

†
↓d↓dσ − d

†
↑d↑d

†
↓d↓dσ

)

= U
(
δσ↑d↑d

†
↓d↓ + δσ↓d

†
↑d↑d↓

)

= U
(
δσ↑d↑d

†
↓d↓ + δσ↓d↓d

†
↑d↑

)

= Udσd
†
σ̄dσ̄ = Udσndσ̄. (B.6)

where σ̄ is opposite of σ, e.g, σ =↑ (↓), σ̄ =↓ (↑).
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[dσ,Hdot-lead] = [dσ,
√

2V
∑

kσ̃

(e†kσ̃dσ̃ + d†σ̃ekσ̃)]

= [dσ,
√

2V
∑

kσ̃

e†kσ̃dσ̃] + [dσ,
√

2V
∑

kσ̃

d†σ̃ekσ̃]

=
√

2V
∑

kσ̃

(
dσe
†
kσ̃dσ̃ − e

†
kσ̃dσ̃dσ

)

+
√

2V
∑

kσ̃

(
dσd

†
σ̃ekσ̃ − d

†
σ̃ekσ̃dσ

)

=
√

2V
∑

kσ̃

(
e†kσ̃dσ̃dσ − e

†
kσ̃dσ̃dσ

)

+
√

2V
∑

kσ̃

(
ekσ̃dσd

†
σ̃ + ekσ̃d

†
σ̃dσ

)

=
√

2V
∑

kσ̃

ekσ̃

(
dσd

†
σ̃ + d†σ̃dσ

)

=
√

2V
∑

kσ̃

ekσ̃δσσ̃ =
√

2V
∑

kσ̃

δσσ̃ekσ̃

=
√

2V
∑

k

ekσ. (B.7)

(ω + ıη+)Grdσdσ(ω) = 1 + εdσ〈〈dσ; d†σ〉〉+ U〈〈dσndσ̄; d†σ〉〉+
√

2V
∑

k

〈〈ekσ; d†σ〉〉

+ 〈〈[dσ,HM]; d†σ〉〉 (B.8)

In the equation above, we have the well-known result for a QD between metallic leads without a

Kitaev wire. The novelty is due to the following commutation relations:

[dσ,HM] =

[
dσ, δM

(
a†↑a↑ −

1

2

)]
+

[
dσ, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]

+

[
dσ,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
(B.9)

[dσ,HM] =

[
dσ, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
+

[
dσ,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]

(B.10)
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[
dσ, thp(dσ̃a

†
↑ + a↑d

†
σ̃)
]

= thp
∑

σ̃

[
dσ, dσ̃a

†
↑

]
+ thp

∑

σ̃

[
dσ, a↑d

†
σ̃

]

= thp
∑

σ̃

(
dσdσ̃a

†
↑ − dσ̃a

†
↑dσ

)

+ thp
∑

σ̃

(
dσa↑d

†
σ̃ − a↑d

†
σ̃dσ

)

= thp
∑

σ̃

(
dσdσ̃a

†
↑ − dσdσ̃a

†
↑

)

+ thp
∑

σ̃

(
−dσd†σ̃a↑ − d

†
σ̃dσa↑

)

= −thp
∑

σ̃

(
dσd

†
σ̃ + d†σ̃dσ

)
a↑ = −thp

∑

σ̃

{
dσ, d

†
σ̃

}
a↑

= −thp
∑

σ̃

δσσ̃a↑ (B.11)

[
dσ,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

[dσ, dσ̃a↑] + ∆
∑

σ̃

[
dσ, a

†
↑d
†
σ̃

]

= ∆
∑

σ̃

(dσdσ̃a↑ − dσ̃a↑dσ)

+ ∆
∑

σ̃

(
dσa

†
↑d
†
σ̃ − a

†
↑d
†
σ̃dσ

)

= ∆
∑

σ̃

(dσdσ̃a↑ − dσdσ̃a↑)

+ ∆
∑

σ̃

(
−a†↑dσd

†
σ̃ − a

†
↑d
†
σ̃dσ

)

= −∆
∑

σ̃

a†↑

(
dσd

†
σ̃ + d†σ̃dσ

)

= −∆
∑

σ̃

δσσ̃a
†
↑ (B.12)

(ω + ıη+)Grdσdσ(ω) = 1 + εdσ〈〈dσ; d†σ〉〉+ U〈〈dσndσ̄; d†σ〉〉+
√

2V
∑

k

〈〈ekσ; d†σ〉〉

+ −thp
∑

σ̃

δσσ̃〈〈a↑; d†σ〉〉+−∆
∑

σ̃

δσσ̃〈〈a†↑; d†σ〉〉 (B.13)

(ω − εdσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω) +
√

2V
∑

k

Grekσdσ(ω)

− thp
∑

σ̃

δσσ̃G
r
a↑,dσ(ω)−

∑

σ̃

δσσ̃∆Gr
a†↑,dσ

(ω) (B.14)

Now, let us apply the EOM to find Grekσdσ(ω):
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(ω + ıη+)Grekσdσ(ω) = δekσdσ + 〈〈[ekσ,He]; d†σ〉〉 (B.15)

[ekσ,He] = [ekσ,Hlead] + [ekσ,Hdot] + [ekσ,Hdot-lead] + [ekσ,HM]

= [ekσ,Hlead] + [ekσ,Hdot-lead] (B.16)

[ekσ,Hlead] = [ekσ,
∑

pσ̃

εpσ̃e
†
pσ̃epσ̃ + VSD

∑

p,qσ̃

e†pσ̃eqσ̃]

= [ekσ,
∑

pσ̃

εpσ̃e
†
pσ̃epσ̃] + [ekσ, VSD

∑

p,qσ̃

e†pσ̃eqσ̃] (B.17)

[ekσ,
∑

pσ̃

εpσ̃e
†
pσ̃epσ̃] =

∑

pσ̃

εpσ̃

(
ekσe

†
pσ̃epσ̃ − e

†
pσ̃epσ̃ekσ

)

=
∑

pσ̃

εpσ̃

((
δkpδσσ̃ − e†pσ̃ekσ

)
epσ̃ − e†pσ̃epσ̃ekσ

)

=
∑

pσ̃

εpσ̃

(
δkpδσσ̃epσ̃ − e†pσ̃ekσepσ̃ − e

†
pσ̃epσ̃ekσ

)

=
∑

pσ̃

εpσ̃

(
δkpδσσ̃epσ̃ − e†pσ̃epσ̃ekσ − e

†
pσ̃epσ̃ekσ

)

= εkσekσ. (B.18)

[ekσ, VSD
∑

p,qσ̃

e†pσ̃eqσ̃] = VSD
∑

p,qσ̃

(
ekσe

†
pσ̃eqσ̃ − e

†
pσ̃eqσ̃ekσ

)

= VSD
∑

p,qσ̃

((
δkpδσσ̃ − e†pσ̃ekσ

)
eqσ̃ − e†pσ̃eqσ̃ekσ

)

= VSD
∑

p,qσ̃

(
δkpδσσ̃eqσ̃ + e†pσ̃eqσ̃ekσ − e

†
pσ̃eqσ̃ekσ

)

= VSD
∑

q

eqσ. (B.19)
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[ekσ,Hdot-lead] = [ekσ,
√

2V
∑

pσ̃

(e†pσ̃dσ̃ + d†σ̃epσ̃)]

= [ekσ,
√

2V
∑

pσ̃

e†pσ̃dσ̃] + [ekσ,
√

2V
∑

pσ̃

d†σ̃epσ̃]

=
√

2V
∑

pσ̃

(
ekσe

†
pσ̃dσ̃ − e

†
pσ̃dσ̃ekσ

)

+
√

2V
∑

pσ̃

(
ekσd

†
σ̃epσ̃ − d

†
σ̃epσ̃ekσ

)

=
√

2V
∑

pσ̃

((
δp,kδσσ̃ − e†pσ̃ekσ

)
dσ̃ + e†pσ̃ekσdσ̃

)

+
√

2V
∑

pσ̃

(
d†σ̃epσ̃ekσ − d

†
σ̃epσ̃ekσ

)

=
√

2V
∑

pσ̃

(
δp,kδσσ̃dσ̃ − δp,kδσσ̃e†pσ̃ekσdσ̃ + e†pσ̃ekσdσ̃

)

=
√

2V
(
dσ − e†kσekσdσ + e†kσekσdσ

)

=
√

2V dσ. (B.20)

(ω + ıη+)Grekσdσ(ω) = εkσ〈〈ekσ; d†σ〉〉+ VSD
∑

q

〈〈eqσ; d†σ〉〉+
√

2V 〈〈dσ; d†σ〉〉 (B.21)

(ω − εkσ + ıη+)Grekσdσ(ω) = VSD
∑

q

〈〈eqσ; d†σ〉〉+
√

2V 〈〈dσ; d†σ〉〉 (B.22)

(ω − εkσ + ıη+)Grekσdσ(ω)− VSD
∑

k

Grekσdσ(ω) =
√

2V Grdσdσ(ω) (B.23)

Let us divide the expression above by (ω − εkσ + ıη+):

Grekσdσ(ω)− VSD
∑

k

Grekσdσ(ω)

(ω − εkσ + ıη+)
=

√
2V Grdσdσ(ω)

(ω − εkσ + ıη+)
(B.24)

[
1−

∑

k

VSD
(ω − εkσ + ıη+)

]
Grekσdσ(ω) =

√
2V Grdσdσ(ω)

(ω − εkσ + ıη+)
(B.25)

Grekσdσ(ω) =

√
2V (ω − εkσ + ıη+)−1

[
1−∑k

VSD
(ω−εkσ+ıη+)

] Grdσdσ(ω) (B.26)

Substituting the expression above into Eq.(B.14):
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(ω − εdσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω) +
∑

k

2V 2(ω − εkσ + ıη+)−1

[
1−∑k

VSD
(ω−εkσ+ıη+)

]Grdσdσ(ω)

− thp
∑

σ̃

δσσ̃G
r
a↑,dσ(ω)−∆

∑

σ̃

δσσ̃G
r
a†↑,dσ

(ω) (B.27)

As we have shown in previous works:

∑

k

(
1

ω − εkσ + ıη+

)
= −ıπρkσ(ω) (B.28)

in the wide-band limit, where ρkσ(ω) =
(

1
π

)∑
k δ (ω − εkσ) is the DOS of metallic leads. Thus,

(ω − εdσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω) +
2V 2 (−ıπρkσ(ω))

[1− VSD (−ıπρkσ(ω))]
Grdσdσ(ω)

−
∑

σ̃

δσσ̃thpG
r
a↑,dσ(ω)−

∑

σ̃

δσσ̃∆Gr
a†↑,dσ

(ω) (B.29)

(ω − εdσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω)− ı2V 2πρkσ(ω)

[1 + ı (VSDπρkσ(ω))]
Grdσdσ(ω)

− thp
∑

σ̃

δσσ̃G
r
a↑,dσ(ω)−

∑

σ̃

δσσ̃∆Gr
a†↑,dσ

(ω) (B.30)

However, the Anderson parameter Γσ = 2V 2πρkσ(ω).

(ω − εdσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω)− ıΓσ
[1 + ı (VSDπρkσ(ω))]

Grdσdσ(ω)

− thp
∑

σ̃

δσσ̃G
r
a↑,dσ(ω)−∆

∑

σ̃

δσσ̃G
r
a†↑,dσ

(ω) (B.31)

Let us label
√
x = VSDπρkσ(ω):

−ıΓσ [1− ı√x]

[1 + ı
√
x] [1− ı√x]

=
−ıΓσ −

√
xΓσ

1 + x

=
− (ı+

√
x)

1 + x
Γσ

= −
√
xΓσ

1 + x
− ı Γσ

1 + x
(B.32)

Σσ = −
√
xΓσ

1 + x
− ı Γσ

1 + x
= Re(Σσ) + Im(Σσ) (B.33)
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(ω − εdσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω) + ΣσG
r
dσdσ(ω)

− thp
∑

σ̃

δσσ̃G
r
a↑dσ(ω)−∆

∑

σ̃

δσσ̃G
r
a†↑dσ

(ω) (B.34)

(ω − εdσ − Σσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω)− thp
∑

σ̃

δσσ̃G
r
a↑dσ(ω)−∆

∑

σ̃

δσσ̃G
r
a†↑dσ

(ω)

(B.35)

Below, we present the calculations for the Green’s functions related to the Kitaev wire:

(ω + ıη+)Gra↑dσ(ω) = 〈〈[a↑,He]; d†σ〉〉 (B.36)

[a↑,He] = [a↑,Hlead] + [a↑,Hdot] + [a↑,Hdot-lead] + [a↑,HM]

= [a↑,HM] (B.37)

[a↑,HM] =

[
a↑, δM

(
a†↑a↑ −

1

2

)]
+

[
a↑, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]

+

[
a↑,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
(B.38)

[
a↑, δM

(
a†↑a↑ −

1

2

)]
= δM

(
a↑a
†
↑a↑ − a

†
↑a↑a↑

)

= δM

((
1− a†↑a↑

)
a↑ − a†↑a↑a↑

)

= δM

(
a↑ − a†↑a↑a↑ + a†↑a↑a↑

)

= δMa↑ (B.39)
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∑

σ̃

[
a↑, thp(dσ̃a

†
↑ + a↑d

†
σ̃)
]

= thp
∑

σ̃

[
a↑, dσ̃a

†
↑

]
+ thp

∑

σ̃

[
a↑, a↑d

†
σ̃

]

= thp
∑

σ̃

(
a↑dσ̃a

†
↑ − dσ̃a

†
↑a↑

)

+ thp
∑

σ̃

(
a↑a↑d

†
σ̃ − a↑d

†
σ̃a↑

)

= thp
∑

σ̃

(
−dσ̃a↑a†↑ − dσ̃a

†
↑a↑

)

+ thp
∑

σ̃

(
−a↑a↑d†σ̃ + a↑a↑d

†
σ̃

)

= thp
∑

σ̃

(−dσ̃)
(
a↑a
†
↑ + a†↑a↑

)

= thp
∑

σ̃

(−dσ̃) . (B.40)

∑

σ̃

[
a↑,∆(dσ̃a↑ + a†↑d

†
σ̃)
]

= ∆
∑

σ̃

[a↑, dσ̃a↑] + ∆
∑

σ̃

[
a↑, a

†
↑d
†
σ̃

]

= ∆
∑

σ̃

(a↑dσ̃a↑ − dσ̃a↑a↑)

+ ∆
∑

σ̃

(
a↑a
†
↑d
†
σ̃ − a

†
↑d
†
σ̃a↑

)

= ∆
∑

σ̃

(dσ̃a↑a↑ − dσ̃a↑a↑)

+ ∆
∑

σ̃

(
a↑a
†
↑d
†
σ̃ − a

†
↑d
†
σ̃a↑

)

= ∆
∑

σ̃

(
a↑a
†
↑d
†
σ̃ + a†↑a↑d

†
σ̃

)

= ∆
∑

σ̃

(
a↑a
†
↑ + a†↑a↑

)
d†σ̃

= ∆
∑

σ̃

d†σ̃. (B.41)

(ω + ıη+)Gra↑dσ(ω) = 〈〈δMa↑; d
†
σ〉〉+

∑

σ̃

〈〈thp (−dσ̃) ; d†σ〉〉+
∑

σ

〈〈∆d†σ̃; d†σ〉〉 (B.42)

(ω − δM + ıη+)Gra↑dσ(ω) = −thp
∑

σ̃

Grdσ̃dσ(ω) + ∆
∑

σ̃

Gr
d†σ̃dσ

(ω) (B.43)

(ω + ıη+)Gr
a†↑dσ

(ω) = 〈〈[a†↑,He]; d†σ〉〉 (B.44)
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[a†↑,He] = [a†↑,Hlead] + [a†↑,Hdot] + [a†↑,Hdot-lead] + [a†↑,HM]

= [a†↑,HM] (B.45)

[a†↑,HM] =

[
a†↑, δM

(
a†↑a↑ −

1

2

)]
+

[
a†↑, thp

∑

σ

(dσa
†
↑ + a↑d

†
σ)

]

+

[
a†↑,∆

∑

σ

(dσa↑ + a†↑d
†
σ)

]
(B.46)

[
a†↑, δM

(
a†↑a↑ −

1

2

)]
= δM

(
a†↑a
†
↑a↑ − a

†
↑a↑a

†
↑

)

= δM

(
a†↑a
†
↑a↑ − a

†
↑

(
1− a†↑a↑

))

= δM

(
a†↑a
†
↑a↑ − a

†
↑ + a†↑a

†
↑a↑

)

= −δMa
†
↑. (B.47)

[
a†↑, thp(dσ̃a

†
↑ + a↑d

†
σ̃)
]

= thp

[
a†↑, dσ̃a

†
↑

]
+ thp

[
a†↑, a↑d

†
σ̃

]

= thp

(
a†↑dσ̃a

†
↑ − dσ̃a

†
↑a
†
↑

)

+ thp

(
a†↑a↑d

†
σ̃ − a↑d

†
σ̃a
†
↑

)

= thp

(
dσ̃a

†
↑a
†
↑ − dσ̃a

†
↑a
†
↑

)

+ thp

(
a†↑a↑d

†
σ̃ + a↑a

†
↑d
†
σ̃

)

= thp

(
a†↑a↑ + a↑a

†
↑

)
d†σ̃

= thpd
†
σ̃. (B.48)

[
a†↑,∆(dσ̃a↑ + a†↑d

†
σ̃)
]

= ∆
[
a†↑, dσ̃a↑

]
+ ∆

[
a†↑, a

†
↑d
†
σ̃

]

= ∆
(
a†↑dσ̃a↑ − dσ̃a↑a

†
↑

)

+ ∆
(
a†↑a
†
↑d
†
σ̃ − a

†
↑d
†
σ̃a
†
↑

)

= ∆
(
−dσ̃a†↑a↑ − dσ̃a↑a

†
↑

)

+ ∆
(
a†↑a
†
↑d
†
σ̃ − a

†
↑a
†
↑d
†
σ̃

)

= ∆ (−dσ̃)
(
a†↑a↑ + a↑a

†
↑

)

= −∆dσ̃. (B.49)
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(ω + ıη+)Gr
a†↑dσ

(ω) = −δM〈〈a†↑; d†σ〉〉+ thp
∑

σ̃

〈〈d†σ̃; d†σ〉〉 −∆
∑

σ̃

〈〈dσ̃; d†σ〉〉 (B.50)

(ω + δM + ıη+)Gr
a†↑dσ

(ω) = thp
∑

σ̃

〈〈d†σ̃; d†σ〉〉 −∆
∑

σ̃

〈〈dσ̃; d†σ〉〉 (B.51)

(ω + δM + ıη+)Gr
a†↑dσ

(ω) =
∑

σ̃

thpG
r
d†σ̃dσ

(ω)−
∑

σ̃

∆Grdσ̃dσ(ω) (B.52)

From Eqs.(B.43) and (B.52):

Gra↑dσ(ω) = −
thp
∑

σ̃ G
r
dσ̃dσ

(ω)

(ω − δM + ıη+)
+

∆
∑

σ̃ G
r
d†σ̃dσ

(ω)

(ω − δM + ıη+)
(B.53)

Gr
a†↑dσ

(ω) =
thp
∑

σ̃ G
r
d†σ̃dσ

(ω)

(ω + δM + ıη+)
−

∆
∑

σ̃ G
r
dσ̃dσ

(ω)

(ω + δM + ıη+)
(B.54)

Let us substitute them in Eq.(B.35):

(ω − εdσ − Σσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω)

−
∑

σ̃

δσσ̃thp


−

thp
∑

σ̃ G
r
dσ̃dσ

(ω)

(ω − δM + ıη+)
+

∆
∑

σ̃ G
r
d†σ̃dσ

(ω)

(ω − δM + ıη+)




−
∑

σ̃

δσσ̃∆



thp
∑

σ̃ G
r
d†σ̃dσ

(ω)

(ω + δM + ıη+)
−

∆
∑

σ̃ G
r
dσ̃dσ

(ω)

(ω + δM + ıη+)


(B.55)

(ω − εdσ − Σσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω)

+
∑

σσ̃

δσσ̃
(thp)

2Grdσ̃dσ(ω)

(ω − δM + ıη+)
−
∑

σσ̃

δσσ̃

thp∆G
r
d†σ̃dσ

(ω)

(ω − δM + ıη+)

−
∑

σσ̃

δσσ̃

thp∆G
r
d†σ̃dσ

(ω)

(ω + δM + ıη+)
+
∑

σσ̃

δσσ̃
(∆)2Grdσ̃dσ(ω)

(ω + δM + ıη+)
(B.56)

(ω − εdσ − Σσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω)

− thp∆

[
1

(ω + δM + ıη+)
+

1

(ω − δM + ıη+)

]
Gr
d†σdσ

(ω)

+

[
(thp)

2

(ω − δM + ıη+)
+

(∆)2

(ω + δM + ıη+)

]
Grdσdσ(ω),(B.57)

K =

[
1

(ω + δM + ıη+)
+

1

(ω − δM + ıη+)

]
(B.58)
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(ω − εdσ − Σσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω)− thp∆KGrd†σdσ(ω)

+

[
(thp)

2

(ω − δM + ıη+)
+

(∆)2

(ω + δM + ıη+)

]
Grdσdσ(ω).

(B.59)

According to the equation above, both spins couple with the Kitaev wire. To find

Grdσdσ(ω), we also must obtainGr
d†σdσ

(ω), which is performed below. According to Eq.(??):

(ω + ıη+)Gr
d†σdσ

(ω) = {d†σ, d†σ}+ 〈〈[d†σ,He]; d†σ〉〉 (B.60)

(ω + ıη+)Gr
d†σdσ

(ω) = 〈〈[d†σ,He]; d†σ〉〉 (B.61)

[d†σ,He] = [d†σ,Hlead] + [d†σ,Hdot] + [d†σ,Hdot-lead] + [d†σ,HM]

= [d†σ,Hdot] + [d†σ,Hdot-lead] + [d†σ,HM] (B.62)

[d†σ,Hdot] = [d†σ,
∑

σ

εdσd
†
σdσ] + [d†σ, Und↑nd↓] (B.63)

[d†σ,
∑

σ̃

εdσ̃d
†
σ̃dσ̃] =

∑

σ̃

εdσ̃

(
d†σd

†
σ̃dσ̃ − d

†
σ̃dσ̃d

†
σ

)

=
∑

σ̃

εdσ̃

(
d†↑d
†
σ̃dσ̃ − d

†
σ̃

(
δσ̃σ − d†σdσ̃

))

=
∑

σ̃

εdσ̃

(
d†σd

†
σ̃dσ̃ − δσ̃σd

†
σ̃ + d†σ̃d

†
σdσ̃

)

=
∑

σ̃

εdσ̃

(
d†σd

†
σ̃dσ̃ − δσ̃σd

†
σ̃ − d†σd

†
σ̃dσ̃

)

=
∑

σ̃

εdσ̃

(
−δσ̃σd†σ̃

)

= −εdσd†σ. (B.64)
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[d†σ, Und↑nd↓] = U
(
d†↑nd↑nd↓ − nd↑nd↓d

†
↑

)

= U
(
d†σd

†
↑d↑d

†
↓d↓ − d

†
↑d↑d

†
↓d↓d

†
σ

)

= U
(
d†σd

†
↑d↑d

†
↓d↓ − d

†
↑d↑d

†
↓

(
δσ↓ − d†σd↓

))

= U
(
d†σd

†
↑d↑d

†
↓d↓ − δσ↓d

†
↑d↑d

†
↓ + d†↑d↑d

†
↓d
†
σd↓

)

= U
(
d†σd

†
↑d↑d

†
↓d↓ − δσ↓d

†
↓d
†
↑d↑ − d

†
↑d↑d

†
σd
†
↓d↓

)

= U
(
d†σd

†
↑d↑d

†
↓d↓ − δσ↓d

†
↓d
†
↑d↑ − d

†
↑

(
δσ↑ − d†σd↑

)
d†↓d↓

)

= U
(
d†σd

†
↑d↑d

†
↓d↓ − δσ↓d

†
↓d
†
↑d↑ − δσ↑d

†
↑d
†
↓d↓ − d†σd

†
↑d↑d

†
↓d↓

)

= U
(
−δσ↓d†↓d

†
↑d↑ − δσ↑d

†
↑d
†
↓d↓

)

= −Ud†σndσ̄. (B.65)

[d†↑,Hdot-lead] = [d†σ̃,
√

2V
∑

kσ

(e†kσdσ + d†σekσ)]

=
√

2V
∑

kσ

[d†σ̃, e
†
kσdσ] +

√
2V
∑

kσ

[d†σ̃, d
†
σekσ]

=
√

2V
∑

kσ

(
d†σ̃e
†
kσdσ − e

†
kσdσd

†
σ̃

)

+
√

2V
∑

kσ

(
d†σ̃d

†
σekσ − d†σekσd†σ̃

)

=
√

2V
∑

kσ

(
−e†kσd

†
σ̃dσ − e

†
kσdσd

†
σ̃

)

+
√

2V
∑

kσ

(
d†σ̃d

†
σekσ − d†σ̃d†σekσ

)

=
√

2V
∑

kσ

(
−e†kσ

)(
d†σ̃dσ + dσd

†
σ̃

)

=
√

2V
∑

kσ̃

δσσ̃

(
−e†kσ̃

)

=
√

2V
∑

k

(
−e†kσ

)
. (B.66)

(ω + ıη+)Gr
d†σdσ

(ω) = 〈〈−εdσd†σ; d†σ〉〉+ 〈〈
√

2V
∑

k

(−e†kσ); d†σ〉〉+ 〈〈−Ud†σndσ̄; d†σ〉〉

+ 〈〈[d†σ,HM]; d†σ〉〉 (B.67)
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(ω + εdσ + ıη+)Gr
d†σdσ

(ω) = −
√

2V
∑

k

Gr
e†kσdσ

(ω)− UGr
d†σndσ̄dσ

(ω)

+ 〈〈[d†σ,HM]; d†σ〉〉. (B.68)

[d†σ,HM] =

[
d†σ, δM

(
a†↑a↑ −

1

2

)]
+

[
d†σ, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]

+

[
d†σ,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
(B.69)

[d†σ,HM] =

[
d†σ, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
+

[
d†σ,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
(B.70)

[
d†σ, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

[
d†σ, dσ̃a

†
↑

]
+ thp

∑

σ̃

[
d†σ, a↑d

†
σ̃

]

= thp
∑

σ̃

(
d†σdσ̃a

†
↑ − dσ̃a

†
↑d
†
σ

)

+ thp
∑

σ̃

(
d†σa↑d

†
σ̃ − a↑d

†
σ̃d
†
σ

)

= thp
∑

σ̃

(
d†σdσ̃ + dσ̃d

†
σ

)
a†↑

+ thp
∑

σ̃

(
a↑d
†
σ̃d
†
σ − a↑d†σ̃d†σ

)

= thp
∑

σ̃

δσσ̃a
†
↑ (B.71)

[
d†σ,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

[
d†σ, dσ̃a↑

]
+ ∆

∑

σ̃

[
d†σ, a

†
σd
†
σ̃

]

= ∆
∑

σ̃

(
d†σdσ̃a↑ − dσ̃a↑d†σ

)

+ ∆
∑

σ̃

(
d†σa

†
σd
†
σ̃ − a†σd

†
σ̃d
†
σ

)

= ∆
∑

σ̃

(
d†σdσ̃ + dσ̃d

†
σ

)
a↑

+ ∆
∑

σ̃

(
a†σd

†
σ̃d
†
σ − a†σd†σ̃d†σ

)

= ∆
∑

σ̃

δσσ̃a↑ (B.72)
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(ω + εdσ + ıη+)Gr
d†σdσ

(ω) = −
√

2V
∑

k

Gr
e†kσdσ

(ω)− UGr
d†σndσ̄dσ

(ω)

+ 〈〈thpa†σ; d†σ〉〉+ 〈〈∆aσ; d†σ〉〉 (B.73)

(ω + εdσ + ıη+)Gr
d†σdσ

(ω) = −
√

2V
∑

k

Gr
e†kσdσ

(ω)− UGr
d†σndσ̄dσ

(ω)

+ thp
∑

σ̃

δσσ̃G
r
a†σdσ

(ω) + ∆
∑

σ̃

δσσ̃G
r
aσdσ(ω) (B.74)

(ω + ıη+)Gr
e†kσdσ

(ω) = {e†kσ, d†σ}+ 〈〈[e†kσ,He]; d†σ〉〉 = 〈〈[e†kσ,He]; d†σ〉〉 (B.75)

[e†kσ,He] = [e†kσ,Hlead] + [e†kσ,Hdot] + [e†kσ,Hdot-lead] + [e†kσ,HM]

= [e†kσ,Hlead] + [e†kσ,Hdot-lead] (B.76)

[e†kσ,Hlead] = [e†kσ,
∑

pσ̃

εpσ̃e
†
pσ̃epσ̃ + VSD

∑

p,qσ̃

e†pσ̃eqσ̃]

= [e†kσ,
∑

pσ̃

εpσ̃e
†
pσ̃epσ̃] + [e†kσ, VSD

∑

p,qσ̃

e†pσ̃eqσ̃] (B.77)

[e†kσ,
∑

pσ̃

εpσ̃e
†
pσ̃epσ̃] =

∑

pσ̃

εpσ̃

(
e†kσe

†
pσ̃epσ̃ − e

†
pσ̃epσ̃e

†
kσ

)

=
∑

pσ̃

εpσ̃

(
−e†pσ̃e

†
kσepσ̃ − e

†
pσ̃epσ̃e

†
k↑

)

=
∑

pσ̃

εpσ̃

(
−e†pσ̃

(
δkpδσσ̃ − epσ̃e†kσ

)
− e†pσ̃epσ̃e

†
kσ

)

=
∑

pσ̃

εpσ̃

(
−δkpδσσ̃e†pσ̃ + e†pσ̃epσ̃e

†
kσ − e

†
pσ̃epσ̃e

†
kσ

)

=
∑

pσ̃

εpσ̃

(
−δkpδσσ̃e†pσ̃

)

= εkσ

(
−e†kσ

)
. (B.78)
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[e†kσ, VSD
∑

p,qσ̃

e†pσ̃eqσ̃] = VSD
∑

p,qσ̃

(
e†kσe

†
pσ̃eqσ̃ − e

†
pσ̃eqσ̃e

†
kσ

)

= VSD
∑

p,qσ̃

(
−e†pσ̃e

†
kσeqσ̃ − e

†
pσ̃eqσ̃e

†
kσ

)

= VSD
∑

p,qσ̃

(
−e†pσ̃

(
δkqδσσ̃ − eqσ̃e†kσ

)
− e†pσ̃eqσ̃e

†
kσ

)

= VSD
∑

p,qσ̃

(
−δkqδσσ̃e†pσ̃ + e†pσ̃eqσ̃e

†
kσ − e

†
pσ̃eqσ̃e

†
kσ

)

= VSD
∑

p

(
−e†pσ

)
.

[e†kσ,Hdot-lead] = [e†kσ,
√

2V
∑

pσ̃

(e†pσ̃dσ̃ + d†σ̃epσ̃)]

= [e†kσ,
√

2V
∑

pσ̃

e†pσ̃dσ̃] + [e†kσ,
√

2V
∑

pσ̃

d†σ̃epσ̃]

=
√

2V
∑

pσ̃

(
e†kσe

†
pσ̃dσ̃ − e

†
pσ̃dσ̃e

†
kσ

)

+
√

2V
∑

pσ̃

(
e†kσd

†
σ̃epσ̃ − d

†
σ̃epσ̃e

†
kσ

)

=
√

2V
∑

pσ̃

(
e†kσe

†
pσ̃dσ̃ − e

†
kσe
†
pσ̃dσ̃

)

+
√

2V
∑

pσ̃

(
−d†σ̃e

†
kσepσ̃ − d

†
σ̃epσ̃e

†
kσ

)

=
√

2V
∑

pσ̃

(
−d†σ̃

)(
e†kσepσ̃ + epσ̃e

†
kσ

)

=
√

2V
∑

pσ̃

(
−d†σ̃

)
δkpδσ̃σ

=
√

2V
(
−d†σ

)
. (B.79)

(ω + ıη+)Gr
e†kσdσ

(ω) = 〈〈εkσ(−e†kσ); d†σ〉〉+ 〈〈VSD
∑

p

(−e†pσ); d†σ〉〉+ 〈〈
√

2V − d†σ; d†σ〉〉

= −εkσ〈〈e†kσ; d†σ〉〉 − VSD
∑

k

〈〈e†kσ; d†σ〉〉 −
√

2V 〈〈d†σ; d†σ〉〉 (B.80)

(ω + εkσ + ıη+)Gr
e†kσdσ

(ω) = −VSD
∑

k

Gr
e†kσdσ

(ω)−
√

2V Gr
d†σdσ

(ω) (B.81)

Let us divide the expression above by (ω + εkσ + ıη+):
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Gr
e†kσdσ

(ω) = −
VSD

∑
kG

r
e†kσdσ

(ω)

(ω + εkσ + ıη+)
−
√

2V Gr
d†σdσ

(ω)

(ω + εkσ + ıη+)

[
1 + (VSD)

∑

k

1

(ω + εkσ + ıη+)

]
Gr
e†kσdσ

(ω) = −
√

2V Gr
d†σdσ

(ω)

(ω + εkσ + ıη+)

Gr
e†kσdσ

(ω) = −
√

2V Gr
d†σdσ

(ω)(ω + εkσ + ıη+)−1

[
1 + (VSD)

∑
k

1
(ω+εkσ+ıη+)

] (B.82)

Substituting such a relation into Eq.(B.74), we get

(ω + εdσ + ıη+)Gr
d†σdσ

(ω) =
∑

k

2V 2(ω + εkσ + ıη+)−1Gr
d†σdσ

(ω)
[
1 + (VSD)

∑
k

1
(ω+εkσ+ıη+)

] − UGr
d†σndσ̄dσ

(ω)

+ thp
∑

σ̃

δσσ̃G
r
a†↑dσ

(ω) + ∆
∑

σ̃

δσσ̃G
r
a↑dσ(ω) (B.83)

As we have done previously,

∑

k

(
1

ω + εkσ + ıη+

)
= −ıπρkσ(ω) (B.84)

(ω + εdσ + ıη+)Gr
d†σdσ

(ω) =
2V 2 (−ıπρkσ(ω))Gr

d†σdσ
(ω)

[1 + (VSD) (−ıπρkσ(ω))]
− UGr

d†σndσ̄dσ
(ω)

+ thp
∑

σ̃

δσσ̃G
r
a†↑dσ

(ω) + ∆
∑

σ̃

δσσ̃G
r
a↑dσ(ω) (B.85)

(ω + εdσ + ıη+)Gr
d†σdσ

(ω) =

(
−ı2V 2πρkσ(ω)

)
Gr
d†σdσ

(ω)

[1 + (VSD) (−ıπρkσ(ω))]
− UGr

d†σndσ̄dσ
(ω)

+ thp
∑

σ̃

δσσ̃G
r
a†↑dσ

(ω) + ∆
∑

σ̃

δσσ̃G
r
a↑dσ(ω) (B.86)

(ω + εdσ + ıη+)Gr
d†σdσ

(ω) =

(
−ı2V 2πρkσ(ω)

)
Gr
d†σdσ

(ω)

[1 + (VSD) (−ıπρkσ(ω))]
− UGr

d†σndσ̄dσ
(ω)

+ thp
∑

σ̃

δσσ̃G
r
a†↑dσ

(ω) + ∆
∑

σ̃

δσσ̃G
r
a↑dσ(ω) (B.87)

Following previous definitions, Γσ = 2V 2πρkσ(ω).
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(ω + εdσ + ıη+)Gr
d†σdσ

(ω) =
−ıΓσGr

d†σdσ
(ω)

(1− ıVSDπρkσ(ω))
− UGr

d†σndσ̄dσ
(ω)

+ thp
∑

σ̃

δσσ̃G
r
a†↑dσ

(ω) + ∆
∑

σ̃

δσσ̃G
r
a↑dσ(ω) (B.88)

As we have stated, VSDπρkσ(ω) =
√
x. Thus,

(ω + εdσ + ıη+)Gr
d†σdσ

(ω) =
−ıΓ↑Gr

d†σdσ
(ω)

(1− ı√x)
− UGr

d†σndσ̄dσ
(ω)

+ thp
∑

σ̃

δσσ̃G
r
a†↑dσ

(ω) + ∆
∑

σ̃

δσσ̃G
r
a↑dσ(ω) (B.89)

−ıΓσ
(1− ı√x)

(1 + ı
√
x)

(1 + ı
√
x)

=
−ıΓσ (1 + ı

√
x)

(1 + x)
=

√
xΓσ

(1 + x)
− ıΓσ

(1 + x)
(B.90)

Comparing with Eq.(B.32):

−
( √

xΓσ
(1 + x)

− ıΓσ
(1 + x)

)
= −

√
xΓσ

(1 + x)
+

ıΓσ
(1 + x)

= Σ̄↑ (B.91)

Σ̄σ = Re(Σσ)− Im(Σσ) (B.92)

with

Re(Σσ) = −
√
xΓσ

1 + x
(B.93)

Im(Σσ) = − ıΓσ
1 + x

(B.94)

Thus,

(ω + εdσ + ıη+)Gr
d†σdσ

(ω) = −Σ̄σG
r
d†σdσ

(ω)− UGr
d†σndσ̄dσ

(ω)

+ thp
∑

σ̃

δσσ̃G
r
a†↑dσ

(ω) + ∆
∑

σ̃

δσσ̃G
r
a↑dσ(ω), (B.95)

(ω + εdσ + Σ̄↑ + ıη+)Gr
d†σdσ

(ω) = −UGr
d†σndσ̄dσ

(ω) + thp
∑

σ̃

δσσ̃G
r
a†↑dσ

(ω) + ∆
∑

σ̃

δσσ̃G
r
a↑dσ(ω).

(B.96)

From Eqs.(B.43) and (B.52):
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Gra↑dσ(ω) = −
thp
∑

σ̃ G
r
dσ̃dσ

(ω)

(ω − δM + ıη+)
+

∆
∑

σ̃ G
r
d†σ̃dσ

(ω)

(ω − δM + ıη+)
(B.97)

Gr
a†↑dσ

(ω) =
thp
∑

σ̃ G
r
d†σ̃dσ

(ω)

(ω + δM + ıη+)
−

∆
∑

σ̃ G
r
dσ̃dσ

(ω)

(ω + δM + ıη+)
(B.98)

(ω + εdσ + Σ̄↑ + ıη+)Gr
d†σdσ

(ω) = −UGr
d†σndσ̄dσ

(ω)

+ thp
∑

σ̃

δσσ̃



thp
∑

σ̃ G
r
d†σ̃dσ

(ω)

(ω + δM + ıη+)
−

∆
∑

σ̃ G
r
dσ̃dσ

(ω)

(ω + δM + ıη+)




+ ∆
∑

σ̃

δσσ̃


−

thp
∑

σ̃ G
r
dσ̃dσ

(ω)

(ω − δM + ıη+)
+

∆
∑

σ̃ G
r
d†σ̃dσ

(ω)

(ω − δM + ıη+)


(B.99)

(ω + εdσ + Σ̄↑ + ıη+)Gr
d†σdσ

(ω) = −UGr
d†σndσ̄dσ

(ω)

+
∑

σσ̃

δσσ̃

[
(thp)

2

(ω + δM + ıη+)
+

(∆)2

(ω − δM + ıη+)

]
Gr
d†σ̃dσ

(ω)

− thp∆
∑

σσ̃

δσσ̃

[
1

(ω − δM + ıη+)
+

1

(ω + δM + ıη+)

]
Grdσ̃dσ(ω)(B.100)

(ω + εdσ + Σ̄↑ + ıη+)Gr
d†σdσ

(ω) = −UGr
d†σndσ̄dσ

(ω)− thp∆KGrdσdσ(ω)

+

[
(thp)

2

(ω + δM + ıη+)
+

(∆)2

(ω − δM + ıη+)

]
Gr
d†σdσ

(ω)

(B.101)

Now, we have the following relations between Green’s functions:

(ω − εdσ − Σσ + ıη+)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω)− thp∆KGrd†σdσ(ω)

+

[
(thp)

2

(ω − δM + ıη+)
+

(∆)2

(ω + δM + ıη+)

]
Grdσdσ(ω).

(B.102)

(ω + εdσ + Σ̄↑ + ıη+)Gr
d†σdσ

(ω) = −UGr
d†σndσ̄dσ

(ω)− thp∆KGrdσdσ(ω)

+

[
(thp)

2

(ω + δM + ıη+)
+

(∆)2

(ω − δM + ıη+)

]
Gr
d†σdσ

(ω)

(B.103)
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B.2 Hubbard-I approximation (1st order)

It is known that a mean field approximation is valid in the regime where Γ � U . Otherwise,

a better approximation is required to catch the effects introduced by the electronic correlation. In this

section we derive the so-called Hubbard-I approximation, which is valid when the temperature of the

system is bigger then the characteristic Kondo temperature (T � TK). Such approximation allows to

verify the Hubbard peaks arising due to Coulomb interaction.

Let us start from Eqs.(B.102) and (B.103):

(ω+ − εdσ − Σσ)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω)− thp∆KGrd†σdσ(ω)

+ K1G
r
dσdσ(ω), (B.104)

(ω+ + εdσ + Σ̄σ −K2)Gr
d†σdσ

(ω) = −UGr
d†σndσ̄dσ

(ω)− thp∆KGrdσdσ(ω) (B.105)

From Eq.(B.105):

Gr
d†σdσ

(ω) = −
UGr

d†σndσ̄dσ
(ω)

(ω+ + εdσ + Σ̄σ −K2)
−

thp∆KG
r
dσdσ

(ω)

(ω+ + εdσ + Σ̄σ −K2)
⇒

Gr
d†σdσ

(ω) = −
UGr

d†σndσ̄dσ
(ω)

(ω+ + εdσ + Σ̄σ −K2)
− thp∆K̄σGrdσdσ(ω) (B.106)

Let us substitute Eq.(B.106) into Eq.(B.104):

(ω+ − εdσ − Σσ)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω) +K1G
r
dσdσ(ω)

− thp∆K

[
−

UGr
d†σndσ̄dσ

(ω)

(ω+ + εdσ + Σ̄σ −K2)
− thp∆K̄σGrdσdσ(ω)

]
⇒

(ω+ − εdσ − Σσ)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω) +K1G
r
dσdσ(ω)

+ Uthp∆K̄G
r
d†σndσ̄dσ

(ω) + (thp∆)2KK̄σGrdσdσ(ω)⇒ (B.107)

(ω+ − εdσ − Σσ)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω) +
[
K1 + (thp∆)2KK̄σ

]

︸ ︷︷ ︸
ΣU=0

M,σ

Grdσdσ(ω)

+ Uthp∆K̄G
r
d†σndσ̄dσ

(ω)⇒ (B.108)
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(ω+ − εdσ − Σσ − ΣU=0
M,σ)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω) + Uthp∆K̄G

r
d†σndσ̄dσ

(ω) (B.109)

The equation above has two many-particle Green’s functions (four operators): Grdσndσ̄ ,dσ(ω) and

Gr
d†σndσ̄dσ

(ω). Below we present the procedure to apply the Hubbard-I decoupling in both of them.

B.2.1 EOM and decoupling scheme in Gr
dσndσ̄,dσ

(ω)

The many-particle retarded Green’s function is defined as:

Grcinckcj (t, t
′) = −ıθ(t− t′)

〈{
ci(t)c

†
k(t)ck(t), c

†
j(t
′)
}〉

, t > t′ (B.110)

where nck = c†kck is the number operator. Using the Zubarev notation:

Grcinckcj (ω) = 〈〈cic†kck; c
†
j〉〉 (B.111)

Thus, the EOM technique can be summarized as:

(ω + ıη+)Grcinckcj (ω) = 〈{cinck, c†j}〉+ 〈〈[cinck,H]; c†j〉〉 (B.112)

Let us apply the EOM procedure in order to obtain Grdσndσ̄ ,dσ(ω):

(ω + ıη+)Grdσndσ̄ ,dσ(ω) = 〈{dσndσ̄, d†σ}〉+ 〈〈[dσndσ̄,He]; d†σ〉〉 (B.113)

〈{dσndσ̄, d†σ}〉 =
〈(
dσndσ̄d

†
σ + d†σdσndσ̄

)〉

=
〈(
dσd

†
σ̄dσ̄d

†
σ + d†σdσndσ̄

)〉

=
〈(
dσd

†
σd
†
σ̄dσ̄ + d†σdσndσ̄

)〉

=
〈(
dσd

†
σ + d†σdσ

)
ndσ̄

〉

= 〈ndσ̄〉 (B.114)

(ω + ıη+)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉+ 〈〈[dσndσ̄,He]; d†σ〉〉 (B.115)

[dσndσ̄,He] = [dσndσ̄,Hlead] + [dσndσ̄,Hdot] + [dσndσ̄,Hdot-lead] + [dσndσ̄,HM]

= [dσndσ̄,Hdot] + [dσndσ̄,Hdot-lead] + [dσndσ̄,HM]. (B.116)

[dσndσ̄,Hdot] = [dσndσ̄,
∑

σ̃

εdσ̃d
†
σ̃dσ̃] + [dσndσ̄, Und↑nd↓] (B.117)
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[dσndσ̄,
∑

σ̃

εdσ̃d
†
σ̃dσ̃] =

∑

σ̃

εdσ̃

(
dσndσ̄d

†
σ̃dσ̃ − d

†
σ̃dσ̃dσndσ̄

)

=
∑

σ̃

εdσ̃

(
dσd

†
σ̄dσ̄d

†
σ̃dσ̃ − d

†
σ̃dσ̃dσndσ̄

)

=
∑

σ̃

εdσ̃

(
dσd

†
σ̄

(
δσ̄σ̃ − d†σ̃dσ̄

)
dσ̃ − d†σ̃dσ̃dσndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃dσd

†
σ̄dσ̃ − dσd†σ̄d†σ̃dσ̄dσ̃ − d

†
σ̃dσ̃dσndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃dσd

†
σ̄dσ̃ − dσd†σ̃d

†
σ̄dσ̃dσ̄ − d†σ̃dσ̃dσndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃dσd

†
σ̄dσ̃ − dσd†σ̃

(
δσ̄σ̃ − dσ̃d†σ̄

)
dσ̄ − d†σ̃dσ̃dσndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃dσd

†
σ̄dσ̃ − δσ̄σ̃dσd†σ̃dσ̄ + dσd

†
σ̃dσ̃d

†
σ̄dσ̄ − d†σ̃dσ̃dσndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃dσd

†
σ̄dσ̃ − δσ̄σ̃dσd†σ̃dσ̄ +

(
δσσ̃ − d†σ̃dσ

)
dσ̃ndσ̄ − d†σ̃dσ̃dσndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃dσd

†
σ̄dσ̃ − δσ̄σ̃dσd†σ̃dσ̄ + δσσ̃dσ̃ndσ̄ − d†σ̃dσdσ̃ndσ̄ − d

†
σ̃dσ̃dσndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃dσd

†
σ̄dσ̃ − δσ̄σ̃dσd†σ̃dσ̄ + δσσ̃dσ̃ndσ̄ + d†σ̃dσ̃dσndσ̄ − d

†
σ̃dσ̃dσndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃dσd

†
σ̄dσ̃ − δσ̄σ̃dσd†σ̃dσ̄ + δσσ̃dσ̃ndσ̄

)

= εdσ̄

(
dσd

†
σ̄dσ̄ − dσd†σ̄dσ̄

)
+ εdσdσndσ̄

= εdσdσndσ̄. (B.118)
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[dσndσ̄, Und↑nd↓] = U (dσndσ̄nd↑nd↓ − nd↑nd↓dσndσ̄)

= U
(
dσd

†
σ̄dσ̄d

†
↑d↑d

†
↓d↓ − d

†
↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
dσd

†
σ̄

(
δσ̄↑ − d†↑dσ̄

)
d↑d
†
↓d↓ − d

†
↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − dσd

†
σ̄d
†
↑dσ̄d↑d

†
↓d↓ − d

†
↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ + dσd

†
σ̄d
†
↑d↑dσ̄d

†
↓d↓ − d

†
↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − dσd

†
↑d
†
σ̄d↑dσ̄d

†
↓d↓ − d

†
↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − dσd

†
↑

(
δσ̄↑ − d↑d†σ̄

)
dσ̄d

†
↓d↓ − d

†
↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσd

†
↑dσ̄d

†
↓d↓ + dσd

†
↑d↑d

†
σ̄dσ̄d

†
↓d↓

)

− Ud†↑d↑d
†
↓d↓dσd

†
σ̄dσ̄

= U
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσd

†
↑dσ̄d

†
↓d↓ + dσd

†
↑d↑d

†
σ̄

(
δσ̄↓ − d†↓dσ̄

)
d↓

)

− Ud†↑d↑d
†
↓d↓dσd

†
σ̄dσ̄

= U
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσd

†
↑dσ̄d

†
↓d↓ + δσ̄↓dσd

†
↑d↑d

†
σ̄d↓

)

+ U
(
−dσd†↑d↑d

†
σ̄d
†
↓dσ̄d↓ − d

†
↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσd

†
↑dσ̄d

†
↓d↓ + δσ̄↓dσd

†
↑d↑d

†
σ̄d↓

)

+ U
(
−dσd†↑d↑d

†
↓d
†
σ̄d↓dσ̄ − d†↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσd

†
↑dσ̄d

†
↓d↓ + δσ̄↓dσd

†
↑d↑d

†
σ̄d↓

)

+ U
(
−dσd†↑d↑d

†
↓

(
δσ̄↓ − d↓d†σ̄

)
dσ̄ − d†↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσd

†
↑dσ̄d

†
↓d↓ + δσ̄↓dσd

†
↑d↑d

†
σ̄d↓

)

+ U
(
−δσ̄↓dσd†↑d↑d

†
↓dσ̄ +

(
δσ↑ − d†↑dσ

)
d↑d
†
↓d↓d

†
σ̄dσ̄ − d†↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

=
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσd

†
↑dσ̄d

†
↓d↓ + δσ̄↓dσd

†
↑d↑d

†
σ̄d↓

)

+ U
(
−δσ̄↓dσd†↑d↑d

†
↓dσ̄ + δσ↑d↑d

†
↓d↓d

†
σ̄dσ̄

)

+ U
(

+d†↑d↑dσd
†
↓d↓d

†
σ̄dσ̄ − d†↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

=
(
δσ̄↑dσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσd

†
↑dσ̄d

†
↓d↓ + δσ̄↓dσd

†
↑d↑d

†
σ̄d↓

)
(I)

+ U
(
−δσ̄↓dσd†↑d↑d

†
↓dσ̄ + δσ↑d↑d

†
↓d↓d

†
σ̄dσ̄

)
(II)

+ U
(
d†↑d↑dσd

†
↓d↓d

†
σ̄dσ̄ − d†↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)
(III) (B.119)

Let us work with expression (III) :
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(III) : U
(
d†↑d↑dσd

†
↓d↓d

†
σ̄dσ̄ − d†↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
d†↑d↑

(
δσ↓ − d†↓dσ

)
d↓d
†
σ̄dσ̄ − d†↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= U
(
δσ↓d

†
↑d↑d↓d

†
σ̄dσ̄ + d†↑d↑d

†
↓d↓dσd

†
σ̄dσ̄ − d†↑d↑d

†
↓d↓dσd

†
σ̄dσ̄

)

= Uδσ↓d
†
↑d↑d↓d

†
σ̄dσ̄ (B.120)

Let us consider σ =↑:

(I) : δ↓↑d↑d
†
↓d↑d

†
↓d↓ − δ↓↑d↑d

†
↑d↓d

†
↓d↓ + δ↓↓d↑d

†
↑d↑d

†
↓d↓ = d↑d

†
↑d↑d

†
↓d↓ (B.121)

(II) : U
(
−δ↓↓d↑d†↑d↑d

†
↓d↓ + δ↑↑d↑d

†
↓d↓d

†
↓d↓

)
= −d↑d†↑d↑d

†
↓d↓ + d↑d

†
↓d↓d

†
↓d↓ (B.122)

(III) : Uδσ↓d
†
↑d↑d↓d

†
σ̄dσ̄ = 0

Thus,

[dσndσ̄, Und↑nd↓] = U
(
d↑d
†
↑d↑d

†
↓d↓ − d↑d

†
↑d↑d

†
↓d↓ + d↑d

†
↓d↓d

†
↓d↓

)

= Ud↑d
†
↓d↓d

†
↓d↓

= Udσndσ̄. (B.123)

wherein we have used ndσ̄ndσ̄ = ndσ̄.

[dσndσ̄,Hdot-lead] = [dσndσ̄,
√

2V
∑

kσ̃

(e†kσ̃dσ̃ + d†σ̃ekσ̃)]

=
√

2V
∑

kσ̃

[dσndσ̄, e
†
kσ̃dσ̃]

︸ ︷︷ ︸
I

+
√

2V
∑

kσ̃

[dσndσ̄, d
†
σ̃ekσ̃]

︸ ︷︷ ︸
II

(B.124)
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I :
√

2V
∑

kσ̃

[dσndσ̄, e
†
kσ̃dσ̃] =

√
2V
∑

kσ̃

(
dσndσ̄e

†
kσ̃dσ̃ − e

†
kσ̃dσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
−e†kσ̃dσndσ̄dσ̃ − e

†
kσ̃dσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
−e†kσ̃dσd

†
σ̄dσ̄dσ̃ − e†kσ̃dσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
e†kσ̃dσd

†
σ̄dσ̃dσ̄ − e†kσ̃dσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
e†kσ̃dσ

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ − e†kσ̃dσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
δσ̃σ̄e

†
kσ̃dσdσ̄ − e

†
kσ̃dσdσ̃d

†
σ̄dσ̄ − e†kσ̃dσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
δσ̃σ̄e

†
kσ̃dσdσ̄ + e†kσ̃dσ̃dσd

†
σ̄dσ̄ − e†kσ̃dσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
δσ̃σ̄e

†
kσ̃dσdσ̄

)
. (B.125)

II :
√

2V
∑

kσ̃

[dσndσ̄, d
†
σ̃ekσ̃] =

√
2V
∑

kσ̃

(
dσndσ̄d

†
σ̃ekσ̃ − d

†
σ̃ekσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
dσd

†
σ̄dσ̄d

†
σ̃ekσ̃ − d

†
σ̃ekσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
ekσ̃dσd

†
σ̄dσ̄d

†
σ̃ − d

†
σ̃ekσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
ekσ̃dσd

†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− d†σ̃ekσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
δσ̃σ̄ekσ̃dσd

†
σ̄ − ekσ̃dσd†σ̄d†σ̃dσ̄ − d

†
σ̃ekσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
δσ̃σ̄ekσ̃dσd

†
σ̄ + ekσ̃dσd

†
σ̃d
†
σ̄dσ̄ − d†σ̃ekσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
δσ̃σ̄ekσ̃dσd

†
σ̄ + ekσ̃

(
δσ̃σ − d†σ̃dσ

)
ndσ̄ − d†σ̃ekσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
δσ̃σ̄ekσ̃dσd

†
σ̄ + δσ̃σekσ̃ndσ̄ − ekσ̃d†σ̃dσndσ̄ − d

†
σ̃ekσ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
δσ̃σ̄ekσ̃dσd

†
σ̄ + δσ̃σekσ̃ndσ̄ − ekσ̃d†σ̃dσndσ̄ + ekσ̃d

†
σ̃dσndσ̄

)

=
√

2V
∑

kσ̃

(
δσ̃σ̄ekσ̃dσd

†
σ̄ + δσ̃σekσ̃ndσ̄

)
(B.126)

[dσndσ̄,Hdot-lead] =
√

2V
∑

kσ̃

(
δσ̃σ̄e

†
kσ̃dσdσ̄ + δσ̃σ̄ekσ̃dσd

†
σ̄ + δσ̃σekσ̃ndσ̄

)

=
√

2V
∑

k

(
−e†kσ̄dσ̄dσ + d†σ̄ekσ̄dσ + ekσndσ̄

)
. (B.127)
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(ω + ıη+)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉+ 〈〈εdσdσndσ̄; d†σ〉〉+ 〈〈Udσndσ̄; d†σ〉〉+ 〈〈−
√

2V
∑

k

e†kσ̄dσ̄dσ; d†σ〉〉

+
√

2V
∑

k

〈〈d†σ̄ekσ̄dσ; d†σ〉〉+
√

2V
∑

k

〈〈ekσndσ̄; d†σ〉〉+ 〈〈[dσndσ̄,HM]; d†σ〉〉

(ω + ıη+)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉+ εdσ〈〈dσndσ̄; d†σ〉〉+ U〈〈dσndσ̄; d†σ〉〉 −
√

2V
∑

k

〈〈e†kσ̄dσ̄dσ; d†σ〉〉

+
√

2V
∑

k

〈〈d†σ̄ekσ̄dσ; d†σ〉〉+
√

2V
∑

k

〈〈ekσndσ̄; d†σ〉〉+ 〈〈[dσndσ̄,HM]; d†σ〉〉

(B.128)

(ω − εdσ − U + ıη+)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉+
√

2V
∑

k

[
Gr
d†σ̄ekσ̄dσdσ

(ω)−Gr
e†kσ̄dσ̄dσ ,dσ

(ω) +Grekσndσ̄ ,dσ(ω)
]

+ 〈〈[dσndσ̄,HM]; d†σ〉〉 (B.129)

The first line of equation above is the well-known set of equations for an interacting dot between

metallic leads. The novelty is introduced by the term in second line, related to the presence of Kitaev

wire.

[dσndσ̄,HM] =

[
dσndσ̄, δM

(
a†↑a↑ −

1

2

)]
+

[
dσndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]

+

[
dσndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]

=

[
dσndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
+

[
dσndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]

(B.130)

[
dσndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

[
dσndσ̄, dσ̃a

†
↑

]
+ thp

∑

σ̃

[
dσndσ̄, a↑d

†
σ̃

]
, (B.131)
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thp
∑

σ̃

[
dσndσ̄, dσ̃a

†
↑

]
= thp

∑

σ̃

(
dσndσ̄dσ̃a

†
↑ − dσ̃a

†
↑dσndσ̄

)

= thp
∑

σ̃

(
dσd

†
σ̄dσ̄dσ̃a

†
↑ + dσ̃dσd

†
σ̄dσ̄a

†
↑

)

= thp
∑

σ̃

(
−dσ

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄a

†
↑ + dσ̃dσd

†
σ̄dσ̄a

†
↑

)

= thp
∑

σ̃

(
−δσ̃σ̄dσdσ̄a†↑ − dσ̃dσd

†
σ̄dσ̄a

†
↑ + dσ̃dσd

†
σ̄dσ̄a

†
↑

)

= thp
∑

σ̃

(
−δσ̃σ̄dσ̄a†↑dσ

)
, (B.132)

thp
∑

σ̃

[
dσndσ̄, a↑d

†
σ̃

]
= thp

∑

σ̃

(
dσndσ̄a↑d

†
σ̃ − a↑d

†
σ̃dσndσ̄

)

= thp
∑

σ̃

(
dσd

†
σ̄dσ̄a↑d

†
σ̃ − a↑d

†
σ̃dσd

†
σ̄dσ̄

)

= thp
∑

σ̃

(
−a↑dσd†σ̄dσ̄d†σ̃ − a↑d

†
σ̃dσd

†
σ̄dσ̄

)

= thp
∑

σ̃

(
−a↑dσd†σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− a↑d†σ̃dσd

†
σ̄dσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a↑dσd†σ̄ − a↑dσd†σ̃d

†
σ̄dσ̄ − a↑d†σ̃dσd

†
σ̄dσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a↑dσd†σ̄ − a↑

(
δσ̃σ − d†σ̃dσ

)
d†σ̄dσ̄ − a↑d†σ̃dσd

†
σ̄dσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄a↑d

†
σ̄dσ − δσ̃σd†σ̄dσ̄a↑ + a↑d

†
σ̃dσd

†
σ̄dσ̄ − a↑d†σ̃dσd

†
σ̄dσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄a↑d

†
σ̄dσ − δσ̃σd†σ̄dσ̄a↑

)
, (B.133)

[
dσndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

(
−δσ̃σ̄dσ̄a†↑dσ + δσ̃σ̄a↑d

†
σ̄dσ − δσ̃σa↑ndσ̄

)
.(B.134)

[
dσndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

[dσndσ̄, dσ̃a↑] + ∆
∑

σ̃

[
dσndσ̄, a

†
↑d
†
σ̃

]
, (B.135)
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∆
∑

σ̃

[dσndσ̄, dσ̃a↑] = ∆
∑

σ̃

(
dσd

†
σ̄dσ̄dσ̃a↑ − dσ̃a↑dσd†σ̄dσ̄

)

= ∆
∑

σ̃

(
−dσd†σ̄dσ̃dσ̄a↑ + dσ̃dσd

†
σ̄dσ̄a↑

)

= ∆
∑

σ̃

(
−dσ

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄a↑ + dσ̃dσd

†
σ̄dσ̄a↑

)

= ∆
∑

σ̃

(
−δσ̃σ̄dσdσ̄a↑ − dσ̃dσd†σ̄dσ̄a↑ + dσ̃dσd

†
σ̄dσ̄a↑

)

= ∆
∑

σ̃

(−δσ̃σ̄dσ̄a↑dσ) , (B.136)

∆
∑

σ̃

[
dσndσ̄, a

†
↑d
†
σ̃

]
= ∆

∑

σ̃

(
dσd

†
σ̄dσ̄a

†
↑d
†
σ̃ − a

†
↑d
†
σ̃dσd

†
σ̄dσ̄

)

= ∆
∑

σ̃

(
−a†↑dσd

†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− a†↑d

†
σ̃dσd

†
σ̄dσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄a†↑dσd

†
σ̄ − a†↑

(
δσ̃σ − d†σ̃dσ

)
d†σ̄dσ̄ − a†↑d

†
σ̃dσd

†
σ̄dσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄a†↑dσd

†
σ̄ − δσ̃σd†σ̄dσ̄a†↑ + a†↑d

†
σ̃dσd

†
σ̄dσ̄ − a†↑d

†
σ̃dσd

†
σ̄dσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a

†
↑d
†
σ̄dσ − δσ̃σd†σ̄dσ̄a†↑

)
, (B.137)

[
dσndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

(
−δσ̃σ̄dσ̄a↑dσ + δσ̃σ̄a

†
↑d
†
σ̄dσ − δσ̃σa†↑ndσ̄

)
.(B.138)

Thus,

(ω+ − εdσ − U)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉
+
√

2V
∑

k

[
Gr
d†σ̄ekσ̄dσdσ

(ω)−Gr
e†kσ̄dσ̄dσ ,dσ

(ω) +Grekσndσ̄ ,dσ(ω)
]

+ thp
∑

σ̃

δσ̃σ̄〈〈a↑d†σ̄dσ; d†σ〉〉 − thp
∑

σ̃

δσ̃σ̄〈〈dσ̄a†↑dσ; d†σ〉〉

− thp
∑

σ̃

δσ̃σ〈〈a↑ndσ̄; d†σ〉〉

+ ∆
∑

σ̃

δσ̃σ̄〈〈a†↑d
†
σ̄dσ; d†σ〉〉 −∆

∑

σ̃

δσ̃σ̄〈〈dσ̄a↑dσ; d†σ〉〉

− ∆
∑

σ̃

δσ̃σ〈〈a†↑d
†
σ̄dσ̄; d†σ〉〉 (B.139)
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(ω+ − εdσ − U)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉
+
√

2V
∑

k

[
Gr
d†σ̄ekσ̄dσdσ

(ω)−Gr
e†kσ̄dσ̄dσ ,dσ

(ω) +Grekσndσ̄ ,dσ(ω)
]

+ thp
∑

σ̃

δσ̃σ̄G
r
a↑d
†
σ̄dσdσ

(ω)− thp
∑

σ̃

δσ̃σ̄G
r
dσ̄a
†
↑dσdσ

(ω)

− thp
∑

σ̃

δσ̃σG
r
a↑ndσ̄dσ(ω)

+ ∆
∑

σ̃

δσ̃σ̄G
r
a†↑d
†
σ̄dσ ;dσ

(ω)−∆
∑

σ̃

δσ̃σ̄G
r
dσ̄a↑dσdσ(ω)

− ∆
∑

σ̃

δσ̃σG
r
a†↑ndσ̄dσ

(ω) (B.140)

(ω+ − εdσ − U)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉
+
√

2V
∑

k

[
Gr
d†σ̄ekσ̄dσdσ

(ω)−Gr
e†kσ̄dσ̄dσ ,dσ

(ω) +Grekσndσ̄ ,dσ(ω)
]

+ thp
∑

σ̃

[
δσ̃σ̄G

r
a↑d
†
σ̄dσdσ

(ω)− δσ̃σ̄Grdσ̄a†↑dσdσ(ω)− δσ̃σGra↑ndσ̄dσ(ω)

]

+ ∆
∑

σ̃

[
δσ̃σ̄G

r
a†↑d
†
σ̄dσ ;dσ

(ω)− δσ̃σ̄Grdσ̄a↑dσdσ(ω)− δσ̃σGra†↑ndσ̄dσ(ω)

]

(B.141)

We draw attention for this point of the calculus, wherein we will apply the first step of Hubbard-I

approximation, consisting of truncate the following many-particle Green’s functions:

Gr
d†σ̄ekσ̄dσdσ

(ω) = 〈d†σ̄ekσ̄〉Grdσdσ(ω), (B.142)

Gr
e†kσ̄dσ̄dσ ,dσ

(ω) = 〈e†kσ̄dσ̄〉Grdσdσ(ω), (B.143)

Gr
a↑d
†
σ̄dσdσ

(ω) = 〈a↑d†σ̄〉Grdσdσ(ω), (B.144)

Gr
dσ̄a
†
↑dσdσ

(ω) = 〈dσ̄a†↑〉Grdσdσ(ω), (B.145)

Gr
a†↑d
†
σ̄dσ ;dσ

(ω) = 〈a†↑d
†
σ̄〉Grdσdσ(ω), (B.146)

Grdσ̄a↑dσdσ(ω) = 〈dσ̄a↑〉Grdσdσ(ω). (B.147)

Then,
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(ω+ − εdσ − U)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉
+
√

2V
∑

k

[
〈d†σ̄ekσ̄〉Grdσdσ(ω)− 〈e†kσ̄dσ̄〉Grdσdσ(ω) +Grekσndσ̄ ,dσ(ω)

]

+ thp
∑

σ̃

[
δσ̃σ̄〈a↑d†σ̄〉Grdσdσ(ω)− δσ̃σ̄〈dσ̄a†↑〉Grdσdσ(ω)− δσ̃σGra↑ndσ̄dσ(ω)

]

+ ∆
∑

σ̃

[
δσ̃σ̄〈a†↑d

†
σ̄〉Grdσdσ(ω)− δσ̃σ̄〈dσ̄a↑〉Grdσdσ(ω)− δσ̃σGra†↑ndσ̄dσ(ω)

]

(B.148)

However,

〈d†σ̄ekσ̄〉Grdσdσ(ω) = 〈e†kσ̄dσ̄〉Grdσdσ(ω) (B.149)

δσ̃σ̄〈a↑d†σ̄〉Grdσdσ(ω) = δσ̃σ̄〈dσ̄a†↑〉Grdσdσ(ω) (B.150)

δσ̃σ̄〈a†↑d
†
σ̄〉Grdσdσ(ω) = δσ̃σ̄〈dσ̄a↑〉Grdσdσ(ω) (B.151)

Thus,

(ω+ − εdσ − U)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉+
√

2V
∑

k

Grekσndσ̄ ,dσ(ω)− thp
∑

σ̃

δσ̃σG
r
a↑ndσ̄dσ(ω)

− ∆
∑

σ̃

δσ̃σG
r
a†↑ndσ̄dσ

(ω) (B.152)

Following the Hubbard-I proposal, let us apply the EOM to obtain Grekσndσ̄ ,dσ(ω):

(ω + ıη+)Grekσndσ̄ ,dσ(ω) = 〈{ekσndσ̄, d†σ}〉+ 〈〈[ekσndσ̄,He]; d†σ〉〉 (B.153)

〈{ekσndσ̄, d†σ}〉 = 〈ekσndσ̄d†σ + d†σekσndσ̄〉
= 〈ekσd†σ̄dσ̄d†σ + d†σekσndσ̄〉
= 〈−d†σekσd†σ̄dσ̄ + d†σekσndσ̄〉
= 0. (B.154)

(ω + ıη+)Grekσndσ̄ ,dσ(ω) = 〈〈[ekσndσ̄,He]; d†σ〉〉 (B.155)

[ekσndσ̄,He] = [ekσndσ̄,Hlead] + [ekσndσ̄,Hdot] + [ekσndσ̄,Hdot-lead] + [ekσndσ̄,HM](B.156)
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[ekσndσ̄,Hlead] = [ekσndσ̄,
∑

pσ̃

εpσ̃e
†
pσ̃epσ̃] + [ekσndσ̄, VSD

∑

p,qσ̃

e†pσ̃eqσ̃] (B.157)

[ekσndσ̄,
∑

pσ̃

εpσ̃e
†
pσ̃epσ̃] =

∑

pσ̃

εpσ̃

(
ekσndσ̄e

†
pσ̃epσ̃ − e

†
pσ̃epσ̃ekσndσ̄

)

=
∑

pσ̃

εpσ̃

(
ekσe

†
pσ̃epσ̃ndσ̄ − e

†
pσ̃epσ̃ekσndσ̄

)

=
∑

pσ̃

εpσ̃

(
ekσe

†
pσ̃epσ̃ndσ̄ + e†pσ̃ekσepσ̃ndσ̄

)

=
∑

pσ̃

εpσ̃

(
ekσe

†
pσ̃epσ̃ndσ̄ +

(
δpkδσ̃σ − ekσe†pσ̃

)
epσ̃ndσ̄

)

=
∑

pσ̃

εpσ̃

(
ekσe

†
pσ̃epσ̃ndσ̄ + δpkδσ̃σepσ̃ndσ̄ − ekσe†pσ̃epσ̃ndσ̄

)

= εkσ (ekσndσ̄) (B.158)

[ekσndσ̄, VSD
∑

p,qσ̃

e†pσ̃eqσ̃] = VSD
∑

p,qσ̃

(
ekσndσ̄e

†
pσ̃eqσ̃ − e

†
pσ̃eqσ̃ekσndσ̄

)

= VSD
∑

p,qσ̃

(
ekσe

†
pσ̃eqσ̃ndσ̄ − e

†
pσ̃eqσ̃ekσndσ̄

)

= VSD
∑

p,qσ̃

(
ekσe

†
pσ̃eqσ̃ndσ̄ + e†pσ̃ekσeqσ̃ndσ̄

)

= VSD
∑

p,qσ̃

(
ekσe

†
pσ̃eqσ̃ndσ̄ +

(
δpkδσ̃σ − ekσe†pσ̃

)
eqσ̃ndσ̄

)

= VSD
∑

p,qσ̃

(
ekσe

†
pσ̃eqσ̃ndσ̄ + δpkδσ̃σeqσ̃ndσ̄ − ekσe†pσ̃eqσ̃ndσ̄

)

= VSD
∑

q

(eqσndσ̄) . (B.159)

[ekσndσ̄,Hdot] = [ekσndσ̄,
∑

σ̃

εdσ̃d
†
σ̃dσ̃] + [ekσndσ̄, Und↑nd↓] (B.160)
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[ekσndσ̄,
∑

σ̃

εdσ̃d
†
σ̃dσ̃] =

∑

σ̃

εdσ̃

(
ekσndσ̄d

†
σ̃dσ̃ − d

†
σ̃dσ̃ekσndσ̄

)

=
∑

σ̃

εdσ̃

(
ekσd

†
σ̄dσ̄d

†
σ̃dσ̃ − ekσd

†
σ̃dσ̃ndσ̄

)

=
∑

σ̃

εdσ̃

(
ekσd

†
σ̄

(
δσ̄σ̃ − d†σ̃dσ̄

)
dσ̃ − ekσd†σ̃dσ̃ndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃ekσd

†
σ̄dσ̃ − ekσd†σ̄d†σ̃dσ̄dσ̃ − ekσd

†
σ̃dσ̃ndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃ekσd

†
σ̄dσ̃ − ekσd†σ̃d

†
σ̄dσ̃dσ̄ − ekσd†σ̃dσ̃ndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃ekσd

†
σ̄dσ̃ − ekσd†σ̃

(
δσ̄σ̃ − dσ̃d†σ̄

)
dσ̄ − ekσd†σ̃dσ̃ndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃ekσd

†
σ̄dσ̃ − δσ̄σ̃ekσd†σ̃dσ̄ + ekσd

†
σ̃dσ̃d

†
σ̄dσ̄ − ekσd†σ̃dσ̃ndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̄σ̃ekσd

†
σ̄dσ̃ − δσ̄σ̃ekσd†σ̃dσ̄

)

= εdσ̄

(
ekσ̄d

†
σ̄dσ̄ − ekσ̄d†σ̄dσ̄

)
= 0. (B.161)
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[ekσndσ̄, Und↑nd↓] = U (ekσndσ̄nd↑nd↓ − nd↑nd↓ekσndσ̄)

= U
(
ekσd

†
σ̄dσ̄d

†
↑d↑d

†
↓d↓ − ekσnd↑nd↓ndσ̄

)

= U
(
ekσd

†
σ̄

(
δσ̄↑ − d†↑dσ̄

)
d↑d
†
↓d↓ − ekσnd↑nd↓ndσ̄

)

= U
(
δσ̄↑ekσd

†
σ̄d↑d

†
↓d↓ − ekσd

†
σ̄d
†
↑dσ̄d↑d

†
↓d↓ − ekσnd↑nd↓ndσ̄

)

= U
(
δσ̄↑ekσd

†
σ̄d↑d

†
↓d↓ − ekσd

†
↑d
†
σ̄d↑dσ̄d

†
↓d↓ − ekσnd↑nd↓ndσ̄

)

= U
(
δσ̄↑ekσd

†
σ̄d↑d

†
↓d↓ − ekσd

†
↑

(
δσ̄↑ − d↑d†σ̄

)
dσ̄d

†
↓d↓

)

+ U (−ekσnd↑nd↓ndσ̄)

= U
(
δσ̄↑ekσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσ̄d

†
↓d↓ekσd

†
↑ + ekσd

†
↑d↑d

†
σ̄dσ̄d

†
↓d↓

)

+ U (−ekσnd↑nd↓ndσ̄)

= U
(
δσ̄↑ekσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσ̄d

†
↓d↓ekσd

†
↑ − ekσnd↑nd↓ndσ̄

)

+ U
(
ekσd

†
↑d↑d

†
σ̄

(
δσ̄↓ − d†↓dσ̄

)
d↓

)

= U
(
δσ̄↑ekσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσ̄d

†
↓d↓ekσd

†
↑ − ekσnd↑nd↓ndσ̄

)

+ U
(
δσ̄↓ekσd

†
↑d↑d

†
σ̄d↓ − ekσd†↑d↑d

†
σ̄d
†
↓dσ̄d↓

)

= U
(
δσ̄↑ekσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσ̄d

†
↓d↓ekσd

†
↑ − ekσnd↑nd↓ndσ̄

)

+ U
(
δσ̄↓ekσd

†
↑d↑d

†
σ̄d↓ − ekσd†↑d↑d

†
↓

(
δσ̄↓ − d↓d†σ̄

)
dσ̄

)

= U
(
δσ̄↑ekσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑dσ̄d

†
↓d↓ekσd

†
↑ − ekσnd↑nd↓ndσ̄

)

+ U
(
δσ̄↓ekσd

†
↑d↑d

†
σ̄d↓ − δσ̄↓ekσd†↑d↑d

†
↓dσ̄ + ekσnd↑nd↓ndσ̄

)

= U
(
δσ̄↑ekσd

†
σ̄d↑d

†
↓d↓ − δσ̄↑ekσd

†
↑dσ̄d

†
↓d↓

)

+ U
(
δσ̄↓ekσd

†
↑d↑d

†
σ̄d↓ − δσ̄↓ekσd†↑d↑d

†
↓dσ̄

)

=
σ=↑

U
(
ek↑d

†
↑d↑d

†
↓d↓ − ek↑d

†
↑d↑d

†
↓d↓

)
= 0. (B.162)

[ekσndσ̄,Hdot-lead] = [ekσndσ̄,
√

2V
∑

pσ̃

(e†pσ̃dσ̃ + d†σ̃epσ̃)]

=
√

2V
∑

pσ̃

[ekσndσ̄, e
†
pσ̃dσ̃]

︸ ︷︷ ︸
I

+
√

2V
∑

pσ̃

[ekσndσ̄, d
†
σ̃epσ̃]

︸ ︷︷ ︸
II

(B.163)
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I :
√

2V
∑

kσ̃

[ekσndσ̄, e
†
kσ̃dσ̃] =

√
2V
∑

pσ̃

(
ekσndσ̄e

†
pσ̃dσ̃ − e

†
pσ̃dσ̃ekσndσ̄

)

=
√

2V
∑

pσ̃

(
ekσd

†
σ̄dσ̄e

†
pσ̃dσ̃ + e†pσ̃ekσdσ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
ekσe

†
pσ̃d
†
σ̄dσ̄dσ̃ + e†pσ̃ekσdσ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
−ekσe†pσ̃

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ + e†pσ̃ekσdσ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
−δσ̃σ̄ekσe†pσ̃dσ̄ + ekσe

†
pσ̃dσ̃d

†
σ̄dσ̄ + e†pσ̃ekσdσ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
−δσ̃σ̄ekσe†pσ̃dσ̄ +

(
ekσe

†
pσ̃ + e†pσ̃ekσ

)
dσ̃d

†
σ̄dσ̄

)

=
√

2V
∑

pσ̃

(
−δσ̃σ̄ekσe†pσ̃dσ̄ + δkpδσσ̃dσ̃d

†
σ̄dσ̄

)

=
√

2V
(
−e†kσ̄dσ̄ekσ + dσd

†
σ̄dσ̄

)
. (B.164)

II :
√

2V
∑

pσ̃

[ekσndσ̄, d
†
σ̃epσ̃] =

√
2V
∑

pσ̃

(
ekσndσ̄d

†
σ̃epσ̃ − d

†
σ̃epσ̃ekσndσ̄

)

=
√

2V
∑

pσ̃

(
epσ̃ekσd

†
σ̄dσ̄d

†
σ̃ − epσ̃ekσd

†
σ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
epσ̃ekσd

†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− epσ̃ekσd†σ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
δσ̃σ̄epσ̃ekσd

†
σ̄ − epσ̃ekσd†σ̄d†σ̃dσ̄ − epσ̃ekσd

†
σ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
δσ̃σ̄epσ̃ekσd

†
σ̄ + epσ̃ekσd

†
σ̃ndσ̄ − epσ̃ekσd

†
σ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
δσ̃σ̄epσ̃ekσd

†
σ̄ + epσ̃ekσd

†
σ̃ndσ̄ − epσ̃ekσd

†
σ̃ndσ̄

)

=
√

2V
(
d†σ̄ekσ̄ekσ

)
. (B.165)

[ekσndσ̄,Hdot-lead] =
√

2V
(
−e†kσ̄dσ̄ekσ + dσd

†
σ̄dσ̄ + d†σ̄ekσ̄ekσ

)
(B.166)

(ω + ıη+)Grekσndσ̄ ,dσ(ω) = 〈〈εkσ (ekσndσ̄) ; d†σ〉〉+ 〈〈VSD
∑

q

(eqσndσ̄) ; d†σ〉〉+ 〈〈
√

2V
(
−e†kσ̄dσ̄ekσ

)
; d†σ〉〉

+ 〈〈
√

2V
(
dσd

†
σ̄dσ̄

)
; d†σ〉〉+ 〈〈

√
2V
(
d†σ̄ekσ̄ekσ

)
; d†σ〉〉

+ 〈〈[ekσndσ̄,HM]; d†σ〉〉 (B.167)
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(ω − εkσ + ıη+)Grekσndσ̄ ,dσ(ω) = VSD
∑

k

Grekσndσ̄ ,dσ(ω)−
√

2V Gr
e†kσ̄dσ̄ekσ ,dσ

(ω)

+
√

2V Grdσndσ̄ ,dσ(ω) +
√

2V Gr
d†σ̄ekσ̄ekσ ,dσ

(ω)

+ 〈〈[ekσndσ̄,HM]; d†σ〉〉 (B.168)

Before calculating the commutation relation of last line of equation above, let us apply the Hubbard-I

decoupling as follows:

(ω − εkσ + ıη+)Grekσndσ̄ ,dσ(ω) = VSD
∑

k

Grekσndσ̄ ,dσ(ω)−
√

2V 〈e†kσ̄dσ̄〉Grekσ ,dσ(ω)

+
√

2V Grdσndσ̄ ,dσ(ω) +
√

2V 〈d†σ̄ekσ̄〉Grekσ ,dσ(ω)

+ 〈〈[ekσndσ̄,HM]; d†σ〉〉 (B.169)

since 〈e†kσ̄dσ̄〉Grekσ ,dσ(ω) = 〈d†σ̄ekσ̄〉Grekσ ,dσ(ω).

(ω − εkσ + ıη+)Grekσndσ̄ ,dσ(ω) = VSD
∑

k

Grekσndσ̄ ,dσ(ω) +
√

2V Grdσndσ̄ ,dσ(ω)

+ 〈〈[ekσndσ̄,HM]; d†σ〉〉 (B.170)

Now, let us calculate 〈〈[ekσndσ̄,HM]; d†σ〉〉 :

[ekσndσ̄,HM] =

[
ekσndσ̄, δM

(
a†↑a↑ −

1

2

)]
+

[
ekσndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]

+

[
ekσndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
(B.171)

[
ekσndσ̄, δM

(
a†↑a↑ −

1

2

)]
= δM

(
ekσndσ̄a

†
↑a↑ − a

†
↑a↑ekσndσ̄

)

= δM

(
a†↑a↑ekσndσ̄ − a

†
↑a↑ekσndσ̄

)

= 0. (B.172)

[
ekσndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

[
ekσndσ̄, dσ̃a

†
↑

]

︸ ︷︷ ︸
I

+ thp
∑

σ̃

[
ekσndσ̄, a↑d

†
σ̃

]

︸ ︷︷ ︸
II

(B.173)
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I : thp
∑

σ̃

[
ekσndσ̄, dσ̃a

†
↑

]
= thp

∑

σ̃

(
ekσndσ̄dσ̃a

†
↑ − dσ̃a

†
↑ekσndσ̄

)

= thp
∑

σ̃

(
ekσd

†
σ̄dσ̄dσ̃a

†
↑ − ekσdσ̃a

†
↑ndσ̄

)

= thp
∑

σ̃

(
−ekσd†σ̄dσ̃dσ̄a†↑ − ekσdσ̃a

†
↑ndσ̄

)

= thp
∑

σ̃

(
−ekσ

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄a

†
↑ − ekσdσ̃a

†
↑ndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄ekσdσ̄a†↑ + ekσdσ̃a

†
↑ndσ̄ − ekσdσ̃a

†
↑ndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄dσ̄a†↑ekσ

)
. (B.174)

II : thp
∑

σ̃

[
ekσndσ̄, a↑d

†
σ̃

]
= thp

∑

σ̃

(
ekσndσ̄a↑d

†
σ̃ − a↑d

†
σ̃ekσndσ̄

)

= thp
∑

σ̃

(
−a↑ekσd†σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− a↑d†σ̃ekσndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a↑ekσd†σ̄ + a↑d

†
σ̃ekσd

†
σ̄dσ̄ − a↑d†σ̃ekσndσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄a↑d

†
σ̄ekσ

)
. (B.175)

[
ekσndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

δσ̃σ̄

(
−dσ̄a†↑ekσ + a↑d

†
σ̄ekσ

)
. (B.176)

[
ekσndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

[ekσndσ̄, dσ̃a↑]

︸ ︷︷ ︸
I

+ ∆
∑

σ̃

[
ekσndσ̄, a

†
↑d
†
σ̃

]

︸ ︷︷ ︸
II

(B.177)

I : ∆
∑

σ̃

[ekσndσ̄, dσ̃a↑] = ∆
∑

σ̃

(ekσndσ̄dσ̃a↑ − dσ̃a↑ekσndσ̄)

= ∆
∑

σ̃

(
−a↑ekσd†σ̄dσ̃dσ̄ − dσ̃a↑ekσndσ̄

)

= ∆
∑

σ̃

(
−a↑ekσ

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ − dσ̃a↑ekσndσ̄

)

= ∆
∑

σ̃

(−δσ̃σ̄a↑ekσdσ̄ + dσ̃a↑ekσndσ̄ − dσ̃a↑ekσndσ̄)

= ∆
∑

σ̃

(δσ̃σ̄a↑dσ̄ekσ) . (B.178)
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II : ∆
∑

σ̃

[
ekσndσ̄, a

†
↑d
†
σ

]
= ∆

∑

σ̃

(
ekσndσ̄a

†
↑d
†
σ − a†↑d†σekσndσ̄

)

= ∆
∑

σ̃

(
−a†↑ekσd

†
σ̄dσ̄d

†
σ − a†↑d†σekσndσ̄

)

= ∆
∑

σ̃

(
−a†↑ekσd

†
σ̄

(
δσ̃σ̄ − d†σdσ̄

)
− a†↑d†σekσndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄a†↑ekσd

†
σ̄ + a†↑ekσd

†
σ̄d
†
σdσ̄ − a†↑d†σekσndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄d†σ̄a†↑ekσ + a†↑d

†
σekσndσ̄ − a†↑d†σekσndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄d†σ̄a†↑ekσ

)
. (B.179)

[
ekσndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

δσ̃σ̄

(
a↑dσ̄ekσ − d†σ̄a†↑ekσ

)
. (B.180)

(ω − εkσ + ıη+)Grekσndσ̄ ,dσ(ω) = VSD
∑

k

Grekσndσ̄ ,dσ(ω) +
√

2V Grdσndσ̄ ,dσ(ω)

+ thp

(
−
∑

σ̃

δσ̃σ̄

)
〈〈dσ̄a†↑ekσ; d†σ〉〉+ thp

∑

σ̃

δσ̃σ̄〈〈a↑d†σ̄ekσ; d†σ〉〉

+ ∆
∑

σ̃

δσ̃σ̄〈〈a↑dσ̄ekσ; d†σ〉〉+ ∆

(
−
∑

σ̃

δσ̃σ̄

)
〈〈d†σ̄a†↑ekσ; d†σ〉〉(B.181)

(ω − εkσ + ıη+)Grekσndσ̄ ,dσ(ω) = VSD
∑

k

Grekσndσ̄ ,dσ(ω) +
√

2V Grdσndσ̄ ,dσ(ω)

+ thp

(
−
∑

σ̃

δσ̃σ̄

)
Gr
dσ̄a
†
↑ekσ ,dσ

(ω) + thp
∑

σ̃

δσ̃σ̄G
r
a↑d
†
σ̄ekσ ,dσ

(ω)

+ ∆
∑

σ̃

δσ̃σ̄G
r
a↑dσ̄ekσ ,dσ(ω) + ∆

(
−
∑

σ̃

δσ̃σ̄

)
Gr
d†σ̄a
†
↑ekσ ,dσ

(ω)(B.182)

(ω − εkσ + ıη+)Grekσndσ̄ ,dσ(ω) = VSD
∑

k

Grekσndσ̄ ,dσ(ω) +
√

2V Grdσndσ̄ ,dσ(ω)

+ (−1) thp
∑

σ̃

δσ̃σ̄〈dσ̄a†↑〉Grekσ ,dσ(ω) + thp
∑

σ̃

δσ̃σ̄〈a↑d†σ̄〉Grekσ ,dσ(ω)

+ ∆
∑

σ̃

δσ̃σ̄〈a↑dσ̄〉Grekσ ,dσ(ω)−∆
∑

σ̃

δσ̃σ̄〈d†σ̄a†↑〉Grekσ ,dσ(ω),(B.183)

Thus,
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(ω − εkσ + ıη+)Grekσndσ̄ ,dσ(ω) = VSD
∑

k

Grekσndσ̄ ,dσ(ω) +
√

2V Grdσndσ̄ ,dσ(ω) (B.184)

Let us divide the equation above by (ω − εkσ + ıη+):

Grekσndσ̄ ,dσ(ω) = VSD
∑

k

Grekσndσ̄ ,dσ(ω)

(ω − εkσ + ıη+)
+
√

2V
Grdσndσ̄ ,dσ(ω)

(ω − εkσ + ıη+)
(B.185)

Grekσndσ̄ ,dσ(ω) =
√

2V
(ω − εkσ + ıη+)−1

[
1− VSD

∑
k

(
1

ω−εkσ+ıη+

)]Grdσndσ̄ ,dσ(ω) (B.186)

Substituting such a result in Eq.(B.152):

(ω − εdσ − U + ıη+)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉+ 2V 2
∑

k

(ω − εkσ + ıη+)−1

[
1− VSD

∑
k

(
1

ω−εkσ+ıη+

)]Grdσndσ̄ ,dσ(ω)

−
∑

σ̃

δσ̃σthpG
r
a↑ndσ̄dσ(ω)−

∑

σ̃

δσ̃σ∆Gr
a†↑ndσ̄dσ

(ω) (B.187)

As we have performed previously
∑

k

(
1

ω−εkσ+ıη+

)
= −ıπρkσ(ω).

(ω − εdσ − U + ıη+)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉+

(
−ı2V 2πρkσ(ω)

)

[1 + ı (VSDπρkσ(ω))]
Grdσndσ̄ ,dσ(ω)

−
∑

σ̃

δσ̃σthpG
r
a↑ndσ̄dσ(ω)−

∑

σ̃

δσ̃σ∆Gr
a†↑ndσ̄dσ

(ω)

= 〈ndσ̄〉+
(−ıΓσ)

[1 + ı
√
x]
Grdσndσ̄ ,dσ(ω)

−
∑

σ̃

δσ̃σthpG
r
a↑ndσ̄dσ(ω)−

∑

σ̃

δσ̃σ∆Gr
a†↑ndσ̄dσ

(ω)

= 〈ndσ̄〉+ ΣσG
r
dσndσ̄ ,dσ

(ω)

−
∑

σ̃

δσ̃σthpG
r
a↑ndσ̄dσ(ω)−

∑

σ̃

δσ̃σ∆Gr
a†↑ndσ̄dσ

(ω)(B.188)

in which we have used the definition of Eq.(B.32). Thus,

(ω+ − εdσ − U − Σσ)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉 − thp
∑

σ̃

δσ̃σG
r
a↑ndσ̄dσ(ω)−∆

∑

σ̃

δσ̃σG
r
a†↑ndσ̄dσ

(ω)

(B.189)

Now, we will obtain Gra↑ndσ̄dσ(ω) :

(ω + ıη+)Gra↑ndσ̄ ,dσ(ω) = 〈{a↑ndσ̄, d†σ}〉+ 〈〈[a↑ndσ̄,He]; d†σ〉〉 (B.190)
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〈{a↑ndσ̄, d†σ}〉 = 〈a↑ndσ̄d†σ + d†σa↑ndσ̄〉
= 〈a↑d†σ̄dσ̄d†σ − a↑d†σndσ̄〉
= 〈a↑d†σd†σ̄dσ̄ − a↑d†σndσ̄〉
= 〈a↑d†σndσ̄ − a↑d†σndσ̄〉
= 0. (B.191)

(ω + ıη+)Gra↑ndσ̄ ,dσ(ω) = 〈〈[a↑ndσ̄,He]; d†σ〉〉 (B.192)

[a↑ndσ̄,He] = [a↑ndσ̄,Hlead] + [a↑ndσ̄,Hdot] + [a↑ndσ̄,Hdot-lead] + [a↑ndσ̄,HM]

= [a↑ndσ̄,Hdot] + [a↑ndσ̄,Hdot-lead] + [a↑ndσ̄,HM] (B.193)

[a↑ndσ̄,Hdot] = [a↑ndσ̄,
∑

σ

εdσd
†
σdσ] + [a↑ndσ̄, Und↑nd↓] (B.194)

[a↑ndσ̄,
∑

σ

εdσd
†
σdσ] =

∑

σ

εdσ

(
a↑ndσ̄d

†
σdσ − d†σdσa↑ndσ̄

)

=
∑

σ

εdσ

(
a↑d
†
σ̄dσ̄d

†
σdσ − a↑d†σdσndσ̄

)

=
∑

σ

εdσ

(
a↑d
†
σ̄

(
δσσ̄ − d†σdσ̄

)
dσ − a↑d†σdσndσ̄

)

=
∑

σ

εdσ

(
δσσ̄a↑d

†
σ̄dσ − a↑d†σ̄d†σdσ̄dσ − a↑d†σdσndσ̄

)

=
∑

σ

εdσ

(
δσσ̄a↑d

†
σ̄dσ − a↑d†σd†σ̄dσdσ̄ − a↑d†σdσndσ̄

)

=
∑

σ

εdσ

(
δσσ̄a↑d

†
σ̄dσ − a↑d†σ

(
δσσ̄ − dσd†σ̄

)
dσ̄ − a↑d†σdσndσ̄

)

=
∑

σ

εdσ

(
δσσ̄a↑d

†
σ̄dσ − δσσ̄a↑d†σdσ̄ + a↑d

†
σdσndσ̄ − a↑d†σdσndσ̄

)

= εdσ̄

(
a↑d
†
σ̄dσ̄ − a↑d†σ̄dσ̄

)
= 0. (B.195)
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[a↑ndσ̄, Und↑nd↓] = U (a↑ndσ̄nd↑nd↓ − nd↑nd↓a↑ndσ̄)

= U
(
a↑d
†
σ̄dσ̄d

†
↑d↑d

†
↓d↓ − nd↑nd↓a↑ndσ̄

)

= U
(
d†σ̄

(
δσ̄↑ − d†↑dσ̄

)
d↑d
†
↓d↓a↑ − nd↑nd↓ndσ̄a↑

)

= U
(
δσ̄↑d

†
σ̄d↑d

†
↓d↓a↑ − d

†
σ̄d
†
↑dσ̄d↑d

†
↓d↓a↑ − nd↑nd↓ndσ̄a↑

)

= U
(
δσ̄↑d

†
σ̄d↑d

†
↓d↓a↑ − d

†
↑d
†
σ̄d↑dσ̄d

†
↓d↓a↑ − nd↑nd↓ndσ̄a↑

)

= U
(
δσ̄↑d

†
σ̄d↑d

†
↓d↓a↑ − nd↑nd↓ndσ̄a↑

)

+ U
(
−d†↑

(
δσ̄↑ − d↑d†σ̄

)
dσ̄d

†
↓d↓a↑

)

= U
(
δσ̄↑d

†
σ̄d↑d

†
↓d↓a↑ − nd↑nd↓ndσ̄a↑

)

+ U
(
−δσ̄↑d†↑dσ̄d

†
↓d↓a↑ + d†↑d↑d

†
σ̄dσ̄d

†
↓d↓a↑

)

= U
(
δσ̄↑d

†
σ̄d↑d

†
↓d↓a↑ − nd↑nd↓ndσ̄a↑ − δσ̄↑d

†
↑dσ̄d

†
↓d↓a↑

)

+ U
(
d†↑d↑d

†
σ̄

(
δσ̄↓ − d†↓dσ̄

)
d↓a↑

)

= U
(
δσ̄↑d

†
σ̄d↑d

†
↓d↓a↑ − nd↑nd↓ndσ̄a↑ − δσ̄↑d

†
↑dσ̄d

†
↓d↓a↑

)

+ U
(
δσ̄↓d

†
↑d↑d

†
σ̄d↓a↑ − d†↑d↑d

†
σ̄d
†
↓dσ̄d↓a↑

)

= U
(
δσ̄↑d

†
σ̄d↑d

†
↓d↓a↑ − nd↑nd↓ndσ̄a↑ − δσ̄↑d

†
↑dσ̄d

†
↓d↓a↑

)

+ U
(
δσ̄↓d

†
↑d↑d

†
σ̄d↓a↑ − d†↑d↑d

†
↓

(
δσ̄↓ − d↓d†σ̄

)
dσ̄a↑

)

= U
(
δσ̄↑d

†
σ̄d↑d

†
↓d↓a↑ − nd↑nd↓ndσ̄a↑ − δσ̄↑d

†
↑dσ̄d

†
↓d↓a↑

)

+ U
(
δσ̄↓d

†
↑d↑d

†
σ̄d↓a↑ − δσ̄↓d†↑d↑d

†
↓dσ̄a↑ + d†↑d↑d

†
↓d↓d

†
σ̄dσ̄a↑

)

= U
(
δσ̄↑d

†
σ̄d↑d

†
↓d↓a↑ − nd↑nd↓ndσ̄a↑ − δσ̄↑d

†
↑dσ̄d

†
↓d↓a↑

)

+ U
(
δσ̄↓d

†
↑d↑d

†
σ̄d↓a↑ − δσ̄↓d†↑d↑d

†
↓dσ̄a↑ + nd↑nd↓ndσ̄a↑

)

= U
(
δσ̄↑d

†
σ̄d↑d

†
↓d↓a↑ − δσ̄↑d

†
↑dσ̄d

†
↓d↓a↑

)

+ U
(
δσ̄↓d

†
↑d↑d

†
σ̄d↓a↑ − δσ̄↓d†↑d↑d

†
↓dσ̄a↑

)

=
σ=↓

U
(
d†↑d↑d

†
↓d↓a↑ − d

†
↑d↑d

†
↓d↓a↑

)

= 0. (B.196)

[a↑ndσ̄,Hdot] = 0 (B.197)
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[a↑ndσ̄,Hdot-lead] = [a↑ndσ̄,
√

2V
∑

pσ̃

(e†pσ̃dσ̃ + d†σ̃epσ̃)]

=
√

2V
∑

pσ̃

[a↑ndσ̄, e
†
pσ̃dσ̃]

︸ ︷︷ ︸
I

+
√

2V
∑

pσ̃

[a↑ndσ̄, d
†
σ̃epσ̃]

︸ ︷︷ ︸
II

(B.198)

I :
√

2V
∑

pσ̃

[a↑ndσ̄, e
†
pσ̃dσ̃] =

√
2V
∑

pσ̃

(
a↑ndσ̄e

†
pσ̃dσ̃ − e

†
pσ̃dσ̃a↑ndσ̄

)

=
√

2V
∑

pσ̃

(
a↑e
†
pσ̃d
†
σ̄dσ̄dσ̃ − a↑e†pσ̃dσ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
−a↑e†pσ̃

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ − a↑e†pσ̃dσ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
−δσ̃σ̄a↑e†pσ̃dσ̄ + a↑e

†
pσ̃dσ̃ndσ̄ − a↑e

†
pσ̃dσ̃ndσ̄

)

=
√

2V
∑

p

(
−a↑e†pσ̄dσ̄

)
. (B.199)

II
√

2V
∑

pσ̃

[a↑ndσ̄, d
†
σ̃epσ̃] =

√
2V
∑

pσ̃

(
a↑ndσ̄d

†
σ̃epσ̃ − d

†
σ̃epσ̃a↑ndσ̄

)

=
√

2V
∑

pσ̃

(
epσ̃a↑d

†
σ̄dσ̄d

†
σ̃ − epσ̃a↑d

†
σ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
epσ̃a↑d

†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− epσ̃a↑d†σ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
δσ̃σ̄epσ̃a↑d

†
σ̄ + epσ̃a↑d

†
σ̃ndσ̄ − epσ̃a↑d

†
σ̃ndσ̄

)

=
√

2V
∑

p

(
epσ̄a↑d

†
σ̄

)
. (B.200)

[a↑ndσ̄,Hdot-lead] =
√

2V
∑

p

(
−e†pσ̄dσ̄a↑ + d†σ̄epσ̄a↑

)
. (B.201)

[a↑ndσ̄,HM] =

[
a↑ndσ̄, δM

(
a†↑a↑ −

1

2

)]
+

[
a↑ndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]

+

[
a↑ndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
, (B.202)
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[
a↑ndσ̄, δM

(
a†↑a↑ −

1

2

)]
= δM

(
a↑ndσ̄a

†
↑a↑ − a

†
↑a↑a↑ndσ̄

)

= δM

(
a↑a
†
↑a↑ndσ̄ + a†↑a↑a↑ndσ̄

)

= δM

((
a↑a
†
↑ + a†↑a↑

)
a↑ndσ̄

)

= δM (a↑ndσ̄) . (B.203)

[
a↑ndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

[
a↑ndσ̄, dσ̃a

†
↑

]

︸ ︷︷ ︸
I

+ thp
∑

σ̃

[
a↑ndσ̄, a↑d

†
σ̃

]

︸ ︷︷ ︸
II

(B.204)

I : thp
∑

σ̃

[
a↑ndσ̄, dσ̃a

†
↑

]
= thp

∑

σ̃

(
a↑ndσ̄dσ̃a

†
↑ − dσ̃a

†
↑a↑ndσ̄

)

= thp
∑

σ̃

(
a↑a
†
↑d
†
σ̄dσ̃dσ̄ − a†↑a↑dσ̃ndσ̄

)

= thp
∑

σ̃

(
a↑a
†
↑

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ − a†↑a↑dσ̃ndσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄a↑a

†
↑dσ̄ − a↑a

†
↑dσ̃ndσ̄ − a

†
↑a↑dσ̃ndσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄a↑a

†
↑dσ̄ −

(
1− a†↑a↑

)
dσ̃ndσ̄ − a†↑a↑dσ̃ndσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄a↑a

†
↑dσ̄ − d↑ndσ̄ + a†↑a↑dσ̃ndσ̄ − a

†
↑a↑dσ̃ndσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄dσ̄a↑a

†
↑ − dσ̃ndσ̄

)
(B.205)

II : thp
∑

σ̃

[
a↑ndσ̄, a↑d

†
σ̃

]
= thp

∑

σ̃

(
a↑ndσ̄a↑d

†
σ̃ − a↑d

†
σ̃a↑ndσ̄

)

= thp
∑

σ̃

(
a↑a↑d

†
σ̄dσ̄d

†
σ̃ − a↑a↑d

†
σ̃ndσ̄

)

= thp
∑

σ̃

(
a↑a↑d

†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− a↑a↑d†σ̃ndσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄a↑a↑d

†
σ̄ + a↑a↑d

†
σ̃dσ̄d

†
σ̄ − a↑a↑d†σ̃ndσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄a↑a↑d

†
σ̄ + a↑a↑d

†
σ̃dσ̄d

†
σ̄ − a↑a↑d†σ̃ndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a↑d†σ̄a↑

)
. (B.206)
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[
a↑ndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

(
δσ̃σ̄dσ̄a↑a

†
↑ − dσ̃ndσ̄ − δσ̃σ̄a↑d

†
σ̄a↑

)
(B.207)

[
a↑ndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

[a↑ndσ̄, dσ̃a↑]

︸ ︷︷ ︸
I

+ ∆
∑

σ̃

[
a↑ndσ̄, a

†
↑d
†
σ̃

]

︸ ︷︷ ︸
II

(B.208)

I : ∆
∑

σ̃

[a↑ndσ̄, dσ̃a↑] = ∆
∑

σ̃

(a↑ndσ̄dσ̃a↑ − dσ̃a↑a↑ndσ̄)

= ∆
∑

σ̃

(
a↑a↑d

†
σ̄dσ̃dσ̄ − a↑a↑dσ̃ndσ̄

)

= ∆
∑

σ̃

(
a↑a↑

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ − a↑a↑dσ̃ndσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a↑a↑dσ̄ − a↑a↑dσ̃d†σ̄dσ̄ − a↑a↑dσ̃ndσ̄

)

= ∆
∑

σ̃

(δσ̃σ̄a↑a↑dσ̄ + a↑a↑dσ̃ndσ̄ − a↑a↑dσ̃ndσ̄)

= ∆
∑

σ̃

(δσ̃σ̄a↑a↑dσ̄) . (B.209)

II : ∆
∑

σ̃

[
a↑ndσ̄, a

†
↑d
†
σ̃

]
= ∆

∑

σ̃

(
a↑ndσ̄a

†
↑d
†
σ̃ − a

†
↑d
†
σ̃a↑ndσ̄

)

= ∆
∑

σ̃

(
a↑a
†
↑d
†
σ̄dσ̄d

†
σ̃ + a†↑a↑d

†
σ̃ndσ̄

)

= ∆
∑

σ̃

(
a↑a
†
↑d
†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
+ a†↑a↑d

†
σ̃ndσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a↑a

†
↑d
†
σ̄ + a↑a

†
↑d
†
↑d
†
σ̄dσ̄ + a†↑a↑d

†
↑ndσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a↑a

†
↑d
†
σ̄ +

(
1− a†↑a↑

)
d†σ̃ndσ̄ + a†↑a↑d

†
σ̃ndσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a↑a

†
↑d
†
σ̄ + d†↑ndσ̄ − a

†
↑a↑d

†
σ̃ndσ̄ + a†↑a↑d

†
σ̃ndσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a↑a

†
↑d
†
σ̄ + d†σ̃ndσ̄

)
. (B.210)
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(ω + ıη+)Gra↑ndσ̄ ,dσ(ω) =
√

2V
∑

p

(
−〈〈e†pσ̄dσ̄a↑; d†σ〉〉+ 〈〈d†σ̄epσ̄a↑; d†σ〉〉

)

+ δM〈〈a↑ndσ̄; d†σ〉〉 − thp
∑

σ̃

〈〈dσndσ̄; d†σ〉〉

+ thp
∑

σ̃

δσ̃σ̄

(
〈〈dσ̄a↑a†↑; d†σ〉〉 − 〈〈a↑d

†
σ̄a↑; d

†
σ〉〉
)

+ ∆
∑

σ̃

〈〈d†σ̃ndσ̄; d†σ〉〉 −∆
∑

σ̃

δσ̃σ̄〈〈a↑a↑dσ̄; d†σ〉〉

+ ∆
∑

σ̃

δσ̃σ̄〈〈a↑a†↑d
†
σ̄; d†σ〉〉 (B.211)

(ω − δM + ıη+)Gra↑ndσ̄ ,dσ(ω) =
√

2V
∑

p

(
−Gr

e†pσ̄dσ̄a↑,dσ
(ω) +Gr

d†σ̄epσ̄a↑,dσ
(ω)

)

+ thp
∑

σ̃

(
−Grdσ̃ndσ̄ ,dσ(ω) + δσ̃σ̄G

r
dσ̄a↑a

†
↑,dσ

(ω)− δσ̃σ̄Gra↑d†σ̄a↑,dσ(ω)

)

+ ∆
∑

σ̃

(
Gr
d†σ̃ndσ̄ ,dσ

(ω) + δσ̃σ̄G
r
dσ̄a↑a↑,dσ(ω)− δσ̃σ̄Gra↑d†σ̄a†↑dσ(ω)

)

(B.212)

As can be shown in Eq.(B.189), the Green’s function above is multiplied by
∑

σ̃ δσ̃σ and therefore is

nonzero just for σ̃ = σ. Hence,

(ω − δM + ıη+)
∑

σ̃

δσ̃σG
r
a↑ndσ̄ ,dσ(ω) =

√
2V
∑

p

∑

σ̃

δσ̃σ

(
−Gr

e†pσ̄dσ̄a↑,dσ
(ω) +Gr

d†σ̄epσ̄a↑,dσ
(ω)

)

+ thp
∑

σ̃

δσ̃σ

(
−Grdσ̃ndσ̄ ,dσ(ω) + δσ̃σ̄G

r
dσ̄a↑a

†
↑,dσ

(ω)− δσ̃σ̄Gra↑d†σ̄a↑,dσ(ω)

)

+ ∆
∑

σ̃

δσ̃σ

(
Gr
d†σ̃ndσ̄ ,dσ

(ω) + δσ̃σ̄G
r
dσ̄a↑a↑,dσ(ω)− δσ̃σ̄Gra↑d†σ̄a†↑dσ(ω)

)

(B.213)

(ω − δM + ıη+)
∑

σ̃

δσ̃σG
r
a↑ndσ̄ ,dσ(ω) =

√
2V
∑

p

(
−Gr

e†pσ̄dσ̄a↑,dσ
(ω) +Gr

d†σ̄epσ̄a↑,dσ
(ω)

)

− thpG
r
dσndσ̄ ,dσ

(ω) + ∆Gr
d†σndσ̄ ,dσ

(ω) (B.214)

At this point, we apply the decoupling scheme as follows:

(ω − δM + ıη+)
∑

σ̃

δσ̃σG
r
a↑ndσ̄ ,dσ(ω) =

√
2V
∑

p

(
−〈e†pσ̄dσ̄〉Gra↑,dσ(ω) + 〈d†σ̄epσ̄〉Gra↑,dσ(ω)

)

− thpG
r
dσndσ̄ ,dσ

(ω) + ∆Gr
d†σndσ̄ ,dσ

(ω) (B.215)
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(ω − δM + ıη+)
∑

σ̃

δσ̃σG
r
a↑ndσ̄ ,dσ(ω) =

√
2V
∑

p

(
−〈e†pσ̄dσ̄〉Gra↑,dσ(ω) + 〈d†σ̄epσ̄〉Gra↑,dσ(ω)

)

− thpG
r
dσndσ̄ ,dσ

(ω) + ∆Gr
d†σndσ̄ ,dσ

(ω) (B.216)

∑

σ̃

δσ̃σG
r
a↑ndσ̄ ,dσ(ω) = −

thpG
r
dσndσ̄ ,dσ

(ω)

(ω+ − δM)
+

∆Gr
d†σndσ̄ ,dσ

(ω)

(ω+ − δM)
(B.217)

Now, we calculate Gr
a†↑ndσ̄ ,dσ

(ω):

(ω + ıη+)Gr
a†↑ndσ̄ ,dσ

(ω) = 〈{a†↑ndσ̄, d†σ}〉+ 〈〈[a†↑ndσ̄,He]; d†σ〉〉 (B.218)

〈{a†↑ndσ̄, d†σ}〉 = 〈a†↑ndσ̄d†σ + d†σa
†
↑ndσ̄〉

= 〈a†↑d
†
σ̄dσ̄d

†
σ − a†↑d†σndσ̄〉

= 〈a†↑d†σd
†
σ̄dσ̄ − a†↑d†σndσ̄〉

= 〈a†↑d†σndσ̄ − a
†
↑d
†
σndσ̄〉

= 0. (B.219)

(ω + ıη+)Gr
a†↑ndσ̄ ,dσ

(ω) = 〈〈[a†↑ndσ̄,He]; d†σ〉〉 (B.220)

[a†↑ndσ̄,He] = [a†↑ndσ̄,Hlead] + [a†↑ndσ̄,Hdot] + [a†↑ndσ̄,Hdot-lead] + [a†↑ndσ̄,HM]

= [a†↑ndσ̄,Hdot] + [a†↑ndσ̄,Hdot-lead] + [a†↑ndσ̄,HM] (B.221)

[a†↑ndσ̄,Hdot] = [a†↑ndσ̄,
∑

σ

εdσd
†
σdσ] + [a†↑ndσ̄, Und↑nd↓] = 0, (B.222)

since [a↑ndσ̄,Hdot] = 0.

[a†↑ndσ̄,Hdot-lead] = [a†↑ndσ̄,
√

2V
∑

pσ̃

(e†pσ̃dσ̃ + d†σ̃epσ̃)]

=
√

2V
∑

pσ̃

[a†↑ndσ̄, e
†
pσ̃dσ̃]

︸ ︷︷ ︸
I

+
√

2V
∑

pσ̃

[a†↑ndσ̄, d
†
σ̃epσ̃]

︸ ︷︷ ︸
II

(B.223)

Based on the result of Eq.(B.201):
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[a†↑ndσ̄,Hdot-lead] =
√

2V
∑

p

(
−e†pσ̄dσ̄a†↑ + d†σ̄epσ̄a

†
↑

)
. (B.224)

Further,

[a†↑ndσ̄,HM] =

[
a†↑ndσ̄, δM

(
a†↑a↑ −

1

2

)]
+

[
a†↑ndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]

+

[
a†↑ndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
, (B.225)

[
a†↑ndσ̄, δM

(
a†↑a↑ −

1

2

)]
= δM

(
a†↑ndσ̄a

†
↑a↑ − a

†
↑a↑a

†
↑ndσ̄

)

= δM

(
−a†↑a

†
↑a↑ndσ̄ − a

†
↑a↑a

†
↑ndσ̄

)

= δM

(
−a†↑

(
a†↑a↑ + a↑a

†
↑

)
ndσ̄

)

= δM

(
−a†↑ndσ̄

)
. (B.226)

[
a†↑ndσ̄,

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

[
a†↑ndσ̄, dσ̃a

†
↑

]

︸ ︷︷ ︸
I

+ thp
∑

σ̃

[
a†↑ndσ̄, a↑d

†
σ̃

]

︸ ︷︷ ︸
II

(B.227)

I : thp
∑

σ̃

[
a†↑ndσ̄, dσ̃a

†
↑

]
= thp

∑

σ̃

(
a†↑ndσ̄dσ̃a

†
↑ − dσ̃a

†
↑a
†
↑ndσ̄

)

= thp
∑

σ̃

(
a†↑d
†
σ̄dσ̄dσ̃a

†
↑ − dσ̃a

†
↑a
†
↑ndσ̄

)

= thp
∑

σ̃

(
a†↑a
†
↑

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ − a†↑a

†
↑dσ̃ndσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄a

†
↑a
†
↑dσ̄ − a

†
↑a
†
↑dσ̃d

†
σ̄dσ̄ + a†↑a

†
↑dσ̃ndσ̄

)

= thp
∑

σ̃

(
δσ̃σ̄a

†
↑a
†
↑dσ̄

)
(B.228)
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II : thp
∑

σ̃

[
a†↑ndσ̄, a↑d

†
σ̃

]
= thp

∑

σ̃

(
a†↑ndσ̄a↑d

†
σ̃ − a↑d

†
σ̃a
†
↑ndσ̄

)

= thp
∑

σ̃

(
a†↑a↑d

†
σ̄dσ̄d

†
σ̃ + a↑a

†
↑d
†
σ̃ndσ̄

)

= thp
∑

σ̃

(
a†↑a↑d

†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
+ a↑a

†
↑d
†
σ̃ndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a†↑d

†
σ̄a↑ − a†↑a↑d

†
σ̄d
†
σ̃dσ̄ + a↑a

†
↑d
†
σ̃ndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a†↑d

†
σ̄a↑ + a†↑a↑d

†
σ̃d
†
σ̄dσ̄ + a↑a

†
↑d
†
σ̃ndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a†↑d

†
σ̄a↑ +

(
a†↑a↑ + a↑a

†
↑

)
d†σ̃ndσ̄

)

= thp
∑

σ̃

(
d†σ̃ndσ̄ − δσ̃σ̄a

†
↑d
†
σ̄a↑

)
(B.229)

[
a†↑ndσ̄,

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

(
δσ̃σ̄a

†
↑a
†
↑dσ̄ − δσ̃σ̄a

†
↑d
†
σ̄a↑ + d†σ̃ndσ̄

)
. (B.230)

[
a†↑ndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

[
a†↑ndσ̄, dσ̃a↑

]

︸ ︷︷ ︸
I

+ ∆
∑

σ̃

[
a†↑ndσ̄, a

†
↑d
†
σ̃

]

︸ ︷︷ ︸
II

(B.231)

I : ∆
∑

σ̃

[
a†↑ndσ̄, dσ̃a↑

]
= ∆

∑

σ̃

(
a†↑ndσ̄dσ̃a↑ − dσ̃a↑a

†
↑ndσ̄

)

= ∆
∑

σ̃

(
a†↑d
†
σ̄dσ̄dσ̃a↑ − dσ̃a↑a†↑ndσ̄

)

= ∆
∑

σ̃

(
a†↑a↑d

†
σ̄dσ̃dσ̄ − a↑a†↑dσ̃ndσ̄

)

= ∆
∑

σ̃

(
a†↑a↑

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ − a↑a†↑dσ̃ndσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a

†
↑a↑dσ̄ − a

†
↑a↑dσ̃d

†
σ̄dσ̄ − a↑a†↑dσ̃ndσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a

†
↑a↑dσ̄ −

(
a†↑a↑ + a↑a

†
↑

)
dσ̃ndσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a

†
↑a↑dσ̄ − dσ̃ndσ̄

)
. (B.232)
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II : ∆
∑

σ̃

[
a†↑ndσ̄, a

†
↑d
†
σ̃

]
= ∆

(
a†↑ndσ̄a

†
↑d
†
σ̃ − a

†
↑d
†
σ̃a
†
↑ndσ̄

)

= ∆
(
a†↑d
†
σ̄dσ̄a

†
↑d
†
σ̃ − a

†
↑a
†
↑d
†
σ̃ndσ̄

)

= ∆
(
a†↑a
†
↑d
†
σ̄

(
δσ̃σ̄ − d†↑dσ̄

)
− a†↑a

†
↑d
†
σ̃ndσ̄

)

= ∆
(
δσ̃σ̄a

†
↑a
†
↑d
†
σ̄ − a†↑a

†
↑d
†
σ̄d
†
σ̃dσ̄ − a

†
↑a
†
↑d
†
σ̃ndσ̄

)

= ∆
(
δσ̃σ̄a

†
↑a
†
↑d
†
σ̄ + a†↑a

†
↑d
†
σ̃d
†
σ̄dσ̄ − a†↑a

†
↑d
†
σ̃ndσ̄

)

= ∆
(
δσ̃σ̄a

†
↑a
†
↑d
†
σ̄

)
. (B.233)

[
a†↑ndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

(
δσ̃σ̄a

†
↑a↑dσ̄ − dσ̃ndσ̄ + δσ̃σ̄a

†
↑a
†
↑d
†
σ̄

)
. (B.234)

(ω + ıη+)Gr
a†↑ndσ̄ ,dσ

(ω) =
√

2V
∑

p

(
−〈〈e†pσ̄dσ̄a†↑; d†σ〉〉+ 〈〈d†σ̄epσ̄a†↑; d†σ〉〉

)

+ (−δM) 〈〈a†↑ndσ̄; d†σ〉〉+ thp
∑

σ̃

〈〈d†σ̃ndσ̄; d†σ〉〉

+ thp
∑

σ̃

δσ̃σ̄

(
〈〈a†↑a

†
↑dσ̄; d†σ〉〉 − 〈〈a†↑d

†
σ̄a↑; d

†
σ〉〉
)

− ∆
∑

σ̃

〈〈dσ̃ndσ̄; d†σ〉〉 −∆
∑

σ̃

δσ̃σ̄〈〈a†↑a
†
↑d
†
σ̄; d†σ〉〉

+ ∆
∑

σ̃

δσ̃σ̄〈〈a†↑a↑dσ̄; d†σ〉〉 (B.235)

As can be noticed Eq.(B.189), Gr
a†↑ndσ̄ ,dσ

(ω) also is multiplied by
∑

σ̃ δσ̃σ. Hence, the same cancel-

lation process of Eq.(B.213) occurs in Eq.(B.235), yielding

(ω + δM + ıη+)
∑

σ̃

δσ̃σG
r
a†↑ndσ̄ ,dσ

(ω) =
√

2V
∑

p

(
−Gr

e†pσ̄dσ̄a
†
↑,dσ

(ω) +Gr
d†σ̄epσ̄a

†
↑,dσ

(ω)

)

+ thpG
r
d†σndσ̄ ,dσ

(ω)−∆Grdσndσ̄ ,dσ(ω) (B.236)

Applying the decoupling scheme:

(ω+ + δM)
∑

σ̃

δσ̃σG
r
a†↑ndσ̄ ,dσ

(ω) =
√

2V
∑

p

(
−〈e†pσ̄dσ̄〉Gra†↑,dσ(ω) + 〈d†σ̄epσ̄〉Gra†↑,dσ(ω)

)

+ thpG
r
d†σndσ̄ ,dσ

(ω)−∆Grdσndσ̄ ,dσ(ω)⇒ (B.237)
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∑

σ̃

δσ̃σG
r
a†↑ndσ̄ ,dσ

(ω) =
thpG

r
d†σndσ̄ ,dσ

(ω)

(ω+ + δM)
−

∆Grdσndσ̄ ,dσ(ω)

(ω+ + δM)
(B.238)

Below, we list the main results obtained so far, which come from Eqs.(B.189), (B.217) and (B.238):

(ω+ − εdσ − U − Σσ)Grdσndσ̄ ,dσ(ω) + thp
∑

σ̃

δσ̃σG
r
a↑ndσ̄dσ(ω) + ∆

∑

σ̃

δσ̃σG
r
a†↑ndσ̄dσ

(ω) = 〈ndσ̄〉,

(B.239)

∑

σ̃

δσ̃σG
r
a↑ndσ̄ ,dσ(ω) = −

thpG
r
dσndσ̄ ,dσ

(ω)

(ω+ − δM)
+

∆Gr
d†σndσ̄ ,dσ

(ω)

(ω+ − δM)
, (B.240)

∑

σ̃

δσ̃σG
r
a†↑ndσ̄ ,dσ

(ω) =
thpG

r
d†σndσ̄ ,dσ

(ω)

(ω+ + δM)
−

∆Grdσndσ̄ ,dσ(ω)

(ω+ + δM)
. (B.241)

The Eqs. (B.240) and (B.241) can be substituted in Eq.(B.239):

(ω+ − εdσ − U − Σσ)Grdσndσ̄ ,dσ(ω) + thp

[
−
thpG

r
dσndσ̄ ,dσ

(ω)

(ω+ − δM)
+

∆Gr
d†σndσ̄ ,dσ

(ω)

(ω+ − δM)

]

+∆

[
thpG

r
d†σndσ̄ ,dσ

(ω)

(ω+ + δM)
−

∆Grdσndσ̄ ,dσ(ω)

(ω+ + δM)

]
= 〈ndσ̄〉 ⇒

(ω+ − εdσ − U − Σσ)Grdσndσ̄ ,dσ(ω)−
[

t2hp
(ω+ − δM)

+
∆2

(ω+ + δM)

]
Grdσndσ̄ ,dσ(ω)

+thp∆

[
1

(ω+ − δM)
+

1

(ω+ + δM)

]
Gr
d†σndσ̄ ,dσ

(ω) = 〈ndσ̄〉(B.242)

Using the same definitions of Eqs.(B.189), (B.217) and (B.238) into the equation above, we find:

(ω+ − εdσ − U − Σσ)Grdσndσ̄ ,dσ(ω)−K1G
r
dσndσ̄ ,dσ

(ω) + thp∆KG
r
d†σndσ̄ ,dσ

(ω) = 〈ndσ̄〉 (B.243)

B.2.2 EOM and decoupling scheme in Gr

d
†
σndσ̄,dσ

(ω)

Continuing our endeavor to find the Green’s functionGσdd(ω), we now proceed to findGr
d†σndσ̄ ,dσ

(ω),

following the same steps of previous section. Let us start with:

(ω + ıη+)Gr
d†σndσ̄dσ

(ω) = 〈{d†σndσ̄, d†σ}〉+ 〈〈[d†σndσ̄,He]; d†σ〉〉 (B.244)
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〈{d†σndσ̄, d†σ}〉 =
〈
d†σndσ̄d

†
σ + d†σd

†
σndσ̄

〉

=
〈
d†σd

†
σ̄dσ̄d

†
σ + d†σd

†
σndσ̄

〉

=
〈
d†σd

†
σ̄

(
δσσ̄ − d†σdσ̄

)
+ d†σd

†
σndσ̄

〉

=
〈
δσσ̄d

†
σd
†
σ̄ − d†σd†σ̄d†σdσ̄ + d†σd

†
σndσ̄

〉

=
〈
δσσ̄d

†
σd
†
σ̄ − d†σd†σd†σ̄dσ̄ + d†σd

†
σndσ̄

〉

= δσσ̄

〈
d†σd

†
σ̄

〉
= 0, since δσσ̄ = 0 (B.245)

(ω + ıη+)Gr
d†σndσ̄dσ

(ω) = 〈〈[d†σndσ̄,He]; d†σ〉〉 (B.246)

[d†σndσ̄,He] = [d†σndσ̄,Hlead] + [d†σndσ̄,Hdot] + [d†σndσ̄,Hdot-lead] + [d†σndσ̄,HM]

= [d†σndσ̄,Hdot] + [d†σndσ̄,Hdot-lead] + [d†σndσ̄,HM]. (B.247)

[d†σndσ̄,Hdot] = [d†σndσ̄,
∑

σ̃

εdσ̃d
†
σ̃dσ̃] + [d†σndσ̄, Und↑nd↓] (B.248)
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[d†σndσ̄,
∑

σ̃

εdσ̃d
†
σ̃dσ̃] =

∑

σ̃

εdσ̃

(
d†σndσ̄d

†
σ̃dσ̃ − d

†
σ̃dσ̃d

†
σndσ̄

)

=
∑

σ̃

εdσ̃

(
d†σd

†
σ̄dσ̄d

†
σ̃dσ̃ − d

†
σ̃dσ̃d

†
σndσ̄

)

=
∑

σ̃

εdσ̃

(
d†σd

†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
dσ̃ − d†σ̃dσ̃d†σndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̃σ̄d

†
σd
†
σ̄dσ̃ − d†σd†σ̄d†σ̃dσ̄dσ̃ − d

†
σ̃dσ̃d

†
σndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̃σ̄d

†
σd
†
σ̄dσ̃ − d†σd†σ̃d

†
σ̄dσ̃dσ̄ − d†σ̃dσ̃d†σndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̃σ̄d

†
σd
†
σ̄dσ̃ − d†σd†σ̃

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ − d†σ̃dσ̃d†σndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̃σ̄d

†
σd
†
σ̄dσ̃ − δσ̃σ̄d†σd†σ̃dσ̄ + d†σd

†
σ̃dσ̃d

†
σ̄dσ̄ − d†σ̃dσ̃d†σndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̃σ̄d

†
σd
†
σ̄dσ̃ − δσ̃σ̄d†σd†σ̃dσ̄ − d

†
σ̃d
†
σdσ̃d

†
σ̄dσ̄ − d†σ̃dσ̃d†σndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̃σ̄d

†
σd
†
σ̄dσ̃ − δσ̃σ̄d†σd†σ̃dσ̄

)

+
∑

σ̃

εdσ̃

(
−d†σ̃

(
δσσ̃ − dσ̃d†σ

)
d†σ̄dσ̄ − d†σ̃dσ̃d†σndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̃σ̄d

†
σd
†
σ̄dσ̃ − δσ̃σ̄d†σd†σ̃dσ̄

)

+
∑

σ̃

εdσ̃

(
−δσσ̃d†σ̃d

†
σ̄dσ̄ + d†σ̃dσ̃d

†
σndσ̄ − d†σ̃dσ̃d†σndσ̄

)

=
∑

σ̃

εdσ̃

(
δσ̃σ̄d

†
σd
†
σ̄dσ̃ − δσ̃σ̄d†σd†σ̃dσ̄ − δσσ̃d

†
σ̃d
†
σ̄dσ̄

)

= εdσ

(
−d†σd†σ̄dσ̄

)
= εdσ

(
−d†σndσ̄

)
. (B.249)
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[d†σndσ̄, Und↑nd↓] = U
(
d†σndσ̄nd↑nd↓ − nd↑nd↓d†σndσ̄

)

= U
(
d†σd

†
σ̄dσ̄d

†
↑d↑d

†
↓d↓ − d

†
↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
d†σd

†
σ̄

(
δ↑σ̄ − d†↑dσ̄

)
d↑d
†
↓d↓ − d

†
↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
δ↑σ̄d

†
σd
†
σ̄d↑d

†
↓d↓ − d†σd

†
σ̄d
†
↑dσ̄d↑d

†
↓d↓ − d

†
↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
δ↑σ̄d

†
σd
†
σ̄d↑d

†
↓d↓ − d†σd

†
↑d
†
σ̄d↑dσ̄d

†
↓d↓ − d

†
↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
δ↑σ̄d

†
σd
†
σ̄d↑d

†
↓d↓ − d†σd

†
↑

(
δ↑σ̄ − d↑d†σ̄

)
dσ̄d

†
↓d↓

)

+ U
(
−d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
δ↑σ̄d

†
σd
†
σ̄d↑d

†
↓d↓ − δ↑σ̄d†σd

†
↑dσ̄d

†
↓d↓

)

+ U
(
d†σd

†
↑d↑d

†
σ̄dσ̄d

†
↓d↓ − d

†
↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
δ↑σ̄d

†
σd
†
σ̄d↑d

†
↓d↓ − δ↑σ̄d†σd

†
↑dσ̄d

†
↓d↓

)

+ U
(
d†σd

†
↑d↑d

†
σ̄

(
δ↓σ̄ − d†↓dσ̄

)
d↓ − d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
δ↑σ̄d

†
σd
†
σ̄d↑d

†
↓d↓ − δ↑σ̄d†σd

†
↑dσ̄d

†
↓d↓

)

+ U
(
δ↓σ̄d

†
σd
†
↑d↑d

†
σ̄d↓ − d†σd†↑d↑d

†
↓d
†
σ̄d↓dσ̄ − d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
δ↑σ̄d

†
σd
†
σ̄d↑d

†
↓d↓ − δ↑σ̄d†σd

†
↑dσ̄d

†
↓d↓ + δ↓σ̄d

†
σd
†
↑d↑d

†
σ̄d↓

)

+ U
(
−d†σd†↑d↑d

†
↓

(
δ↓σ̄ − d↓d†σ̄

)
dσ̄ − d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
δ↑σ̄d

†
σd
†
σ̄d↑d

†
↓d↓ − δ↑σ̄d†σd

†
↑dσ̄d

†
↓d↓ + δ↓σ̄d

†
σd
†
↑d↑d

†
σ̄d↓

)
I

+ U
(
−δ↓σ̄d†σd†↑d↑d

†
↓dσ̄ − d

†
↑d
†
σd↑d

†
↓d↓d

†
σ̄dσ̄ − d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)
II

(B.250)
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II : U
(
−δ↓σ̄d†σd†↑d↑d

†
↓dσ̄ − d

†
↑d
†
σd↑d

†
↓d↓d

†
σ̄dσ̄ − d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
−δ↓σ̄d†σd†↑d↑d

†
↓dσ̄ − d

†
↑

(
δσ↑ − d↑d†σ

)
d†↓d↓d

†
σ̄dσ̄

)

+ U
(
−d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
−δ↓σ̄d†σd†↑d↑d

†
↓dσ̄ − δσ↑d

†
↑d
†
↓d↓d

†
σ̄dσ̄ − d†↑d↑d

†
↓d
†
σd↓d

†
σ̄dσ̄

)

+ U
(
−d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
−δ↓σ̄d†σd†↑d↑d

†
↓dσ̄ − δσ↑d

†
↑d
†
↓d↓d

†
σ̄dσ̄

)

+ U
(
−d†↑d↑d

†
↓

(
δσ↓ − d↓d†σ

)
d†σ̄dσ̄ − d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
−δ↓σ̄d†σd†↑d↑d

†
↓dσ̄ − δσ↑d

†
↑d
†
↓d↓d

†
σ̄dσ̄

)

+ U
(
−δσ↓d†↑d↑d

†
↓d
†
σ̄dσ̄ + d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄ − d†↑d↑d

†
↓d↓d

†
σd
†
σ̄dσ̄

)

= U
(
−δ↓σ̄d†σd†↑d↑d

†
↓dσ̄ − δσ↑d

†
↑d
†
↓d↓d

†
σ̄dσ̄ − δσ↓d†↑d↑d

†
↓d
†
σ̄dσ̄

)
, (B.251)

[d†σndσ̄, Und↑nd↓] = U
(
δ↑σ̄d

†
σd
†
σ̄d↑d

†
↓d↓ − δ↑σ̄d†σd

†
↑dσ̄d

†
↓d↓ + δ↓σ̄d

†
σd
†
↑d↑d

†
σ̄d↓

)

+ U
(
−δ↓σ̄d†σd†↑d↑d

†
↓dσ̄ − δσ↑d

†
↑d
†
↓d↓d

†
σ̄dσ̄ − δσ↓d†↑d↑d

†
↓d
†
σ̄dσ̄

)
(B.252)

For σ =↑:

[d†σndσ̄, Und↑nd↓] = U
(
d†↑d
†
↑d↑d

†
↓d↓ − d

†
↑d
†
↑d↑d

†
↓d↓ − d

†
↑d
†
↓d↓d

†
↓d↓

)

= U
(
−d†↑d

†
↓d↓d

†
↓d↓

)

= U
(
−d†σndσ̄

)
, where we have used ndσ̄ndσ̄ = ndσ̄. (B.253)

[d†σndσ̄,Hdot-lead] = [d†σndσ̄,
√

2V
∑

kσ̃

(e†kσ̃dσ̃ + d†σ̃ekσ̃)]

=
√

2V
∑

kσ̃

[d†σndσ̄, e
†
kσ̃dσ̃]

︸ ︷︷ ︸
I

+
√

2V
∑

kσ̃

[d†σndσ̄, d
†
σ̃ekσ̃]

︸ ︷︷ ︸
II

(B.254)
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I :
√

2V
∑

kσ̃

[d†σndσ̄, e
†
kσ̃dσ̃] =

√
2V
∑

kσ̃

(
d†σndσ̄e

†
kσ̃dσ̃ − e

†
kσ̃dσ̃d

†
σndσ̄

)

=
√

2V
∑

kσ̃

(
d†σd

†
σ̄dσ̄e

†
kσ̃dσ̃ − e

†
kσ̃dσ̃d

†
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)

√
2V
∑
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†
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)
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√
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†
σd
†
σ̄dσ̃dσ̄ − e†kσ̃dσ̃d†σndσ̄

)

=
√

2V
∑

kσ̃

(
e†kσ̃d

†
σ

(
δσ̃σ̄ − dσ̃d†σ̄

)
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)

=
√

2V
∑

kσ̃

(
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†
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†
σdσ̄ − e†kσ̃d†σdσ̃d

†
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=
√
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(
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†
kσ̃d
†
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)
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=
√
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(
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†
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†
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†
σndσ̄ − e†kσ̃dσ̃d†σndσ̄

)

=
√

2V
∑

k

(
e†kσ̄d

†
σdσ̄ − e†kσd

†
σ̄dσ̄

)
. (B.255)

II :
√

2V
∑

kσ̃

[d†σndσ̄, d
†
σ̃ekσ̃] =

√
2V
∑

kσ̃

(
d†σndσ̄d

†
σ̃ekσ̃ − d

†
σ̃ekσ̃d

†
σndσ̄

)

=
√

2V
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(
d†σd

†
σ̄dσ̄d

†
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†
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=
√
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∑
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†
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†
σ̃ − d
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†
σndσ̄
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=
√

2V
∑

kσ̃

(
ekσ̃d

†
σd
†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− d†σ̃ekσ̃d†σndσ̄

)

=
√

2V
∑

kσ̃

(
δσ̃σ̄ekσ̃d

†
σd
†
σ̄ + ekσ̃d

†
σd
†
σ̃d
†
σ̄dσ̄ − d†σ̃ekσ̃d†σndσ̄
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=
√

2V
∑
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(
δσ̃σ̄ekσ̃d

†
σd
†
σ̄ + d†σ̃ekσ̃d

†
σndσ̄ − d†σ̃ekσ̃d†σndσ̄

)

=
√

2V
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k

(
ekσ̄d

†
σd
†
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)
. (B.256)

[d†σndσ̄,Hdot-lead] =
√

2V
∑

k

(
e†kσ̄d

†
σdσ̄ − e†kσd

†
σ̄dσ̄ + ekσ̄d

†
σd
†
σ̄

)

=
√

2V
∑

k

(
−e†kσ̄dσ̄d†σ + d†σ̄ekσ̄d

†
σ − e†kσndσ̄

)
(B.257)
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(ω + ıη+)Gr
d†σndσ̄dσ

(ω) = −εdσ〈〈d†σndσ̄; d†σ〉〉 − U〈〈d†σndσ̄; d†σ〉〉 −
√

2V
∑

k

〈〈e†kσndσ̄; d†σ〉〉

+
√

2V
∑

k

(
〈〈d†σ̄ekσ̄d†σ; d†σ〉〉 − 〈〈e†kσ̄dσ̄d†σ; d†σ〉〉

)

+ 〈〈[d†σndσ̄,HM]; d†σ〉〉 (B.258)

(ω+ + εdσ + U)Gr
d†σndσ̄dσ

(ω) = −
√

2V
∑

k

Gr
e†kσndσ̄dσ

(ω)

+
√

2V
∑

k

(
Gr
d†σ̄ekσ̄d

†
σdσ

(ω)−Gr
e†kσ̄dσ̄d

†
σdσ

(ω)
)

+ 〈〈[d†σndσ̄,HM]; d†σ〉〉 (B.259)

[d†σndσ̄,HM] =

[
d†σndσ̄, δM

(
a†↑a↑ −

1

2

)]
+

[
d†σndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]

+

[
d†σndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]

=

[
d†σndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
+

[
d†σndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]

(B.260)

[
d†σndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

[
d†σndσ̄, dσ̃a

†
↑

]

︸ ︷︷ ︸
I

+ thp
∑

σ̃

[
d†σndσ̄, a↑d

†
σ̃

]

︸ ︷︷ ︸
II

(B.261)
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I : thp
∑

σ̃

[
d†σndσ̄, dσ̃a

†
↑

]
= thp

∑

σ̃

(
d†σndσ̄dσ̃a

†
↑ − dσ̃a

†
↑d
†
σndσ̄

)

= thp
∑

σ̃

(
d†σd

†
σ̄dσ̄dσ̃a

†
↑ − dσ̃a

†
↑d
†
σndσ̄

)

= thp
∑

σ̃

(
−a†↑d†σd

†
σ̄dσ̃dσ̄ − dσ̃a†↑d†σndσ̄

)

= thp
∑

σ̃

(
−a†↑d†σ

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ − dσ̃a†↑d†σndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a†↑d†σdσ̄ + a†↑d

†
σdσ̃d

†
σ̄dσ̄ − dσ̃a†↑d†σndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a†↑d†σdσ̄ + a†↑

(
δσ̃σ − dσ̃d†σ

)
d†σ̄dσ̄ − dσ̃a†↑d†σndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a†↑d†σdσ̄ + δσ̃σa

†
↑d
†
σ̄dσ̄ + dσ̃a

†
↑d
†
σndσ̄ − dσ̃a†↑d†σndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄dσ̄a†↑d†σ + δσ̃σa

†
↑d
†
σ̄dσ̄

)
. (B.262)

II : thp
∑

σ̃

[
d†σndσ̄, a↑d

†
σ̃

]
= thp

∑

σ̃

(
d†σndσ̄a↑d

†
σ̃ − a↑d

†
σ̃d
†
σndσ̄

)

= thp
∑

σ̃

(
d†σd

†
σ̄dσ̄a↑d

†
σ̃ − a↑d

†
σ̃d
†
σndσ̄

)

= thp
∑

σ̃

(
−a↑d†σd†σ̄dσ̄d†σ̃ − a↑d

†
σ̃d
†
σndσ̄

)

= thp
∑

σ̃

(
−a↑d†σd†σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− a↑d†σ̃d†σndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a↑d†σd†σ̄ + a↑d

†
σ̃d
†
σndσ̄ − a↑d†σ̃d†σndσ̄

)

= thp
∑

σ̃

δσ̃σ̄a↑d
†
σ̄d
†
σ. (B.263)

[
d†σndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

(
−δσ̃σ̄dσ̄a†↑d†σ + δσ̃σ̄a↑d

†
σ̄d
†
σ + δσ̃σa

†
↑d
†
σ̄dσ̄

)
.(B.264)

[
d†σndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

[
d†σndσ̄, dσ̃a↑

]

︸ ︷︷ ︸
I

+ ∆
∑

σ̃

[
d†σndσ̄, a

†
↑d
†
σ̃

]

︸ ︷︷ ︸
II

(B.265)
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I : ∆
∑

σ̃

[
d†σndσ̄, dσ̃a↑

]
= ∆

∑

σ̃

(
d†σd

†
σ̄dσ̄dσ̃a↑ − dσ̃a↑d†σndσ̄

)

= ∆
∑

σ̃

(
−a↑d†σd†σ̄dσ̃dσ̄ − dσ̃a↑d†σndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄a↑d†σdσ̄ + a↑

(
δσ̃σ − dσ̃d†σ

)
d†σ̄dσ̄ − dσ̃a↑d†σndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄a↑d†σdσ̄ + δσ̃σa↑d

†
σ̄dσ̄ − a↑dσ̃d†σd†σ̄dσ̄ − dσ̃a↑d†σndσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a↑dσ̄d

†
σ + δσ̃σa↑d

†
σ̄dσ̄

)
. (B.266)

II : ∆
∑

σ̃

[
d†σndσ̄, a

†
↑d
†
σ̃

]
= ∆

∑

σ̃

(
d†σd

†
σ̄dσ̄a

†
↑d
†
σ̃ − a

†
↑d
†
σ̃d
†
σndσ̄

)

= ∆
∑

σ̃

(
−a†↑d†σd

†
σ̄dσ̄d

†
σ̃ − a

†
↑d
†
σ̃d
†
σndσ̄

)

= ∆
∑

σ̃

(
−a†↑d†σd

†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− a†↑d

†
σ̃d
†
σndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄a†↑d†σd

†
σ̄ + a†↑d

†
σ̃d
†
σd
†
σ̄dσ̄ − a†↑d

†
σ̃d
†
σndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄d†σ̄a†↑d†σ

)
. (B.267)

[
d†σndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

(
δσ̃σ̄a↑dσ̄d

†
σ − δσ̃σ̄d†σ̄a†↑d†σ + δσ̃σa↑d

†
σ̄dσ̄

)
(B.268)

(ω + εdσ + U + ıη+)Gr
d†σndσ̄dσ

(ω) = −
√

2V
∑

k

Gr
e†kσndσ̄dσ

(ω) +
√

2V
∑

k

(
Gr
d†σ̄ekσ̄d

†
σdσ

(ω)−Gr
e†kσ̄dσ̄d

†
σdσ

(ω)
)

+ thp
∑

σ̃

(
δσ̃σ̄G

r
a†↑dσ̄d

†
σdσ

(ω)− δσ̃σ̄Grd†σ̄a↑d†σdσ(ω) + δσ̃σG
r
a†↑ndσ̄dσ

(ω)

)

+ ∆
∑

σ̃

(
δσ̃σ̄G

r
a↑dσ̄d

†
σdσ

(ω)− δσ̃σ̄Grd†σ̄a†↑d†σdσ(ω) + δσ̃σG
r
a↑ndσ̄dσ(ω)

)

(B.269)

At this point, we truncate some Green’s function in same way that we have done in Eq.(B.141):

Gr
d†σ̄ekσ̄d

†
σdσ

(ω) = 〈d†σ̄ekσ̄〉Grd†σdσ(ω), (B.270)

Gr
e†kσ̄dσ̄d

†
σ ,dσ

(ω) = 〈e†kσ̄dσ̄〉Grd†σdσ(ω), (B.271)
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Gr
a†↑dσ̄d

†
σdσ

(ω) = 〈a†↑dσ̄〉Grd†σdσ(ω), (B.272)

Gr
d†σ̄a↑d

†
σdσ

(ω) = 〈d†σ̄a↑〉Grd†σdσ(ω), (B.273)

Gr
a↑dσ̄d

†
σdσ

(ω) = 〈a↑dσ̄〉Grd†σdσ(ω), (B.274)

Gr
d†σ̄a
†
↑d
†
σdσ

(ω) = 〈d†σ̄a†↑〉Grd†σdσ(ω). (B.275)

But,

〈d†σ̄ekσ̄〉Grd†σdσ(ω) = 〈e†kσ̄dσ̄〉Grd†σdσ(ω) (B.276)

〈a†↑dσ̄〉Grd†σdσ(ω) = 〈d†σ̄a↑〉Grd†σdσ(ω) (B.277)

〈a↑dσ̄〉Grd†σdσ(ω) = 〈d†σ̄a†↑〉Grd†σdσ(ω) (B.278)

Thus,

(ω+ + εdσ + U)Gr
d†σndσ̄dσ

(ω) =
(
−
√

2V
)∑

k

Gr
e†kσndσ̄dσ

(ω) + thp
∑

σ̃

δσ̃σG
r
a†↑ndσ̄dσ

(ω) + ∆
∑

σ̃

δσ̃σG
r
a↑ndσ̄dσ(ω)

(B.279)

We already have obtained
∑

σ̃ δσ̃σG
r
a†↑ndσ̄dσ

(ω)[Eq.(B.241)] and
∑

σ̃ δσ̃σG
r
a↑ndσ̄dσ

(ω)[Eq.(B.240)]:

∑

σ̃

δσ̃σG
r
a↑ndσ̄ ,dσ(ω) = −

thpG
r
dσndσ̄ ,dσ

(ω)

(ω+ − δM)
+

∆Gr
d†σndσ̄ ,dσ

(ω)

(ω+ − δM)
, (B.280)

∑

σ̃

δσ̃σG
r
a†↑ndσ̄ ,dσ

(ω) =
thpG

r
d†σndσ̄ ,dσ

(ω)

(ω+ + δM)
−

∆Grdσndσ̄ ,dσ(ω)

(ω+ + δM)
. (B.281)

Let us substitute them into Eq.(B.279):

(ω+ + εdσ + U)Gr
d†σndσ̄dσ

(ω)− thp
[
thpG

r
d†σndσ̄ ,dσ

(ω)

(ω+ + δM)
−

∆Grdσndσ̄ ,dσ(ω)

(ω+ + δM)

]

−∆

[
−
thpG

r
dσndσ̄ ,dσ

(ω)

(ω+ − δM)
+

∆Gr
d†σndσ̄ ,dσ

(ω)

(ω+ − δM)

]
=

(
−
√

2V
)∑

k

Gr
e†kσndσ̄dσ

(ω)⇒
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(ω+ + εdσ + U)Gr
d†σndσ̄dσ

(ω)−
[

t2hp
(ω+ + δM)

+
∆2

(ω+ − δM)

]
Gr
d†σndσ̄ ,dσ

(ω)

+thp∆

[
1

(ω+ + δM)
+

1

(ω+ − δM)

]
Grdσndσ̄ ,dσ(ω) =

(
−
√

2V
)∑

k

Gr
e†kσndσ̄dσ

(ω)

(B.282)

(ω+ + εdσ + U)Gr
d†σndσ̄dσ

(ω)−K2G
r
d†σndσ̄ ,dσ

(ω) + thp∆KG
r
dσndσ̄ ,dσ

(ω) =
(
−
√

2V
)∑

k

Gr
e†kσndσ̄dσ

(ω)

(B.283)

where we have used the definitions of Eqs.(??) and (??). Following the Hubbard-I decoupling procedure,

we should calculate Gr
e†kσndσ̄dσ

(ω):

(ω + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) = 〈{e†kσndσ̄, d†σ}〉+ 〈〈[e†kσndσ̄,He]; d†σ〉〉 (B.284)

〈{e†kσndσ̄, d†σ}〉 = 〈e†kσndσ̄d†σ + d†σe
†
kσndσ̄〉

= 〈−d†σe†kσndσ̄ + d†σe
†
kσndσ̄〉

= 0. (B.285)

(ω + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) = 〈〈[e†kσndσ̄,He]; d†σ〉〉 (B.286)

[e†kσndσ̄,He] = [e†kσndσ̄,Hlead] + [e†kσndσ̄,Hdot] + [e†kσndσ̄,Hdot-lead] + [e†kσndσ̄,HM](B.287)

[e†kσndσ̄,Hlead] = [e†kσndσ̄,
∑

pσ̃

εpσ̃e
†
pσ̃epσ̃] + [e†kσndσ̄, VSD

∑

p,qσ̃

e†pσ̃eqσ̃] (B.288)
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[e†kσndσ̄,
∑

pσ̃

εpσ̃e
†
pσ̃epσ̃] =

∑

pσ̃

εpσ̃

(
e†kσndσ̄e

†
pσ̃epσ̃ − e

†
pσ̃epσ̃e

†
kσndσ̄

)

=
∑

pσ̃

εpσ̃

(
e†kσe

†
pσ̃epσ̃ndσ̄ − e

†
pσ̃epσ̃e

†
kσndσ̄

)

=
∑

pσ̃

εpσ̃

(
e†kσe

†
pσ̃epσ̃ndσ̄ − e

†
pσ̃

(
δkpδσσ̃ − e†kσepσ̃

)
ndσ̄

)

=
∑

pσ̃

εpσ̃

(
e†kσe

†
pσ̃epσ̃ndσ̄ − δkpδσσ̃e

†
pσ̃ndσ̄ + e†pσ̃e

†
kσepσ̃ndσ̄

)

=
∑

pσ̃

εpσ̃

(
e†kσe

†
pσ̃epσ̃ndσ̄ − δkpδσσ̃e

†
pσ̃ndσ̄ − e

†
kσe
†
pσ̃epσ̃ndσ̄

)

= εkσ

(
−e†kσndσ̄

)
. (B.289)

[e†kσndσ̄, VSD
∑

p,qσ̃

e†pσ̃eqσ̃] = VSD
∑

p,qσ̃

(
e†kσndσ̄e

†
pσ̃eqσ̃ − e

†
pσ̃eqσ̃e

†
kσndσ̄

)

= VSD
∑

p,qσ̃

(
e†kσe

†
pσ̃eqσ̃ndσ̄ − e

†
pσ̃eqσ̃e

†
kσndσ̄

)

= VSD
∑

p,qσ̃

(
e†kσe

†
pσ̃eqσ̃ndσ̄ − e

†
pσ̃

(
δkqδσσ̃ − e†kσeqσ̃

)
ndσ̄

)

= VSD
∑

p,qσ̃

(
e†kσe

†
pσ̃eqσ̃ndσ̄ − δkqδσσ̃e

†
pσ̃ndσ̄ + e†pσ̃e

†
kσeqσ̃ndσ̄

)

= VSD
∑

p,qσ̃

(
e†kσe

†
pσ̃eqσ̃ndσ̄ − δkqδσσ̃e

†
pσ̃ndσ̄ − e

†
kσe
†
pσ̃eqσ̃ndσ̄

)

= VSD
∑

q

(
−e†pσndσ̄

)
. (B.290)

[e†kσndσ̄,Hlead] = εkσ

(
−e†kσndσ̄

)
+ VSD

∑

q

(
−e†pσndσ̄

)
. (B.291)

[e†kσndσ̄,Hdot] = [e†kσndσ̄,
∑

σ̃

εdσ̃d
†
σ̃dσ̃] + [e†kσndσ̄, Und↑nd↓] = 0. (B.292)

since [ekσndσ̄,Hdot] = 0.

[e†kσndσ̄,Hdot-lead] = [e†kσndσ̄,
√

2V
∑

pσ̃

(e†pσ̃dσ̃ + d†σ̃epσ̃)]

=
√

2V
∑

pσ̃

[e†kσndσ̄, e
†
pσ̃dσ̃]

︸ ︷︷ ︸
I

+
√

2V
∑

pσ̃

[e†kσndσ̄, d
†
σ̃epσ̃]

︸ ︷︷ ︸
II

(B.293)
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I :
√

2V
∑

pσ̃

[e†kσndσ̄, e
†
pσ̃dσ̃] =

√
2V
∑

pσ̃

(
e†kσndσ̄e

†
pσ̃dσ̃ − e

†
pσ̃dσ̃e

†
kσndσ̄

)

=
√

2V
∑

pσ̃

(
−e†pσ̃e

†
kσd
†
σ̄dσ̄dσ̃ + e†pσ̃e

†
kσdσ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
e†pσ̃e

†
kσ

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ + e†pσ̃e

†
kσdσ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
δσ̃σ̄e

†
pσ̃e
†
kσdσ̄ − e

†
pσ̃e
†
kσdσ̃ndσ̄ + e†pσ̃e

†
kσdσ̃ndσ̄

)

=
√

2V
∑

p

(
−e†pσ̄dσ̄e†kσ

)
. (B.294)

II :
√

2V
∑

pσ̃

[e†kσndσ̄, d
†
σ̃epσ̃] =

√
2V
∑

pσ̃

(
e†kσndσ̄d

†
σ̃epσ̃ − d

†
σ̃epσ̃e

†
kσndσ̄

)

=
√

2V
∑

pσ̃

(
−e†kσepσ̃d

†
σ̄dσ̄d

†
σ̃ − epσ̃e

†
kσd
†
σ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
−e†kσepσ̃d

†
σ̄dσ̄d

†
σ̃ − epσ̃e

†
kσd
†
σ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
−
(
δσ̃σ̄e

†
kσepσ̃d

†
σ̄ − e†kσepσ̃d

†
σ̄d
†
σ̃dσ̄

)
− epσ̃e†kσd

†
σ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
−δσ̃σ̄e†kσepσ̃d

†
σ̄ + e†kσepσ̃d

†
σ̄d
†
σ̃dσ̄ − epσ̃e

†
kσd
†
σ̃ndσ̄

)

=
√

2V
∑

pσ̃

(
−δσ̃σ̄e†kσepσ̃d

†
σ̄ −

(
e†kσepσ̃ + epσ̃e

†
kσ

)
d†σ̃d

†
σ̄dσ̄

)

=
√

2V
∑

pσ̃

(
δσ̃σ̄d

†
σ̄epσ̃e

†
kσ − δkpδσσ̃d

†
σ̃d
†
σ̄dσ̄

)

=
√

2V


∑

pσ̃

δσ̃σ̄d
†
σ̄epσ̃e

†
kσ −

∑

pσ̃

δkpδσσ̃d
†
σ̃d
†
σ̄dσ̄




=
√

2V

(∑

p

d†σ̄epσ̄e
†
kσ − d†σd

†
σ̄dσ̄

)

=
√

2V

(∑

p

d†σ̄epσ̄e
†
kσ − d†σndσ̄

)
. (B.295)

[e†kσndσ̄,Hdot-lead] =
√

2V
∑

p

(
−e†pσ̄dσ̄e†kσ + d†σ̄epσ̄e

†
kσ

)
−
√

2V d†σndσ̄. (B.296)
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(ω + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) = (−εkσ) 〈〈e†kσndσ̄; d†σ〉〉+

(
−VSD

∑

q

)
〈〈e†pσndσ̄; d†σ〉〉 −

√
2V 〈〈d†σndσ̄; d†σ〉〉

+
√

2V
∑

p

〈〈d†σ̄epσ̄e†kσ; d†σ〉〉+

(
−
√

2V
∑

p

)
〈〈e†pσ̄dσ̄e†kσ; d†σ〉〉

+ 〈〈[e†kσndσ̄,HM]; d†σ〉〉 (B.297)

(ω + εkσ + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) =

(
−VSD

∑

k

)
Gr
e†kσndσ̄ ,dσ

(ω)−
√

2V Gr
d†σndσ̄ ,dσ

(ω)

+
√

2V
∑

p

Gr
d†σ̄epσ̄e

†
kσ ,dσ

(ω) +

(
−
√

2V
∑

p

)
Gr
e†pσ̄dσ̄e

†
kσ ,dσ

(ω)

+ 〈〈[e†kσndσ̄,HM]; d†σ〉〉 (B.298)

Before calculating the commutation relation of last line of equation above, let us apply the Hubbard-I

decoupling as follows:

(ω + εkσ + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) = −VSD
∑

k

Gr
e†kσndσ̄ ,dσ

(ω)−
√

2V Gr
d†σndσ̄ ,dσ

(ω)

+
√

2V
∑

p

〈d†σ̄epσ̄〉Gre†kσ ,dσ(ω)−
√

2V
∑

p

〈e†pσ̄dσ̄〉Gre†kσ ,dσ(ω)

+ 〈〈[e†kσndσ̄,HM]; d†σ〉〉 (B.299)

(ω + εkσ + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) = −VSD
∑

k

Gr
e†kσndσ̄ ,dσ

(ω)−
√

2V Gr
d†σndσ̄ ,dσ

(ω)

+
√

2V
∑

p

〈d†σ̄epσ̄〉Gre†kσ ,dσ(ω)−
√

2V
∑

p

〈e†pσ̄dσ̄〉Gre†kσ ,dσ(ω)

+ 〈〈[e†kσndσ̄,HM]; d†σ〉〉 (B.300)

(ω + εkσ + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) = −VSD
∑

k

Gr
e†kσndσ̄ ,dσ

(ω)−
√

2V Gr
d†σndσ̄ ,dσ

(ω)

+ 〈〈[e†kσndσ̄,HM]; d†σ〉〉 (B.301)

Now, let us calculate 〈〈[e†kσndσ̄,HM]; d†σ〉〉:
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[e†kσndσ̄,HM] =

[
e†kσndσ̄, δM

(
a†↑a↑ −

1

2

)]
+

[
e†kσndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]

+

[
e†kσndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
(B.302)

[
e†kσndσ̄, δM

(
a†↑a↑ −

1

2

)]
= δM

(
e†kσndσ̄a

†
↑a↑ − a

†
↑a↑e

†
kσndσ̄

)

= δM

(
a†↑a↑e

†
kσndσ̄ − a

†
↑a↑e

†
kσndσ̄

)

= 0. (B.303)

[
e†kσndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

[
e†kσndσ̄, dσ̃a

†
↑

]

︸ ︷︷ ︸
I

+ thp
∑

σ̃

[
e†kσndσ̄, a↑d

†
σ̃

]

︸ ︷︷ ︸
II

(B.304)

I : thp
∑

σ̃

[
e†kσndσ̄, dσ̃a

†
↑

]
= thp

∑

σ̃

(
e†kσndσ̄dσ̃a

†
↑ − dσ̃a

†
↑e
†
kσndσ̄

)

= thp
∑

σ̃

(
e†kσd

†
σ̄dσ̄dσ̃a

†
↑ − e

†
kσdσ̃a

†
↑ndσ̄

)

= thp
∑

σ̃

(
−e†kσd

†
σ̄dσ̃dσ̄a

†
↑ − e

†
kσdσ̃a

†
↑ndσ̄

)

= thp
∑

σ̃

(
−e†kσ

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄a

†
↑ − e

†
kσdσ̃a

†
↑ndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄e†kσdσ̄a

†
↑ + ekσdσ̃a

†
↑ndσ̄ − e

†
kσdσ̃a

†
↑ndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄dσ̄a†↑e

†
kσ

)
. (B.305)

II : thp
∑

σ̃

[
e†kσndσ̄, a↑d

†
σ̃

]
= thp

∑

σ̃

(
e†kσndσ̄a↑d

†
σ̃ − a↑d

†
σ̃e
†
kσndσ̄

)

= thp
∑

σ̃

(
−a↑e†kσd

†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− a↑d†σ̃e

†
kσndσ̄

)

= thp
∑

σ̃

(
−δσ̃σ̄a↑e†kσd

†
σ̄ + a↑d

†
σ̃e
†
kσd
†
σ̄dσ̄ − a↑d†σ̃e

†
kσndσ̄

)

= thp
∑

σ̃

δσ̃σ̄a↑d
†
σ̄e
†
kσ. (B.306)
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[
e†kσndσ̄, thp

∑

σ̃

(dσ̃a
†
↑ + a↑d

†
σ̃)

]
= thp

∑

σ̃

(
−δσ̃σ̄dσ̄a†↑e

†
kσ + δσ̃σ̄a↑d

†
σ̄e
†
kσ

)
. (B.307)

[
e†kσndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

[
e†kσndσ̄, dσ̃a↑

]

︸ ︷︷ ︸
I

+ ∆
∑

σ̃

[
e†kσndσ̄, a

†
↑d
†
σ̃

]

︸ ︷︷ ︸
II

(B.308)

I : ∆
∑

σ̃

[
e†kσndσ̄, dσ̃a↑

]
= ∆

∑

σ̃

(
e†kσndσ̄dσ̃a↑ − dσ̃a↑e

†
kσndσ̄

)

= ∆
∑

σ̃

(
−a↑e†kσd

†
σ̄dσ̃dσ̄ − dσ̃a↑e†kσndσ̄

)

= ∆
∑

σ̃

(
−a↑e†kσ

(
δσ̃σ̄ − dσ̃d†σ̄

)
dσ̄ − dσ̃a↑e†kσndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄a↑e†kσdσ̄ + dσ̃a↑e

†
kσndσ̄ − dσ̃a↑e

†
kσndσ̄

)

= ∆
∑

σ̃

(
δσ̃σ̄a↑dσ̄e

†
kσ

)
. (B.309)

II : ∆
∑

σ̃

[
e†kσndσ̄, a

†
↑d
†
σ̃

]
= ∆

∑

σ̃

(
e†kσndσ̄a

†
↑d
†
σ̃ − a

†
↑d
†
σ̃e
†
kσndσ̄

)

= ∆
∑

σ̃

(
−a†↑e

†
kσd
†
σ̄dσ̄d

†
σ̃ − a

†
↑d
†
σ̃e
†
kσndσ̄

)

= ∆
∑

σ̃

(
−a†↑e

†
kσd
†
σ̄

(
δσ̃σ̄ − d†σ̃dσ̄

)
− a†↑d

†
σ̃e
†
kσndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄a†↑e

†
kσd
†
σ̄ + a†↑e

†
kσd
†
σ̄d
†
σ̃dσ̄ − a

†
↑d
†
σ̃e
†
kσndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄d†σ̄a†↑e

†
kσ + a†↑d

†
σ̃e
†
kσndσ̄ − a

†
↑d
†
σ̃e
†
kσndσ̄

)

= ∆
∑

σ̃

(
−δσ̃σ̄d†σ̄a†↑e

†
kσ

)
. (B.310)

[
e†kσndσ̄,∆

∑

σ̃

(dσ̃a↑ + a†↑d
†
σ̃)

]
= ∆

∑

σ̃

(
δσ̃σ̄a↑dσ̄e

†
kσ − δσ̃σ̄d

†
σ̄a
†
↑e
†
kσ

)
. (B.311)
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(ω + εkσ + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) = −VSD
∑

k

Gr
e†kσndσ̄ ,dσ

(ω)−
√

2V Gr
d†σndσ̄ ,dσ

(ω)

+ thp
∑

σ̃

δσ̃σ̄

(
−〈〈dσ̄a†↑e

†
kσ; d†σ〉〉+ 〈〈a↑d†σ̄e†kσ; d†σ〉〉

)

+ ∆
∑

σ̃

δσ̃σ̄

(
〈〈a↑dσ̄e†kσ; d†σ〉〉 − 〈〈d†σ̄a†↑e

†
kσ; d†σ〉〉

)
(B.312)

(ω + εkσ + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) = −VSD
∑

k

Gr
e†kσndσ̄ ,dσ

(ω)−
√

2V Gr
d†σndσ̄ ,dσ

(ω)

+ thp
∑

σ̃

δσ̃σ̄

(
−Gr

dσ̄a
†
↑e
†
kσ ,dσ

(ω) +Gr
a↑d
†
σ̄e
†
kσ ,dσ

(ω)

)

+ ∆
∑

σ̃

δσ̃σ̄

(
Gr
a↑dσ̄e

†
kσ ,dσ

(ω)−Gr
d†σ̄a
†
↑e
†
kσ ,dσ

(ω)

)
(B.313)

Let us apply the decoupling:

(ω + εkσ + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) = −VSD
∑

k

Gr
e†kσndσ̄ ,dσ

(ω)−
√

2V Gr
d†σndσ̄ ,dσ

(ω)

+ thp
∑

σ̃

δσ̃σ̄

(
−〈dσ̄a†↑〉Gre†kσ ,dσ(ω) + 〈a↑d†σ̄〉Gre†kσ ,dσ(ω)

)

+ ∆
∑

σ̃

δσ̃σ̄

(
〈a↑dσ̄〉Gre†kσ ,dσ(ω)− 〈d†σ̄a†↑〉Gre†kσ ,dσ(ω)

)
(B.314)

(ω + εkσ + ıη+)Gr
e†kσndσ̄ ,dσ

(ω) = −VSD
∑

k

Gr
e†kσndσ̄ ,dσ

(ω)−
√

2V Gr
d†σndσ̄ ,dσ

(ω)

+ thp
∑

σ̃

δσ̃σ̄

(
−〈dσ̄a†↑〉Gre†kσ ,dσ(ω) + 〈a↑d†σ̄〉Gre†kσ ,dσ(ω)

)

+ ∆
∑

σ̃

δσ̃σ̄

(
〈a↑dσ̄〉Gre†kσ ,dσ(ω)− 〈d†σ̄a†↑〉Gre†kσ ,dσ(ω)

)
(B.315)

(ω+ + εkσ)Gr
e†kσndσ̄ ,dσ

(ω) = −VSD
∑

k

Gr
e†kσndσ̄ ,dσ

(ω)−
√

2V Gr
d†σndσ̄ ,dσ

(ω)÷ (ω+ + εkσ)

[
1 + VSD

∑

k

(
1

ω+ + εkσ

)]
Gr
e†kσndσ̄ ,dσ

(ω) =
−
√

2V Gr
d†σndσ̄ ,dσ

(ω)

(ω+ + εkσ)
(B.316)

Gr
e†kσndσ̄ ,dσ

(ω) = −
√

2V (ω+ + εkσ)−1Gr
d†σndσ̄ ,dσ

(ω)
[
1 + VSD

∑
k

(
1

ω++εkσ

)] (B.317)

181



Appendix B. DOS of the Quantum Dot for the Interacting Spinfull Model within Hubbard-I
Approximation

Now, we substitute this result into Eq.(B.283):

(ω+ + εdσ + U −K2)Gr
d†σndσ̄dσ

(ω) + thp∆KG
r
dσndσ̄ ,dσ

(ω) =
2V 2

∑
k(ω+ + εkσ)−1Gr

d†σndσ̄ ,dσ
(ω)

[
1 + VSD

∑
k

(
1

ω++εkσ

)]

(B.318)

As previously defined,
∑

k

(
1

ω+εkσ+ıη+

)
= −ıπρkσ(ω) and Γσ = 2V 2πρkσ(ω). Thus,

(ω+ + εdσ + U −K2)Gr
d†σndσ̄dσ

(ω) + thp∆KG
r
dσndσ̄ ,dσ

(ω) =
−ΓσG

r
d†σndσ̄ ,dσ

(ω)

[1− ı (VSDπρkσ(ω))]
⇒

(B.319)

(ω+ + εdσ + U −K2)Gr
d†σndσ̄dσ

(ω) + thp∆KG
r
dσndσ̄ ,dσ

(ω) =
−ΓσG

r
d†σndσ̄ ,dσ

(ω)

[1− ı√x]
, (B.320)

with x = (VSDπρkσ(ω))2 . Further,

−ıΓσ
(1− ı√x)

(1 + ı
√
x)

(1 + ı
√
x)

=
−ıΓσ (1 + ı

√
x)

(1 + x)
=

√
xΓσ

(1 + x)
− ıΓσ

(1 + x)
(B.321)

Comparing with Eq.(A.43):

−
( √

xΓσ
(1 + x)

− ıΓσ
(1 + x)

)
= −

√
xΓσ

(1 + x)
+

ıΓσ
(1 + x)

= Σ̄σ (B.322)

Σ̄σ = Re(Σσ)− Im(Σσ) (B.323)

with

Re(Σσ) = −
√
xΓσ

1 + x
(B.324)

Im(Σσ) = − ıΓσ
1 + x

(B.325)

Therefore,

(ω+ + εdσ + U −K2)Gr
d†σndσ̄dσ

(ω) + thp∆KG
r
dσndσ̄ ,dσ

(ω) = −Σ̄σG
r
d†σndσ̄ ,dσ

(ω)⇒
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(ω+ + εdσ + U + Σ̄σ −K2)Gr
d†σndσ̄dσ

(ω) + thp∆KG
r
dσndσ̄ ,dσ

(ω) = 0⇒

Gr
d†σndσ̄dσ

(ω) +
thp∆K

(ω+ + εdσ + U + Σ̄σ −K2)
Grdσndσ̄ ,dσ(ω) = 0 (B.326)

Gr
d†σndσ̄dσ

(ω) + thp∆K̄
σ
UG

r
dσndσ̄ ,dσ

(ω) = 0 (B.327)

wherein we recognize

K̄σ
U =

K

(ω+ + εdσ + U + Σ̄σ −K2)
(B.328)

B.2.3 Resulting system of Green’s functions

After deriving the many-particle Green’s functions with the EOM technique and Hubbard-I

approximation, we get the following result:

(ω+ − εdσ − U − Σσ)Grdσndσ̄ ,dσ(ω)−K1G
r
dσndσ̄ ,dσ

(ω) + thp∆KG
r
d†σndσ̄ ,dσ

(ω) = 〈ndσ̄〉 (B.329)

Gr
d†σndσ̄dσ

(ω) + thp∆K̄
σ
UG

r
dσndσ̄ ,dσ

(ω) = 0 (B.330)

Let us substitute Eq.(B.330) into Eq.(B.329):

(ω+−εdσ−U−Σσ)Grdσndσ̄ ,dσ(ω)−K1G
r
dσndσ̄ ,dσ

(ω)+ thp∆K
(
−thp∆K̄σ

UG
r
dσndσ̄ ,dσ

(ω)
)

= 〈ndσ̄〉 ⇒

(ω+ − εdσ − U − Σσ)Grdσndσ̄ ,dσ(ω)−K1G
r
dσndσ̄ ,dσ

(ω)− (thp∆)2KK̄σ
UG

r
dσndσ̄ ,dσ

(ω) = 〈ndσ̄〉 ⇒

(ω+ − εdσ − U − Σσ)Grdσndσ̄ ,dσ(ω)−
[
K1 + (thp∆)2KK̄σ

U

]
Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉 (B.331)

We recognize the Majorana self-energy modified by the presence of electronic correlation

ΣU6=0
M,σ = K1 + (thp∆)2KK̄σ

U (B.332)

Hence,

Grdσndσ̄ ,dσ(ω) =
〈ndσ̄〉

(ω+ − εdσ − U − ΣU6=0
M,σ − Σσ)

. (B.333)
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B.2.4 Results for Hubbard-I approximation

Finally, we have the following relations to evolve to an expression for Grdσdσ(ω):

(ω+ − εdσ − Σσ − ΣU=0
M,σ)Grdσdσ(ω) = 1 + UGrdσndσ̄ ,dσ(ω) + Uthp∆K̄G

r
d†σndσ̄dσ

(ω) (B.334)

(ω+ − εdσ − U − ΣU6=0
M,σ − Σσ)Grdσndσ̄ ,dσ(ω) = 〈ndσ̄〉 (B.335)

Gr
d†σndσ̄dσ

(ω) + thp∆K̄
σ
UG

r
dσndσ̄ ,dσ

(ω) = 0 (B.336)

From Eqs.(B.335) and (B.336):

Gr
d†σndσ̄dσ

(ω) =
−thp∆K̄σ

U〈ndσ̄〉
ω+ − εdσ − U − ΣU6=0

M,σ − Σσ

(B.337)

Thus,

(ω+ − εdσ − Σσ − ΣU=0
M,σ)Grdσdσ(ω) = 1 + U

[
〈ndσ̄〉

ω+ − εdσ − U − ΣU 6=0
M,σ − Σσ

]

+ Uthp∆K̄

[
−thp∆K̄σ

U〈ndσ̄〉
ω+ − εdσ − U − ΣU6=0

M,σ − Σσ

]
⇒

(ω+ − εdσ − Σσ − ΣU=0
M,σ)Grdσdσ(ω) = 1 +

U〈ndσ̄〉(
ω+ − εdσ − U − ΣU 6=0

M,σ − Σσ

) − U(thp∆)2〈ndσ̄〉K̄K̄σ
U(

ω+ − εdσ − U − ΣU6=0
M,σ − Σσ

)

(B.338)

Let us label

λ(ω, σσ̄) = 1 +
U〈ndσ̄〉(

ω+ − εdσ − U − ΣU6=0
M,σ − Σσ

) (B.339)

and

M(ω, σσ̄) =
〈ndσ̄〉K̄σK̄σ

U(
ω+ − εdσ − U − ΣU 6=0

M,σ − Σσ

) (B.340)

(ω+ − εdσ − Σσ − ΣU=0
M,σ)Grdσdσ(ω) = λ(ω, σσ̄)− U(thp∆)2M(ω, σσ̄)

(B.341)

Finally, the Green’s function of the QD considering the Hubbard-I approximation is given by:
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Gd(ω, σ) =
λ(ω, σσ̄)− U(thp∆)2M(ω, σσ̄)

ω+ − εdσ − Σσ − ΣU=0
M,σ

(B.342)

with

ΣU=0
M,σ = K1 + (thp∆)2KK̄σ ΣU 6=0

M,σ = K1 + (thp∆)2KK̄σ
U

K̄σ
U =

K

(ω+ + εdσ + U + Σ̄σ −K2)
K̄σ =

K

(ω+ + εdσ + Σ̄σ −K2)

K1 =
(thp)

2

(ω+ − δM)
+

(∆)2

(ω+ + δM)
K2 =

(thp)
2

(ω+ + δM)
+

(∆)2

(ω+ − δM)

(B.343)

K =
1

(ω+ − δM)
+

1

(ω+ + δM)
(B.344)

and Σσ = −
√
xΓσ

1+x − ı Γσ
1+x , Σ̄σ = −

√
xΓσ

1+x + ı Γσ
1+x , with Γσ = 2V 2πρkσ(ω) as being the Anderson

broadening.
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