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Abstract – The so-called Inomata-McKinley spinors are a particular solution of the non-linear
Heisenberg equation. In fact, free linear massive (or massless) Dirac fields are well known to be
represented as a combination of Inomata-McKinley spinors. More recently, a subclass of Inomata-
McKinley spinors was used to describe neutrino physics. In this paper we show that Dirac spinors
undergoing this restricted Inomata-McKinley decomposition are necessarily of the first type, ac-
cording to the Lounesto classification. Moreover, we also show that these type-one subclass spinors
have not an exotic counterpart. Finally, implications of these results are discussed, regarding the
understanding of the spacetime background topology.
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Introduction. – The very idea of Inomata-McKinley
decomposition [1] was devoted to understand neutrino
physics in the early days, in the context of Wheeler
geometrodynamics [2]. More recently, this decomposition
was employed to construct Dirac linear fermions via non-
linear special Heisenberg spinors1 [3]. In fact, the so-called
Inomata-McKinley spinors are a subclass of non-linear
Heisenberg spinors. In ref. [3], after showing that Dirac
fields may be decomposed in terms of Inomata-McKinley
spinors, six disjoint topological sectors, in which the de-
composed fields may reside, are constructed. This result
turns out to be physically appealing since, after analyzing
the corresponding helicities, each topological sector em-
braces spinorial fields describing neutrino (and antineu-
trino) states. When compared to the original procedure,
the decomposition presented in ref. [3] can be faced as a
particularization, whose importance rests upon its physi-
cal implications. This particularization (the main topic to
be investigated here) is what we call restricted Inomata-
McKinley decomposition.

Given the physical relevant aspect of Dirac spinorial
fields written in terms of Inomata-McKinley spinors, it
would be useful to understand which type of Dirac spinors
may be used for that. As a matter of fact, there are

(a)E-mail: dbeghetto@feg.unesp.br
(b)E-mail: hoff@feg.unesp.br

1By non-linear spinors, we mean spinors obeying non-linear
dynamics.

(physically and geometrically) different Dirac spinors al-
lowed in the four-dimensional spacetime. In a true work
of categorization, Lounesto worked out a physical classifi-
cation of spinor fields. This classification, differently from
others, is particularly important due to the bilinear covari-
ants [4]. According to this classification, there are exactly
six different spinorial field classes. One of the goals of
this work is to show that all Dirac spinors undergoing the
restricted Inomata-McKinley (RIM) representation, used
to describe neutrino physics, are necessarily type one, in
the aforementioned classification. Roughly speaking, this
type of spinors has more interactions possibilities, allow-
ing self-interaction terms and couplings scrutinizing parity
symmetry.

Moreover, the decomposition itself is strongly depen-
dent on the triviality of the background topology. This is
reflected in the fact that the currents (the usual one and
the chiral one) must be irrotational [3]. Therefore, in the
case of a non-trivial topology, all the aforementioned rep-
resentations of the usual Dirac fields fail. On the other
hand, within the non-trivial topology context there exists
an exotic spinorial structure, whose elements are exotic
counterparts of usual spinors [5]. Briefly speaking, the ex-
otic spinorial structure is due to the necessary different
patches of local coverings and, therefore, usual and ex-
otic spinors coexist and the difference between them may
be charged to the dynamical equation. In fact, all the
topological non-triviality is traduced in a new term on the
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Dirac operator which can be understood, since it has the
same net effect, as a vectorial coupling. In this sense,
it would be plausible that new currents taking into ac-
count the topological term could open a crevice, leading to
the representation of exotic spinors in terms of Inomata-
McKinley ones. As shall be seen, we show that exotic
spinors cannot undergo the RIM decomposition. This re-
sult is more appealing than it may sound. In fact, by the
reason previously exposed, it is a genuine problem to sep-
arate out the usual from the exotic spinors. Our result
suggests that as far as neutrino physics is well described
by the RIM procedure, this very physical system can serve
as a criteria to set (at least locally) the underlying topol-
ogy. We shall elaborate on that in the final remarks. The
two main results obtained were chosen to be exposed as
lemmata, for the sake of clarity.

This paper is organized as follows: a brief review of
Lounesto’s classification and RIM spinors is presented in
the second section. We show in the third section a strong
constraint in representing a Dirac spinor in terms of RIM
spinors. The fourth section is devoted to the study of
exotic spinors and the impossibility to decompose them in
terms of RIM spinors. In the last section we conclude.

Elementary review. – For bookkeeping purposes, we
shall describe the basic introductory elements, pointing
out the main necessary aspects to reach our conclusions.

The Lounesto classification of spinors. The program
elaborated by Lounesto, categorizing spinors as elements
belonging to six different sectors of the spinorial space,
was reviewed and studied in a vast literature [4] (for a
modern viewpoint, see [6]). Let Ψ be a spinor, whose
bilinear covariants read

1) A = Ψ†γ0Ψ,

2) J = Jμθ
μ = Ψ†γ0γμΨθμ,

3) S = Sμνθ
μν = 1

2Ψ†γ0iγμνΨθμ ∧ θν ,

4) K = Kμθ
μ = Ψ†γ0iγ0123γμΨθμ,

5) B = −Ψ†γ0γ0123Ψ,

where {xμ} is a set of global spacetime coordinates, in a
given inertial frame eμ = ∂

∂xµ , and the set {θμ} represents
the dual basis of {eμ}. These bilinear covariants are not
completely independent. In fact, defining a multivector
structure, Z = A+J+iS−iγ0123K+γ0123B, it is possible
to see that the following identities hold:

Z2 = 4σZ, (1)
ZγμZ = 4JμZ, (2)

ZiγμνZ = 4SμνZ, (3)
Zγ0123Z = −4ωZ, (4)

Ziγ0123γμZ = 4KμZ. (5)

The consideration of the constraints above allowed the
classification of Ψ into the classes (for which J is always

non-zero):

1) A �= 0; B �= 0.

2) A �= 0; B = 0.

3) A = 0; B �= 0.

4) A = 0 = B; K �= 0; S �= 0.

5) A = 0 = B; K = 0; S �= 0.

6) A = 0 = B; K �= 0; S = 0.

For the classes 1, 2 and 3, there holds K,S �= 0, and
the spinors belonging to these classes are called regular
spinors. The classes 4, 5 and 6 consist of the so-called sin-
gular spinors. Usual spinors describing fermions in field
theory have place in classes 1, 2, and 3. As we mentioned,
in the third section we demonstrate that all Dirac spinors
undergoing an Inomata-McKinley decomposition, in try-
ing to describe neutrinos, belong to class 1 exclusively.
As it is possible to envisage from the scheme above, this
class allows for the richer coupling arrangements possible.
This may help neutrino model builders in studying many
physical interactions.

Dirac linear fermions and RIM spinors. The Dirac
equation of motion is well known to be linear with respect
to the spinor fields. Its non-linear counterpart, the so-
called Heisenberg equation, is given by

[iγμ∂μ − 2s(A+ iBγ5)]ΨH = 0, (6)

with A ≡ Ψ
H

ΨH and B ≡ iΨ
H
γ5ΨH being the usual

bilinear covariants associated to ΨH . The constant s has
dimension (lenght)2. The Heisenberg equation (6) can be
properly obtained by varying the action constructed from
the Lagrangian

L =
i

2
ψ̄γμ∂μψ − i

2
∂ψ̄γμψ − sJμJ

μ, (7)

with respect to the spinor field [7,8]. In ref. [9], the
non-linear spinor equation was deeply investigated under
discrete symmetries. Without assuming any particular
symmetry of the spinor fields, it is shown that the dy-
namical equation itself is invariant under C, P , and T
symmetries. It is also shown that the theory is invariant
under scale transformation, which is in a good agreement
with the perspective of using massless fields (see the last
section).

The RIM solution of the Heisenberg equation (6) is a
particular class of solutions given by

∂μΨ = (aJμ + bKμγ
5)Ψ, (8)

with a, b ∈ C. A spinor Ψ satisfying the condition (8)
shall be called a RIM spinor. This is because in the orig-
inal decomposition the first term in the right-hand side
of (8) is given byKλγλγμγ

5 and the mapping between this
last term and Jμ is not so direct, being in fact given by
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a regular non-trivial matrix operator, say G. For instance,
starting from Jμ it is possible to enlarge the decomposition
by means of

G =
1

2J2 J
μKν [γν , γμ]γ5. (9)

However, we shall keep our analysis in terms of RIM
spinors due to its physical attractiveness. It is possible to
prove that every RIM spinor is a solution of the Heisen-
berg equation (2) with 2s = i(a − b). The integrability
condition of (4) requires the constraint Re(a) = Re(b).

Moreover, it is necessary a regular behavior to the co-
variant currents, i.e., Jμ and Kμ must be irrotational.
Hence, denoting the norm J2 = JμJ

μ, one defines Jμ =
∂μS, with S = 1

(a+a) ln
√
J2 being a scalar. In an analog

fashion, Kμ = ∂μR, with R = 1
(b−b)

ln
(

A−iB√
J2

)
. Yet, using

the notation J ≡
√
J2, according to ref. [3] it is possible

to represent a Dirac spinor ΨD by

ΨD = exp
[

iM

(a+ a)J

]
J2σ

×
(√

J

A− iB
ΨH

L +

√
A− iB

J
ΨH

R

)
, (10)

where ΨH is a RIM spinor (which has left-hand ΨL and
right-hand ΨR components), M is the mass parameter
coming from the Dirac equation, J2σ = exp [(2is− b−b̄

2 )S],
and σ ≡ − iIm(a)

4Re(a) . Therefore, Dirac spinors can be repre-
sented as a combination of RIM spinors, which satisfy the
Heisenberg non-linear equation (6). Interestingly enough,
such a procedure reveals important to describe neutrino
physics [1,3].

Constraints on representing Dirac fields in terms
of RIM spinors. – In order to see to which class the
spinor (10) belongs, it is necessary to construct its associ-
ated bilinear covariants in terms of ΨH . First of all, notice
that

ΨD = αJ2σ

(√
J

A− iB
ΨH

L +

√
A− iB

J
ΨH

R

)
, (11)

with α ≡ exp
[
i M
2Re(a)J

]
. Also, one can have the represen-

tation ΨH
L = 1

2 (I + γ5)ΨH and ΨH
R = 1

2 (I − γ5)ΨH . Thus,

denoting β ≡
√

J
A−iB , we have

ΨD = αJ2σ
[
β(I + γ5) + β−1(I − γ5)

]
ΨH . (12)

Now, recalling that

√
z =

√
|z| z + |z|

|(z + |z|)| , (13)

i.e.,

Re(
√
z) =

√
|z| Re(z) + |z|

|(z + |z|)| ,

Im(
√
z) =

√
|z| Im(z)

|(z + |z|)| , (14)

for z ∈ C, it is possible to see that

(
ΨD

)†
=

(
ΨH

)†
{

2√
2J(J +A)

[
(J +A) +Bγ5]}

× (
J2σ

)−1
α−1. (15)

With (15) at hands, one can construct the bilinear co-
variants associated to the Dirac spinors. After some cal-
culations they read

AD = T(ABJ)Ψ̄H

[
(A+ J −B)(I + γ5)

+
(A+ J +B)(A − iB)

J
(I − γ5)

]
ΨH , (16)

BD = iT(ABJ)Ψ̄H

[
(A+ J −B)(I + γ5)

− (A+ J +B)(A − iB)
J

(I − γ5)
]
ΨH , (17)

Jμ
D = T(ABJ)Ψ̄Hγμ

[
(A+ J +B)(I + γ5)

+
(A+ J −B)(A − iB)

J
(I − γ5)

]
ΨH , (18)

Kμ
D = −iT(ABJ)Ψ̄Hγμ

[
(A+ J +B)(I + γ5)

− (A+ J −B)(A − iB)
J

(I − γ5)
]
ΨH , (19)

with the scalar T(ABJ) ≡
√

2
(J+A)(A−iB) ∈ C.

Now, notice that by construction (see the second sec-
tion) it is impossible to have both A = 0 and B = 0 si-
multaneously, i.e., RIM spinors are indeed regular spinors.
Therefore, it cannot be the case for A− iB = 0 to occur.
Still, obviously J =

√
A2 +B2 �= 0. Bearing these con-

straints in mind, let us show that AD, BD, J
μ
D and Kμ

D are
all necessarily non-vanishing.

Firstly, suppose that A + J − B = 0 in eqs. (16)–(19).
In this way we have A + J + B = 2B. In order to have
A + J + B = 0, we have to set B = 0, which leads to
the condition A + J = 0. However, if B = 0, then it
turns out that, necessarily, A �= 0, and since J �= 0, it
yields A + J �= 0 (see T(ABJ)), evincing a contradiction.
Therefore, A+J +B �= 0, and none of the Dirac bilinears
vanish. On the other hand, by a quite similar reasoning,
if we suppose that A + J + B = 0 in eqs. (16)–(19), it is
straightforward to see that A + J − B = −2B. Then, in
order to have A+ J −B = 0, we have to set B = 0, which
leads to the condition A + J = 0. Again, this procedure
makes explicit a contradiction. Hence, none of the Dirac
bilinears vanish.

Therefore, we have just proved the following:

Lemma 1. Every Dirac spinor, acting in an usual space-
time (there is, with trivial topology), written in terms
of RIM spinors, belongs to the class 1 in the Lounesto
classification.
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Exotic spinors structures and RIM spinors. –
It is consensual that half-integers representations of the
Poincaré group are subtle. This subtlety reveals itself,
among innumerable other issues, in treating fermions
whose dynamics is taken in a spacetime endowed with non-
trivial topology [5]. Let us recall the main aspects of exotic
spinors2. A given manifold, when multiply connected, may
have many spinor bundles, wich are split into equivalence
classes, the so-called spin structures. The set of spin struc-
tures is labeled by the cohomology group H1(π1(M),Z2)
elements, where M is the base manifold (the spacetime
here) and π1 stands for the first homotopy group.

Naturally, the manifestation of the non-trivial topol-
ogy is regarded to the spin connection, thus affecting the
derivative operator. After all, the net effect of non-trivial
topology for what concerns the spinor dynamics may be
inputed to a 1-form extra “coupling” [5]. The difference
between the dynamics of the usual Dirac spinors Ψ and of
the exotic spinors Ψ̃, then, comes from the fact that the
connection related to Ψ̃ must feel the non-trivial topology.
Hence, the exotic dynamical equation can be written as

[i(γμ∂μ + γμ∂μθ) −mI]Ψ̃ = 0. (20)

In eq. (20), the 0-form θ is directly linked to the non-
trivial topology and, therefore, by setting θ = 0 the Dirac
equation is recovered.

One of the attempts to construct a new condition on
the currents, taking into account the topology exoticness,
may be obtained by inspecting the derivative term which
leads to an invariant J̃μ ≡ ¯̃ΨγμΨ̃. Firstly, eq. (20) has its
conjugate, which can be written as

−i∂μΨ̃†(γμ)† − iΨ̃†∂μθ(γμ)† = mΨ̃. (21)

Multiplying eq. (21) by γ0 from the right side, it leads to

∂μ
¯̃Ψγμ = im ¯̃Ψ − ¯̃Ψ∂μθγ

μ. (22)

Now, using eqs. (21) and (22) it follows straightforwardly
that

∂μJ̃
μ = −2∂μθ

¯̃ΨγμΨ̃ ⇒ (∂μ + 2∂μθ)J̃μ = 0. (23)

Therefore, since θ is an arbitrary scalar function, one can
redefine 2θ �→ θ and write the new operator which leaves
J̃μ invariant as

∇̃μ = ∂μ + ∂μθ. (24)

Notice that, in fact, the functional form of eq. (24) could
be suggested from the consideration of the derivative
operator present in eq. (20).

It will be proved that one cannot have exotic spinors
written in terms of RIM spinors. Firstly, the analog con-
dition of eq. (8) for the case of exotic spinors is therefore
the following:

∂μΨ = (aJμ + bKμγ
5 − ∂μθ)Ψ (25)

2For a complete account on the existence of additional spinorial
structures see [10].

and the irrotational currents conditions (no longer valid
in a multiply connected topology) are to be replaced by

J̃μ = ∂μS + S∂μθ, (26)

K̃μ = ∂μR+R∂μθ, (27)

with S and R scalar quantities. Thus, one wants to know
the explicit form of these scalars. It is readily simple to
use the condition (25) to obtain

∂μJ̃ν = (āJ̃μ + b̄K̃μγ
5 + ∂μθ)

¯̃ΨγνΨ̃

+ ¯̃Ψγν(aJ̃μ + bK̃μγ
5 + ∂μθ)Ψ̃, (28)

leading to

∂μJ̃ν = (a+ ā)J̃μJ̃ν + (b+ b̄)K̃μK̃ν + 2∂μθJ̃ν . (29)

Multiplying eq. (29) by J̃ν from the right side, it turns
into

1
2

∂μJ̃
2

J̃2(a+ ā)
= J̃μ +

2
(a+ ā)

∂μθ. (30)

Nevertheless, J̃μ = ∂μS+S∂μθ and then, substituting this

result into eq. (30), and noticing that ∂µJ̃2

J̃2 = ∂μ ln (J̃2),
one obtains

S∂μθ = ∂μ

[
−S +

1
2(a+ ā)

ln (J̃2) − 2θ
(a+ ā)

]
. (31)

Finally, note that the quantity between brackets on the
right-hand side of eq. (31) is a scalar. In this vein, let H
be the scalar defined as

H = −S +
1

2(a+ ā)
ln (J̃2) − 2θ

(a+ ā)
. (32)

One is certainly allowed to write

S∂μθ = ∂μH ⇒ Jμ = ∂μ(S +H), (33)

which means that J̃μ is irrotational, making explicit a con-
flict with eq. (26).

On the other hand, with Ã ≡ ¯̃ΨΨ̃ and B̃ ≡ − ¯̃Ψγ0123Ψ̃,
as can be readily verified, using eq. (25) one can obtain

∂μÃ = (∂μ
¯̃Ψ)Ψ̃ + ¯̃Ψ(∂μΨ̃),

leading to

∂μÃ = (a+ ā)J̃μÃ+ i(b− b̄)K̃μB̃ − 2(∂μθ)Ã. (34)

Analogously,

∂μB̃ = i(∂μ
¯̃Ψ)γ5Ψ̃ + i ¯̃Ψγ5(∂μΨ̃)

and one is able to write

∂μB̃ = (a+ ā)J̃μB̃ + i(b− b̄)K̃μÃ− 2(∂μθ)B̃. (35)
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Contracting eq. (34) by K̃μ and eq. (35) by (−iK̃μ) from
the right and summing up the result, we have

K̃μ =
1

(b+ b̄)
∂μ

[
ln

(
|Ã− iB̃|

J̃

)]
, (36)

which means that K̃μ is also irrotational, leading to a con-
flict with eq. (27).

Therefore, eqs. (26) and (27) are no longer valid in this
scenario. Notice that, if they held, exotic spinors would
behave as usual ones. Thus, the following Lemma valid
on a base manifold with non-trivial topology is proved:

Lemma 2. The representation of exotic spinors by a com-
bination of RIM spinors is completely obstructed.

We shall elaborate on this result in the next section.

Final remarks. – In this paper we have shown two
lemmata related to the physics of neutrinos, when de-
scribed by restricted Inomata-McKinley spinors. First, we
have found that from among the several classes of spinors,
Dirac fermions decomposed in terms of RIM spinors are
always of type one according to the so-called Lounesto
classification. This particular class has all the bilinear
covariants necessarily non-vanishing and, therefore, the
richer multivectorial structure. From the physical point
of view, it means that all possible couplings are likely to
be studied. This is, in fact, an important remark. Indeed,
it allows for the study of a bigger set of perturbatively
renormalizable couplings in neutrino physics.

Moreover, we also investigated the behavior of RIM
fields in a non-trivial base manifold, where exotic spinors
are expected. In fact, it is not trivial to separate out
usual from exotic spinors, when both are allowed in a
physical system. There are some exceptions [10,11], but
they are not very common. Here, we have a typical phys-
ical system without any exotic counterpart. In fact, it
was demonstrated that it is not possible to implement
the restricted Inomata-McKinley decomposition in such
a context. The point to be stressed here is that it is
an important negative result, since by describing neutrino
physics, in an acceptable ground, via the RIM decompo-
sition we are ab initio necessarily fixing the base topology
as trivial. It means that neutrino physics may serve as
a tool to probe the spacetime topology, at least locally.
In this context, neutrino physics acts as a complement of
Elko exotic spinors, whose additional couplings come ex-
clusively from non-trivial topology [10]. In fact, the whole

investigation performed in ref. [3] points to the existence
of six disjoint types of spinors which can be grouped to-
gether into two major helicity sectors (composed by three
types each). These sectors can be connected by means
of a unitary linear transformation indicating the possibil-
ity of describing neutrinos oscillation even in the massless
neutrinos case [3]. Bearing in mind the exhaustive result
presented in Lemma 2, the eventual observation of mass-
less neutrinos indicates (necessarily) the triviality of the
underlying topology. In other words, a non-trivial topol-
ogy is incompatible with oscillation of massless neutrinos.
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Übersichtsartikel, Vorträge und Bücher. Gesammelte
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[9] Dürr H.-P., Heisenberg W., Mitter H., Schlieder

S. and Yamazaki K., Z. Naturforsch., 14a (1959) 441.
[10] da Rocha Roldao, Bernardini A. and Hoff da Silva

J. M., JHEP, 04 (2011) 110.
[11] Petry H. R., J. Math. Phys., 20 (1979) 231; Unwin

S. D., J. Phys. A: Math. Gen., 12 (1979) L309; As-

selmeyer T. and Hess G., arXiv:cond-mat/9508053v1.

40006-p5


