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Abstract

Pathological cardiac hypertrophy leads to derangements in lipid metabolism that may con-

tribute to the development of cardiac dysfunction. Since previous studies, using high satu-

rated fat diets, have yielded inconclusive results, we investigated whether provision of a

high-unsaturated fatty acid (HUFA) diet was sufficient to restore impaired lipid metabolism

and normalize diastolic dysfunction in the pathologically hypertrophied heart. Male, Wistar

rats were subjected to supra-valvar aortic stenosis (SVAS) or sham surgery. After 6 weeks,

diastolic dysfunction and pathological hypertrophy was confirmed and both sham and SVAS

rats were treated with either normolipidic or HUFA diet. At 18 weeks post-surgery, the

HUFA diet failed to normalize decreased E/A ratios or attenuate measures of cardiac hyper-

trophy in SVAS animals. Enzymatic activity assays and gene expression analysis showed

that both normolipidic and HUFA-fed hypertrophied hearts had similar increases in glycolytic

enzyme activity and down-regulation of fatty acid oxidation genes. Mass spectrometry anal-

ysis revealed depletion of unsaturated fatty acids, primarily linoleate and oleate, within the

endogenous lipid pools of normolipidic SVAS hearts. The HUFA diet did not restore linoleate

or oleate in the cardiac lipid pools, but did maintain body weight and adipose mass in SVAS

animals. Overall, these results suggest that, in addition to decreased fatty acid oxidation,

aberrant unsaturated fatty acid metabolism may be a maladaptive signature of the patholog-

ically hypertrophied heart. The HUFA diet is insufficient to reverse metabolic remodeling,

diastolic dysfunction, or pathologically hypertrophy, possibly do to preferentially partitioning

of unsaturated fatty acids to adipose tissue.

PLOS ONE | https://doi.org/10.1371/journal.pone.0193553 March 1, 2018 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Casquel De Tomasi L, Salomé Campos
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Introduction

Based on epidemiological evidence demonstrating reduced cardiovascular risk and mortality

with consumption of diets high in unsaturated fatty acids [1,2], dietary intervention strategies

remain an attractive therapeutic option to combat the metabolic and cardiac remodeling pro-

cesses that occur in the hypertrophied heart. However, previous studies using various high fat

diets in animal models have yielded mixed results. These studies have suggested that lipid met-

abolic pathways may be improved [3–6] following high fat diet administration but pathological

remodeling remains unaffected [4,5] or attenuated [6–8]. In addition, cardiac function may be

improved [6,9], impaired [3], or similar to chow fed animals [5,7]. The inconsistency in the

data may be a consequence of several factors including: differences in the experimental mod-

els, dietary composition of the high fat diets utilized in the study, the time of initiation and

duration of treatment, and the outcome measures analyzed.

Closer inspection of the literature reveals that in rodent models of left ventricular (LV)

hypertrophy/dysfunction induced by pressure-overload [3–5,7], myocardial infarction [9], or

sodium intake [6,8], most studies employed diets that were predominantly high in saturated

fatty acids. Conversely, a diet rich in unsaturated fatty acids has been suggested to reduce

plasma triglycerides, cardiac arrhythmias, sudden death, risk of ischemic heart disease

and heart failure, and is therefore recommended to improve cardiovascular health [10]. In

addition, administration of a diet rich in unsaturated fatty acids could provide the more

appropriate ligand to stimulate fatty acid metabolism through activation of the peroxisome

proliferator-activated receptor alpha (PPARα) pathway [11] and may attenuate or correct the

metabolic and mechanical dysfunction that occurs during the pathological cardiac remodeling

process. Therefore, we hypothesized that administration of a diet high in unsaturated fatty

acids would have a beneficial effect on cardiac dysfunction, pathological remodeling, and lipid

metabolism in the pressure-overloaded heart.

For this study, we selected the supra-valvar aortic stenosis model (SVAS) to promote grad-

ual development of LV hypertrophy in young rats [12–15]. Initially, the pressure overload is

mild and progressively increases as the animals grow in size, thus, recapitulating the clinical

situation more closely. In our laboratory, echocardiographic studies showed that after 2 and

6 weeks of AS induction, rats developed LV hypertrophy, diastolic dysfunction and elevated

systolic function [14,15]. Since there is a paucity of data evaluating the effect of high fat diet

treatment on energy metabolism and cardiac function after the establishment of ventricular

hypertrophy accompanied by diastolic dysfunction, the high-fat diet was administered 6 weeks

after SVAS surgery in order to mimic a treatment model. Our results suggest that depletion

of unsaturated fatty acids, specifically oleate and linoleate may be an additional hallmark of

altered lipid metabolism in the hypertrophied myocardium. Provision of a high-unsaturated

fatty acid diet does not normalize lipid metabolism, correct diastolic dysfunction, or attenuate

pathological remodeling possibly due to a preferential partitioning of unsaturated fatty acids to

adipose tissue storage.

Materials and methods

Animals

Male, Wistar rats (± 80g, 3 weeks old), were bred in-house, and kept in individual cages in a

climate-controlled environment with a 12 h light/dark cycle and free access to food and water.

All experiments conformed to the Guide for the Care and Use of Laboratory Animals published

by the U.S. National Institutes of Health and was approved Botucatu Medical School Animal

Research Ethics Committee (protocol 1094/14).
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Experimental design

Initially, rats (n = 50) underwent either supra-valvar aortic stenosis (SVAS) or sham surgery

and fed standard chow. After 6 weeks, randomized animals were fed with a normolipidic diet

(Sham-N, n = 13 and AS-N, n = 11) or high-unsaturated fatty acid (HUFA) diet (Sham-H,

n = 12 and AS-H, n = 14) for 12 weeks. Animals in all groups were evaluated 12 weeks after the

administration of the diets (i.e., 18 weeks after surgery).

Supra-valvar aortic stenosis procedure

Aortic stenosis (AS) was induced surgically as described previously [13,14]. Rats (70–90 g)

were anesthetized with intraperitoneal ketamine (60 mg/kg) and xylazine (10 mg/kg), and the

heart was exposed via a median thoracotomy. Then, a silver clip (0.6 mm internal diameter)

was placed on the ascending aorta at approximately 3 mm from its root. During the surgery,

the rats received 1 ml of warm saline solution intraperitoneal and manually ventilated with

positive pressure, on 100% oxygen. After the procedure, animals were kept warm until full

consciousness was regained. Sham animals underwent the same procedure but without con-

striction of the aorta. After the surgery, all animals received an injection of meloxicam (5mg/

kg) every 24 hours for 3 days. Rats were monitored twice per day for the first week and then at

least twice per week for the remainder of the study. Post-operatively, rats were monitored for

physical and clinical signs consistent with the AVMA Guidelines for Euthanasia. Animals that

were monitored for edema, ascites, pleuro-pericardial effusion, and left atrial thrombus.

Diets

Diets were custom manufactured (Biotron Zoocténica1, Rio Claro, SP, Brazil) using the fol-

lowing ingredients: soybean meal, soybean hull, corn, dextrin, soybean oil, palmitic oil, vita-

min and mineral premix. The quantities were added to produce two different diets in lipid

content, but with similar fatty acid composition and the same amount of carbohydrates in

grams/100grams (Fig 1). Body weight and food consumption were monitored weekly. Caloric

intake was calculated weekly as the average weekly food consumption (grams) times the die-

tary energetic density (kilocalories).

Echocardiography

In-vivo cardiac function and morphometry was measured at 6 and 18 weeks post-surgery via

echocardiography (Vivid S6, General Electric Medical Systems, Tirat Carmel, Israel) using a

5–11.5 MHz multi-frequency transducer. Rats were anesthetized by intraperitoneal injection

of a mixture of ketamine (50 mg/kg) and xylazine (0.5 mg/kg). A two-dimensional parasternal

short-axis view of the left ventricle (LV) was obtained at the level of the papillary muscles

[16]. M-mode tracings were obtained from short-axis views of the LV at or just below the tip

of the mitral-valve leaflets, and at the level of the aortic valve and left atrium. M-mode images

of the LV were printed on a black-and-white thermal printer (Sony UP-890MD) at a sweep

speed of 100 mm/s. All LV structures were manually measured by the same observer according

to the leading-edge method of the American Society of Echocardiography [17]. Measurements

reported are the average of at least five cardiac cycles from the M-mode tracings.

Blood and tissue Harvest

At the end of 18 weeks, animals were fasted for 12–15 hours, anesthetized with sodium pento-

barbital (50 mg/kg, IP) and killed via decapitation by trained and certified technician. Trunk

blood was instantly collected and plasma was then separated by centrifugation at 1300 g for 10
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Fig 1. Caloric content and fatty acid composition of diets used in the study. (A-B) The percentage of total calories

arising from fats (black), protein (grey), and carbohydrates (white) in the normolipid (Normo) and high unsaturated

fat diet (HUFA). (C) The relative abundance of fatty acids in both diets. Fatty acids are organized by degree of

unsaturation and carbon length.

https://doi.org/10.1371/journal.pone.0193553.g001

Unsaturated fatty acids and aortic stenosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0193553 March 1, 2018 4 / 20

https://doi.org/10.1371/journal.pone.0193553.g001
https://doi.org/10.1371/journal.pone.0193553


minutes at 4˚C, and stored at -80˚C for subsequent analysis. The heart was removed, dissected,

weighed, and frozen in liquid nitrogen. Adipose tissue was isolated from the epididymal, vis-

ceral, and retroperitoneal fat pads and weighed. Adiposity index was calculated from the sum

of the individual fat pad weights:

ðepididymalþ visceralþ retroperitoneal=ðbody weightÞ � 100:

Serum Metabolite analysis

Plasma non-esterified fatty acids and triacylglycerol concentrations were measured using col-

orimetric assays (Wako Chemicals, Richmond, VA, USA; and Bioclin, Belo Horizonte, MG,

Brazil, respectively). Blood glucose concentration was measured using the Accu-Chek Go Kit

glucose analyzer (Roche Diagnostics Brazil Ltd., São Paulo, Brazil).

Real-Time PCR

Expression of cardiac genes involved in fatty acid oxidation was analyzed by Real-Time PCR.

Total RNA was extracted from the left ventricle (LV) using Trizol (Invitrogen), according to

the manufacturer’s instructions. The High Capacity cDNA reverse transcription kit for

RT-PCR1 (Invitrogen, São Paulo, Brazil) was used for the synthesis of 20 μL complementary

DNA (cDNA) from 1000 ng of whole RNA. The mRNA levels were determined by RT-qPCR

using the following assays: PPARα Rn00566193_m1, PGC1α Rn00580241_m1, FAT/CD36

Rn00580728_m1, CPT1β Rn00566242_m1 and MCAD Rn00566390_m1 (Applied Biosys-

tems). Quantitative measurements were made in the “Applied Biosystems StepOne Plus”

detection system using the TaqMan qPCR commercial kit (Invitrogen) according to the manu-

facturer’s instructions. All assays were performed in triplicate. The mRNA of target genes was

normalized to β-actin (assay Rn00667869_m1) and differences in expression were determined

by the CT method described in the ABI user’s manual (Life Technologies).

Metabolic enzymatic assays

Activities of key enzymes (i.e., phosphofructokinase (PFK), hexokinase (HK), lactate dehydro-

genase (LDH), betahydroxyacyl CoA dehydrogenase (OHADH), and citrate synthase (CS),

that participate in glucose and fatty acid metabolism were analyzed in the heart. LV samples

were homogenized 1:20 (wt/vol) in 50 mM Tris-HCl, 1 mM EDTA, and protease inhibitor

cocktail, pH 7.4, using a Polytron instrument (Kinematica, Littau-Lucerne, Switzerland). The

lysate was centrifuged at 12000rpm for 10min at 4˚C and the supernatant collected. All enzyme

activities were determined at 25˚C using a Spectra Max 250 microplate spectrophotometer

(Molecular Devices, Sunnyvale, CA) and the assay buffer without the sample was used as

blank. PFK was assayed in a buffer (pH 8.2) containing: (50mM Tris-HCl, 6.7mM MgCl2,

200mM KCl, 1mM beta-mercaptoethanol, 0.05% Triton X-100, 1mM ATP, 2mM AMP,

0.2mM NAD+, 0.9 units/ml aldolase, 0.16 units/ml glyceraldehyde 3-phosphate dehydroge-

nase, 9.6 units/ml triosephosphate isomerase, antimycin A and 3mM fructose-6-phosphate)

and measured at 340 nm. HK was assayed in a reaction mixture containing 75mM Tris-HCl,

7.5mM MgCl2, 0.8mM EDTA, 1.5mM KCl, 4mM B-mercaptoethanol, 0.05% Triton X-100,

0.4mM NADP+, 2.5mM ATP, 1.4 units/ml glucose-6-phosphate dehydrogenase and 1.0mM

glucose, pH 7.2; monitored at 340 nm. LDH was assayed in reaction mix containing 20mM

Tris, 6.0mM pyruvate, 5.0mM NADH and monitored at 340nm. For OHADH, the reaction

contained 100mM PBS pH 7.3, 0.45mM NADH and 0.1mM acetoacetyl CoA. CS activity

was measured in reaction containing 100mM Tris-HCl, 1mM MgCl2, 1mM EDTA, 0.2 mM
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dithio-bis(2-nitrobenzoic acid), 0.3mM acetyl CoA and 0.5mM oxaloacetate, pH 8.2. The rate

of change in absorbance was monitored at 412 nm (ε = 13.6 μmol �ml−1 � cm−1).

Western blot analysis

Left ventricular tissue was homogenized in cold RIPA lysis buffer (Amresco, Solon, OH, USA)

containing protease and phosphatase inhibitors (Roche, Indianapolis, IN, USA). The homoge-

nate was centrifuged at 12000g for 20min at 4˚C, and the supernatant was collected. Protein

concentrations were determined using BCA Protein Assay kit (ThermoScientific, Wilmington,

DE, USA). Samples (50μg) were subjected to SDS-polyacrylamide gel electrophoresis in poly-

acrylamide gels (6% or 10% depending on protein molecular weight). After electrophoresis,

proteins were electro-transferred to nitrocellulose membrane (Bio-Rad Laboratories, Hercules,

CA, USA). The blotted membranes were blocked with 5% nonfat dry milk in Tris-buffered

saline/Tween-20 (25mM Tris, pH 7.5, 140mM sodium chloride, 3mM potassium chloride and

0.1% Tween-20) for 2 hours at room temperature. Membranes were then incubated overnight

at 4˚C with primary antibodies SERCA2 ATPase (ABR, Affinity BioReagents, Golden, CO,

USA), phospholamban (Abcam, Cambridge, MA, USA), phospho–phospholamban (Ser16),

phospho-phospholamban (Thr17) (Badrilla, Leeds, West Yorkshire, UK) and β-actin (Cell

Signaling, Danvers, MA, USA). Binding of the primary antibody was detected with the use of

peroxidase-conjugated secondary antibodies (anti-rabbit or anti-mouse IgG—Abcam, Cam-

bridge, MA, USA) incubated for 1.5 hours at room temperature. Protein bands were visualized

via chemiluminescent detection (Supersignal, Pierce, Rockford, IL, USA) in a western blot

detection system (ImageQuant™ LAS 4000—GE Healthcare Life Sciences, Chalfont, UK), and

quantified by densitometry using Image J Analysis software. Targeted bands were normalized

to the expression of cardiac β-actin.

Myosin heavy chain (MyHC) analysis

Cardiac MyHC isoforms were separated by discontinuous gel electrophoresis. Briefly, frozen

samples of left ventricle were homogenized on ice in a solution containing 50 mM potassium

phosphate buffer (pH 7.0), 300mM sucrose, 0.5mM dithiotreitol (DTT), 1mM ethylenedi-

aminetetraacetic acid (EDTA), 0.3mM phenylmethylsulfonyl fluoride (PMSF), 10mM sodium

fluoride and protease inhibitor cocktail (Sigma, St. Louis, MO, USA). Homogenates were cen-

trifuged at 12000g for 20min at 4˚C and total protein quantification was performed in super-

natant aliquots using BCA Protein Assay kit (ThermoScientific, Wilmington, DE, USA).

Samples were diluted to a final concentration of 1μg of protein/μL in a solution containing

65% (vol/vol) glycerol, 2.5% (vol/vol) β-mercaptoethanol, 1.15% (wt/vol) SDS, and 0.45% (wt/

vol) Tris-HCl (pH 6.8). Then, 12ug of total protein was loaded into SDS-PAGE vertical slab

gels (Hoefer, Holliston, MA, USA). The gels were run for 40 h at 20˚C and constant voltage of

100 V. Protein bands for alpha and beta MyHC isoforms were visualized with Coomassie blue.

Gels were digitally photographed with the Gel Logic 6000 Pro Imaging System (Carestream

Health, Rochester, NY, USA), and analyzed for relative MyHC isoform percentages by densi-

tometry using Image J Analysis software.

Cardiac lipid analysis

Total lipids were extracted from heart tissue using a modified Folch method and solid phase

extraction (SPE) protocol [18]. Frozen LV samples (20–30 mg wet weight) were homogenized

in 2:1 chloroform:methanol. After centrifugation, the chloroform layer was removed and

injected into a Bond Elut NH2 SPE column (Agilent Technologies, Santa Clara, CA) for

the separation of triacylglycerol (TAG), diacylglycerol (DAG), free fatty acids (FFA) and
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phospholipids (PL). After drying under a nitrogen stream, residues were reconstituted in 2.5%

H2SO4 in methanol. Samples were incubated at 80˚C for 1 hour to convert to fatty acid methyl

esters (FAMEs). After cooling, samples were washed twice with hexane to reclaim the FAMEs.

FAMEs from the 4 different pools were analyzed by gas chromatography/mass spectrometry

(GC/MS) using the Agilent 7890B gas chromatograph linked to an Agilent 5977A mass selec-

tive detector (Palo Alto, CA) operated at 70 eV, ion source temperature 260˚C, mass range m/

z 35–450. GC was performed using a 30 m x 0.25 mm I.D. column (HP-88, Agilent Technolo-

gies, Santa Clara, CA) with helium as carrier gas at a flow rate of 1 ml/min. The temperature

gradient started with an initial temperature of 100˚C, followed by a linear increase to 180˚C at

20˚C/min, and a slower linear increase to 220˚C at 5˚C/min. Identification of FAMEs was con-

firmed by a commercially available standard (47885-U Sigma-Aldrich, St. Louis, MO). Relative

abundance was determined by the ratio of each fatty acid to sum of all fatty acids identified in

the sample.

Histology

Picrosirius red staining for assessment of cardiac fibrosis was performed as previously

described [19]. In brief, LV transverse sections were fixed in 10% buffered formalin and

embedded in paraffin as previously described. Sections of 1μm were cut from the tissue block

and stained with hematoxylin and eosin, and with the collagen-specific stain picrosirius red

(Sirius red F3BA in aqueous saturated picric acid). Images (40×) were collected using a camera

attached to a Leica microscope (Leica Mikroskopie & Systems GmbH, Germany). Images were

analyzed via Image J analysis software.

Statistical analysis

Data are expressed as mean ± standard error of mean (SEM). Comparisons at the 6th week

were done by Student’s t-test and at the 18th week by two-way ANOVA and Tukey post-hoc

analysis. GraphPad Prism 7.0 was used for all statistical tests. P< 0.05 was accepted as statisti-

cally significant.

Results

Supra-valvar aortic stenosis induces cardiac hypertrophy and diastolic

dysfunction

Six weeks after SVAS surgery, all rats underwent morphometric and functional analysis via

echocardiography. As shown in Table 1, the AS group had significantly elevated ejection frac-

tion (EF) and fractional shortening (FS) with significantly increased left ventricular posterior

wall thickness (LVPW;d), relative wall thickness and LV mass index, suggestive of hyper-sys-

tolic function and cardiac hypertrophy. The AS group presented with decreased E/A ratios, in

addition to, significantly increased left atrium (LA) diameter and LA to aorta ratio (LA/Ao),

indicative of diastolic dysfunction (Table 1). As the SVAS surgery induced both cardiac hyper-

trophy and diastolic dysfunction as expected, rats in the AS groups were randomized to receive

either the normolipidic or HUFA diet (Fig 1).

High-unsaturated fat diet preserves body fat in rats after surgery

During the course of the 12-wk feeding period, food intake was monitored daily. Although

food intake was lower in both sham and AS rats fed the HUFA diet compared chow groups,

caloric intake was not different between the four groups (Table 2). AS surgery led to significant

reduction in total body fat and adiposity index in normolipidic fed rats; however, this loss was
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prevented in AS animals fed HUFA (Table 2). Triglyceride and glucose levels were unchanged

18-wks post AS surgery in both diet groups; however, non-esterified free fatty acids concentra-

tion was decreased in AS-N but preserved in AS-H (Table 2).

Unsaturated fat diet does not attenuate cardiac hypertrophy or diastolic

dysfunction

Echocardiography was performed on all rats at the end of the 12-wk feeding period (i.e., 18-wk

post-surgery). Systolic function (EF and FS) remained significantly elevated in both AS groups

compared to sham although the AS-H was slightly reduced compared to AS-N (Table 3). A

wave velocity was significantly increased in both AS groups that resulted in a significant

decrease in the E/A ratio (Table 3). Fibrosis, assessed by picrosirius red staining, was increased

similarly in both AS surgery groups, consistent with diastolic dysfunction (S1 Fig). LVPW;d,

relative wall thickness and left atrial dimensions were increased to a similar degree in both AS

Table 1. Echocardiographic data 6 weeks post SVAS surgery.

Sham AS

HR (bpm) 326 ± 63 297 ± 24

EF (%) 91.0 ± 2.0 98.0 ± 1.0�

FS (%) 29.6 ± 3.4 37.1 ± 3.0�

E wave (cm/s) 80.8 ± 6.4 78.3 ± 14.7

A wave (cm/s) 52.2 ± 4.5 69.2 ± 21.7

E/A ratio 1.55 ± 0.06 1.18 ± 0.41�

LVID;d (mm) 7.21 ± 0.17 6.77 ± 0.13

LVPW;d (mm) 1.42 ± 0.03 1.72 ± 0.04�

Relative wall thickness 0.40 ± 0.04 0.50 ± 0.07�

LV mass index (g/kg) 2.25 ± 0.20 2.76 ± 0.49�

LA (mm) 4.94 ± 0.65 5.87 ± 0.71�

LA/Ao 1.42 ± 0.19 1.66 ± 0.29�

HR, heart rate; EF, ejection fraction; FS, fractional shortening; LVID;d, left ventricular internal dimension in diastole;

LVPW; left ventricular posterior wall thickness in diastole; LA, left atrium diameter, LA/Ao: left atrium to aorta ratio.

�p<0.05 vs. sham. Sham, n = 8; AS, n = 25.

https://doi.org/10.1371/journal.pone.0193553.t001

Table 2. Physical characteristics and Serum Metabolite Concentratons.

Normolipid HUFA

Sham AS Sham AS

Body weight (g) 447 ± 43 409 ± 30 447 ± 73 423 ± 31

Food intake (g/day) 29.1 ± 3.6 26.6 ± 2.8 22.1 ± 3.9 � 20.5 ± 2.2 #

Calorie intake (kcal/day) 85.2 ± 10.7 78.1 ± 8.1 80.4 ± 14.2 74.6 ± 8.0

Total body fat (g) 19.6 ± 5.9 13.1 ± 3.6 � 23.4 ± 9.6 24.7 ± 4.8 #

Adiposity index 4.61 ± 1.45 3.28 ± 0.75 � 5.13 ± 1.51 5.82 ± 1.00 #

Glucose (mg/dL) 130 ± 9 125 ± 18 143 ± 18 138 ± 17

Triacylglycerol (mg/dL) 46.4 ± 16.1 39.5 ± 15.3 46.9 ± 14.2 46.8 ± 13.9

NEFA (mM) 0.35 ± 0.10 0.28 ± 0.03 � 0.35 ± 0.04 0.33 ± 0.08

NEFA: non-esterified fatty acids.

� p<0.05 vs. Sham-N;
# p<0.05 vs. AS-N, (n = 11–14 each group.)

https://doi.org/10.1371/journal.pone.0193553.t002
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groups (Table 3), suggesting that cardiac hypertrophy was not attenuated or exacerbated by

the HUFA. In support of the echocardiography data, the left and right ventricular weight

as well as atrial weight was increased to a similar degree in both AS-N and AS-H groups

(Table 4). Taken together, these results demonstrate that feeding a diet high in unsaturated fat

does not improve diastolic dysfunction or attenuate pathological cardiac growth in rats sub-

jected to SVAS surgery.

High-unsaturated fatty acid diet does not prevent changes in glycolytic

enzyme activity or fatty acid oxidation genes

Hypertrophied hearts are known to shift to a fetal metabolic profile, where decreased fatty acid

oxidation is countered by an upregulation in glycolytic activity. Consistent with this, signifi-

cant increases were observed in the activities of hexokinase, phosphofructokinase, and lactate

dehydrogenase in both AS-N and AS-H hearts (Fig 2A–2C). Interestingly, citrate synthase

Table 3. Echocardiographic data 12 weeks after high unsaturated fat diet treatment.

Normolipid HUFA

Sham AS Sham AS

HR (bpm) 293 ± 58 272 ± 32 306 ± 37 280 ± 45

EF (%) 92.0 ± 3.0 98.0 ± 1.0 � 92.0 ± 2.0 96.0 ± 3.0 � #

FS (%) 30.3 ± 3.2 37.3 ± 2.9 � 29.3 ± 2.3 32.2 ± 4.1 � #

E wave (cm/s) 74.0 ± 9.1 77.3 ± 16.6 75.2 ± 9.6 75.0 ± 8.2

A wave (cm/s) 49.2 ± 8.3 62.2 ± 13.7 � 46.8 ± 10.5 60.0 ± 15.5 �

E/A ratio 1.52 ± 0.16 1.29 ± 0.30 � 1.69 ± 0.19 1.28 ± 0.42 �

Relative wall thickness 0.37 ± 0.03 0.57 ± 0.06 � 0.39 ± 0.04 0.57 ± 0.05 �

LVID;d (mm) 7.84 ± 0.19 7.25 ± 0.22 7.45 ± 0.15 7.08 ± 0.18

LVPW;d (mm) 1.46 ± 0.02 2.04 ± 0.02 � 1.46 ± 0.03 2.05 ± 0.04 �

LV mass index (g/kg) 1.72 ± 0.22 2.71 ± 0.42 � 1.59 ± 0.09 2.50 ± 0.39 �

LA (mm) 4.99 ± 0.57 6.41 ± 0.85 � 5.23 ± 0.39 6.17 ± 0.72 �

LA/Ao 1.29 ± 0.13 1.67 ± 0.18 � 1.31 ± 0.08 1.55 ± 0.23 �

HR, heart rate; EF, ejection fraction; FS, fractional shortening; LVID;d, left ventricular internal dimension in diastole; LVPW; left ventricular posterior wall thickness in

diastole; LA, left atrium diameter, LA/Ao: left atrium to aorta ratio.

�p<0.05 vs. respective sham.
# p<0.05 vs. AS-N, (n = 11–14 each group).

https://doi.org/10.1371/journal.pone.0193553.t003

Table 4. Cardiac mass analysis.

Normolipid HUFA

Sham AS Sham AS

LV (g) 0.81 ± 0.11 1.16 ± 0.12 � 0.78 ± 0.09 1.16 ± 0.17 �

RV (g) 0.28 ± 0.07 0.25 ± 0.04 0.23 ± 0.03 � 0.27 ± 0.03 �

AT (g) 0.11 ± 0.02 0.17 ± 0.04 � 0.10 ± 0.02 0.16 ± 0.03 �

Tibia (cm) 4.24 ± 0.07 4.18 ± 0.08 4.24 ± 0.12 4.22 ± 0.10

LV/tibia (g/cm) 0.19 ± 0.02 0.28 ± 0.03 � 0.18 ± 0.02 0.27 ± 0.04 �

RV/tibia (g/cm) 0.07 ± 0.02 0.06 ± 0.01 0.05 ± 0.01 � 0.06 ± 0.01 �

AT/tibia (g/cm) 0.02 ± 0.004 0.04 ± 0.009 � 0.02 ± 0.005 0.04 ± 0.007 �

LV: left ventricle weight; RD: right ventricle weight; AT: atrium weight; Tibia: tibia length.

� p<0.05 vs sham, (n = 11–14 each group).

https://doi.org/10.1371/journal.pone.0193553.t004
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activity was increased by the unsaturated fat diet in sham animals, but remained unchanged in

both AS groups (Fig 2D). Beta-hydroxyacyl coenzyme-A dehydrogenase (OHADH) activity

was not affected by AS surgery but was mildly increased in AS hearts fed the HUFA (Fig 2E).

Similar to citrate synthase activity, a significant upregulation of PGC1α gene expression was

observed in sham hearts fed the HUFA with no change noted in the AS groups (Fig 3A). Gene

expression of PPARα remained unaffected in AS groups; however, the downstream targets

FAT/CD36, CPT1B, and MCAD were significantly down regulated in both control and HUFA

hearts subjected to AS surgery (Fig 3B–3E). In total, these results show that provision of a

high-unsaturated fat diet to hearts 6 weeks post-AS surgery is not sufficient to reverse the upre-

gulation glycolytic enzyme activity or decrease in fatty acid oxidation genes, consistent with

the fetal metabolic profile in hypertrophied hearts.

Decreases in calcium handling proteins are not restored by unsaturated fat

diet

Consistent with previous reports [20,21], the ratio of the beta to alpha isoform of myosin

heavy chain was increased in the hypertrophied myocardium without a significant dietary

effect (Fig 4A and 4B). In addition, AS surgery led to a 50% decrease in SERCA2a protein

expression that was not improved with the unsaturated fat diet (Fig 4A and 4C). Since

increased phosphorylation of phospholamban (PLB) at Serine 16 (S16), mediated by protein

Fig 2. Unsaturated fatty acid diet does not prevent upregulation of glycolytic enzyme activity in hypertrophied hearts. (A-C) Activities of hexokinase,

phosphofructokinase and lactate dehydrogenase in heart lysates from sham and AS groups fed normolipidic (Normo) or high unsaturated fat diet (HUFA);

(D) Citrate synthase activity; (E) Beta hydroxy-acyl CoA dehydrogenase (OHADH). � p<0.05 vs. respective sham (n = 9–13 per group).

https://doi.org/10.1371/journal.pone.0193553.g002
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kinase A, and PLB at Threonine 17 (T17), mediated by calmodulin-dependent kinase II (CaM-

KII) has been suggested to contribute to altered calcium responsiveness to beta-adrenergic

signaling in cardiac hypertrophy [22,23], the phosphorylation status of these PLB sites were

assessed. Increased phosphorylation of PLB at S16, but not T17, was observed in AS-N that

Fig 3. Unsaturated fat diet does not reverse down-regulation of fatty acid oxidation (FAO) related genes.

Expression of cardiac genes involved in fatty acid oxidation from sham and AS groups fed normolipidic (Normo) or

high-unsaturated fat diet (HUFA). (A) PGC1α: peroxisome proliferator-activated receptor gamma coactivator 1-alpha;

(B) PPARα: peroxisome proliferator-activated receptor alpha; (C) FAT/CD36: fatty acid translocase; (D) CPT1β:

carnitine palmitoyltransferase I beta; (E) MCAD: medium-chain acyl-CoA dehydrogenase. Data presented as fold-

change from Sham-Normo. � p<0.05 vs. respective sham, (n = 9–11 per group).

https://doi.org/10.1371/journal.pone.0193553.g003
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was attenuated in AS-H group (Fig 4D and 4E). In all, these data show that AS induces alter-

ations in calcium handling proteins, consistent with pathological hypertrophy, that are not

corrected by the HUFA diet.

Hypertrophied hearts have less unsaturated fatty acids in endogenous lipid

pools

The HUFA diet failed to elicit any beneficial effects on metabolism, in-vivo function, or hyper-

trophic growth in AS hearts. Therefore, we further probed lipid metabolism by profiling the

endogenous cardiac lipid pools using GC-MS. Fig 5 shows the relative proportion of saturated

and unsaturated fatty acids detected within the various endogenous lipid pools of free fatty

acids (FFAs), diacylglycerol (DAG), and triacylglycerol (TAG). Overall, saturated fatty acids

account for approximately 70–80% of the FFA (Fig 5A) and DAG (Fig 5C) pools with less satu-

rated fatty acids appearing in the TAG (~60%, Fig 5E) and PLs (~50%, S2 Fig) pools in sham

hearts exposed to the normolipidic diet. The HUFA diet had a tendency to increase unsatu-

rated fatty acids by ~25% in both the FFA and DAG pools after 12 weeks of feeding in sham

Fig 4. Altered myosin heavy chain or calcium handling protein expression are not affected by high-unsaturated fat diet. Representative image of protein

bands from (A) myosin heavy chain (MyHC), sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a), phospholamban (PLB), phosphorylated PLB at serine-16

(pPLB-Ser16), phosphorylated PLB at threonine-17 (pPLB-Thr17), and beta-actin (β-actin). (B) Quantification of the β-MyHC to α-MyHC isoforms. (C)

Quantification of the SERCA2 normalized to β-actin. (D) Quantification of pPLB-Ser16 normalized to PLB. (E) Quantification of pPLB-Thr17 normalized to

PLB. Data reported as fold change relative to Sham-Normo. � P<0.05 vs. respective sham; #<0.05 vs. AS-N, n = 6 each group.

https://doi.org/10.1371/journal.pone.0193553.g004
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Fig 5. Abundance of saturated and unsaturated fatty acids of cardiac lipid pools is not altered with diet in

hypertrophied hearts. The abundance of saturated and unsaturated fatty acids was determined in lipid extracts from

cardiac tissue in Sham and AS hearts fed normolipidic (Normo) or high-unsaturated fat diet (HUFA). Lipid extracts

were separated into: (A) saturated cytosolic free fatty acids (FFAs); (B) unsaturated FFAs; (C) saturated fatty acids from

diacylglycerol (DAG); (D) unsaturated fatty acids from DAG; (E) saturated fatty acids from triacylglycerol (TAG); (F)

unsaturated fatty acids from DAG. All saturated fatty acids and unsaturated fatty acids, as determined by GC-MS

analysis, were summed and the percentage of total fatty acids was calculated. Data are reported as mean ± SEM for

each group. # p<0.05 vs. Sham-HUFA, n = 5 each group.

https://doi.org/10.1371/journal.pone.0193553.g005
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animals (p<0.10) while the TAG pool remained relatively stable (Fig 5A–5F). Following AS

surgery, the abundance of unsaturated fatty acids in the FFA pool trended lower by ~25%

(p<0.10) and remained significantly lower in HUFA-fed AS rats (Fig 5B). A similar pattern

was observed in the DAG pool where unsaturated fatty acids were reduced by ~40% in both

AS-Normo and AS-HUFA hearts (Fig 5D). The HUFA diet did not affect the abundance of

unsaturated fatty acids within the TAG pool in sham animals; however, AS surgery led to an

approximate 20% reduction of unsaturated fats in TAGs in both groups (Fig 5F). Cardiac PLs

remained stable regardless of surgery or dietary intervention (S2 Fig). These data suggest that

12 weeks of HUFA can cause a mild change in the proportion of unsaturated fatty acids within

the unstressed myocardium. However, in the hypertrophied heart induced by SVAS surgery,

HUFA is unable to mitigate the depletion of unsaturated fats from the endogenous cardiac

lipid pools.

Unsaturated fat diet does not restore depletion of oleic and linoleic acid in

AS hearts

To gain additional insight into the loss of unsaturated fats, we examined the fatty acid compo-

sition of the individual endogenous cardiac lipid pools. As shown in Fig 6, palmitate (C16:0)

and stearate (C18:0) were the two most abundant fatty acids within the FFA, DAG, and TAG

pools. This was also true of the PLs fraction with the addition of arachidonate and docosahex-

aenoate. (S3 Fig). In sham hearts, the HUFA diet caused a significant increase in both oleate

(C18:1) and linoleate (C18:2) in the FFA pool but not within the DAG and TAG pools (Fig

6A–6C). In the FFA, DAG, and TAG pools, the relative abundance of C18:1 was decreased by

~30–50% in AS-N hearts and was at significantly lower levels in the FFA and DAG pools of

AS-H hearts (Fig 6A–6C). Likewise, the abundance of C18:2 was significantly reduced by ~30–

60% in FFA, DAG (p = .1036), and TAG pools as a result of AS surgery in normolipidic fed

rats, which remained significantly lower in AS rats fed a HUFA (Fig 6A–6C). Despite changes

in other lipid pools, the fatty acid composition of cardiac PLs was not affected by either surgery

or diet (S3 Fig). These data suggest that 12 weeks of HUFA, with a high abundance of oleate

(C18:1) and linoleate (C18:2) has a mild effect on the fatty acid composition of these unsatu-

rated fatty acids in the FFA pool of healthy hearts, but not in hypertrophied hearts. Moreover,

these data implicate potential alterations in lipid metabolism, specifically relating to unsatu-

rated fatty acids (i.e., C18:1 and C18:2), in the pathological hypertrophied myocardium.

Discussion

The major finding of the present study is that rat hearts subjected to supra-valvar aortic steno-

sis (SVAS) developed significant hypertrophy, diastolic dysfunction, and are prone to deple-

tion of the unsaturated fatty acids, oleate and linoleate, within the endogenous cardiac lipid

pools, potentially identifying this as an additional feature of abnormal lipid metabolism in

pathological hypertrophy. Remarkably, a diet high in unsaturated fatty acids does not prevent

the myocardial depletion of oleate and linoleate in this model. In total, our data demonstrate

that a 3-month dietary intervention of high-unsaturated fat is insufficient to combat diastolic

dysfunction in the hypertrophied myocardium. However, our data suggest that abnormal lipid

partitioning, particularly relating to the unsaturated fats, linoleate and oleate, exists in the

hypertrophied heart, which may be an additional hallmark of aberrant lipid metabolism.

Several previous studies attempted to rescue deficient fatty acid oxidation in pressure-over-

load hypertrophy rodent models using a high fat diet intervention that resulted in inconsistent

conclusions. The majority of these studies started the dietary intervention shortly (i.e., within

1 week) after the surgery, mostly employing a high fat diet that contained predominantly
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Fig 6. Decreased abundance of oleic and linoleic acid in hypertrophied hearts is not restored by diet. The relative

abundance of individual fatty acids present in lipid extracts from cardiac tissue in Sham and AS hearts fed

normolipidic (Normo, Sham-N and AS-N) or high unsaturated fat diet (HUFA, Sham-H and AS-H). Lipid extracts

were separated into: (A) total cytosolic free fatty acids (FFAs); (B) diacylglycerol (DAG); and (C) triacylglycerol (TAG).

Data is reported as relative abundance as determined by GC-MS analysis. � p<0.05 vs. Sham-N; # p<0.05 vs. Sham-H,

(n = 5 each group).

https://doi.org/10.1371/journal.pone.0193553.g006
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saturated fat [5,7–9]. To account for this, we selected a diet that was rich in unsaturated fats,

which has been suggested to be a beneficial dietary strategy to decrease cardiovascular disease

risk and mortality [1,2]. In this regard, our diet would be consistent with dietary recommenda-

tions for the prevention and treatment of heart disease from the American Heart Association

[10]. However, our results do not support consumption of unsaturated fatty acids, starting 6

weeks after SVAS surgery, as a successful secondary prevention strategy for cardiac dysfunc-

tion and pathological remodeling.

Unfortunately, our findings do not support the idea that diets high in unsaturated fats are

beneficial for correcting cardiac dysfunction in the hypertrophied myocardium. However, the

diet was only provided for 3 months so we cannot rule out that a longer duration of treatment

would be more suitable. One notable change that occurred in the SVAS animals that received

the HUFA diet was the preservation of body weight and adipose tissue mass. This could be a

salient factor, particularly in regards to the “Obesity Paradox”, where mortality is reduced in

obese patients with heart failure [24]. Although this phenomenon has recently been scrutinized

[25], the long-term effect of the HUFA diet on cardiovascular mortality in our experimental

model warrants further investigation.

In this work, we hypothesized that the increased supply of unsaturated fatty acids would

lead to the reactivation of PPARα, thus, normalizing lipid uptake and oxidation and correcting

metabolic and mechanical dysfunction in hypertrophied hearts. Our data show that genes

related to lipid uptake and oxidation (CD36, CPT1β, MCAD) remain down regulated in the

hypertrophied myocardium despite chronic feeding of unsaturated fatty acids. Previous stud-

ies found that rat hearts subjected to transverse aortic constriction (TAC) had decreased car-

diac function and endogenous fatty acid oxidation in the Langendorff preparation when

palmitate was supplemented in the perfusate [11,26]. Interestingly, provision of oleate, instead

of palmitate, to the isolated TAC hearts improved parameters of contractility and relaxation

and improved endogenous FAO, which was mediated by restoration of PPARα target genes

[11]. Based on these reports, the inability of a chronic high-unsaturated fatty acid supply to

improve cardiac function and/or lipid metabolism in our study is quite disappointing. An

obvious explanation is the experimental setting, where in the isolated perfused heart, a concen-

trated amount of oleate was provided for a short time (i.e., ~60min). In this regard, the acute

stimulatory effect of oleate could be the overwhelming factor. Oleate represented only ~30% of

all fatty acids in the diet, and although was delivered for 12 weeks, it was dispersed throughout

multiple organ systems. Therefore, a concentration and/or time dependent mechanism might

be critical in the observed effects of the unsaturated fat, oleate, to augment cardiac function

and lipid metabolism.

An essential question remains as to why the high-unsaturated fatty acid diet was incapable

of affecting cardiac parameters, especially as epidemiological and basic science research would

suggest otherwise. Perhaps, a better understanding of both cardiac and systemic lipid parti-

tioning would make things clearer. Our lipid profiling of cardiac tissue shows that the unsatu-

rated fats, linoleate and oleate, which represent over 60% of the total dietary fatty acid content,

do not appear in the myocardium in ratios consistent with the exogenous supply. This

becomes even more apparent in the hypertrophied heart as both of these fatty acids are

decreased in multiple endogenous pools. Speculation could arise as to whether the hypertro-

phied heart preferentially oxidizes these particular fatty acids, which has been suggested to

occur in the whole body of large animals and humans [27–29]. As the composition of both ole-

ate and linoleate were well preserved within the cardiac phospholipids, another possibility is

that these fatty acids are redirected into maintaining phospholipid integrity. It has been sug-

gested that unsaturated fats within the phospholipid membrane, particularly linoleate, are

prone to degradation within the stressed myocardium [30,31]. However, this would not
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explain the deficiencies of oleate and linoleate within the cardiac lipid pools of the hypertro-

phied hearts fed the high fat diet. Since the SVAS animals fed with the HUFA diet maintained

body weight and fat mass, the increased exogenous supply of unsaturated fatty acids might be

preferentially stored in the adipose tissue, rather than the heart. Reports in the literature lend

support to this possibility. Two reports demonstrated that greater gains in body weight and fat

mass occurred when mice were fed a high fat diet predominant in unsaturated versus saturated

fats [32,33]. Furthermore, studies in rats [34] and humans [35–37] show that adipose tissue

has a stronger correlation to the dietary profile than serum or other tissues. In total, our study

raises additional questions about the partitioning of specific lipids in both the healthy and dis-

eased heart [38] and suggest that additional studies are needed to unravel the complexities of

lipid metabolism in cardiac pathologies.

Several other factors need to be considered regarding the findings in the present study. We

employed the SVAS model, which induces a gradual pressure-overload as the animal ages [12–

15] where in other models using aortic constriction, an abrupt change in the pressure gradient

occurs [3–5,7]. Clearly, this could contribute to source of variation among studies. However,

studies in coronary artery ligation [9] and salt-induced hypertension [6,8] also yield mixed

results. Comparison outcomes across multiple studies is problematic as many different diets

have been utilized and the macronutrient profile and composition of fatty acids are not always

easily discernable. In this regard, reduction of nutrients such as carbohydrates may result in

high fat diets that are more consistent with ketogenic diets that may confound results. Further-

more, additional understanding is needed regarding the uptake and partitioning of lipids due

their carbon length and degree of saturation [38] so broad statements regarding the effects of

saturated or unsaturated fatty acids should be expanded to identify the specific fatty acid.

In summary, the SVAS surgery model induces robust pathological hypertrophy, diastolic

dysfunction, and altered lipid metabolism, highlighted by a depletion of unsaturated fatty

acids within the endogenous cardiac lipid pools. Although a high content of oleate and linole-

ate was present in the high-unsaturated diet, it fails to restore the depleted oleate and linoleate

content in hypertrophied hearts. This may be due to a preferential uptake of these fatty acids

by the adipose tissue, which explains the inability of the diet to attenuate pathological hyper-

trophy, correct diastolic dysfunction, or normalize lipid metabolism. Overall, these findings

hint towards abnormal lipid partitioning, specifically involving mono-unsaturated and poly-

unsaturated fatty acids, as an additional signature of maladaptive lipid metabolism in the

hypertrophied myocardium.

Supporting information

S1 Fig. SVAS surgery increases fibrosis similarly in normolipidic and HUFA fed rats.

Fibrosis was assessed by picrosirius red staining in cardiac sections and quantified by Image J.

(A) Representative images from each of the four groups. (B) Percentage of fibrosis determined

by the ratio of stained to unstained tissue. Data are reported as mean ± SEM for each group.
� P <0.05 vs. respective sham, n = 3.

(TIF)

S2 Fig. Abundance of saturated and unsaturated fatty acids of cardiac phospholipids is

not altered with diet in hypertrophied hearts. The abundance of saturated and unsaturated

fatty acids was determined in phospholipid extracts from cardiac tissue in Sham and AS

hearts fed normolipidic (Normo) or high-unsaturated fat diet (HUFA). (A) The relative

abundance of all saturated fatty acids. (B) The relative abundance of all unsaturated fatty

acids. All saturated fatty acids and unsaturated fatty acids, as determined by GC-MS analysis,

were summed and the percentage of total fatty acids was calculated. Data are reported as
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mean ± SEM for each group, n = 5.

(TIF)

S3 Fig. Fatty acid composition of cardiac phospholipids. The relative abundance of individ-

ual fatty acids present in phospholipid extracts from cardiac tissue in Sham and AS hearts fed

normolipidic (Normo, Sham-N and AS-N) or high unsaturated fat diet (HUFA, Sham-H and

AS-H). Data is reported as relative abundance as determined by GC-MS analysis. (n = 5 each

group). C14:0, myristic acid; C16:0, palmitic acid; C18:0, stearic acid; C18:1, oleic acid; C18:2,

linoleic acid; C20:4, arachidonic acid; C22:6, docosahexaenoic acid.

(TIF)
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