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Resumo

O objetivo da área de Inferência Causal é apontar explicações causais subja-
centes para dados observáveis. A explicação causal muitas vezes não é única, uma
vez que podemos ter duas estruturas causais que explicam o mesmo conjunto de
distribuições. Como tal, podemos agrupar as estruturas causais que originam as
mesmas correlações no que chamamos de classes de Equivalência Observacional.

Nesta tese, revisamos trabalhos anteriores sobre equivalências observacionais
entre estruturas causais clássicas e apresentamos duas extensões de resultados
existentes sobre equivalência. Além disso, aplicamos esses resultados aos casos de
3 e 4 variáveis, mostrando que a classificação é completa para o primeiro caso e
ainda incompleta para o segundo. Finalmente, mostramos como essa classificação
pode ajudar a filtrar exemplos de estruturas que podem exibir lacunas Quântico-
Clássicas e discutimos a validade quântica dos resultados de equivalência.

Palavras Chaves: Inferência Causal; Equivalência Observacional; Quantum-
Classical Gaps;

Áreas do conhecimento: Física; Fundamentos da Mecânica Quântica; Inferência
Causal.
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Abstract

The goal of Causal Inference is to point out underlying causal explanations for
observable data. The causal explanation is often not unique, since we can have
two causal structures that explain the same set of distributions. As such, we can
group the causal structures that originate the same correlations into what we call
Observational Equivalence classes.

In this thesis, we review previous work on observational equivalences between
classical causal structures and present two extensions to existent rules to prove
equivalence. Furthermore, we apply these results to the cases of 3 and 4 variables,
showing that the classification is complete for the former case and still incomplete
for the latter. Finally, we show how this classification can help filter examples of
structures that may exhibit Quantum-Classical gaps and we discuss the quantum
validity of the equivalence results.

Key Words: Causal Inference; Observational Equivalences; Quantum-Classical
Gaps;

Areas: Physics; Quantum Foundations; Causal Inference.
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Chapter 1

Introduction

Many times, it passes unnoticed that most scientific statements talk about
correlations between observed events, not about causal relationships. For example,
when we say that the barometer reading B is related to the atmospheric pressure
P by B = kP, we are not specifying if P causes B or if B causes P1. Of course, we
have a strong belief that the atmospheric pressure causes the barometer reading,
but this belief is not imprinted in the equation.

The barometer example is very simple to figure out, but as we go to increasingly
complicated scenarios, it can be dangerous not to have a way to express causal
information. In particular, mixing correlation with causation can lead to wrong
conclusions.

The area of Causal Inference aims to provide a formal way to talk about
causality. It does so by introducing causal structures, directed acyclic graphs where
the vertices are the studied events and the arrows mean direct causal influence.
These causal structures provide potential underlying explanations to the observed
statistics.

Causal structures impose certain constraints on the probability distributions
that can be satisfied by the observed events. We will see the first example of
these causal constraints with the graph of Figure 1.1, and they will be explained
in more detail with the examples of Figure 2.1. Through causal constraints, we
can relate our causal investigation to experimental data: a certain structure G can
only explain a phenomenon F if the observed correlations of F satisfy all the
constraints of G.

Causal Inference has applications in all areas of science, from machine learning,
where it was born, to health studies[2][3][4] and Earth sciences[5]. Now, we will
see a motivation for physicists working in Quantum Foundations to study Causal
Inference.

1Example taken from [1].

1



Chapter 1. Introduction 2

1.1 Motivation for Physics: The Bell Causal Structure

Bell’s Theorem[6] can be rephrased using Causal Inference, as was first shown
in [7]: the deterministic (classical) causal structure that satisfies local causality and
no super-determinism also yields an inequality constraint that is precisely Bell’s
inequality.

The Bell structure is presented in Figure 1.1. There, S and T represent the
choices of measurement made by Alice and Bob, and A and B represent their
measurement outcomes. The variable λ is the hidden variable that influences
both A and B. Every node in this graph represents a classical variable; we will see
precisely what this means in Definition 3.

Figure 1.1: The Bell Structure

In Figure 1.1, we can see that S and T are independent, and also independent
of λ. Furthermore, if we know λ, the two wings of the experiment become
independent. Denoting independence by ⊥ and conditioning by |, this means:

S ⊥ Tλ and T ⊥ Sλ (No Super-Determinism) (1.1)

A ⊥ BT|Sλ and B ⊥ AS|Tλ (Local Causality) (1.2)

Equations (1.1) and (1.2), that are of the form "variable x is independent of
variable y given variable z", are called Conditional Independence (CI) relations. We
can see that the Conditional Independence relations that the Bell causal structure
yields are exactly the hypotheses of Bell’s Theorem: no super-determinism and
local causality.

When there are hidden (unmeasurable) variables such as λ, Conditional Inde-
pendences like the ones above are in general not the only causal constraints we
have. In the case of the Figure 1.1, if we assume binary variables, there is also the
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following constraint:

1
4 ∑

a=b
PAB|ST(ab|00) +

1
4 ∑

a=b
PAB|ST(ab|01)+

1
4 ∑

a=b
PAB|ST(ab|10) +

1
4 ∑

a ̸=b
PAB|ST(ab|11) ≤ 3/4 , (1.3)

This is Bell’s inequality.
Thus, as stated in [7], the fact that quantum correlations violate this inequality

means that they cannot be explained by the classical causal structure of Figure
1.1. In reality, [7] proves more than that: even if we change the causal structure so
that it violates local causality or no super-determinism (but keeping it a classical
causal structure), the quantum correlations can only be explained if we allow for
fine-tuning of the parameters. As will be discussed in Section 2.1, we consider
those as bad explanations.

If one changes the hidden variable λ in Figure 1.1 to a quantum system, as
will be discussed in more detail in Chapter 6, one can violate Bell’s inequality and
explain quantum correlations. Therefore, we say that this causal structure yields a
Quantum-Classical gap (QC gap).

To have a QC gap, a causal structure needs to have inequality constraints [8],
although not every inequality constraint leads to a QC gap. In Section 6.2, we will
discuss the task of finding other examples that can lead to QC gaps and Bell-like
theorems.

1.2 Observational Partial Order

If we have a set of data, our goal in causal inference is to find its causal
explanation. In general, the answer is not unique; the set of constraints of one
causal structure can include the constraints of another, or even be the same.

There is a partial order of causal structures that have the same number of
measured variables: if every probability distribution that can be explained by
G can also be explained by G ′, then G ′ dominates G. If the sets of explainable
correlations are the same, G and G ′ are equivalent.

Note that if two causal structures are equivalent, it is impossible to make a
passive observation experiment that decides which one governs the relationships
between a set of events. This is why we call this an Observational equivalence.

There are cases when it is hard to explicitly find all the constraints that a
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causal structure yields. Thus, finding other ways to classify causal structures
into equivalence classes of Observational equivalence is an important step to
identify causal explanations of observed data. This filtering can also help us spot
causal structures that are good candidates for having a QC gap; for example, if we
know that a structure does not yield inequality constraints, then all the structures
equivalent to this one will also not have inequality constraints.

In this project, we organized causal structures into Observational equivalence
classes. To do so, we used the equivalence rules of Chapter 3, which tell us when
two structures are known to be equivalent, and the comparisons of Chapter 4, that
tell us when two structures are known to be inequivalent. For 3 visible variables,
the classification is solved. As we will see, the results we have are not enough to
completely characterize the equivalence classes for causal structures of 4 visible
variables.

The classification process is illustrated in Figure 1.2. There, the classical causal
structures (red dots) are organized into true equivalence classes (green dashed
bubbles). Our goal is to find these equivalence classes.

Figure 1.2: The proven-equivalence partition (pink bubbles) is found by applying the
equivalence propositions of Chapter 3. The proven-inequivalence partition (gray bubbles)
is found by the comparisons of Chapter 4.

Through the equivalence rules, we find the proven-equivalence partition, rep-
resented by pink bubbles in Figure 1.2. If two causal structures are in the same
pink bubble, we know that they are observationally equivalent. The successive
application of the equivalence results shows more and more equivalences, thus
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merging pink bubbles. On the other hand, making the comparisons described in
Chapter 4 proves inequivalences between the causal structures, thus establishing
the gray bubbles of Figure 1.2; if two structures are not in the same gray bubble,
we know that they are not observationally equivalent. Implementing more com-
parisons successively shows more and more inequivalences, thus splitting gray
bubbles.

If a given set of causal structures is an element of both the proven-equivalence
partition and the proven-inequivalence partition, then it describes an equiva-
lence class of causal structures. The leftmost class of Figure 1.2 illustrates this
circumstance.

This is the method we used to apply the existent equivalence results to classify
the structures with 3 and 4 observable variables. After an introduction of the
framework in Chapter 2, we will present the equivalence results in Chapters 3 and
4 (including two original theoretical results in Sections 3.2.2 and 3.2.3), and show
the outcomes of their implementation in Chapter 5. Finally, a discussion about the
quantum case and the search for QC gaps is done in Chapter 6. At the end of each
chapter, we include a summary box with the more relevant ideas.



Chapter 2

Preliminary Notions

In this thesis (and in the majority of the discussions within the Causal Inference
framework), we do not consider the possibility of closed cycles of causal influence.
Thus, the causal structure that relates a given set of events is represented by a
Directed Acyclic Graph (DAG), a directed graph that has no cycles.

These DAGs are composed of vertices (nodes) and directed edges, that are
ordered pairs of nodes. Below, we define some terminology about DAGs.

Definition 1 (Children, Parents, Descendants, Ancestors). Let v be a node of a DAG
G. If w is a node in G such that there is a directed edge v → w, then w is called a child of
v. Conversely, all the nodes u in G that have v as a child are the parents of v. The set of all
children of v is denoted chG(v), and the set of all parents of v is denoted paG(v).

The descendants of v are all the nodes in G that can be reached from v by a sequence
of nodes through the directed edges. The ancestors of v are the nodes that have v as a
descendant.

Definition 2 (Subgraph). Let G be a DAG with vertices V and edges E , and G ′ be a
DAG with vertices V′ and edges E ′. If V′ ⊆ V and E ′ ⊆ E , we say that G ′ is a subgraph
of G.

2.1 The Causal Compatibility Problem

When performing an experiment that assesses the occurrence of a set of events,
we obtain probability distributions over these events. Using statistical methods,
we can find correlations between these probability distributions. We can infer
properties of the underlying causal structure by investigating which DAGs are or
are not compatible with the observed correlations. This is the Causal Compatibility
problem.

The DAGs in Figure 2.1 give a first example of this: in 2.1(a), the causal structure
imposes that variables B and C become independent when we know the value of

6
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A. This is called a Conditional Independence (CI) relation. It means that the joint
probability distributions that are compatible with 2.1(a) need to factorize as:

P(ABC) = P(C|A)P(B|A)P(A) (2.1)

In general, the probability distribution of a given node v conditioned on v’s
parents is independent of all the non-descendants of v.

If a probability distribution does not satisfy the constraint of Equation (2.1),
then it is not compatible with DAG 2.1(a). The DAG 2.1(b), on the other hand, is
saturated: it does not yield any constraint, so it is compatible with any probability
distribution over the visible variables.

Figure 2.1: In (a), the nodes B and C are independent when we condition on A. In (b), no
such Conditional Independence relation exists. In fact, the DAG in (b) is saturated: every
probability distribution over 3 variables is compatible with it.

To formalize the causal compatibility problem, we identify every node v of a
DAG G with a random variable Xv : Ω → Xv. Here, (Ω,F , P) is some probability
space, where F is a σ-algebra on the set Ω and P is a probability measure. The
set Ω and the σ-algebra F used to define the random variable are not important;
we can record the probability of X taking each value in X , and this will be our
probability distribution P. Xv is the set in which Xv takes values. At this point, we
are not making any assumptions on Xv.

The structure of the DAG is reflected in this identification by stating that Xv

only "depends” on XpaG (v)
. This idea is made precise with the Structural Equation

Property, taken from [9]:

Definition 3 (Structural Equation Property - SEP). Let G be a DAG, and V is the set
of vertices of G. Let P be some joint probability distribution over the random variables Xv,
v ∈ V.
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We say that P obeys the Structural Equation Property for the DAG G if there exists:

• independent random variables Ev : Ω → Ev (called error variables)

• measurable functions fv : XpaG (v)
× Ev → Xv

such that for all v ∈ V, the assignment

Xv = fv(XpaG (v)
, Ev) (2.2)

ensures that XV has the joint probability distribution P.
Saying that Xv = fv(XpaG (v)

, Ev) is equivalent to saying that Xv is σ - (XpaG (v)
, Ev)

measurable.
We denote by M(G) the set of probability distributions that obey the SEP for the DAG

G.

Note that here enters the fact that our causal models are classical: every node is
given by a deterministic function of its parents and an error function. This error
function allows for a node to respond probabilistically to its parents; however, it is
still in the scope of classical probabilities.

One could ask: why can’t we assume that saturated DAGs explain every
experiment? In other words, why do we look for DAGs with constraints?

This is justified with the Popperian principle of Falsifiability [10]: When two
theories are compatible with the experiments we have access to, we consider
that the best one is the theory that is more falsifiable. In the context of causal
modeling, the more falsifiable explanation is the one that presents more constraints.
Therefore, we disregard causal explanations that admit more general probability
distributions than the ones we see in experiments; this is what happens for example
with classical structures for Bell’s scenario that allow for superluminal signaling.

Many causal structures involve variables that are not measurable, or that we
choose not to measure. For example, in Figure 1.1, the variable λ is not measurable.
We call those variables "latent" and denote their set by L. Similarly, we will call
the measurable variables "visible", and denote their set by V. Furthermore, we
say that a DAG that is composed only of visible variables is a visible-variable or
latent-free DAG, as opposed to the more general latent-variable DAGs, that may
include latent nodes.

In Theorem 1 of [11] it is shown that P admitting a recursive factorization
(obeying SEP) for a visible-variable DAG G is equivalent to P presenting CI
relations that mirror G’s CI relations (in [11], this is called Global Markov Property).
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This means that, in the case where all variables are visible (called latent-free), the
Causal Compatibility problem is just a problem of finding the CI Relations of a
DAG. This is completely solved by the method of d-separation, which is outlined in
the next section.

2.2 The d-separation Criterion

In [12], we can find a general algorithm for finding CI relations like the one
observed in the DAG of Figure 2.1(a). It is called the d-separation criterion, and it is
given by:

Definition 4 (d-Separation). An undirected path p in a DAG G is said to be blocked by
a set of nodes Z if:

1. p contains a chain or a fork (see Figure 2.2) such that the middle node is in Z, or

2. p contains a collider (see Figure 2.2) such that neither the middle node nor any of its
descendants are in Z

We say that nodes x and y in the DAG G are d-separated by Z if all the paths that
connect them are blocked by Z. This implies that x and y are independent conditioned on
Z.

Figure 2.2: Definitions used in the d-separation Criterion. In the two first cases, the path
A → B → C is blocked by Z if B ∈ Z. In the third case, this path is blocked by Z if B /∈ Z
and no descendant of B is in Z.

Looking at the cases of the chain and the fork in Figure 2.2, it is easy to
convince oneself that A and C become independent when we know B. This is
what happened in the case of Figure 2.1(a), where we had a fork.
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In the case of the collider, the inverse happens: when we know B, the variables
A and C become dependent. We can make sense of this by imagining the following
scenario: let B represent some illness, and A and C represent two causes of the
same illness; for example, unhealthy lifestyle and genetic predisposition. Say that
these two causes are in principle uncorrelated. However, when a patient presents
the illness (B) and we learn that they have a healthy lifestyle (A), we increase the
likelihood of them having the genetic predisposition (C). So, A and C become
correlated under knowing B.

As already mentioned, in the latent-free case, the only constraints on the
distributions are the CI relations. So, the d-separation criterion solves the entire
problem. When there are latent variables, however, the problem becomes much
more complicated. Now we will turn our attention to this case, introducing the
concept of an mDAG.

2.3 Marginal Models and mDAGs

As we have seen in the example of the Bell Structure (Figure 1.1), when we
have latent nodes we can obtain constraints other than just CI relations (like the
inequality constraint of Equation (1.3)). These inequalities are not easy to find in
general.

For a DAG with latent variables, the question we ask is not whether a probabil-
ity distribution of (XV , XL) is compatible with the DAG, but whether a probability
distribution of XV is compatible with the DAG. Following [9], this is posed as:

Definition 5. Let G be a DAG with visible variables V and latent variables L. The state
space for the visible variables is XV . We say that a probability distribution P over XV is
"compatible with the marginal DAG model of G" if there exists:

• a state space XL for XL; and

• a probability measure Q ∈ M(G) over XV ×XL

such that P is the marginal of Q over XV . We denote this by P ∈ M(G, V).

For example, in Figure 1.1, we consider only probability distributions over the
observables A, B, S, and T, and not the hidden variable λ.

In [9] it is shown that, for classical causal structures, it suffices to consider
latent variables that have no parents (called exogenized) and whose children are
not a subset of the children of another latent variable (called non-redundant). These
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results, which we call Evans’s rules, are presented in Appendix A as Lemmas 4 and
5. These rules suggest the introduction of a new structure for studying marginal
distributions of classical causal models: the marginalized DAG, or mDAG (first
introduced in [9]). This structure only makes sense for DAGs whose latent vari-
ables are all exogenized and non-redundant. Thus, mDAGs are not applicable in
the case of quantum causal structures, because Lemma 4 is not valid in that case
(as shown in [13]).

To define an mDAG, we first introduce the concept of an Abstract Simplicial
Complex:

Definition 6 (Abstract Simplicial Complex). An abstract simplicial complex over a
finite set V is a set B of subsets of V such that

• {v} ∈ B for all v ∈ V;

• If A ⊆ B ⊆ V and B ∈ B, then A ∈ B.

The elements of B are called faces. The inclusion-maximal elements of an abstract simplicial
complex (the faces that are maximal in the order over faces induced by subset inclusion)
are called facets.

An mDAG is a pair (D,B), where D is a visible-variable DAG and B is an
abstract simplicial complex over the set of nodes. All the information about the
latent variables is encoded in the simplicial complex. We say that D is the directed
structure of the mDAG G.

The identification between latent-variable DAGs and associated mDAGs is
exemplified in Figure 2.3: each latent variable U in the DAG corresponds to a facet
in the mDAG whose elements are the children of U.

Because of Lemmas 4 and 5 (See Appendix A), two latent-variable DAGs, G
and G ′, whose associated mDAGs are the same also have the same model over the
visible variables, M(G, V) = M(G ′, V). Therefore, the mDAG structure contains
all the information needed to study marginal distributions over visible variables.
In all of this work except for Section 6 we discuss classical causal structures, thus
we use the language of mDAGs.

The results and definitions that we presented for DAGs are trivially extended
for mDAGs if we think of their associated DAGs. For example:

Definition 7. Let G be an mDAG with variables V. If a probability distribution P over
Xv obeys Definition 5 for the latent-variable DAG associated with G (P ∈ M(G, V)), we
say that P is compatible with the mDAG G.
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Figure 2.3: (a) An mDAG with abstract simplicial complex B =
{{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {1, 5}, {4, 5}, {1, 2, 3}, {1, 4, 5}}.
The inclusion-maximal elements of B are indicated by the red bubbles. (b) The DAG
associated with the mDAG (a).

Definition 8 (Subgraph of an mDAG). Let G = (D,B) and G ′ = (D′,B′) be two
mDAGs. If D′ is a subgraph of D and B′ ⊆ B, we say that G ′ is a subgraph of G.

2.4 Dominance: Hypergraph and Directed Structure

Inclusion

Definition 9 (Observational dominance and equivalence). Let D and D′ be latent-
variable DAGs that have the same set V of visible variables. We say that D dominates
D′ when it accommodates at least all the probability distributions compatible with D′, i.e.
when M(D′, V) ⊆ M(D, V). In this case, we denote D ⪰ D′.

If the sets of probability distributions compatible with D and D′ are the same, we say
that these DAGs are observationally equivalent.

If it is known that D ⪰ D′ but D and D′ are not equivalent, we say that D strictly
dominates D′ and denote D ≻ D′.

These are defined similarly for mDAGs, using Definition 7.
In this section, we will present a result that gives some circumstances un-

der which we know that the latent-variable DAG D dominates D′, and we will
show how this translates to the language of mDAGs. The result is presented as
proposition 3.3(b) in [9]:

Proposition 1 (Edge Dropping). Let D and D′ be two latent-variable DAGs with the
same sets of vertices. Let V be their set of visible variables and L be their set of latent
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variables. If D′ is a subgraph of D (as in Definition 2), then M(D′, V) ⊆ M(D, V).

Proof. Consider a probability distribution compatible with D′. For v ∈ V, this
means that Xv is σ-(XpaD′ (v), Ev) measurable. Since D′ is a subgraph of D, we
have that paD′(v) ⊆ paD(v), for both visible and latent parents of v. Thus, the
random variable Xv must also be σ-(XpaD(v)

, Ev) measurable, and the probability
distribution is also compatible with D.

This Proposition gives some dominance relations between latent-variable
DAGs. From this result, we can derive two types of dominance relations between
mDAGs.

Proposition 2 (Directed Structure Dominance). Let G = (D,B) and G ′ = (D′,B)
be two mDAGs that have the same simplicial complex B but different directed structures.
If D′ is a subgraph of D (as in Definition 2), then M(D′) ⊆ M(D).

Proof. This follows from application of Proposition 1 to the visible-variable DAGs
D and D′.

Proposition 3 (Simplicial Complex Dominance). Let G = (D,B) and G ′ = (D,B′)

be two mDAGs that have the same directed structure D but different simplicial complices.
If B′ ⊆ B, then G ⪰ G ′.

Proof. This follows from application of Proposition 1 to the latent-variable DAGs
associated to the mDAGs G and G ′ (substituting facets by latent nodes).

Starting from the latent-variable DAG associated with G, we make use of
Lemma 5 to add redundant latent variables correspondent to all the faces of B
(not just the facets). Removing edges from this new set of latent variables (that
includes redundant ones), we can get to the latent-variable DAG associated with
the simplicial complex B′.

Note that B′ ⊆ B, as used in the definition of Proposition 3, means that every
face of B′ is also a face of B, not every facet. For example, in Figure 2.4, the facets
(red bubbles) of the mDAG 2.4(b) are not a subset of the facets of 2.4(a). However,
their faces are.

2.5 Graph Patterns

If we want to check the compatibility of a probability distribution with a causal
structure, clearly we need to know which node of the mDAG refers to which
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Figure 2.4: (a) An mDAG with abstract simplicial complex B =
{{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}. (b) (a) An mDAG with abstract sim-
plicial complex B′ = {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}}. Since B′ ⊆ B, Proposition 3
says that (a) dominates (b). The facets (inclusion-maximal elements of B and B′) are
indicated by the red bubbles.

variable. For example, the two causal structures of Figure 2.5 are the same up
to assignments of variables to nodes, but they are not observationally equivalent
structures.

We call the transformation of changing the assignment of variables to nodes
a relabelling transformation. Furthermore, we call an unlabeled mDAG, that
corresponds to an equivalence class under the relabelling transformation, a graph
pattern.

Figure 2.5: Two mDAGs on variables {A, B, C} that are equivalent under relabelling
transformation, but are not observationally equivalent. We know that because they have
different sets of CI Relations and, as we will see, this implies inequivalence.

In this work, we will talk about graph patterns instead of labeled mDAGs.
This is so because our goal here is to study the general behavior of the causal
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structures from a more abstract point of view, instead of a more practical one
of explicitly finding which probability distributions are compatible with each
mDAG. Since many mDAGs have symmetries, ignoring the labels makes our
computational work much faster. For example, Table 2.1 compares the numbers of
labeled mDAGs and graph patterns for fixed numbers of visible nodes.

Visible Nodes 2 3 4 5
Number of labeled mDAGs 6 225 61902 201863214
Number of graph patterns 4 46 2809 1718596

Table 2.1: Numbers of labeled mDAGs and graph patterns for fixed numbers of visible
nodes. These numbers were found implementing Evans’s Rules (Lemmas 4 and 5) in
Python, as well as the relabelling transformation.

Therefore, we want to establish "unlabeled observational equivalences" and
"unlabeled observational dominance relations" between graph patterns. We start
by defining unlabeled observational equivalence:

Definition 10 (Observational Equivalence of Graph Patterns). We say that a rela-
belling class (graph pattern) G is equivalent to another relabelling class G ′ if some mDAG
of G is equivalent to an mDAG of G ′.

Using the relabelling transformation, we see that if some mDAG of the first
relabelling class is equivalent to an mDAG of the second relabelling class, then
every mDAG of the first class is equivalent to an mDAG of the second class. Thus,
Definition 10 is reasonable.

For properties like the Conditional Independence Relations, we will also define
two graph patterns to have the same CI Relations if some element of the first
relabelling class have the same CI Relations as an element of the second one.

To extend the definition of observational dominance to graph patterns, we do
something similar:

Definition 11 (Observational Dominance of Graph Patterns). We say that a rela-
belling class (graph pattern) G dominates another relabelling class G ′ if any mDAG of G
dominates an mDAG of G ′.

For this definition to be sensible we need to show that, if we have observational
dominance both ways, then there is observational equivalence between the graph
patterns. In other words, we need to show that the case presented in Figure 2.6
does not happen.
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Indeed, suppose that mDAGs GA
1 and GB

1 belong to the graph pattern 1, while
mDAG G2 belongs to the graph pattern 2. Now, suppose that GA

1 ⪰ G2, while
G2 ⪰ GB

1 . According to the first dominance, GA
1 is compatible with at least the

same volume of distributions as G2. According to the second dominance, G2 is
compatible with at least the same volume of distributions as GB

1 . However, GA
1 and

GB
1 are just a relabelling of each other; so, even if their compatible distributions are

different, by symmetry we know that the volume of the compatible distributions
must be the same. Therefore, since

vol(GA
1 ) ≥ vol(G2) ≥ vol(GB

1 )

vol(GA
1 ) = vol(GB

1 ) ,

we conclude that all volumes are equal, thus G2 must be equivalent to both GA
1

and GB
1 . Therefore, GA

1 and GB
1 are the same mDAG.

Figure 2.6: Here, blue and orange circles represent mDAGs, while arrows represent
dominance relations between mDAGs. Two mDAGs inside the same graph pattern are
related to each other by a relabelling of the visible nodes. In this hypothetical case,
there is observational dominance both ways according to Definition 11, but there is no
observational equivalence as in Definition 10. However, this case is impossible.

2.6 Computational Work: Constructing Metagraph

To deduce a proven-equivalence partition of causal structures (pink bubbles of
Figure 1.2), we constructed a "metagraph", a graph where the nodes are the graph
patterns. In this metagraph, we added undirected and directed edges, respectively
meaning equivalences and dominance relations according to Definitions 10 and
11. The undirected edges were represented in the code by adding two arrows in



Chapter 2. Preliminary Notions 17

opposite directions, so dominance in both ways is the same as equivalence. Our
code can be found in [14].

Propositions 2 and 3, that talk about dominance between mDAGs, give rise to
directed edges. The propositions that will be presented in Section 3, that establish
equivalence, give rise to undirected edges. The strongly connected components of
the metagraph determine the proven-equivalence partition.

Summary of the chapter:

• Causal Structures are represented by Directed Acyclic Graphs (DAGs).
A DAG can have visible (measured) and latent (unmeasured) nodes.
In this work, we allow for unbounded cardinality of the latents.

• A probability distribution P over a set of variables V is classically
compatible with a DAG G that has the visible nodes V if it obeys the
constraints that are classically implied by G. This can be reformu-
lated by saying that one can find measurable functions following the
structure of the DAG such that the joint probability P is reproduced
(Definition 3).

• We say that the DAG G observationally dominates the DAG G’ if all the
probability distributions compatible with G’ are also compatible with
G. We say that they are observationally equivalent if they have exactly
the same set of compatible probability distributions.

• Constraints of the form of Conditional Independence (CI) relations are
found by the method of d-separation. Inequality constraints, on the
other hand, are harder to find.

• Lemmas 4 and 5 guarantee that, in the classical case, we can work with
mDAGs (structures where all the latents in a DAG are switched for
facets of a simplicial complex; see Figure 2.3).

• In this work, we look for the observational equivalence classes of graph
patterns (unlabelled mDAGs).



Chapter 3

Ways to Show Equivalence

In this section, we are going to show some propositions that provide conditions
under which two mDAGs are known to be equivalent. These results give us our
proven-equivalence partition (pink bubbles of Figure 1.2), but we still do not know
if they are enough to find the final equivalence classes when we have more than 3
observable nodes. The number of elements of the proven-equivalence partition is
an upper bound on the number of equivalence classes (green dashed bubbles of
Figure 1.2).

Sections 3.2.2 and 3.2.3 show original theoretical results.
The equivalences provided by the propositions of this section are going to give

the undirected edges in our metagraph, and the proven-equivalence partition is
given by the strongly connected components of the metagraph.

3.1 HLP Proposition

The first equivalence result that we reproduce here is Theorem 26.4 of [8]:

Proposition 4 (HLP Proposition). Let G be a mDAG, and X and Y be two of its visible
nodes. If we have:

• paG(X) ⊆ paG(Y).

• X is included in at least one facet.

• If X ∈ B for a facet B ∈ B, then Y ∈ B.

Then G is equivalent to the mDAG G ′ defined by adding an edge X → Y to G.

Proof. Presented in Appendix B.1.

For example, by the HLP proposition it follows that the two mDAGs of Figure
3.1 are observationally equivalent.

18



Chapter 3. Ways to Show Equivalence 19

Figure 3.1: Two mDAGs that can be proven equivalent by the HLP proposition [8].

Results Applied Nº of Pink Bubbles
3 visible nodes

Nº of Pink Bubbles
4 visible nodes

HLP 27 1597

Table 3.1: Number of elements of the proven-equivalence partition (number of pink
bubbles of Figure 1.2) in which the 46 graph patterns at 3 visible nodes and the 2809 graph
patterns at 4 visible nodes divide, when we use the HLP Proposition (Proposition 4). The
dominance relations of Section 2.4 are also included.

Implementing this in the metagraph (together with the dominance relations of
Section 2.4), the numbers of elements of the proven-equivalence partition that we
get are presented in Table 3.1.

3.2 Evans’s Proposition and its Spin-Offs

Proposition 6.1 of [9] is a very important equivalence result, that we are going
to call "Evans’ Proposition". We reproduce it below, and Figure 3.2 may help to
understand the statement.

Proposition 5 (Evans’s Proposition). Let G be an mDAG containing a facet B = C∪ D,
C and D disjoint, such that:

1. paG(C) ⊆ paG(d) for each d ∈ D

2. For every c ∈ C, B is the only facet that contains c.

Then, G is equivalent to the mDAG G ′ defined by adding edges c → d for every c ∈ C,
d ∈ D and removing B from B, so that now C and D are inclusion-maximal.
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Figure 3.2: Two mDAGs that can be proven equivalent by Evans proposition [9].

As it turns out, Evans’s Proposition can be subsumed by a result that only talks
about the splitting of the facets, called Weak Face Splitting, while the addition of
edges is taken care of by the HLP Proposition.

3.2.1 Weak Face Splitting

In this section, we formulate the Weak Face Splitting Proposition:

Proposition 6 (Weak Face Splitting). Let G be an mDAG containing a facet B = C ∪ D,
C and D disjoint, such that:

1. paG(C) ∪ C ⊆ paG(d) for each d ∈ D

2. If for a face B′ we have c ∈ B′ for some c ∈ C, then B′ ⊆ B.

Then, G is equivalent to the mDAG G ′ defined by removing B from B, so that now C
and D are inclusion-maximal.

Proof. Presented in Appendix B.2.

It is easy to see that Proposition 6 is weaker than Proposition 5: in Proposition
6, we need the edges c → d to be present in order to satisfy condition 1. However,
as we will see below, when we associate Proposition 6 with the HLP Proposition
we get a result that implies Proposition 5.

Lemma 1 (Weak FS+HLP≥Evans). The application of Weak Face Splitting (Proposition
6) together with the HLP Proposition (Proposition 4) subsumes Evans’s Proposition
(Proposition 5).
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Proof. Suppose that we have an mDAG G that satisfies the conditions of Proposi-
tion 5. This means that G contains a facet B = C ∪ D with C and D disjoint and,
for each c ∈ C and d ∈ D:

1. paG(c) ⊆ paG(d)

2. c is included in the facet B and the only facet that includes c is B.

3. B also includes d.

This shows that the premises of the HLP Proposition (Proposition 4) are satis-
fied for X = c and Y = d. Thus, HLP implies that one can add edges c → d for
every c ∈ C and d ∈ D.

With this addition, now the mDAG satisfies all the conditions of Proposition
6, the Weak Face Splitting rule. This means that we can remove the facet B and
add facets C and D, and get the final mDAG that could have been obtained by
Proposition 5. Thus, Proposition 5 is a special case of the joint application of
Propositions 6 and 4.

Hence, we separated the part of Evans’s Proposition that splits the facets, that
is included in the Weak Face Splitting Proposition, from the part that adds the
edges c → d, that is taken care of by the HLP Proposition. This is made explicit in
Figure 3.3, where we break the example of Figure 3.2 into two steps. However, this
is not the only case in which the HLP Proposition is useful; we make that explicit
in the Lemma below.

Lemma 2 (Weak FS+HLP>Evans). The application of Weak Face Splitting (Proposition
6) together with the HLP Proposition (Proposition 4) is strictly stronger than Evans’s
Proposition (Proposition 5).

Proof. The equivalence between the mDAGs of Figure 3.1 cannot be shown by
Evans’s Proposition.

Using HLP, Weak FS, and the dominance relations of Section 2.4, we get the
numbers of elements of the proven-equivalence partitions (strongly connected
components of the metagraph) for 3 and 4 observable nodes that are shown in
Table 3.2.

When we have a set of equivalence classes obtained by one equivalence result
and we implement a different non-redundant result, the final proven-equivalence
partition is a coarse-graining of the original one. In other words, some of the pink
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Figure 3.3: The equivalence of Figure 3.2 can be shown by HLP together with Weak FS
(Propositions 4 and 6).

Results Applied Nº of Pink Bubbles
3 visible nodes

Nº of Pink Bubbles
4 visible nodes

HLP+Weak FS 8 416

Table 3.2: Number of elements of the proven-equivalence partition (pink bubbles of Figure
1.2) determined by Weak Face Splitting (Proposition 6) together with the HLP Proposition
(Proposition 4). The dominance relations of Section 2.4 are also included.
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bubbles of Figure 1.2 merge into larger pink bubbles. Looking at Tables 3.1 and
3.2, we see that HLP+Weak FS is better than HLP alone. This means that Weak FS
(and Evans’s Proposition) shows some equivalences that HLP cannot show.

3.2.2 Moderate Face Splitting

Our first original theoretical result is an extension of Weak Face Splitting, where
we show that condition 2 can be relaxed.

Proposition 7 (Moderate Face Splitting). Let G be an mDAG containing a face B =

C ∪ D, C and D disjoint, such that:

1. paG(C) ∪ C ⊆ paG(d) for each d ∈ D

2. If for a face B′ we have c ∈ B′ for any c ∈ C, then D ⊂ B′.

Then, G is equivalent to the mDAG G ′ defined by removing B for B (so C and D
become inclusion-maximal).

Note the difference in premise 2 between this proposition and Propositions 5
and 6: there, we had that B′ ⊆ B and here, we have D ⊂ B′.

Proposition 7 follows from a simple application of Proposition 6 when treating
all latent variables of the latent-variable DAG associated to G (apart from the one
associated to the facet that we want to split) as if they were visible. We can do
that because measuring the latent variables without changing any of their other
properties should not change the marginal probability distributions over the nodes
that were already visible. The second hypothesis in Proposition 7 comes from the
fact that all the parents of c ∈ C, visible and latent, need to be parents of every
d ∈ D.

This is indeed more flexible than the second hypothesis of Proposition 6, which
says that in G the nodes c ∈ C are not in any facet other than B. The second
hypothesis of Proposition 7 allows for c ∈ C to be in facets that include nodes
outside of B if they also include all of D (see Figure 3.4).

The number of elements of the proven-equivalence partition we get when
applying this result to the cases of 3 and 4 visible nodes are presented in Table 3.3.

3.2.3 Strong (Simultaneous) Face Splitting

In Figure 3.5, we have two mDAGs that cannot be shown equivalent by Propo-
sition 5 nor by HLP together with our Propositions 6 or 7.
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Figure 3.4: The facet B in mDAG (a) could not be split into C and D by Proposition 6
(because 4 ∈ C is part of another facet), but it can be split by Proposition 7.

Results Applied Nº of Pink Bubbles
3 visible nodes

Nº of Pink Bubbles
4 visible nodes

HLP + Moderate FS 8 408

Table 3.3: Number of elements of the proven-equivalence partition (pink bubbles) deter-
mined by HLP + Moderate Face Splitting (Propositions 4 and 7) . The dominance relations
of Section 2.4 are also included.

Figure 3.5: Simultaneous splitting example

As it turns out, however, these mDAGs are indeed observationally equivalent.
This can be shown by the following proposition, which is our second original
theoretical result:

Proposition 8 (Strong Face Splitting). Let G be an mDAG containing a sequence
of facets B1, ..., Bn that share the subset D ∈ ∩i=1,...,nBi. Denote Ci ≡ Bi \ D. If the
following conditions hold:
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1. paG(Ci) ∪ Ci ⊆ paG(d) for each d ∈ D, i = 1, ..., n

2. If for a face B′ we have c ∈ B′ for some c ∈ ∪i=1,...,nCi, then D ⊆ B′.

Then, G is equivalent to the mDAG G ′ defined by removing the facets B1, ..., Bn and
adding the facets C1, ..., Cn and D.

Proof. Presented in Appendix B.3.

We also call this result "Simultaneous Face Splitting", because it shows that
multiple facets can be split simultaneously. In the example of Figure 3.5, we have
D = {1, 2}, C1 = {3, 4}, C2 = {4, 5}, B1 = {1, 2, 3, 4} and B2 = {1, 2, 4, 5}.

Table 3.4 presents the number of elements of the proven-equivalence partition
that we get when applying the dominances of Section 2.4, HLP Proposition, and
Strong Face Splitting together. These are all the results that are presently known,
so Table 3.4 shows the best upper bounds that we currently have on the number
of equivalence classes.

Results Applied Nº of Pink Bubbles
3 visible nodes

Nº of Pink Bubbles
4 visible nodes

HLP + Strong FS 8 396

Table 3.4: Number of elements of the proven-equivalence partition (pink bubbles of Figure
1.2) determined by HLP + Strong Face Splitting (Propositions 4 and 8) . The dominance
relations of Section 2.4 are also included.

Summary of the chapter:

• HLP [8] and Evans [9] presented different conditions under which two
mDAGs are proven to be observationally equivalent.

• In Sections 3.2.2 and 3.2.3, we present two original extensions to
Evans’s result.

• These results allow us to obtain the proven-equivalence partition (pink
bubbles of Figure 1.2). We found it for mDAGs with 3 and 4 visible
variables.
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Comparisons that Show Inequivalence

In this section, we are going to present all the known methods to show that
two mDAGs are not equivalent. The application of these methods defines the
proven-inequivalence partition (gray bubbles of Figure 1.2). Two mDAGs are
known to be inequivalent if they are not in the same element of the partition.

We will pick one representative of each element of the proven-equivalence
partition (pink bubble of Figure 1.2) and make the comparisons between the
representatives. In the numerical results for 3 and 4 visible variables that we
will present, we picked representatives of the elements of the proven-equivalence
partition found by HLP + Strong FS.

4.1 Graphical Methods

4.1.1 Skeletons

We are going to start showing inequivalences by using a method that was
introduced in [9]. For that, we first define the Skeleton of an mDAG:

Definition 12 (Skeleton). Let G = (D,B) be an mDAG. We define the skeleton of G by
the undirected graph with the same nodes as D and with an edge between nodes u and w
when there is an arrow between them in D or when u, w ∈ B for some B ∈ B.

You can see an example of this definition in Figure 4.1.
Below, we reproduce Proposition 6.5 of [9]:

Proposition 9. (Skeleton Comparison) Let G and G ′ be two mDAGs, and suppose that
the state space of the random variables XV is discrete. If G and G ′ have different skeletons,
then they are inequivalent.

Therefore, if we assume that XV is discrete, the comparison of Skeletons can
give us some proven inequivalences. This allows us to organize the mDAGs into

26
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Figure 4.1: (a) An mDAG; and (b) Its skeleton.

Comparisons Made Nº of Gray Bubbles
3 visible nodes

Nº of Gray Bubbles
4 visible nodes

Skeletons 4 11

Table 4.1: Numbers of Skeleton Classes (gray bubbles of Figure 1.2) in which the graph
patterns divide. These numbers give lower bounds on the number of equivalence classes.

a first proven-inequivalence partition. We will call the elements of this proven-
inequivalence partition "Skeleton classes". The number of Skeleton classes defines
a first lower bound on the number of observational equivalence classes. Imple-
menting that for mDAGs of 3 and 4 observable variables, we get the numbers in
Table 4.1.

4.1.2 CI Relations

As explored in the example of Figure 1.1, a causal structure can give two types
of constraints on the probability distributions compatible with it: equality and
inequality constraints. The equality constraints are the Conditional Independence
(CI) Relations, like the ones exemplified in equations (1.1) and (1.2).

If two mDAGs have different sets of CI Relations among the visible variables,
there is at least one probability distribution that is realizable by one of the mDAGs
but not by the other. This is a special case of the Proposition 12 of [15], as will be
discussed in Section 4.1.3. Therefore, we can use the comparison of CI Relations
to prove inequivalences between mDAGs, classifying them into another proven-
inequivalence partition. The elements of this partition are called CI classes.

The problem of finding all the CI Relations of a given causal structure is solved
by the method of d-separation, as presented in Section 2.2. Implementing this
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Comparisons Made Nº of Gray Bubbles
3 visible nodes

Nº of Gray Bubbles
4 visible nodes

CI 5 25
CI+Skeletons 6 41

Table 4.2: Numbers of CI and CI+Skeletons Classes (gray bubbles of Figure 1.2) in which
the graph patterns divide. These numbers give lower bounds on the number of equiva-
lence classes.

method for the case of 3 and 4 observable variables, we get the numbers of CI
classes presented in Table 4.2.

As we can see here, the comparisons of Skeletons and CI Relations are not
redundant to each other: in 4 observable variables, Skeleton+CI is better than each
one separately, so each one of them shows inequivalences that the other one does
not.

4.1.3 e-separation Relations

In [16], an extension of d-separation was introduced, called e-separation. While
the d-separation method gives the Conditional Independences of a causal structure,
the e-separation method gives inequality constraints, that are explicitly provided
in [15] (note that not all inequality constraints come from e-separation).

Definition 13 (e-separation). Let G be an mDAG with nodes V. Let A, B, C and D
be four subsets of V. We say that A and B are e-separated by C after deletion of D if
A ⊥d B|C in the subgraph GV\D.

Clearly, d-separation is a special case of e-separation, with D = ∅.
In the Proposition 12 of [15], it is shown that if an mDAG G does not have a

certain e-separation relation, then there exists some probability distribution that
violates the inequality derived from that e-separation relation and is compatible
with G . Therefore, if two mDAGs exhibit different sets of e-separation relations,
they are inequivalent. Thus, as we did with Skeleton and CI, we can also find the
proven-inequivalences partitions by e-separation for 3 and 4 observable variables.
The numbers of elements in these partitions are shown in Table 4.3.

The comparison of e-separation Relations shows itself as a better criterion
than both comparisons of Skeletons and CI Relations. This happens because d-
separation is a special case of e-separation, and different Skeletons also imply
different e-separation Relations. The last statement is true because nodes u and v
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Comparisons Made Nº of Gray Bubbles
3 visible nodes

Nº of Gray Bubbles
4 visible nodes

e-separation 6 55

Table 4.3: Numbers of elements in the e-separation proven-inequivalence partitions (gray
bubbles of Figure 1.2) in which the graph patterns divide. These numbers give lower
bounds on the number of equivalence classes. They are the same in both rows because the
comparison of Skeletons is a special case of the comparison of e-separation Relations.

are connected by an edge in the skeleton if and only if u and v are not e-separated
by the empty set upon deleting D for any set D ⊆ V.

4.1.4 Pairs of Densely Connected Nodes

In this section, we show a test for inequivalences that is based on the main
result of [17]. This test depends on the concept of densely connected nodes. To define
this, we will first define districts of an mDAG and the closure of a set of nodes.

Definition 14 (Districts). Let G be an mDAG with simplicial complex B. Let D be a set
of nodes of G that are sequentially connected to each other by facets B ∈ B; i.e., such that
if v, w ∈ D, then there is a sequence v = u0, u1, u2, ..., un−1, w = un such that for all i,
{ui, ui+1} ⊆ Bi ∈ B. If D is inclusion maximal, we say that it is a district. We say that a
district is a "common-cause district” if it contains more than one node.

If v is a node of G, we are going to denote the district of G in which v belongs by
disG(v). Similarly, for a set of nodes S, we have disG(S) = ∪v∈SdisG(v).

In the mDAG of Figure 4.2, for example, we have three districts: {A, B, C, H},
{D} and {E, F, G}. Out of these, {A, B, C, H} and {E, F, G} are common-cause
districts.

Definition 15 (Closure of a set of nodes B). Let G be an mDAG with nodes V. Let
B ⊆ V. Set B(0) ≡ V and construct a sequence applying alternately:

B(i+1) = disB(i)(B) B(i+2) = anB(i+1)(B)

Where disG(S) is the district of S in G, and anG(S) is the set of ancestors of the nodes of
S together with the nodes of S themselves. Each one of these operations removes vertices
from the set B(i) or keeps it the same. When the process terminates, we call the resulting
set the closure of B and denote it ⟨B⟩G .

Now, we can say what it means for nodes v and w to be densely connected.
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Figure 4.2: The districts of this mDAG are {A, B, C, H}, {D} and {E, F, G}.

Definition 16 (Densely Connected Nodes). A pair of vertices v ̸= w in an mDAG G
is said to be densely connected if any of the following conditions are satisfied:

• v ∈ paG(⟨w⟩G)

• w ∈ paG(⟨v⟩G)

• ⟨{v, w}⟩G is a bidirected-connected set

where we say that a set of nodes S is bidirected-connected if every vertex of S can be reached
from every other using a path of nodes, all in S, that are connected by facets.

In a recent work [17], Evans showed that the specific probability distribution
where v = w and all other variables are random is realizable by a causal structure
G if and only if the nodes v and w are densely connected in G.

Therefore, if we have a structure G1 where v and w are densely connected and
a different structure G2 where they are not, [17] explicitly shows one probability
distribution that is realizable by G1 but not by G2. This means that G1 and G2 are
surely not equivalent.

Implementing this comparison for structures of 3 and 4 observable vertices, we
get proven-inequivalence partitions whose numbers of elements are presented in
Table 4.4.
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Comparisons Made Nº of Gray Bubbles
3 visible nodes

Nº of Gray Bubbles
4 visible nodes

Dense Connectedness (DC) 4 11
DC+Skeletons 5 22

DC+CI 5 27
DC + e-separation 6 58

Table 4.4: Numbers of elements of the Dense Connectedness, Dense Connected-
ness+Skeletons, Dense Connectedness+CI and Dense Connectedness+ e-separation
proven-inequivalence partitions (gray bubbles of Figure 1.2) in which the graph pat-
terns divide. These numbers give lower bounds on the number of equivalence classes.

4.1.5 Only Hypergraphs

Another method of showing inequivalences is presented in Proposition 6.8 of
[9]:

Proposition 10. (Only Hypergraphs Rule) Let G and G ′ be two mDAGs with visible
nodes V that do not have any directed edge. If G ̸= G ′, then M(G, V) ̸= M(G ′, V).

Proof. Presented in Appendix C.

Note that this method has a difference from the other graphical methods shown
in this section: not all mDAGs can be compared by Proposition 10. For example,
every mDAG has a Skeleton that can be compared to the Skeleton of any other
mDAG. Proposition 10, on the other hand, only establishes comparisons between
mDAGs that are equivalent to a Hypergraph-Only mDAG.

This is explained in Figure 4.3. There, we can split the first gray bubble into
four gray bubbles, because all the elements of the proven-equivalence partition
(pink bubbles) inside this gray bubble do contain a Hypergraph-Only mDAG,
so Proposition 10 says that they are all inequivalent. However, the second gray
bubble still cannot be split, because it has a pink bubble that does not have any
Hypergraph-Only mDAG, thus cannot be compared to the others by Proposition
10. We know that this gray bubble will be split into at least five gray bubbles, but
we do not know where the mentioned pink bubble will belong.

For cases like the second gray bubble of Figure 4.3, even if we cannot split
it, we have an improvement in the lower bound on the number of equivalence
classes: we know that the referred gray bubble will be split in at least five parts,
even if we still do not know how. Hence, Table 4.5 below shows how this lower
bound changes when apply Proposition 10 on top of the e-separation proven-



Chapter 4. Comparisons that Show Inequivalence 32

Figure 4.3: The mDAGs that do not have any directed edge (Hypergraph-Only mDAGs)
are represented by blue dots, while the other mDAGs are red dots.

Comparisons Made Nº of Gray Bubbles
3 visible nodes

Nº of Gray Bubbles
4 visible nodes

OH + e-separation 7 64
OH + e-separation + DC 7 67

Table 4.5: Numbers of elements of the Only Hypergraphs (OH) + e-separation and the
Only Hypergraphs + e-separation + Dense Connectedness proven-inequivalence partitions
(gray bubbles of Figure 1.2) in which the graph patterns divide. These numbers give lower
bounds on the number of equivalence classes.

inequivalence partition and on top of the e-separation + Dense Connectedness
proven-inequivalence partition.

Looking at the numbers of the Tables 4.3, 4.4 and 4.5, we see that the methods of
comparing e-separation Relations and densely connected pairs and implementing
the Only Hypergraphs Rule are not redundant to each other; each one of these
three methods can show inequivalences that the other two cannot. The best lower
bounds emerge when we apply these three together: 7 for 3 visible variables and
67 for 4 visible variables. Note that none of these cases is solved yet: these lower
bounds still do not meet our upper bounds, which are 8 for 3 visible variables and
369 for 4 visible variables.
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4.2 Comparison of Infeasible Supports

In this section, we present a stronger method to show inequivalence between
two mDAGs, that explicitly assumes that the nodes respond to their parents by
deterministic functions. This method is based on [18], and it deals with the notion
of possibilistic compatibility, which we will define below.

An important caveat on this section is that it can only be applied when the
visible variables have finite cardinalities; i.e., when the observables have a fi-
nite number of possible outcomes. Furthermore, the method is also only valid
classically, because the algorithm presented in Appendix D consists in assigning
deterministic outcomes to each valuation of the parents of a node.

As discussed before, the central problem in Causal Inference is the Probabilistic
Causal Compatibility (Definitions 5 and 7) problem. In this section, we turn
our attention to a different, strictly weaker, question: the Possibilistic Causal
Compatibility. We will check if the events that are possible under our probability
distribution, i.e. the events that have a probability different from zero, are the
events classically allowed by the causal structure. To do so, let us define the
support of a probability distribution:

Definition 17 (Support). Let P : X → [0, 1] be a probability distribution. The elements
of X are called “events”. The support of P is the set of possible events:

S(P) = {ω ∈ X |P(ω) > 0}

A probability distribution P is said to be possibilistically compatible with an
mDAG G if there exists some probability distribution P̃ that is probabilistically
compatible with G and has the same support as P.

If a probability distribution is not possibilistically compatible with an mDAG,
it will also not be probabilistically compatible with it. Thus, if two mDAGs have
different sets of compatible supports, they cannot be equivalent. It is still an open
question whether possibilistic equivalence implies probabilistic equivalence; in that
case, the comparison of compatible supports would completely characterize the
equivalence classes of mDAGs.

In Appendix D, we present the algorithm designed by TC Fraser in [18] to find
the set of supports that are compatible with a given causal structure G. Imple-
menting this algorithm, we can compare different mDAGs in terms of the set of
Infeasible Supports, thus getting a better fine graining of the proven-inequivalence
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partition.
As justified at the end of Appendix D, here we consider all visible variables to

be binary. Thus, the maximum number of events that we have is 2|V|, where |V| is
the number of visible variables.

4.2.1 Infeasible Supports beyond e-separation

For a given mDAG, the e-separation relations themselves may already rule out
some supports. As an example of this, imagine a causal structure that implies the
CI relation A ⊥ B, where A and B are binary variables. Suppose that S is a support
that does not contain any events involving {A = 0, B = 1} or {A = 1, B = 0}. This
implies that in any probability distribution that has the support S, the variables A
and B are perfectly correlated. This is incompatible with A ⊥ B, thus the support
S is ruled out by A ⊥ B.

Since the algorithm presented in Appendix D is a brute force search, it is
computationally expensive. Thus, to save time in the computation, we only apply
this algorithm for supports that are not already ruled out by the e-separation
relations of the mDAG in question.

4.2.2 Inequivalences Shown by Comparison of Infeasible Sup-

ports

To check if a support is compatible with an mDAG, we apply the algorithm
of Appendix D with k = s, where k is the cardinality of the latents and s is the
number of events of the given Support.

We did that for the cases of 3 and 4 visible variables, successively increasing
the number of events of the Supports that we were checking and finding all the
Infeasible Supports beyond e-separation of an mDAG at a given number of events.
In Table 4.6, we present the number of elements of the proven-inequivalence
partitions we get when applying all the available graphical methods together with
the comparison of Infeasible Supports up to different numbers of events.
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Maximum
Number of Events

Nº of Gray Bubbles
3 visible nodes

Nº of Gray Bubbles
4 visible nodes

2 7 77
3 8 148
4 8 278
5 8 307
6 8 332
7 8 333

Table 4.6: Numbers of elements of the e-separation + Only Hypergraphs + Dense Con-
nectedness + Support proven-inequivalence partitions (gray bubbles of Figure 1.2) in
which the graph patterns divide. These numbers give lower bounds on the number of
equivalence classes.

Summary of the chapter:

• The known methods to prove that two mDAGs are not observationally
equivalent are: the comparison of skeletons, comparison of CI rela-
tions, comparison of e-separation relations, comparison of the pairs of
densely connected nodes, the only hypergraphs rule and the compari-
son of Infeasible Supports.

• These methods give us the proven-inequivalence partition (grey bub-
bles of Figure 1.2). We found it for 3 and 4 visible nodes, checking
supports up to 7 events.

• The comparisons of skeletons and CI relations are subsumed by the
comparison of e-separation relations. On the other hand, the meth-
ods of comparison of e-separation relations, comparison of the pairs
of densely connected nodes and the only hypergraphs rule are not
redundant to each other.
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3 and 4 Observable Nodes

In this section, we sum up and discuss the numerical results presented in
Sections 3 and 4 for the classification of mDAGs with 3 and 4 observable nodes.

First, for 3 observable nodes, the number of elements of the proven-equivalence
partition that we have (pink bubbles of Figure 1.2) for HLP+Weak Face Splitting
exactly matches the number of elements of the proven-inequivalence partition
(gray bubbles of Figure 1.2) for Supports at 3 events: Table 3.2 presents the upper
bound of 8 and Table 4.6 presents the lower bound of 8. Thus, we confirmed that
the proven-equivalence partition established by Evans’s Proposition, which was
already presented in Figure 13 of [9], indeed gives the correct equivalence classes.
The fact that this classification is complete is an original result. In Figure 5.1, we
display representatives of each one of these equivalence classes.

The two classes that are not shown inequivalent by the graphical methods, only
by Supports at 3 events, are the ones represented by the Instrumental Scenario
(Figure 5.1(e)) and Evans’s Scenario (Figure 5.1(g)).

Figure 5.1: Representatives of the 8 equivalence classes of graph patterns with 3 nodes.
The mDAGs (e), (f) and (g) have inequality constraints. (e) is called the Instrumental
Scenario, (f) is the Triangle Scenario and (g) is the Unrelated Confounders Scenario.

If one looks only at the 3 visible variables case, they may think that HLP and

36
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Equivalence Results Nº of Pink Bubbles
HLP 1597

HLP + Weak FS 416
HLP + Moderate FS 408

HLP + Strong FS 396

Table 5.1: Number of elements of the proven-equivalence partitions for successive applica-
tion of equivalence results on the case of 4 visible variables. All these results also include
the dominance relations of Section 2.4. These numbers give upper bounds on the number
of equivalence classes.

Weak Face Splitting, the results that already existed, are enough to completely
solve the classification of mDAGs. However, the case of 4 visible variables shows
that this is not true: Table 5.1 summarizes the results showing that the upper
bound gets smaller upon successive application of equivalence results. Thus, our
two extensions indeed show some equivalences that the pre-existent results cannot
show.

As we can see from Tables 3.4 and 4.6, for the case of 4 visible variables, the
problem is not solved. The best upper bound on the number of equivalence classes
that we have is 396, while the best lower bound is 333.

One could argue that the reason why we did not solve the problem is that we
did not apply all the available methods, since we only compared supports up
to 7 events. However, Section 5.2 reveals that this is not the case: there, we will
study one specific element of the proven-inequivalence partition (gray bubble of
Figure 1.2), and show that it is not solved even after doing every possible support
comparison.

5.1 Completely Solved Classes

In the cases where an element of the proven-equivalence partition is also an
element of the proven-inequivalence partition (a pink bubble coincides with a gray
bubble in Figure 1.2), we get an equivalence class (green dashed line in Figure
1.2). In that case, we say that the class is "solved". If we successively apply the
comparisons of Section 4, we can potentially solve more and more classes.

For the case of 3 visible nodes, as discussed, all the classes are solved when we
apply the comparison of Supports up to 3 events. For the case of 4 visible nodes
this is not true for all the classes, but it is true for some of them. Table 5.2 presents
the number of such classes solved by each comparison.



Chapter 5. 3 and 4 Observable Nodes 38

Comparisons Made Nº of Solved Classes
CI 18

e-separation 19
OH + e-separation 23

OH + e-separation + DC 26
OH + e-separation + DC + Supps up to 2 events 39
OH + e-separation + DC + Supps up to 3 events 85
OH + e-separation + DC + Supps up to 4 events 219
OH + e-separation + DC + Supps up to 5 events 259
OH + e-separation + DC + Supps up to 6 events 302
OH + e-separation + DC + Supps up to 7 events 304

Table 5.2: Number of solved classes (subsets of graph patterns that are both elements of the
respective proven-inequivalence partition and of the HLP + Strong FS proven-equivalence
partition) under different comparisons.

In particular, here we reproduced one minor result of [7]: we found that the
equivalence class of the Bell causal structure indeed has the 9 mDAGs shown in
Figure 24 of [7]. The Bell equivalence class is solved by CI alone.

One could ask for example how many equivalence classes we can get right us-
ing only the comparison of CI Relations. If we only identify the CI Relations of our
data (and not the inequality constraints), we can correctly guess the equivalence
class of causal structures only if the CI Relations correspond to those of classes
that are solved by CI alone, like the Bell class. In Table 5.2 we see that this is not
very common: only 18 classes are solved by CI alone. Thus, relying only on CI
Relations is in general a bad strategy for causal investigation.

Remember that the number of completely solved classes is not the same as
the lower bound on the number of equivalence classes. In the case of 4 visible
variables, the better lower bound we have is 333 while the best number of solved
classes is 304.

5.2 Classes Compatible with Every Support

There is one element of the proven-inequivalence partition that is particularly
interesting, the one whose mDAGs have no infeasible supports and no CI Relations.
Even comparing supports up to 2|V| = 16 events, this CI+Supports class still
contains 8 different elements of the proven-equivalence partition (pink bubbles of
Figure 1.2). Therefore, our current theoretical results are not powerful enough to
show if these are equivalent or inequivalent to each other.
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An interesting property of these 8 classes is that 7 of them have only one
graph pattern each. The last one is the saturated class, which contains 1117 graph
patterns. This is represented in the diagram of Figure 5.2.

Figure 5.2: Element of the proven-inequivalence partition (gray bubble) corresponding
to the mDAGs compatible with every support. It contains 8 elements of the proven-
equivalence partition (pink bubbles), whose representatives are shown in Figure 5.3.

In Figure 5.3, we present representatives of each element of the proven-equivalence
partition inside of this element of the proven-inequivalence partition.

There are two possibilities. The first one is that the mDAGs 5.3(a)-5.3(g) are
all saturated (all the pink bubbles of Figure 5.2 ultimately merge), and these are
examples of equivalent mDAGs whose equivalence cannot be shown by the known
propositions. In this case, we would potentially be guided to new rules for proving
equivalence. The second option is that at least one of the mDAGs 5.3(a)-5.3(g) is
not saturated (the gray bubble of Figure 5.2 ultimately splits). This would prove
that possibilistic compatibility does not imply probabilistic compatibility. Either
possibility would be insightful if confirmed.

We still do not know which is the correct option, but it is worth noting that,
by Proposition 3, the mDAG 5.3(a) is dominated by 5.3(b), 5.3(e), 5.3(f) and 5.3(g),
while the mDAG 5.3(c) is dominated by 5.3(d), 5.3(e), 5.3(f) and 5.3(g). Therefore,
we just need to check if 5.3(a) and 5.3(c) are saturated.



Chapter 5. 3 and 4 Observable Nodes 40

Figure 5.3: Representatives of the 8 pink bubbles whose mDAGs are compatible with any
Support and do not have any CI relation. The classes (a)-(g) have only one graph pattern
each. The class (h) is the saturated class, that has 1117 graph patterns.

Summary of the chapter:

• For 3 visible nodes, we find that there are 8 equivalence classes, whose
representatives are given in Figure 5.1. This proven-equivalence parti-
tion was already presented in [9], but the fact that it coincides with the
proven-inequivalence partition is an original result.

• For 4 visible nodes, the number of equivalence classes is between 333
and 396. The methods that we currently have are not sufficient to find
the exact equivalence classes.

• There are some sets of mDAGs that we can already recognize as equiv-
alence classes; we know that they will not split or merge with any
other set in the final classification. We call these "solved" classes. Using
all the known methods, we found 304 solved classes in the case of 4
visible variables. Using only comparison of CI Relations we find only
18 solved classes, what highlights that it is a relatively weak method.

• The mDAGs (a)-(g) of Figure 5.3 cannot be shown equivalent nor
inequivalent to the saturated class by any of our methods. If one can
show that they are saturated (or non-saturated), this can lead to hints
for new methods to prove equivalence (or inequivalence).
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Quantum Causal Structures

In Figure 1.1 we saw an example of a causal structure that admits a Quantum-
Classical Gap: the classical Bell causal structure gives an inequality constraint that
can be violated if we consider its quantum version. In this section we will define a
quantum causal structure and investigate whether the observational equivalence
results presented in Sections 3 and 4 are still valid for quantum causal structures.
Then, we will go back to our case studies of 3 and 4 visible variables and search
for new examples of QC Gaps.

Following [13], here we define a quantum causal structure by a latent-variable
DAG whose latent variables are not associated with classical random variables
anymore, but now to quantum systems. All the visible variables are still associated
with random variables.

The outgoing edges of a classical node are copies of the node variable, just
like in the case of classical causal structures. The outgoing edges of a quantum
node, on the other hand, are subsystems of the quantum system associated with
the node. For example, if the Hilbert space HA ⊗HB is assigned to a latent node l
that has two children, then l can send the subsystem HA to one of its children and
HB to the other. See Figure 6.1.

In a DAG G, we are going to denote the incoming classical edges (that come
from visible parents) of a node x by ed(C)G (x), and the incoming quantum edges

(that come from latent parents) by ed(Q)
G (x). Similarly, the set of all parents of node

x can be divided into visible parents pa(C)G (x) and latent parents pa(Q)
G (x).

To discuss the quantum version of the causal compatibility problem, we need
to know how the nodes respond to their parents. While in the classical case we
had the measurable functions of the SEP (Definition 3), here we define the quantum
realization of a DAG:

Definition 18 (Quantum Realization of G). Let G be a latent-variable DAG, with V
being its set of visible nodes and L being its set of latent nodes.

The Quantum Realization of the DAG G is a specification of the following quantum

41
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Figure 6.1: (a) Outgoing edges from visible (classical) nodes are copies of the node’s
random variable. (b) Outgoing edges from latent (quantum) nodes are subsystems of the
node’s quantum system. Here we will represent quantum latent nodes in yellow, while in
the previous sections we represented classical latent nodes in red.

operations:

• With each latent node l ∈ L, we associate a density matrix (preparation)

ρl ∈ B(Hl)

ρl positive semi-definite

Tr (ρl) = 1

such that Hl is the Hilbert space associated with l. Each outgoing edge of l carries a
subsystem of Hl.

• Let l ∈ L be a latent node. It responds to its incoming edges with a quantum channel
(transformation)

Ω
ed(C)G (l)

: B
(
H

ed(Q)
G (l)

)
→ B(Hl)

Thus, the classical incoming edges of l determine what is the transformation that
takes the density matrix of the quantum incoming edges of l and gives the density
matrix of l. See an example in Figure 6.2(a).

If l does not have latent parents, it is given by a source of quantum states followed
by a transformation determined by the visible parents of l.

• Let v ∈ V be a visible node. It responds to its incoming edges with a POVM
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(measurement)

E
v|ed(C)G (v)

∈ B
(
H

ed(Q)
G (v)

)
E

v|ed(C)G (v)
positive semi-definite

∑
v

E
v|ed(C)G (v)

= IH
ed(Q)
G (v)

Thus, the classical incoming edges of v determine what is the measurement that
takes the density matrix of the quantum incoming edges of v and gives the classical
random variable associated with v. See an example in Figure 6.2(b).

Figure 6.2: Examples of (a) how latent (quantum) nodes respond to its incoming edges
and (b) how visible (classical) nodes respond to its incoming edges.

Now we can define the quantum version of the causal compatibility problem,
that makes use of the Born Rule for probabilities of quantum measurements. The
definition can be better understood following the example of Figure 6.3.

Definition 19 (Quantum Causal Compatibility Problem). Let G be a latent-variable
DAG, with V being its set of visible nodes and L being its set of latent nodes. Let V(no−l) ⊆
V be the set of visible nodes that do not have any latent parent, and V(l) = V \ V(no−l)

be the set of visible nodes that have some latent parents.
Say that PV is some joint probability distribution over the random variables Xv, v ∈ V.

We say that PV is quantum-compatible with G if there exists a quantum realization of G
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such that

PV(v) =

[
∏

A∈V(no−l)

PA(a|paG(A))

]
Tr

 ⊗
B∈V(l)

E
b|pa(C)G (B)

 ρS

 ;

ρS ∈ B(HS); HS =
⊗

B∈V(l)

[
H

ed(Q)
G (B)

]
; E

b|pa(C)G (B)
∈ B

(
H

ed(Q)
G (B)

)

where v is an evaluation of all the visibles that corresponds to the evaluations a for
A ∈ V(no−l) and b for B ∈ V(l) that appear in the right-hand side.

We denote by MQ(G, V) the set of probability distributions that are quantum-
compatible with the DAG G.

The density matrix ρS that appears in Definition 19 corresponds to the quantum
states that are sent as edges to the visible nodes. Therefore, it is an element of
B(HS), as defined above. The quantum states that compose the subsystems of
HS can come from a source of quantum states (if the latent node in question does
not have latent parents) or can be the outcome of a quantum channel (if the latent
node has latent parents). See Figure 6.3 for clarification.

Figure 6.3: A probability distribution PX,Y,Z,W,S is quantum-compatible with this
DAG if there exists a quantum realization composed of the quantum state ρAB ∈
B(HA ⊗ HB), the quantum channel ΩS : B(HB) → B(HC ⊗ HD) and the POVMs
Ey ∈ B(HA), Fz ∈ B(Hc) and Gw|z ∈ B(HD) such that PX,Y,Z,W,S(x, y, z, w, s) =

PS(s)PX|Y(x|y)Tr
[
(IA ⊗ Ωs)ρAB

(
Ey ⊗ Fz ⊗ Gw|z

)]
.
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6.1 Quantum Validity of the Rules for Proving Equiv-

alence and Inequivalence

Two latent-variable DAGs that are observationally equivalent when treated
as classical causal structures are not necessarily observationally equivalent when
treated as quantum causal structures. A pertinent question that arises is: which
tools can we still use if we want to find the classification of quantum DAGs into
Observational Equivalence classes?

Some of the theoretical results presented in Sections 2.4, 3 and 4 are proved
assuming something about the classical nature of the nodes, for example using
the measurable functions of the SEP. However, there is still the possibility that
the proofs we have so far are too restrictive, and the results are still valid (but
require more general proof). If that is not the case, one must be able to find a
counter-example.

6.1.1 Ways to Prove Equivalence

In [13], it is shown that there is no quantum version for the exogenization rule
(Lemma 4): an explicit counterexample is presented for the quantum case. This
counterexample is reproduced in Appendix E. Therefore, it does not make sense
to use the concept of mDAG to describe quantum causal structures.

Proposition 1, on the other hand, does have a quantum version:

Proposition 11 (Edge Dropping - Quantum Version). Let D and D′ be two latent-
variable DAGs with the same sets of vertices. Let V be their set of visible variables and
L be their set of latent variables. If D′ is a subgraph of D (as in Definition 2), then
MQ(D′, V) ⊆ MQ(D, V).

Proof. Let u ∈ V ∪ L be a node of D and D′. Since D′ is a subgraph of D, we have
that paD′(u) ⊆ paD(u), for both visible and latent parents of u. Say that pa(C)∗D (u)
are the extra visible parents of u that are in D but not in D′, and pa(Q)∗

D (u) are the
extra latent parents of u that are in D but not in D′.

Consider a probability distribution quantum-compatible with D′. This means
that this probability distribution can be obtained from a quantum realization of D′

that involves:
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POVMs E
v|pa(C)D′ (v)

∈ B
(
H

ed(Q)

D′ (v)

)
, v ∈ V

Transformations Ω
pa(C)D′ (l)

: B
(
H

ed(Q)

D′ (l)

)
→ B(Hl), l ∈ L

The probability distributions quantum-compatible with D, on the other hand,
come from quantum realizations of D that involve:

POVMs E
v|
(

pa(C)D′ (v),pa(C)∗D (v)
) ∈ B

(
H

ed(Q)

D′ (v)
⊗H

ed(Q)∗
D (v)

)
, v ∈ V

Transformations Ω(
pa(C)D′ (l),pa(C)∗D (l)

) : B
(
H

ed(Q)

D′ (l)
⊗H

ed(Q)∗
D (l)

)
→ B(Hl), l ∈ L

We can always choose such a quantum realization of D where every

E
v|
(

pa(C)D′ (v),pa(C)∗D (v)
)

does not depend on pa(C)∗D (v) and acts trivially on H
ed(Q)∗

D (v)
, and every

Ω(
pa(C)D′ (l),pa(C)∗D (l)

)

does not depend on pa(C)∗D (l) and maps operators on H
ed(Q)

D′ (l)
to operators on Hl,

ignoring what is the operator on H
ed(Q)∗

D (l)
. Therefore, we can reproduce exactly the

same quantum realization of D′ described above, showing that every probability
distribution that is quantum-compatible with D′ is also quantum-compatible with
D.

If we admit arbitrary cardinalities for the latent nodes, Lemma 5 also has a
quantum version:

Lemma 3 (Remove Redundant Latent Variables - Quantum Version). Let G be a
DAG with vertices V∪̇{u, w}, where paG(w) = paG(u) = ∅. Let G−w be the DAG
constructed by removing w from G. If chG(w) ⊆ chG(u) and we admit any cardinality
for the latent nodes, then MQ(G, V) = MQ(G−w, V).

Proof. By Proposition 11, it is clear that G dominates G−w. Now, suppose that a
certain distribution over the visible nodes is obtained with a quantum realization
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of G where u is associated with ρu ∈ Hu and w is associated with ρw ∈ Hw (since
u and w do not have parents, these density matrices come directly from a source
of quantum states).

Since we admit latent nodes of any cardinality, we can have a quantum realiza-
tion of G−w where u is associated with ρu ⊗ ρw ∈ Hu ⊗Hw. Therefore, u in G−w

can send to its children exactly the same states that u and w together send to their
children in G (see Figure 6.4). Furthermore, nothing else changes from G to G−w,
because nodes u and w have no parents. Hence, G−w dominates G, showing that
they are observationally equivalent.

Figure 6.4: When we admit any cardinality of the latent nodes, the redundant ones can
be absorbed by enlarging the Hilbert space associated with the node (Lemma 3). Thus,
DAGs (a) and (b) in this Figure are quantum observationally equivalent.

We can also ask about the validity of the other equivalence rules, HLP and Face
Splitting, when translated from mDAGs to their associated DAGs. We still do not
have a definite answer to whether these have quantum versions or not.

We tried to find counter-examples to these results inspired by the counter-
example of [13] reproduced in Appendix E. To find such counter-examples it is
clear that we need causal structures that present QC gaps, such as the Bell-like
structure of Figure E.1(a). More specifically, we need a DAG that can quantumly
violate a classical inequality, but whose resulting DAG after the application of the
proposition cannot.

However, both HLP and Evans require the parents of one node (or one set of
nodes) to be a subset of the parents of another node. In Bell scenarios, the classical
nodes A and B that give the outcomes of Alice’s and Bob’s measurements need to
have at least one parent each that is not a parent of the other, to play the role of
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the measurement settings S and T. Thus, there is no Bell-like structure where we
can apply HLP or Evans to the nodes that are relevant for the QC Gap.

If we try to find counter-examples based not on Bell but on the Instrumental
and the Triangle Scenarios (Figure 5.1(e) and 5.1(f)), that are also known to present
QC Gaps, we encounter the same problem: we cannot find an Instrumental-like or
Triangle-like DAG whose QC Gap is closed by applying HLP or Evans, because
both of these structures require the relevant nodes to have (latent or visible) parents
that are not shared with the other relevant nodes.

This is not definite proof, because there could still be another type of structure
that yields a QC Gap whose gap is closed under the application of HLP or Evans.
However, the fact that we cannot find such a counter-example looking at Bell,
Instrumental, and Triangle scenarios is evidence in favor of the conjecture that
HLP and Evans are valid in the quantum case because they are not even applicable
for the portions of the structures that are responsible for the QC Gaps.

6.1.2 Comparisons that Show Inequivalence

As well as asking about the quantum validity of our methods to show equiva-
lence, we can ask about our methods to show inequivalence.

The proof that different e-separation relations lead to inequivalence still holds
in the quantum case, because entropic inequalities (such as the one involved
in Proposition 12 of [15]) are quantum valid. As special cases, comparisons of
skeletons and CI relations also show inequivalence in the quantum case.

Similarly, we can formulate a quantum version of Proposition 10:

Proposition 12 (Only Hypergraphs Rule - Quantum Version). Let G and G ′ be two
latent-variable DAGs with visible nodes V that do not have any edges between the visible
nodes. If G ̸= G ′, then MQ(G, V) ̸= MQ(G ′, V).

Proof. The proof presented in Appendix C is quantum (and GPT) valid.

Finally, it is evident that the technique we used to find feasible Supports does
not apply to quantum causal structures, because it consists in enumerating all the
possible deterministic response functions that a node can have to the valuations of
its parents (Appendix D).

The quantum validity of the comparison of pairs of densely connected nodes
as an inequivalence test is left for future research.
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6.2 Searching for QC Gaps

The classification of mDAGs into observational equivalence classes can help
us filter which structures may yield a QC Gap.

Since we still did not study the equivalence classes of quantum causal structures,
there still exists the possibility that a structure G1 does not present a QC Gap, but
another structure G2 that is classically equivalent to it does. This could happen if G1

and G2 are observationally equivalent when treated as classical causal structures,
but their quantum versions are inequivalent.

However, an instance where we can infer that none of the structures in a given
classical equivalence class have a QC Gap is when inside the class there is a latent-
free structure G: it does not have inequality constraints, that are necessary for QC
Gaps. Therefore, all structures that are dominated by G also do not have inequality
constraints nor QC Gaps. This observation is sometimes called the HLP Criterion,
since it was first noted in [8].

For the case of 3 visible nodes, this consideration shows that only the mDAGs
equivalent to 5.1(e), 5.1(f) and 5.1(g) may have a QC Gap. In fact, we know that
5.1(e) and 5.1(f) do have QC Gaps, while 5.1(g) is still an open problem.

Let us now present a concept that reduces the number of mDAGs that we need
to check for QC Gaps.

6.2.1 Fundamental mDAGs

In Appendix F, there is a discussion about a result from [19] that teaches us a
way of factorizing mDAGs into subgraphs. This is relevant because, if an mDAG
presents a QC gap, then at least one of its factors presents the QC gap when looked
at as an mDAG by itself. Therefore, to find new QC gaps it suffices to look at
mDAGs that have only one of such factors, that we will call fundamental:

Definition 20 (Fundamental mDAG). Let G be an mDAG. We say that G is funda-
mental if it contains only one common-cause district D, and every node v /∈ D points into
D.

Table 6.1 shows how many of the elements of the proven-inequivalence parti-
tion obtained by HLP+Strong Face Splitting are completely composed of funda-
mental mDAGs. These are the only ones that we need to check when searching for
new QC Gaps.
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Visible Nodes 3 4
All elements of partition 8 396

Elements that only have fundamental mDAGs 3 331

Table 6.1: Numbers of elements of the HLP+Strong FS proven-equivalence partition (pink
bubbles of Figure 1.2) that are composed only of fundamental mDAGs.

Note that the HLP Criterion is already embraced when we ignore the classes
that are not 100% fundamental; mDAGs that do not have any facet with more than
one node (latent-free) also do not have any common-cause district. Indeed, the
three classes of 3 visible nodes that are 100% fundamental correspond exactly to
the classes of 5.1(e), 5.1(f) and 5.1(g).

Furthermore, the criterion of considering only 100% fundamental classes is
strictly stronger than the HLP Criterion. Out of the 396 elements of the proven-
equivalence partition for 4 visible nodes, only 20 include latent-free structures. On
the other hand, 65 of them include non-fundamental structures, thus leaving us
with 331 elements of the HLP+Strong FS proven-equivalence partition that may
yield QC gaps.

This is still a quite big number of classes, so it is a hard task to single out the
promising candidates for a QC Gap. Another possibility is that QC Gaps are very
common, and many of these 331 classes have them.

Since at the moment we do not have any better criterion to filtrate QC Gaps,
it is worth studying what happens when we apply the fundamentality criterion
to some interesting subsets of the proven-equivalence partition. For example,
when we apply this criterion to the 18 classes that are solved by CI alone (see table
5.2) we obtain only 4 equivalence classes, whose representatives are displayed in
Figure 6.5.

Figure 6.5: Representatives of the 4 elements of the HLP+Strong FS proven-equivalence
partition that are 100% fundamental and solved by CI.
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The first mDAG of Figure 6.5 is the Bell causal structure. The other three are
also famous examples: 6.5(b) is the square scenario, studied in [20] and [21]; 6.5(c)
and 6.5(d) are studied in [8] and [22] (Figures 15 and 17 of [22]). All of them yield
inequality constraints, and 6.5(b) is known to have a QC Gap [21].

The fact that the Bell causal structure is solved by CI alone is interesting
information for model selection because it says that this is indeed the only classical
causal structure that guarantees the hypothesis of local causality and no super-
determinism. This same information may also help in the design of new scenarios
related to the other three mDAGs of Figure 6.5.



Chapter 6. Quantum Causal Structures 52

Summary of the chapter:

• When we take the latent variables of a DAG to be quantum systems in-
stead of classical random variables, some of the inequality constraints
might not hold anymore. This constitutes a Quantum-Classical Gap.
The first and more famous example of a Quantum-Classical Gap is Bell
Scenario.

• In the quantum case, Lemma 4 is not valid. Thus, in general, we work
with quantum DAGs instead of mDAGs.

• We know that the Edge Dropping Proposition, that gives conditions
under which one DAG dominates another, is also valid in the quantum
case.

• It is still unknown whether our methods to prove equivalence (pre-
sented in Chapter 3) are valid in the quantum case or not. However
we have reasons to suspect that, in the DAGs where these methods are
applicable, the relevant part of the DAG does not even yield a QC Gap
in the first place.

• The comparison of e-separation relations and the Only Hypergraphs
rule are also quantum valid. The comparison of Infeasible Supports is
not quantum valid.

• When searching for QC Gaps, we only need to look only at the classes
that are 100% composed of fundamental mDAGs (Definition 20). For 3
visible nodes, this filters the 3 equivalence classes that correspond to
the Instrumental, Triangle and Evans Scenarios. For 4 visible nodes,
this filters 331 out of the 396 elements of the proven-equivalence parti-
tion.
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Conclusion

The problem of causal discovery is interesting both from the point of view of
classical statistics and from the point of view of foundations of quantum theory.
Classifying the classical causal structures into Observational equivalence classes
is important because, at the same time as it lowers the number of possible causal
explanations to be considered for a set of data, it also helps filtering which ones
might provide Quantum-Classical gaps. For example, if a causal structure is
known to be observationally equivalent to another one that has no latent nodes,
then by [8] we know that it cannot present non-trivial inequalities (thus it cannot
have a QC Gap).

The aim of this work was to recapitulate all the currently known techniques
that prove Observational equivalence or inequivalence between causal structures,
extending the scope of these techniques when possible and applying them to
causal structures with 3 and 4 visible variables.

Using techniques that already existed, we were able to show that the classifica-
tion of unlabelled causal structures (graph patterns) with 3 visible variables into 8
equivalence classes is complete. Representatives of these classes can be found in
Figure 5.1. These representatives were previously shown in Figure 13 of [9], but
the fact that this classification is complete (none of these equivalence classes will
merge) is an original result.

For the case of 4 visible variables, apart from the techniques that already existed
we also used our two new techniques (Propositions 7 and 8), that are extensions of
Proposition 6.8 of [9]. We obtained that the total number of equivalence classes for
4 visible variables is between 333 and 396. Furthermore, we found out that 304 of
the classes are already "solved": we know that they will not be merged with any
other.

The case of 4 visible variables makes it explicit that the classification problem
is still not fully resolved; there are still causal structures whose equivalence we
currently cannot either prove nor disprove. Even if we check all possible infeasible
supports (up to 2|V| events), thus applying the support analysis to its maximum
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power, the causal structures of Figure 5.3 cannot be proven to be inequivalent. At
the same time, none of our current equivalence results can show their equivalence.
This is explained in Figure 5.2.

This is related to an open problem that we leave for future research: does pos-
sibilistic equivalence imply probabilistic equivalence? i.e. if two causal structures
have the same set of infeasible supports, does this mean that they are observation-
ally equivalent? The question of whether 5.3(a) and 5.3(c) are saturated might help
with this. If one can show that they are not saturated, one proves that possibilistic
equivalence does not imply probabilistic equivalence. On the other hand, if they
are saturated, analyzing them would be potentially insightful for finding new
equivalence rules that capture their equivalence with the saturated class.

Our criterion when searching for examples that may lead to Quantum-Classical
gaps was to look at 100% fundamental classes. In the definition used here, this
involves only structures that cannot be decomposed into smaller structures and
that are not latent-free (thus including the HLP criterion from [8]). This gave us
331 potential equivalence classes, therefore it is still hard to filter a few examples
of interest. We found that only four classes are 100% fundamental and solved by
CI (Figure 6.5). These four are famous and known to yield inequality constraints;
two of them are also known to have a QC Gap [6] [21].

All the classification we have done in this work refers solely to classical causal
structures; for quantum causal structures even the concept of mDAG (from Section
2.3) cannot be used in general. However, some of the equivalence results used
here are still quantumly valid, as discussed in Section 6.1. The question of whether
Evans’ Proposition, HLP Proposition and the comparison of densely connected
pairs as a test of inequivalence are quantum valid or not is left for future research.
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Evans’s Rules

In section 3.2 of [9], one can find redundancy Lemmas that justify the definition
of mDAGs. Here we reproduce these Lemmas, and Figure A.1 shows an example
of their application.

The first one is Lemma 3.7 in [9]:

Lemma 4 (Exogenize Latent Variables). Let G be a DAG with vertices V∪̇{u}. Con-
struct the exogenized DAG r(G, u) by adding edges from every parent of u to every child
of u, and deleting every edge from parents of u to u. Note that now u is a node without
parents, so we call it “exogenous”.

We have that M(G, V) = M(r(G, u), V).

Proof. Consider a probability distribution that obeys the SEP for the graph G, be-
fore the exogenization. By definition, under that distribution the random variable
Xu is σ(XpaG (u)

, Eu)-measurable. This means that

X−1
u (2Xu) ⊆ σ

(
X−1

paG (u)
(2XpaG (u)) ∪ E−1

u

(
2Eu

))
(A.1)

Now, for c ∈ chG(u), we have that Xc is σ(Xu, XpaG (c)\u, Ec)-measurable:

X−1
c (2Xc) ⊆ σ

(
X−1

u

(
2Xu

)
∪ X−1

paG (c)\u(2
XpaG (c)\u) ∪ E−1

c

(
2Ec

))
(A.2)

Furthermore, using Equation (A.1), we get:

σ
(

X−1
u

(
2Xu

)
∪ X−1

paG (c)\u(2
XpaG (c)\u) ∪ E−1

c

(
2Ec

))
⊆ σ

(
X−1

paG (u)

(
2XpaG (u)

)
∪ E−1

u

(
2Eu

)
∪ X−1

paG (c)\u(2
XpaG (c)\u) ∪ E−1

c

(
2Ec

))
(A.3)

From Equations (A.2) and (A.3), we conclude that the random variable Xc is
σ-(XpaG (u)

, Eu, XpaG (c)\u, Ec) measurable.
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This shows that the probability distribution of the non-exogenized graph G is
also compatible with the exogenized graph G̃. This is so because in the exogenized
graph G̃, the random variable of u is now simply given by X̃u = Eu, since it has
no parents. So, Xc is σ-(XpaG (u)

, X̃u, XpaG (c)\u, Ec) measurable, what shows that it
obeys the SEP for G̃. So, M(G, V) ⊆ M(G̃, V).

Now, we will prove the converse. Start with a probability distribution that is
compatible with G̃. We have that Xc is σ-(XpaG (u)

, X̃u, XpaG (c)\u, Ec) measurable, for
c ∈ chG̃(u). If we define Xu ≡ (XpaG (u)

, X̃u), we get that Xc is σ-(Xu, XpaG (c)\u, Ec)

measurable. This shows that our probability distribution obeys the SEP for a graph
where c is a child of u and paG(c) \ u, and u is a child of paG(u). Such graph is
precisely G, so M(G̃, V) ⊆ M(G, V). Note that we defined the error function of u
as Eu ≡ X̃u.

Thus, we can exogenize every latent node of a DAG keeping the same marginal
distributions over the visible variables. The second relevant result is Lemma 3.8 of
[9]:

Lemma 5 (Remove Redundant Latent Variables). Let G be a DAG with vertices
V∪̇{u, w}, where paG(w) = paG(u) = ∅. Let G−w be the DAG constructed by removing
w from G. If chG(w) ⊆ chG(u), then M(G, V) = M(G−w, V).

Proof. By Proposition 1, we can remove all the connections of w to its children,
and conclude that M(G−w, V) ⊆ M(G, V).

To prove the inverse, take P ∈ M(G, V). Every Xc for c ∈ chG(w) is σ-
(Xu, Xw, XpaG (c)\{u,w}, Ec) measurable. If we define X̃u ≡ (Xu, Xw), we have that
Xc is σ-(X̃u, XpaG (c)\{u,w}, Ec) measurable. Identifying X̃u with the node u of G−w,
this gives us M(G, V) ⊆ M(G−w, V).

In other words, the marginal model over the visible variables is unchanged if
we delete all latent variables whose children are a subset of the children of some
other latent.
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Figure A.1: (a) A DAG, with visible nodes in blue and latent nodes in red. (b) DAG
obtained after exogenizing α (Lemma 4). (c) DAG obtained after removing α, since
its children in (b) are a subset of the children of β (Lemma 5). These three DAGs are
observationally equivalent.



Appendix B

Proofs of Equivalence Results

B.1 Proof of HLP Proposition

Here, we will prove Theorem 26.4 from [8], that we named HLP Proposition
(Proposition 4).

In this proof, we are looking at DAGs (and not mDAGs) and we include latent
parents when writing paG(v). It may be helpful to follow Figure B.1 during the
proof.

Figure B.1: The red arrow X → Y in this DAG can be added by means of the HLP
Proposition. L is a latent node, while U, V, W, X, Y, Z are visible nodes.

Let G be a DAG (with latent and visible nodes) and X and Y be two of its
visible nodes such that the hypotheses of Proposition 4 are satisfied, and that there
is no edge X → Y. Let G ′ be the same DAG, but with the addition of the edge
X → Y.

By edge dropping (Proposition 1), we can see that every probability distribution
compatible with G is also compatible with G ′.

To show the other way around, we look at the Structural Equation Property of
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G ′. Since paG ′(Y) = paG(Y) ∪ X, we have that:

XY is σ(XpaG′ (Y)
, EY)-measurable

⇓
XY is σ(XpaG (Y), XX, EY)-measurable

Where Xv is the random variable and Ev is the error variable for node v.
If a probability distribution P is compatible with G ′, it has to be the probability

distribution of one set of random variables Xv that obeys this.
From the Structural Equation Property of G ′, we also have:

XX is σ(XpaG′ (X), EX)-measurable ,

and we know that the parents of X are the same in both G and G ′:

XX is σ(XpaG (X), EX)-measurable ,

Since X has at least one latent parent, we can include the error variable EX into
one of these latent parents (if we view Ev as one latent variable with only X as a
child, we can absorb it into other latent parent by the second reduction rule of [9] -
Lemma 3.8 in the Arxiv version). So:

XX is σ(XpaG (X))-measurable

⇓
σ(XpaG (Y), XX, EY) ⊆ σ(XpaG (Y), XpaG (X), EY)

This means that, if

XY is σ(XpaG (Y), XX, EY)-measurable,

then XY is also σ(XpaG (Y), XpaG (X), EY)-measurable.

Since paG(X) ⊆ paG(Y), we have

σ(XpaG (Y), XpaG (X), EY) = σ(XpaG (Y), EY)
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Thus, our final conclusion is:

XY is σ(XpaG′ (Y)
, EY)-measurable

⇓
XY is σ(XpaG (Y), EY)-measurable

What means that all probability distributions compatible with G ′ are also
compatible with G. This proves the other way around and shows that G and G ′

are equivalent.

B.2 Proof of Weak Face Splitting

Here, we prove Proposition 6. This proof is due to Noam Finkelstein. It is not
the proof originally presented in [9].

Let pa∗G(D) = paG(D) \ (paG(C) ∪ C) be the set of parents of D apart from C
and paG(C). In this proof, we are going to treat all these extra parents of D as
visible; if some of them are claimed to be latent, we can simply ignore their values
at the end, and this will not change the marginal probability distribution over the
other nodes.

Any joint probability distribution P
(
C, D, paG(C), pa∗G(D)

)
can be written as:

P
(
C, D, paG(C), pa∗G(D)

)
= P

(
C, paG(C), pa∗G(D)

)
P
(

D|C, paG(C), pa∗G(D)
)

Now, we analyse the constraints that both mDAGs (pre-split and post-split)
impose on this probability distribution.

Firstly, we see that both mDAGs impose the same constraints on the first term,
P
(
C, paG(C), pa∗G(D)

)
. This is true because the subgraph over C, paG(C) and

pa∗G(D) is the same in both mDAGs, and marginalizing the descendants (in this
case, D) is just like removing them from the graph.

Thus, what is left to study is the second term,

P
(

D|C, paG(C), pa∗G(D)
)

.

This term can have constraints on specific evaluations of the parents of D,
namely constraints that involve only one distribution

P
(

D|C = x, paG(C) = y, pa∗G(D) = z
)

,
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and it also can have constraints that involve more than one evaluation, for example
a constraint that involves

P
(

D|C = x, paG(C) = y, pa∗G(D) = z
)

and P
(

D|C = x′, paG(C) = y′, pa∗G(D) = z′
)

.

It is immediate that both mDAGs impose the same constraints of the first type,
because conditioning on ancestors (fixing their values) is just like removing them
from the graph, and the subgraph over D is the same in both mDAGs.

Therefore, we just need to check if there are changes on constraints that involve
more than one evaluation of the parents of D, that we will call "cross-counterfactual
constraints".

Below we show the system of equations that represents one possible evaluation
of the parents of D:

P
(

D = X(1)
D |C = x, paG(C) = y, pa∗G(D) = z

)
=

=
∫

u
P(u|C = x, paG(C) = y, pa∗G(D) = z)

∏
di∈D

P
(

di = X(1)
di

|C = x, paG(C) = y, pa∗G(di) = zi, u
)

.

.

.

P
(

D = X(k)
D |C = x, paG(C) = y, pa∗G(D) = z

)
=

=
∫

u
P(u|C = x, paG(C) = y, pa∗G(D) = z)

∏
di∈D

P
(

di = X(ki)
di

|C = x, paG(C) = y, pa∗G(di) = zi, u
)

where D = {d1, ...dn}, pa∗G(D) =
(

pa∗G(d1), ..., pa∗G(dn)
)

and z = (z1, ..., zn), and
ki is the cardinality of di, such that k = ∏i=1,...,n ki. The variable u represents the
latent that will be split.

Thus, for each evaluation of the parents of D we have a system of equations
where each equation corresponds to the probability of one specific evaluation of
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D. The parameters of such systems are

P
(
u|C = x, paG(C) = y, pa∗G(D) = z

)
and

P
(

di = X(m)
di

|C = x, paG(C) = y, pa∗G(di) = zi, u
)

,

for i = 1, ..., n and m = 1, ..., ki.
Cross-counterfactual constraints between two evaluations of the parents of D

appear when we have a parameter that is present in equations of the two corre-
sponding systems. For example, we could have two systems whose evaluations of
the parents of D only differ by one of the zi’s. Then, the parameter

P
(

dj = X(m)
dj

|C = x, paG(C) = y, pa∗G(dj) = zj, u
)

; i ̸= j

is present in both systems of equations when the extra parents of dj do not overlap
with the extra parents of di:

P
(
dj|C, paG(C), pa∗G(dj), pa∗G(di) = zi, u

)
= P

(
dj|C, paG(C), pa∗G(dj), pa∗G(di) = z′i, u

)
This equality constraint involving P(D|C, paG(C), pa∗G(D), u) leads to an in-

equality constraint on P(D|C, paG(C), pa∗G(D)), after marginalizing on u.
Constraints like the one in this example, that arise from the zi’s, will be called

"cross-Z-counterfactual" constraints. These are the same both before and after
splitting, because the split does not affect pa∗G(D). The constraints that are more
relevant to us are the "cross-C-counterfactual", that arise from changing the eval-
uation of nodes in C, and "cross-P-counterfactual", that arise from changing the
evaluation of nodes in paG(C).

Since all of C and paG(C) are parents of every di ∈ D, if two systems dif-
fer by the evaluation of some node of C or paG(C) then all of their parame-
ters of the form P(di|C, paG(C), pa∗G(di), u) are different. Thus, there are neither
cross-C-counterfactual nor cross-P-counterfactual constraints on the parameter
P(D|C, paG(C), pa∗G(dj), u). This is true both before and after the split.

The only parameters that change with the split are the ones of the form
P(u|C, paG(C), pa∗G(D)), that appear in all equations. After the split, we have that
u ⊥ C, u ⊥ paG(C)|C and u ⊥ pa∗G(D). Thus, P(u|C, paG(C), pa∗G(D)) = P(u).
Before the split, on the other hand, we only have u ⊥ pa∗G(D).

However, this is not a problem: since u is integrated out, these parameters
can only give rise to inequality constraints if we also have equality constraints on
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P(D|C, paG(C), pa∗G(dj), u). As we discussed, P(D|C, paG(C), pa∗G(dj), u) does not
have cross-C-counterfactual or cross-P-counterfactual equality constraints.

In conclusion, all the single-evaluation constraints and cross-system constraints
that the distribution of D conditioned on its parents have are the same in both
the pre-split and the post-split mDAGs. Thus, these mDAGs are observationally
equivalent.

B.3 Proof of Strong (Simultaneous) Face Splitting

The proof is analogous to the proof of Weak Face Splitting. Just like in that
case, we only need to look at cross-C-counterfactual and cross-P-counterfactual
constraints on P

(
D|C, paG(C), pa∗G(D)

)
. The system of equations is:



P
(

D = X(1)
D |C = x, paG(C) = y, pa∗G(D) = z

)
=

=
∫

u
P(u1|C, paG(C), pa∗G(D))...P(un|C = x, paG(C) = y, pa∗G(D) = z)

∏
di∈D

P
(

di = X(1)
di

|C = x, paG(C) = y, pa∗G(di) = zi, u1, ..., un

)
.

.

.

P
(

D = X(k)
D |C = x, paG(C) = y, pa∗G(D) = z

)
=

=
∫

u
P(u1|C, paG(C), pa∗G(D))...P(un|C = x, paG(C) = y, pa∗G(D) = z)

∏
di∈D

P
(

di = X(ki)
di

|C = x, paG(C) = y, pa∗G(di) = zi, u1, ..., un

)
where we defined C = ∪i=1,...,nCi.

Just like in Appendix B.2, here P
(

di = X(m)
di

|C, paG(C), pa∗G(di), u1, ..., un

)
does

not give any cross-C-counterfactual or cross-P-counterfactual constraint. Thus,
the same arguments follow and the proof of Strong Face Splitting is just a simple
extension to the proof of Weak Face Splitting.



Appendix C

Proof of the Only Hypergraphs Rule
(GPT valid)

Here, we prove Propositions 10 and 12. To make this proof, we are going to
use the inflation technique, developed in [22].

Let G be a DAG and X be a subset of the nodes of G. If anG(X) is the set of ances-
tors of X together with X itself, we say that the ancestral subgraph AnSubDAGG(X)

of X is the subgraph of G formed by the nodes in anG(X) and the edges that have
both endpoints in anG(X).

We can construct a different DAG G ′ by creating copies of the nodes v of G,
that we will denote as vi. The index i is called "copy-index", and it increases with
the number of copies we make. If two subgraphs G ′

1 and G ′
2 of G ′ are the same up

to removal of the copy-indices, we denote G ′
1 ∼ G ′

2. If we have a set X of nodes
of G and a set X′ of nodes of G ′ such that X′ contains exactly one copy of every
node of X, we also denote X′ ∼ X.

We define an inflation of a causal model as:

Definition 21 (Inflation of a DAG). Let G be a DAG. Another DAG G ′ is said to be an
inflation of G if it is constructed from copies of the nodes of G as described above, and, for
every observed node vi of G ′, we have

AnSubDAGG ′(vi) ∼ AnSubDAGG(v), vi ∼ v

For example, Figure C.2 presents an inflation of the DAG of Figure C.1. There,
we used the prime as the copy-index; A’ and A are the same upon removal of the
copy-index.

Definition 22 (Injectable Set). Let G be a DAG and G ′ a DAG constructed from copies
of the nodes of G. A set X′ of observed nodes of G ′ is said to be injectable, denoted by
X′ ∈ InjectableSets(G ′), if there is some set X of nodes of G such that

X′ ∼ X and AnSubDAGG ′(X′) ∼ AnSubDAGG(X).
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In this case, we say that X is an element of ImagesInjectableSets(G).

For example, in C.2, {A, B} is an injectable set but {D, A} is not.
Let G be a DAG. G ′ is an inflation of G, S′ ⊆ InjectableSets(G ′) is a collection

of injectable sets and S ⊆ ImagesInjectableSets(G) are the images of S′. Lemma 4
of [22] proves that if a probability distribution {PV : V ∈ S} is compatible with G,
then {PV′ : V′ ∈ S′} defined via PV′ = PV for V′ ∼ V must be compatible with G ′.

Ultimately what happens is that inequalities for the original graph can be
derived from inequalities for the inflated graph. Now, let us see when this is also
applicable to quantum causal structures.

Definition 23 (Inflationary fan-out). An inflationary fan-out is a latent node that points
to two or more nodes that are copies of one another.

As discussed in [22], when an inflation does not have any inflationary fan-outs,
the inequalities that can be derived from it are GPT valid. In particular, they are
quantumly valid.

Figure C.1: DAG considered in the proof of Lemma 6: it has four visible nodes and a latent
common cause between every set of three visible nodes. It does not have any edges going
out of visible nodes.

Now, we can prove an useful Lemma:

Lemma 6. Let G be a latent-variable DAGs with N visible nodes that do not have any
edges going out of visible nodes. If G does not include a latent node that points to all the
N visible nodes, then it is not saturated when treated as a quantum causal structure.

Proof. We are going to show that such DAGs are not saturated by proving that
they cannot explain a distribution where there is perfect correlation between all
observed nodes.
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Figure C.2: Inflation of the DAG of Figure C.1.

All the DAGs that do not have edges between the visibles and do not have a
N-way common cause are dominated by the one that has common causes between
every subset of (N-1) visible variables. For the case N = 4, this DAG is shown in
Figure C.1.

In Figure C.2, we present an inflation of the DAG C.1. This inflation does
not contain any fan-outs: there is no latent node in C.2 that parents one of the
original observed nodes and its primed version at the same time. Therefore, the
inequalities obtained from this inflation are quantum (and GPT) valid.

In the inflation C.2, the sets {A, B}, {B, C} and {C, D} are injectable. We can
apply Lemma 4 of [22] to the the family of injectable sets

S′ = {{A, B}, {B, C}, {C, D}}.

Thus, if the probability distribution where A = B = C = D was compatible
with the original DAG, then necessarily the probability distribution {PV′ : V′ ∈ S′}
where A = B, B = C and C = D should be compatible with the inflated DAG.
However this would imply D = A, what is not allowed because A ⊥ D in C.2.

Therefore, the DAG C.1 cannot explain perfect correlation, what shows that it
is not saturated. Thus, all the other DAGs with 4 observed variables considered
by the Lemma are also not saturated.

The generalization of this construction to arbitrary N is given in Appendix B
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of [23].

With this Lemma, we are ready to prove the proposition:

Proposition 12 (Only Hypergraphs Rule - Quantum Version). Let G and G ′ be two
latent-variable DAGs with visible nodes V that do not have any edges between the visible
nodes. If G ̸= G ′, then MQ(G, V) ̸= MQ(G ′, V).

Proof. If G ̸= G ′, then there must be at least one facet in one of them that is not
included in any facet of the other. Say that G has the facet B, but G ′ does not have
B as a facet nor a face.

Then, if we look at the subgraphs defined by the nodes in B, Lemma 6 says that
such a subgraph of G can explain perfect correlation (and it is saturated), while
the subgraph of G ′ cannot.

The Only Hypergraphs Rule is GPT valid, because Lemma 6 is GPT valid.



Appendix D

TC Fraser’s Algorithm for Feasible Sup-
ports

The algorithm for finding the supports compatible with an mDAG is funda-
mentally a brute force search. It consists of enumerating all the possible responses
that a visible variable can have to its parents, given that the cardinalities of the
visible variables and the latent variables are fixed.

In [18], it is shown that whenever the visible variables have finite cardinalities,
we can assume the latent variables to have finite cardinalities without loss of
generality. Furthermore, for a given number of events in the support, one gets an
upper bound on the cardinality of the latent variables.

Given an mDAG G:

1. Fix the cardinalities of every latent variable to be k and the cardinality of
each visible variable v to be cv.

2. For each visible variable, enumerate all possible response functions it can
have to the valuations of its parents.

For example, if a visible v has only one parent and it is latent, it has (cv)k

possible response functions; we could have that v reacts with the each one of
its cv possible values for each one of the k possible valuations of its parent.

In general, if the total cardinality of the parents of v is K(v), then we have
(cv)K(v) possibilities of response function for v.

3. For each possibility of response functions of all the visible variables of G, we
compute the support: the set of visible events that occur under that response
function, for some valuation of the latent variables.

The question that is left is how to choose k. First we note that, if a support
containing s events is compatible with G, it will certainly be found with the
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algorithm for all k ≥ s. Thus, s is an upper bound on the values of k (cardinality of
latent variables) that we need to consider.

Assuming that all the |V| visible variables have the same cardinality c, the
maximum number of events that we can have is c|V|. So, to be certain that we
found all compatible supports, we should choose k = c|V|.

When implementing the algorithm in this work, we consider that all the visible
variables are binary (c = 2). This restriction is not a problem for our goal of
checking that two mDAGs do not have the same set of Infeasible Supports. For
mDAGs G and G ′ with higher c > 2, we can gather events together (for example
joining events x and y in z = x ∧ y) to go to the binary case. Thus, if the sets of
Infeasible Supports are different for c = 2, they are also different for c > 2.



Appendix E

Counter-Example of a quantum exoge-
nization Lemma

A counter-example for Lemma 4 in the quantum case is presented in [13]. It is
given by the two DAGs of Figure E.1.

Figure E.1: In (a), it is possible for P(A, B|X, Y, S = 0) to maximally violate a Bell inequality
between A and B while P(A, C|X, Z, S = 1) maximally violates a Bell inequality between
A and C. In (b), this is not possible because of the monogamy of pure entanglement.

The DAG E.1(b) is the exogenized version of E.1(a). By the following reasoning,
we can show that DAGs E.1(a) and E.1(b) are not quantumly equivalent.

In E.1(a), the classical variable S determines what is the quantum channel
Ωs : B(HL) → B(HPQ). We could have a quantum realization of this DAG such
that when S = 0 we have ρPQ = ρL ⊗ I ∈ B(HPQ) and when S = 1 we have
ρPQ = I ⊗ ρL ∈ B(HPQ). In other words, S determines whether the state ρL goes
to node B or to node C. Therefore, we can establish a Bell scenario between A
and B when S = 0 and a Bell scenario between A and C when S = 1. Thus,
P(A, B|X, Y, S = 0) can maximally violate a Bell inequality between A and B, and
P(A, C|X, Z, S = 1) can maximally violate a Bell inequality between A and C.

In E.1(b), the only quantum node that connects A with B and C is ρKLM, and
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it is prepared independently of S. This means that we cannot use a strategy like
the one implemented in E.1(a), where S determines if the state that goes to A is
entangled with the state that goes to B or with the state that goes to C.

If A had access to S, we could create a quantum realization where HK =

HK′ ⊗HK′′ , and S tells A whether to measure HK′ or HK′′ . Thus, setting ρK′ to
be purely entangled with ρL and ρK′′ to be purely entangled with ρM, we could
have that S determines which of the pairs AB or AC maximally violate Bell’s
inequalities. However, this cannot be done because A does not have access to S in
the DAG E.1(b).

Finally, the monogamy of pure entanglement says we cannot have a joint
state ρKLM such that the state that goes to A is purely correlated to the state that
goes to B at the same time that it is purely correlated to the state that goes to C
(independently of S).

Therefore, we have a probability distribution that can be achieved by E.1(a)
but not by E.1(b).



Appendix F

District Factorization

In this work, we have been talking only about passive observation of events.
Thus, we use conditional probabilities, that say what is the updated knowledge
you have about the remaining variables when you learn about an event. However,
we could also design experiments that involve active interventions: fixing the value
of some variable. For example, in a drug test the active intervention is giving the
medicine for a randomized group of patients, while the passive observation is to
analyze data from the population of patients that voluntarily took the medicine1.
In the active case, the influence of external factors on the decision of taking the
medicine is eliminated. Therefore, fixed nodes do not have parents in the causal
structure.

To describe interventions, we need the definition of a probability kernel. It is
taken from [24]:

Definition 24 (Probability Kernel). Let XV and XW be random variables that take
values in XV and XW , respectively. A probability kernel is a non-negative map qV :
XV ×XW → [0, 1], satisfying:

∑
xV∈XV

qV(xV |xW) = 1 for all xW ∈ XW

where we write the evaluation of qV in xV ∈ XV and xW ∈ XW as qV(xV |xW).
Note that, in general, qV cannot be formed by taking a probability distribution on XV

and conditioning on XW . Such conditional probabilities are special cases of kernels.

We use kernels to express the joint distribution of a set of variables when there
are interventions. The referred kernel is obtained by dividing the distribution over
all variables by the distribution of the fixed one. See e.g. Equation (1) of [25].

Many times, the problem of finding the compatible distributions of an mDAG
can be modularized. As shown in [19], there are conditions under which we can
factorize this analysis over certain subgraphs of our mDAG.

1Example taken from [1].
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We define the subgraph induced by the district D (see Definition 14) as the
mDAG G[D] formed by the nodes of D as random, the nodes of paG(D) \ D as
fixed, the edges that connect these nodes and the facets {B ∩ D : B ∈ B(G)}. An
example of such subgraphs can be found in Figure F.1.

Figure F.1: An mDAG G and its factorization into districts. G has two districts: D1 =
{A, C, E} and D2 = {B, D}. Squares represent fixed nodes. Example taken from [26].

The important result involving the subgraphs G[D] is presented as Proposition
2.11 in [19]:

Proposition 13 (Factorization into Districts). Let G be an mDAG with nodes V and
districts D1, ..., Dk.

A probability distribution P over the variables V is compatible with G if and only if:

p(xV) =
k

∏
i=1

gi(xDi |xpaDi
\Di

)

where each gi is a probability kernel compatible with G[Di].

For the example in Figure F.1, probability distributions pG that are compatible
with G take the form

pG(A, B, C, D, E) = pG[D1]
(A, C, E)gG[D2](B, D|A, C, E)

where pG[D1]
is compatible with G[D1] and gG[D2] is compatible with G[D2].

If an mDAG G that can be decomposed in this way presents inequality con-
straints, these inequalities will already be present in subgraphs G[D]. Therefore,
to find examples that give QC gaps, it suffices to look at the fundamental mDAGs
(Definition 20).
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