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We revisit the mechanism for violating the weak cosmic-censorship conjecture (WCCC) by over-

spinning a nearly-extreme charged black hole. The mechanism consists of an incoming massless neutral

scalar particle, with low energy and large angular momentum, tunneling into the hole. We investigate the

effect of the large angular momentum of the incoming particle on the background geometry and address

recent claims that such a backreaction would invalidate the mechanism. We show that the large angular

momentum of the incident particle does not constitute an obvious impediment to the success of the

overspinning quantum mechanism, although the induced backreaction turns out to be essential to restoring

the validity of the WCCC in the classical regime. These results seem to endorse the view that the ‘‘cosmic

censor’’ may be oblivious to processes involving quantum effects.
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For centuries our view of nature has been based on the
paradigm that complete knowledge of the details of an
isolated system at any particular time would determine
its whole (past and future) history. Even the revolution
unraveled by (standard) quantum mechanics was not
enough to temper with this form of determinism, which
is actually enforced by the unitary evolution characteristic
of quantum theory. Notwithstanding, it is in the context of a
classical theory, namely, general relativity (GR), that this
determinism faces its most serious threat: the singularities.
‘‘Cosmic censors’’ have then been postulated to oversee
such unwanted objects, preventing their existence from
affecting the Universe at large, thus preserving the cosmic
order. However, by looking at a particular simple example,
we argue that cosmic censors may be oblivious to pro-
cesses involving quantum effects.

Singularities, which represent situations where GR itself
and all known theories lose their predictability, are known
to appear many times when well-posed initial conditions
are evolved through Einstein equations (e.g., in the case of
star collapse with black hole formation). Although it is not
clear even in the classical context of GR whether such
unpredictable objects would be able to causally influence
‘‘far away’’ regions, the determinism principle mentioned
above has become so deeply rooted in the way we think
about nature that it has motivated the formulation of the
weak cosmic-censorship conjecture (WCCC) [1].
According to the WCCC, singularities should always be

‘‘dressed up’’ by event horizons (as in the case of black
holes), thus preventing their ‘‘unpredictability’’ from per-
vading the Universe. By forbidding the existence of
‘‘naked’’ singularities (except for a possible initial one),
the WCCC ensures that determinism holds except possibly
for spatially compact regions ‘‘near’’ the singularities.
However, despite the various efforts to prove the WCCC
right, its validity remains an elusive open question (see,
e.g., Refs. [2–9] and references therein).
Now, introducing quantum ingredients into this discus-

sion, it is largely believed that a complete merging of GR
with quantum mechanics (QM) (i.e., quantum gravity)
should be able to unveil the physical structure of singular-
ities, making them quite benign irrespectively if they are
naked or dressed by event horizons. Therefore, it is not too
far-fetched to expect that the same QM might be able to
evade the WCCC, providing mechanisms for generating
those structures. Indeed, some quantum mechanisms rais-
ing the possibility of formation of naked singularities have
been proposed and discussed recently (see, e.g., Refs. [10–
15]). In particular, one such mechanism consists of a
massless neutral scalar particle with large enough angular

momentum
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

and low enough energy ! being
absorbed through quantum tunneling effect by a nearly-
extreme charged black hole (with mass M and charge Q,

satisfying M2 �Q2 * 0, and angular momentum ~J ¼ ~0)
[12]. (We adopt units in which @ ¼ G ¼ c ¼ 1 throughout
the paper.) In the process, the black hole would acquire
enough angular momentum (‘‘overspin’’) to become a
naked singularity [M02 �Q2 � J02=M02 < 0, with M0 ¼
Mþ! and J02 ¼ lðlþ 1Þ], thus violating the WCCC.
By considering the canonical quantization of the low-
energy sector of a free massless scalar field in the
Reissner-Nordström spacetime (see, e.g., Ref. [16]), the
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probability for such a process to occur can be calculated in
the approximation where no backreaction is taken into
account. The result shows that, although extremely rare,
the overspinning mechanism is not forbidden as it should
be in order for the WCCC to be valid. One may wonder,
however, whether or not backreaction effects could come
to the rescue of the WCCC. In particular, one can inves-
tigate the role played by the large angular momentum of
the incident particle on the background spacetime [13].
Here we show that such a backreaction effect is not enough
to restore the validity of the WCCC, posing no challenge to
the overspinning mechanism as long as its intrinsic quan-
tum character is exploited. This result contrasts with pre-
vious conclusions in the literature [13] but we eventually
show that both analysis can be made consistent when
properly interpreted. Interestingly enough, in making these
proper interpretations we note that the WCCC is restored
when the classical limit of the proposed mechanism is
considered.

As in Ref. [12], let us begin by considering a nearly-
extreme charged black hole with mass M, charge Q (with

M2 �Q2 ¼ � * 0), and angular momentum ~J ¼ ~0, whose
line element can be written in the form [17]

ds2 ¼ fðrÞdt2 � fðrÞ�1dr2 � r2ðd�2 þ sin2�d�2Þ; (1)

where fðrÞ ¼ ð1� rþ=rÞð1� r�=rÞ and r� ¼
M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 �Q2
p

. The outer event horizon is located at r ¼
rþ. This black hole is assumed to be macroscopic (i.e. M
must be much larger than the Planck mass MP) in order to
guarantee the applicability of the semiclassical gravity
theory.

The mechanism proposed in Ref. [12] for overspinning
this black hole consists of sending in free massless scalar
particles, one at a time, with low enough energy ! and

angular momentum with large enough modulus
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

(l 2 N) and projection m 2 f�l;�lþ 1; . . . ; l� 1; lg in
an arbitrarily given direction (as seen from static observers
at infinity). Each such particle is governed by the normal
mode u !lm which is the orthonormalized (according to
the Klein-Gordon inner product [18]) solution of the usual
Klein-Gordon equation r�r�u !lm ¼ 0 subject to the

condition that it is purely incoming at the past null infinity
I�. Writing u !lm in the form

u !lmðt; r; �; �Þ ¼
ffiffiffiffi
!

�

r
c !lðrÞ

r
Ylmð�;�Þe�i!t; (2)

with Ylmð�;�Þ being the usual spherical-harmonic func-
tions, c !l satisfy�
�fðrÞ d

dr

�
fðrÞ d

dr

�
þ VeffðrÞ

�
c !lðrÞ ¼ !2c !lðrÞ:

(3)

Here

VeffðrÞ ¼ fðrÞ½lðlþ 1Þ=r2 þ 2M=r3 � 2Q2=r4� (4)

is the effective scattering potential. Obviously, Eq. (3)
possesses two independent solutions for given ð!; lÞ asso-
ciated with modes (i) purely incoming from the past null
infinity I� and (ii) purely outgoing from the white-hole
horizon H�. Here we are only interested in modes (i)
(labeled by the subscript  ). Because of the existence of
the effective scattering potential, low-energy (! � 0) in-
coming particles are mostly reflected back to infinity; the
few particles which enter the hole must quantum-
mechanically tunnel into it.
Since we are interested here only in particles coming

from infinity with low energy, we will only write the
leading term in the ! expansion for c !lðrÞ:

c !lðrÞ � C!l

ð2lÞ! �rlþ1
ðl!Þ2ð�rþ � �r�Þl

; (5)

where �r � r=2M, �r� � r�=2M, and

C!l ¼ ð�iÞlþ1 2
2lþ1ðl!Þ3ð�rþ � �r�ÞlMlþ1!l

ð2lÞ!ð2lþ 1Þ! : (6)

By comparing Eq. (5) with the form that c !lðrÞ must
exhibit near the outer horizon,

c !lðrÞ � ð2!Þ�1T 0
!le
�2iM!r� ; r�< 0; jr�j � 1;

(7)

where

r� � �rþ �r2þ lnj�r� �rþj � �r2� lnj�r� �r�j
�rþ � �r�

is the Regge-Wheeler radial coordinate, it follows that the
probability for the incoming particle to tunnel into the hole
is, to the lowest order in !,

jT 0
!lj2 ¼

22lþ2r2þðrþ � r�Þ2lðl!Þ6!2lþ2

½ð2lþ 1Þ!ð2lÞ!�2 (8)

(see, e.g., Ref. [19] for more detail). Regardless how small
such a probability may be, it does allow for a low-! large-l
particle to be absorbed by the nearly-extreme charged
black hole which then, by symmetry (i.e., conservation)
arguments, should eventually be characterized by a new
mass M0 ¼ Mþ! and a new angular momentum satisfy-
ing J02 ¼ lðlþ 1Þ. Therefore, a naked singularity would be
formed provided that M02 �Q2 � J02=M02 < 0, which is
true for a range of values of !> 0 as long as

lðlþ 1Þ>M2�: (9)

If the original hole misses one single electric charge to

become extreme, then � � 2M=
ffiffiffiffiffiffiffiffi
137
p

.
The fact that such large angular momenta would be

necessary to challenge the WCCC naturally raises concern
about the approximation where no backreaction is consid-
ered. So, in a tentative to consider the backreaction of the
particle’s angular momentum on the spacetime, we follow
Ref. [13] and assume that this should be similar to the one
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induced by an axisymmetric ring of particles rotating
around the black hole, which is to give some angular
velocity to the horizon generators [20]. In the case of a
Reissner-Nordström black hole, this angular velocity
would be [13]

� ¼ mz

Mr2þ
; (10)

where mz is the ring angular momentum. By replacing the
ring by the incident incoming particle, the idea is to
associate the total angular momentum of the ring, mz,
with the azimuthal angular momentum of the particle, m.
Although this association is used freely in Ref. [13], it
deserves some comments which will be useful later. The
one-particle state characterized by the quantum numbers
ð!; l;mÞ can be heuristically thought of as an equally-
weighted superposition of all the trajectories having energy

! and angular momentum ~L satisfying both L2 ¼ lðlþ 1Þ
and ~L � ẑ ¼ m, where ẑ is the unit vector pointing in the
direction of symmetry of the incoming-particle state. Such
a superposition is obviously axisymmetric with respect to ẑ
and has an ‘‘averaged’’ total angular momentum given by

h ~Li ¼ mẑ. Hence, the effect of such a quantum state on the
classical background (as long as the semiclassical approxi-
mation is valid) should be as if the total angular momentum
were given by m.

The next step, then, is to assume that the incoming
particle feels the scattering potential modified by the ef-
fective rotation given by Eq. (10). In this case the tunneling
probability becomes [13]

jT �
!lj2 ¼

22lþ2r2þðrþ � r�Þ2lðl!Þ6!2lþ1ð!�m�Þ
½ð2lþ 1Þ!ð2lÞ!�2

	Yl
n¼1

�
1þ

�
!�m�

2�nTBH

�
2
�

(11)

with TBH ¼ ðrþ � r�Þ=ð4�r2þÞ being the Hawking tem-
perature of the black hole. Note that the effect of the
induced rotation� is to prevent particles with energy! 

m� from being absorbed by the hole. (In particular, the

negativity of jT �
!lj2 for !<m� is usually interpreted as

the occurrence of superradiation rather than absorption.)
Nonetheless, the important point is that once one particle
with energy

!>m� ¼ m2=ðMr2þÞ (12)

tunnels in, the total angular momentum it transfers to the
hole is determined by l, not m. Hence, the final state of the
hole is characterized by a mass M0 ¼ Mþ!>Mþ
m2=ðMr2þÞ, angular momentum ~J0 satisfying both J02 ¼
lðlþ 1Þ and ~J0 � ẑ ¼ m, and the same initial charge Q.
With respect to the WCCC, this implies that the overspin-
ning mechanism still holds true for a range of values of
!>m� provided J02=M02 >M02 �Q2, i.e.,

lðlþ 1Þ>
�
Mþ m2

Mr2þ

�
2
�
�þ 2m2

r2þ
þ m4

M2r4þ

�
; (13)

where we recall that � ¼ M2 �Q2. In particular, if the
incoming particle is prepared in a state with m ¼ 0 the
backreaction considered here plays no role at all since
Eq. (12) becomes trivial and Eq. (13) reduces to Eq. (9).
These results clearly contrast with previous conclusions

presented in the literature [13]. The point of divergence is
easily identified to be related to the angular momentum
acquired by the hole when the incoming particle tunnels
into it. The author of Ref. [13] seems to have been carried
away by the identification between the azimuthal angular
momentum m of the incoming particle and the total angu-
lar momentum mz of a ring of particles [see discussion
below Eq. (10)]. He then concludes that J02 ¼ m2, as
would be natural if the hole had swallowed the ring of
particles. Then, as the inequality (13) is always false if
lðlþ 1Þ is replaced bym2, Ref. [13] claims that the WCCC
has been rescued by the backreaction effect. However, even
though the relevant angular momentum for backreaction
purposes is given by m (as previously discussed), once the
one particle does get absorbed it delivers its total angular
momentum to the hole, which acts as a classical angular-
momentum measuring apparatus (provided M� MP).
Here lies the intrinsic quantum nature of the overspinning
mechanism: the one-particle tunnels into the hole due to its
wavy nature, but it gets absorbed as a single quantum,
transmitting to the hole its energy and angular momentum.
This is similar to what happens in the double-slit experi-
ment with individual particles: each particle propagates
through the double slit as a wave, but it collapses at one
single spot on the screen.
Motivated by this discussion, it is interesting to consider

the ‘‘classical limit’’ of the overspinning mechanism,
where an ensemble of particles, all in the same state
characterized by ð!; l;mÞ, is sent toward the nearly-
extreme charged black hole. In this case, only a fraction
[well approximated by Eq. (11)] of the incoming particles
would tunnel into the hole, delivering an energy N! and a

total angular momentum ~J0 ¼ Nh ~Li ¼ Nmẑ, where N (as-
sumed to be� 1) is the number of absorbed particles. It is
easy to note, then, that the condition for the overspinning
mechanism to work would be the one given by inequality
(13) with everym replaced byNm and lðlþ 1Þ replaced by
ð ~J0Þ2 ¼ N2m2, which is never satisfied; i.e., the overspin-
ning mechanism would fail and the validity of the WCCC
would be restored. This is the proper and interesting inter-
pretation of the results presented in Ref. [13]: the back-
reaction induced by the angular momentum of the
ensemble of incoming particles prevents the violation of
the WCCC. This is a classical result, in the sense that if the
ensemble of particles were able to violate the WCCC, so
would a classical wave sent toward the hole (recall that
‘‘tunneling’’ is a common effect for classical waves).
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In summary, we have shown that the large angular
momentum of the incident scalar particle does not consti-
tute an obvious impediment to the success of the over-
spinning quantum mechanism proposed in Ref. [12]. On
the other hand, we have also shown, using results of
Ref. [13], that the backreaction induced by such angular
momenta does come to the rescue of the WCCC in the
classical regime. These two results, combined, strengthen
the view that the violation of the WCCC may be an
intrinsic quantum process, which in turn gives support to
the idea that naked singularities might be tamed by a
complete quantum gravity theory.

It is worthwhile to note at this point that backreaction
effects, which turns out to be the main impediment to reach
a final conclusion about the success of the present naked
singularity production mechanism, can be minimized (see
also Ref. [14]). This can be achieved, e.g., by replacing the
nearly-extreme charged hole by a nearly-extreme rotating
one with angular momentum L such that M2 � L2=M2 ¼
� * 0. Then a particle with modest angular momentum:
lðlþ 1Þ � L2, should not significantly disturb the space-
time as it approaches the horizon and it could still overspin
the hole if ðMþ!Þ2 � ½L2 þ lðlþ 1Þ�=ðMþ!Þ2 < 0,
i.e.,

lðlþ 1Þ>M2�þ 4M3!þO½M2!2�: (14)

We are assuming here that the azimuthal angular momen-
tum of the particle is null,m ¼ 0, and that the quantization
and black hole rotation axes are the same. In order to avoid
superradiance it is enough again to impose the constraint
!>m�, which is obviously not a problem for m ¼ 0.
Clearly, a more elaborated semiclassical backreaction cal-
culation should take into account the continuous change in
time of the scattering potential rather than assuming that
the field backreacts on the spacetime generating a new
static scattering potential which is ‘‘in place’’ before the
wave packet tunnels through the barrier. In spite of it, even
more detailed semiclassical calculations in the lines above
would not be enough to definitely resolve the problem. We

note that the black hole and singularity scattering poten-
tials are quite different. Eventually only a forthcoming full
quantum gravity theory will be able to decide whether or

not there would exist some interaction Hamiltonian Ĥqg

evolving some initial state describing a particle in the
spacetime of a black hole into a naked singularity (plus
debris)

�̂ bh � j!lmih!lmj!Hqg

�̂sing � �̂debris: (15)

Finally, we speculate about ways to preserve the general-
ized second law (GSL) if the naked singularity is revealed
and raise a conjecture. An exciting idea would be that
naked singularities and elementary particles would be
low-energy-theory manifestations of some common quan-
tum gravity structure, since all known elementary particles
satisfy the constraintM2 <Q2 þ J2=M2, whereM,Q, and
J should be associated here with the particle’s mass, elec-
tric charge and spin, respectively. This would explain, e.g.,
why elementary neutral scalar particles have never been
observed (since in this caseQ ¼ J ¼ 0), and imply that the
Higgs boson, if observed in the LHC/CERN, would be a
composite scalar particle. In this scenario, a naked singu-
larity would decay into a myriad of elementary particles
which would carry a hopefully large enough entropy to
preserve the GSL. (See Ref. [21] for a loop quantum
gravity discussion on the ‘‘quantum evaporation of naked
singularities’’ which seems to be in line with our present
conjecture.) In contrast to it, singularities hidden in the
interior of event horizons would be stable because of the
very spacetime structure.
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