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Capítulo 1

Introdução

Nada menos propositado, talvez, do que uma citação no intróito de um texto

formal. Havendo ainda o agravo do texto pretender conter uma parcela de crítica,

a boa norma de uso do cálamo sempre nos remete a uma certa dose de parcimônia.

Ainda assim, dada a relevância do autor da citação, comecemos nossa introdução

apreciando a opinião de Sir Michael Atiyah no que concerne aos objetos centrais

dessa tese:

No one fully understands spinors. Their algebra is formally understood

but their general significance is mysterious. In some sense they describe

the “square root” of geometry and, just as understanding the square

root of -1 took centuries, the same might be true of spinors.

Em certo sentido, abordaremos ao longo dos trabalhos explicitados nesse texto

diversas facetas do entendimento corrente de espinores do ponto de vista mate-

mático e de sua relação com a física, especialmente no que tange ao estudo de

candidatos à matéria escura. A fim de encerrar nessa introdução um contexto

1



Capítulo 1. Introdução 2

explicativo do que se segue, recorremos novamente à frase supracitada, desta vez

ponto a ponto.

No one fully understand spinors.

O começo desalentador da afirmação guarda também ampla perspectiva de tra-

balho. Em física, em linhas gerais, espinores foram introduzidos na Mecânica

Quântica como certas funções de onda descrevendo, via acoplamentos específivos

no termo potencial da equação de Schrödinger, um grau de liberdade interno, o

spin. A evolução conceitual que marca a incorporação da dinâmica relativística e

o conceito de campo à Mecânica Quântica, culminando com a Teoria Quântica

de Campos, levou também a refinamentos do conceito de espinor em física. O

operador de campo quântico espinorial utilizado na descrição do setor de maté-

ria do Modelo Padrão carrega consigo coeficientes de expansão espinoriais cuja

propriedade definidora flerta com um viés matemático bem estabelecido para

espinores: entidades que carregam a representação dos grupos de rotação em um

espaço de dimensão finita. No caso específico dos coeficentes de expansão, estamos

nos referindo às rotações que compõe o grupo de Lorentz.

Na década de sessenta do século precedente, para nos atermos a um deter-

minado recorte histórico, a Teoria Quântica de Campos passou por ampla for-

malização, colocando suas bases teóricas em um patamar sólido. Entretanto, no

que diz respeito ao uso de espinores, uma possível fenda investigativa se abre se

os utilizamos como objetos que carregam representações de certos subgrupos do

grupo de Lorentz, tais como os que erigem a chamada Very Special Relativity. É

nesse sentido que contextualizamos essa primeira parte da citação, fazendo-lhe

coro: a descrição de campos fermiônicos cujos coeficientes de expansão apresen-
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tam modificações sutis, porém importantes, dos conceitos usuais, tem levado a

um amplo campo de novas perspectivas. Tais novos campos fermiônicos apresen-

tam (ou são construídos para que apresentem) propriedades que lhes faculta sua

aplicação na descrição da matéria escura. No trajeto formal de desenvolvimento

da teoria de campos incorporando esses novos campos há, acreditamos, muito a

ser compreendido e formalizado.

Their algebra is formally understood but their general significance is

mysterious.

Do ponto de vista algébrico, há uma classificação espinorial com forte apelo físico.

Sabemos que em física de altas energias, um férmion sozinho (descrito por um espi-

nor) não é passível de detecção. Estados acessíveis experimentalmente são aqueles

formados pelos bilineares covariantes. O entendimento concreto de espinores como

elementos (fibras) de um fibrado principal contendo transformações de 𝑆𝐿(2,C)

e com características bem definidas do espaço de representação, possibilitou a

execução de um programa algébrico profundo na década de oitenta, levando à

categorização sistemática dos espinores de acordo com os valores assumidos pelos

seus bilineares.

Sem dúvida, no que é concernente a esse trabalho, podemos endossar a asserção

de que a álgebra espinorial é bem entendida. No entanto, ainda há espaço para

mistério: essa mesma formalização algébrica revela a existência de uma classe de

espinores cuja contrapartida física ainda não foi completamente explorada. De

fato, e vamos nos remeter a esse ponto em momento oportuno nessa tese, há até

então apenas um sistema físico conhecido cujo setor espinorial recai sobre essa

classe fugidia.
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In some sense they describe the “square root” of geometry · · ·

Um programa investigativo levado a termo por Eliè Cartan mostra uma faceta

bastante intrigante relacionada aos espinores. De fato, espinores podem ser enten-

didos como objetos pré-geométricos, no sentido de que pontos do espaço-tempo

podem ser escritos como composições de espinores. Nesse contexto eles seriam

a “raíz quadrada da geometria”, objetos mais fundamentais do que pontos que

compõe o espaço pseudo-euclidiano. Mais do que curioso, tal resultado permite

uma abordagem interessante para a existência dos chamados espinores exóticos.

A existência de espinores exóticos está vinculada à não trivialidade da vari-

edade de base na qual a teoria toma forma. Por exemplo, a dinâmica espinorial

em um espaço de Minkowski não simplesmente conexo abre a possibilidade de

existência de outras estruturas espinoriais. Tais estruturas possuem dinâmica es-

sencialmente usual, porém com uma correção de origem topológica, mas que pode

ser entendida como um acoplamento adicional com um campo vetorial externo. É

precisamente aqui que entra novamente a relevância dos espinores escuros. Uma

propriedade essencial para um candidato a matéria escura é a impossibilidade

de acoplamento com campos usuais do Modelo Padrão. Logo, diferentemente do

que acontece com espinores usuais, o estudo de espinores escuros exóticos traz

informação genuína sobre a topologia do sistema.

Para que possamos abordar com propriedade o que foi dito nessa curta ex-

posição, separamos nossas contribuições em duas frentes de trabalho, a saber:

uma voltada às propriedades algébricas dos espinores escuros, e outra enfocando

o entendimento das propriedades físicas dos mesmos. Nesse último caso, fazemos

ainda outra ramificação separando nossas contribuições em duas subáreas: teoria
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geral de partículas e campos e cosmologia. Percorreremos essa trajetória em dez

trabalhos que tipificam a atuação e contribuição que construímos (e continuamos

a construir) nessa área. Ainda que uma tal divisão seja imperfeita, pois vários

dos trabalhos apresentados transitam entre essas diversas classificações, ela será

útil na categorização geral.

O texto está organizado da seguinte maneira: no Capítulo 1 expomos nossas

contribuições acerca de espinores escuros e exóticos com mais foco nos aspectos

algébricos para o estabelecimento dos mesmos. Essa exposição será composta

de quatro trabalhos cujo mote central é formal. O Capítulo 2 será destinado a

contribuições voltadas a teoria de partículas. Serão três trabalhos, com propostas

de estudos específicos de sinais em aceleradores e uma aplicação, com o cálculo

da radiação Hawking. O Capítulo 3 fica ao encargo de estudos de alguns efeitos

dos espinores escuros em Cosmologia. Veremos também três trabalhos, sendo dois

eminentemente de cunho cosmológico e outro onde propomos um modelo sigma

para tais férmions, estudando alguma aplicação em cosmologia. Uma vez que

parte desse texto pretende ter um aspecto crítico, reservamos o capítulo final para

tal fim.
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Capítulo 2

Aspectos Formais

Em uma perspectiva bastante abarcativa e ambiciosa de trabalho, o estudo desde

a álgebra espinorial até a extração de algum possível observável físico se mostra

robusto. Gostaríamos de iniciar esse programa nos remetendo neste Capítulo à

fundamentação algébrica do nosso estudo. Aqui veremos aspectos relevantes de

espinores exóticos escuros, bem como a apreciação de um sistema físico levando

a um tipo de espinor jamais utilizado. Finalizaremos estudando novos possíveis

espinores escuros do ponto de vista algébrico.

Cada um desses tópicos será exposto em uma seção deste capítulo, que contará

sempre com um texto introdutório discutindo aspectos de relevância do trabalho.

Começamos com o que podemos entender como uma introdução às demais seções:

um trabalho curto contendo uma descrição de vários temas a que este capítulo

diz respeito.

7
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1. Introduction

From the classical point of view, the definition of spinors is
based upon irreducible representations of the group Spin+(p,q),
where p + q = n is the spacetime dimension. Due to the imme-
diate physical interest, mainly the Minkowski spacetime R1,3 has
being regarded since the 1920s. On the another hand, the repre-
sentation space associated to an irreducible regular representation
in a Clifford algebra is a minimal left ideal. Its elements are the
so-called algebraic spinors. Another possible definition of a spinor,
which is denominated operatorial, can be introduced from another
representation — distinct of the regular representation — of a Clif-
ford algebra, using the representation space associated to the even
subalgebra. This definition is equivalent to the classical and alge-
braic ones, in particular in the cases of great interest for physical
applications. The classical definition of spinor is the customary
approach in several superb textbooks in physics, e.g., [1]. There
is no damage in asserting that, in Minkowski spacetime, classi-
cal spinors are irreducible representations of the Lorentz group
Spin+(1,3) � SL(2,C). Notwithstanding, this paradigm severely
restricts the analysis to the usual Dirac, Weyl, and Majorana
spinors.

A new possibility involving the spinor fields classification was
introduced by Lounesto [2], as a palpable paradigm shift. It is
based upon the bilinear covariants and their underlying multivec-
tor structure. In particular, this classification evinces the existence
of a new type of spinor field, the so-called flag-dipole spinor fields.
Furthermore, it additionally presents another class of spinor fields

* Corresponding author.
E-mail addresses: hoff@feg.unesp.br, hoff@ift.unesp.br (J.M. Hoff da Silva),

roldao.rocha@ufabc.edu.br (R. da Rocha).

(the flagpoles) that accommodates Elko spinor fields, which are
prime candidates to the dark matter description [3]. They gener-
alize Majorana spinor fields. As it is well known, any spin-half
spinor field, that potentially describes the dark matter, respects
the symmetries of the Poincaré group in the sense of Weinberg,
if it is an element of a standard Wigner class of representations
of the Poincaré group. As it will be reported, Elko spinor fields
do not belong to the standard Wigner class. Among a significant
amount of unexpected and interesting properties, it was recently
demonstrated that the topological exotic spacetime structure can
be probed uniquely by Elko spinor fields: they are, hence, suitable
to investigate the eventual non-trivial topology of the universe [4].
By such exoticness, dynamical constraints converted into a dark
spinor mass generation mechanism, with the encrypted VSR sym-
metries holding as well.

The aim of this work is to report some of the recent advances
in this field of research, calling special attention to the interest-
ing features associated to the new spinor fields appearing in the
Lounesto’s classification. In order to accomplish that, we organize
this work as follows: in the next section we review the formal and
necessary aspects regarding the Lounesto spinor classification. In
Section 3, we explore some of the odd and captivating aspects as-
sociated to Elko and flag-dipole spinor fields. In the final section
we conclude.

2. Classifying spinor fields

We start this section reviewing some indispensable preliminary
concepts. For a deeper approach see, e.g., [5]. Consider the tensor
algebra T (V ) = ⊕∞

i=0 T i(V ), where V is a finite n-dimensional real
vector space. Henceforth V is regarded as being the tangent space
on a point on a manifold. Let Λk(V ) denote the antisymmetric
k-tensors space, indeed the k-forms vector space. In this way

0370-2693/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2012.12.026
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Λ(V ) = ⊕n
k=0 Λk(V ) is the space of the differential forms over V .

For any ψ ∈ Λ(V ), the reversion is defined by ψ̃ = (−1)[k/2]ψ
(the integer part of m is denoted by [m]), which is an anti-
automorphism in Λ(V ). Moreover, ψ̂ = (−1)kψ denotes the
graded involution, also called main automorphism. It is possi-
ble to use the metric g : V ∗ × V ∗ → R extended to the k-forms
space, in order to define the left and right contractions. Hence, for
ψ = ∧p

i=1 ui ≡ u1 ∧ · · · ∧ up and φ = ∧r
j=1 vr , with ui,v j ∈ V ∗ , the

extension of g to Λ(V ) reads g(ψ,φ) = det(g(ui,v j)) for p = r,
and zero otherwise. Now one defines the left contraction by

g(ψ � ϕ,χ) = g(ϕ, ψ̃ ∧ χ), for ψ,ϕ,χ ∈ Λ(V ). (1)

For v ∈ V , the Leibniz rule for the contraction is

v � (ψ ∧ ϕ) = (v � ψ) ∧ ϕ + ψ̂ ∧ (v � ϕ) (2)

respectively. The Clifford product between v ∈ V and χ ∈ Λ(V ) is
vχ = w ∧ χ + v � χ and the pair (Λ(V ), g), endowed with the
Clifford product, is denoted by Cl(V , g) (Clp,q is a notation that
shall be reserved to the Clifford algebra when V � Rp,q).

In order to properly revisit the bilinear covariants let us fix
the gamma matrices notation. All the formalism in representa-
tion independent, and hence we use hereon the Weyl (or chiral)

representation of γ μ: γ0 = γ 0 =
(

O I
I O

)
, γk = −γ k =

( O σk
−σk O

)
,

where I =
(

1 0
0 1

)
, O =

(
0 0
0 0

)
and the σi are the Pauli matrices.

Moreover γ 5 = iγ 0γ 1γ 2γ 3. All the spinor fields in this work are
placed in the Minkowski spacetime (M � R1,3, η, D, τ ,↑), where
η = diag(1,−1,−1,−1) is a metric which has a compatible (Levi-
Civita) connection D associated. Besides, M has spacetime orienta-
tion induced by the volume element τ as well as time orientation
denoted by ↑. We denote by {xμ} global coordinates, in terms of
which an inertial frame — a section of the frame bundle PSO1,3(M)

— reads eμ = ∂/∂xμ .
At this point we recall that classical spinor fields are sections of

the vector bundle PSpin1,3 ×C2, where the specific representation of

SL(2,C) � Spin1,3 in C2 is implicit. In this framework, the bilinear
covariants associated to a spinor field ψ ∈ PSpin1,3 ×C2 are sections
of Λ(T M) into the Clifford bundle of multiform fields, given by

σ = ψ†γ0ψ, J = Jμθμ = ψ†γ0γμψθμ,

S = Sμνθμν = 1

2
ψ†γ0iγμνψθμ ∧ θν,

K = Kμθμ = ψ†γ0iγ0123γμψθμ, ω = −ψ†γ0γ0123ψ, (3)

where {θμ} is the dual basis of {eμ}. The bilinear covariants obey
quadratic equations, the so-called Fierz–Pauli–Kofink identities [2]

J � K = 0, J2 = ω2 + σ 2,

J ∧ K = −(ω + σγ0123)S, K2 = −J2, (4)

which are particularly interesting in what follows. The Fierz aggre-
gate Z is defined by

Z = σ + J + iS − iγ0123K + γ0123ω. (5)

Eqs. (3) may be recast in terms of Z , yielding

Z 2 = 4σ Z , Zγμ Z = 4 Jμ Z , Z iγμν Z = 4Sμν Z ,

Zγ0123 Z = −4ωZ , Z iγ0123γμ Z = 4Kμ Z . (6)

Therefore, it is possible to categorize different spinor fields by
different Z ’s, or similarly by distinct bilinear covariants. The

Lounesto spinor field classification provides the following spinor
field classes [2]:

1) σ 
= 0, ω 
= 0; 4) σ = 0 = ω, K 
= 0, S 
= 0;
2) σ 
= 0, ω = 0; 5) σ = 0 = ω, K = 0, S 
= 0;
3) σ = 0, ω 
= 0; 6) σ = 0 = ω, K 
= 0, S = 0.

The first three classes are composed by Dirac spinor fields and
it is implicit that in this case J,K,S 
= 0. In particular, for a Dirac
spinor fields describing an electron, J is a future-oriented timelike
current vector providing the current of probability; S is the distri-
bution of intrinsic angular momentum, and the spacelike vector K
is associated to the direction of the electron spin.

A Majorana spinor field belongs to the class (5), while Weyl
spinor fields are in the class (6). Type-(4) spinor fields are the so-
called flag-dipole spinor fields. Furthermore, if ψ is a typical Dirac
spinor field and ζ is an arbitrary spinor field such that ζ †γ0 
= 0,
ψ is herewith proportional to Zζ , where Z is given by Eq. (5).

Before delving deeper into the investigation of some interest-
ing outputs in this approach, let us first emphasize that there
are no other possible classes for the spinor fields based on dif-
ferent bilinear covariants. In fact, when σ 
= 0 and/or ω 
= 0, it
implies that S 
= 0 and K 
= 0 — note that J 0 > 0 and hence J does
not equal zero. Besides, the constraint ω = 0 = σ implies that
Z = J(1 + i(s + hγ0123)), where (s + hγ0123)

2 = −1, s is a space-
like vector, and h a real number given by h = ±√

1 + s2. In this
vein J(s + hγ0123) = S + Kγ0123. It is useful to provide further fea-
tures of type-(4) spinor fields. For flag-dipole spinor fields, Eq. (5)
gives Z = J + i J s − ihγ0123 J, where s = ‖s‖. It implies forthwith
that (1 + is − ihγ0123)Z = 0, and taking into account that J2 = 0 for
type-(4) spinor fields, Z is shown to be Clifford multivector satis-
fying Z 2 = 0. Such spinor fields were widely investigated in [15] in
a more topological geometric context, as well as some interesting
applications.

The bilinear covariant S in (3) is given by S = J ∧ s. For type-(4)
spinor fields the real coefficient satisfies h 
= 0. Lounesto shows
that either J2 = 0 or (s − ihγ0123)

2 = −1. The helicity h relates
K and J by K = h J. The definition of helicity h in terms of bi-
linear covariants precedes and implies the definition of helicity
in quantum mechanics, as well the equivalent relation for anti-
particles [6]. Such approach further prov ides a straightforward
form for the Hamiltonian describing the one-layer superconductor
graphene, given by Tr(γ 5Kγ 0) [6].

3. Peculiar features

Roughly speaking, the framework of Lounesto’s classification al-
lows a twofold approach: on the one hand it is possible to study
and classify new spinor fields recently discovered in the literature.
Moreover, their geometric content can be explored and it sheds
new light in the investigation on their physical content. We shall
deal with this aspect in the following two subsections. On the an-
other hand, it permits the exploration of genuinely different spinor
fields, without any physical counterpart. We delve into this issue in
the third subsection.

3.1. Elko spinor fields and its properties

Imagine a mass dimension one spinor field with 1/2 spin,
obeying the Klein–Gordon, but not the Dirac field equations. En-
dowed with such predicates, it is indeed possible to call that spinor
field as strange. In what follows, however, we shall argue that the
strangeness of such spinor, the so-called Elko spinor, is far from
pejorative.

9
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Elko spinor fields are eigenspinors of the charge conjuga-
tion operator with eigenvalues ±1. The plus [minus] sign stands
for self-conjugate [anti-self-conjugate] spinors λS (p) [λA(p)]. Elko
spinor fields arise from the equation of helicity (σ · p̂)φ±(0) =
±φ±(0) [3]. The four spinor fields are given by

λ
S/A
{∓,±}(p) =

√
E + m

2m

(
1 ∓ p

E + m

)
λ

S/A
{∓,±}(0), (7)

where λ
S/A
{∓,±}(0) =

( ±iΘ[φ±(0)]∗
φ±(0)

)
. The operator Θ denotes the

Wigner’s spin-1/2 time reversal operator. As Θ[φ±(0)]∗ and φ±(0)

present opposite helicities, Elko cannot be an eigenspinor field of
the helicity operator, and indeed carries both helicities. In order to
guarantee an invariant real norm, as well as positive definite norm
for two Elko spinor fields, and negative definite norm for the other
two, the Elko dual is given by [3]

¬
λ

S/A
{∓,±}(p) = ±i

[
λ

S/A
{±,∓}(p)

]†
γ 0. (8)

It is useful to choose iΘ = σ2, as in [3], in such a way that it

is possible to express λ(p) =
(

σ2φ∗
L (p)

φL(p)

)
. The dual is defined in

such way that the product (λ
S/A
{∓,±})†ζλ

S/A
{±,∓} remains invariant un-

der Lorentz transformations. This requirement implies ζ = ±iγ 0

for the Elko case, since it belongs to the right ⊕ left representation
space [7]. Endowed with a new dual, Elko respects different or-
thonormality relations, which engenders non-standard spin sums.
Following this reasoning it is possible to envisage the Elko non-
locality (see [7] for the details). Denoting by Λ(x, t) the quantum
field constructed out of Elko spinor fields as the expansion coeffi-
cients and Π(x, t) its conjugate momentum, although the follow-
ing property

{
Λ(x, t),Λ

(
x′, t

)} = 0 = {
Π(x, t),Π

(
x′, t

)}
(9)

holds, an unexpected anti-commutation relation is elicited [3]:

{
Λ(x, t),Π

(
x′, t

)} = i

∫
d3 p

(2π)2

1

2m
eip·(x−x′)2m

[
1 + G(p)

]
. (10)

Here 1 stands for the identity matrix and G(p) = γ 5γμnμ is a
factor arising from the spin sums. The vector nμ = (0,n) defines
some preferential direction [3], where n = 1

sin θ
dp̂
dφ

. It was recently
demonstrated [9], by explicitly calculation, that the integration
over the second term of Eq, (10) equals zero. This is a crucial
point, since this term decides the locality structure of the quan-
tum field.

The mass dimension one related to such spinor fields severely
suppresses the possible couplings to other fields of the standard
model. In fact, if we keep in mind power counting arguments, Elko
spinor fields may interact — in a perturbative renormalizable way
— with itself and with a scalar (Higgs) field. Obviously, the former
type of interaction means an unsuppressed quartic self interaction.
At this point it is important to remark that this feature (quartic
self interaction) is present in the dark matter characteristics ob-
servations [10]. Therefore Elko spinor fields seems to perform an
adequate fermionic dark matter candidate.

It is worth notice that the appearance of the G(p) function in
the spin sums, however, shall not be underestimated. Its presence
turns out to be impossible to conciliate Elko quantum field to the
full Lorentz group. Nevertheless, Elko fields are, in fact, a spinor
representation under the SIM(2) avatar [11] of Very Special Rela-
tivity (VSR) [12]. The group SIM(2) is the largest possible subgroup
of VSR which is necessary to define a quantum theory when parity
symmetry is violated. Hence, understanding Elko as a dark matter

prime candidate, it may signalize that in the dark matter sector the
Lorentz group may not be the underlying relevant group. Indeed,
using the Lounesto framework previously outlined, Elko are classi-
fied as type-(5) spinor fields, a generalization of Majorana spinor
fields carrying both helicities [13]. As mentioned in the Introduc-
tion, Lounesto classification goes beyond the standard classification
by irreducible representations of the Lorentz group Spin+(1,3).
From this perspective, it is quite conceivable that the quantum
fields, constructed out from expansion coefficients which do not
belong to Lorentz representation, do not respect Lorentz symme-
tries themselves.

3.2. The usefulness of topologically exotic terms

Among an extended inventory of relevant new physical possi-
bilities arising from the use of the non-standard spinor fields, we
can branch the role of Elko spinor fields as a detector of exotic
spacetime structures [4]. If the base manifold M upon which the
theory is built is simply connected, then the first homotopy group
π1(M) is well known to be trivial. In this case, supposing that M
satisfies the assumptions in the Geroch theorem [14], there exists
merely one possible spin structure. Consequently, the spin-Dirac
operator in the formalism is the standard one. Notwithstanding,
when non-trivial topologies on M are regarded, there is a non-
trivial line bundle on M . The set of line bundles and the set of
inequivalent spin structures are labeled by elements of the co-
homology group H1(M,Z2) — the group of the homomorphisms
of π1(M) into Z2. In this regard, there are several globally dif-
ferent spin structures arising from the different (and inequivalent)
patches of the local coverings. The spin-Dirac operator has in this
case an additional term, essentially a one-form field, that reflects
the non-trivial topology. Spinor fields associated to these inequiv-
alent spin structures are called exotic spinor fields.

Let us make those considerations more precise. Throughout
this section we denote by Spin1,3 and SO1,3 the components of
such groups connected to the identity, for the sake of concise-
ness. Given the fundamental map, in fact a two-fold covering re-
lating the orthonormal coframe bundle and the spinor bundle1

s : PSpin1,3(M) → PSO1,3 (M), a spin structure on M is a princi-
pal fiber bundle πs : PSpin1,3(M) → M satisfying: (i) π(s(p)) =
πs(p) for every point p of PSpin1,3 (M), where π is the pro-
jection of PSO+(1,3)(M) on M , and (ii) s(pφ) = s(p)Adφ . Here
given φ ∈ Spin1,3(M), we have Adφ(κ) = φκφ−1, for all κ ∈ Cl1,3.
A spin structure P := (PSpin1,3(M), s) exists solely when the second
Stiefel–Whitney class satisfies specific criteria. To our presentation,
however, it is remarkable that if H1(M,Z2) is not trivial, then the
spin structure is not uniquely defined. Two spin structures, say P
and P̃ , are said to be equivalent if there exists a map χ : P → P̃
compatible with s and s̃; they are said to be inequivalent oth-
erwise. Given an arbitrary spinor field ψ ∈ sec PSpin1,3 (M) × C4,
where “sec” means “section of”, to each element of the non-trivial
H1(M,Z2) one can associate a Dirac operator ∇ . This construc-
tion provides an one-to-one correspondence between elements of
H1(M,Z2) and inequivalent spin structures (for more details see
[8,4,14]).

A crucial difference between the exotic and the standard spinor
field is the action of the Dirac operator on exotic spinor fields. In a
non-trivial topology scenario, the Dirac operator changes by an ad-
ditional one-form field, which is a manifestation of the non-trivial

1 Let PSO1,3 (M) denote the orthonormal coframe bundle, that always exist on
spin manifolds. Sections of PSO1,3 (M) are orthonormal coframes, and sections of
PSpin1,3 (M) are also orthonormal coframes such that although two coframes dif-
fering by a 2π rotation are distinct, two coframes differing by a 4π rotation are
identified.
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topology. The exotic structure endows the Dirac operator with an
additional term given by a−1(x)da(x), where x ∈ M and d denotes
the exterior derivative operator. The term 1

2iπ a−1(x)da(x) is real,
closed, and defines an integer Cěch cohomology class [16]. Using
the relation between the Cěch and the de Rham cohomologies, it
follows that∮

1

2iπ
a−1(x)da(x) ∈ Z. (11)

When Dirac spinor fields are regarded, the exotic term can be ab-
sorbed into a new shifted potential A �→ A + 1

2iπ a−1(x)da(x): the
exotic term may be understood as an external electromagnetic po-
tential that is summed to the physical electromagnetic potential,
which plays the role of a disguise for the exotic term. In this way
the exotic spacetime structures cannot be probed by Dirac spinor
fields, which perceive the exotic term as an effective electromag-
netic potential.

From the perspective of Elko spinor fields, however, the situ-
ation changes drastically. The reason is that the spinor field dis-
cussed in the previous section is an eigenspinor of the charge
conjugation operator. Therefore it does not carry local U (1) charge
of the standard type. Hence, any type of extra term present in the
Dirac operator cannot be absorbed into the electromagnetic poten-
tial. As it is extensively discussed in [14], the exotic term may be
expressed as a(x)√

2π
= exp (iθ(x)) ∈ U (1). It yields

1

2π
a−1(x)da(x) = exp

(−iθ(x)
)(

iγ μ∇μθ(x)
)

exp
(
iθ(x)

)
= iγ μ∂μθ(x). (12)

Now, making the conceivable exigency that the exotic Dirac op-
erator must be considered the square root of the Klein–Gordon
operator, we have2

[
iγ μ(∇μ + ∂μθ) ± m

][
iγ ν(∇ν + ∂νθ) ∓ m

]
λ

= (
gμν∇μ∇ν + m2)λ = 0. (13)

Therefore, the corresponding Klein–Gordon equation for the exotic
Elko spinor field reads
(� + m2 + gμν∇μ∇νθ + ∂μθ∇μ + ∂μθ∂μθ

)
λ = 0. (14)

Finally, in order to have the Klein–Gordon propagator for the exotic
Elko, as in the standard one, it follows from Eq. (14) that
(�θ(x) + ∂μθ(x)∇μ + ∂μθ(x)∂μθ(x)

)
λ = 0. (15)

The result encoded in Eq. (15) makes Elko spinor field a very use-
ful tool to explore unusual topologies in many contexts. Indeed
Eq. (15) asserts that the Elko spinor structure constrains the exotic
term related to the non-trivial spacetime topology. The possibil-
ity of extracting information from the subjacent topology without
using any additional (sometimes ill defined) shifted potentials is,
in fact, quite attractive. Eq. (15) further encompasses the relation-
ship between gravitational sources induced by exotic topologies.
Recently the combined action of a spinor field coupled to the grav-
itational field was obtained in [17]. Furthermore, Eq. (15) complies
with the differential-topological restrictions on the spacetime for
the evolution of our Universe. The differential-geometric descrip-
tion of matter by differential structures of spacetime might leads
to a unifying model of matter, dark matter and dark energy. In-
deed, by taking into account exotic differential structures, it may
be the source of the observed anomalies without modifying the

2 Hereon we are not going to specify the different Elko types, which simplify the
content of indexes in Eq. (13). Again, for a complete discussion, see [4].

Einstein equations or introducing unusual types of matter, as a vast
resource of possible explanations for recently observed surprising
astrophysical data at the cosmological scale, merely provided by
differential topology [17].

Furthermore, such exoticness induces a dynamical mass which
is embedded in the VSR framework [18]. It is accomplished by
identifying the VSR preferential direction with a dynamical depen-
dence on the kink solution of a λφ4 theory, for a scalar field φ. The
exotic term ∂μθ is chosen to be vμφ, where vμ provides a prefer-
ential direction, an inherent preferred axis — along which Elko is
local. This is solely one among various possible scenarios, using ex-
otic couplings among dark spinor fields and scalar field topological
solutions [18].

3.3. The appearance of new spinors

In the specific context of f (R)-cosmology, it was recently re-
ported a solution for the Dirac equation with torsion, considering
Bianchi type-I cosmological models [19]. The gravitational dynam-
ics of the theory may be described by the metric and its compat-
ible connection, or alternatively by the tetrad field and the spin-
connection as well. The equations of motion are

f ′(R)Rρσ − 1

2
f (R)gρσ = Σρσ ,

1

2

(
∂ f ′(R)

∂xα
+ Sαγ

γ

)(
δα
σ δ

β
ρ − δα

ρ δ
β
σ

) + Sρσ
β = f ′(R)Tρσ

β,

where Rρσ is the Ricci tensor and Tρσ
β stands for the torsion ten-

sor. The quantities σρσ and Sρσ
α are the stress–energy and spin

tensors of the matter fields. The energy–momentum tensor is given
by Σρσ . The idea is to couple f (R)-gravity to spinor fields and to
a spinless perfect fluid. These spinor fields are shown not to be
Dirac spinor fields [20]. In addition the second equation of mo-
tion assents the existence of torsion even in the absence of spinor
fields. Implementing all the necessary constraints, it is possible to
show that the spinor solutions reads

ψ1 = 1√
2τ

⎛
⎜⎝

√
A − B cos ζ1eiθ1

0
0√

A + B sin ζ2eiθ2

⎞
⎟⎠ , (16)

ψ2 = 1√
2τ

⎛
⎜⎜⎝

0√
A + B cos ζ1eiϑ1

√
A − B sin ζ2eiϑ2

0

⎞
⎟⎟⎠ , (17)

where A and B are constants, the angular functions have time
dependence, and τ is defined as the product of the scale fac-
tors appearing in the Bianchi type-I model (not relevant to our
purposes). The point to be stressed is that, after a tedious cal-
culation, the bilinear covariants associated to ψ1 and ψ2 classify
the spinor fields (16) as type-(4): legitimate flag-dipole spinor
fields that are obtained when the Dirac equation with torsion is
regarded in the f (R)-cosmological scenario [21]. It is the first
time, up to our knowledge, that a physical solution corresponds
to a type-(4) spinor.3 Eq. (16) evinces a physical manifestation of

3 This fact is more remarkable than it may sound. Several spinor solutions are of
the form presented in (16). Notwithstanding, after all, the class under Lounesto’s
classification appears to be other than type-(4). For instance, on p. 65 of [22] it is
possible to find similar structured spinor fields. Twenty pages of calculations led the
authors to the very exciting conclusion that they belong to the type-(4) set. After
some ponderation, however, we were brought back to the Earth: professor Leite
Lopes’ book was not written using the Weyl representation!
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type-(4), or flag-dipole, spinor fields according to Lounesto’s clas-
sification.

We finalize this section by pointing out a provocative interpre-
tation of the type-(4) spinor fields as manifested via Eq. (16). There
is no quantum field constructed out yet with type-(4) spinor fields
and it is certainly an interesting branch of research. In view of
the analysis of Section 3.1, such a quantum field shall not respect
Lorentz symmetry. From this perspective, it would be the darkest
possible candidate to dark matter. Being more conservative, with-
out making any reference to its possible quantum field, type-(4)
spinor fields, as it appears, are also quite provocative. Usually, gen-
eralizations of General Relativity are studied to give account of
cosmological problems, without appealing to the existence of dark
matter, for instance. Nevertheless, as we have mentioned, type-(4)
spinor fields appeared only in a (double) generalization of General
Relativity. Moreover, the presence of torsion in an f (R) gravity
is crucial to the functional form of these spinor fields as explicit
in (16). Hence, type-(4) spinor fields, an essentially dark spinor
(we restrain to say dark matter), comes up in a far from usual
gravitational theory, which is commonly investigated to preclude
the necessity of “dark” objects.

4. Final remarks

A plethora of open questions still haunts (in particular) the-
oretical physicists. The non-standard spinor fields — both under
Lounesto as well as Wigner classification — are an evidently use-
ful alternative to pave the road to solve some questions, mainly
in field theory and cosmology/gravitation. It brings some nice
and unexpected properties, like the existence of fermions with
mass dimension one and a subtle Lorentz symmetry breaking,
for instance. Facing such paradigm shift seems to upheaval what
we know already about field theory and the elementary parti-
cles description, which were restricted to Dirac, Majorana and
Weyl spinor fields heretofore, in Minkowski spacetime. As we have
shown, flag-dipole type-(4) spinor fields are physical solutions of
the Dirac equation with torsion in the context of f (R)-cosmology.
Furthermore, Elko spinor fields representing type-(5), abreast of
Majorana spinor fields, are evinced to be prime candidates to de-
scribe dark matter. We moreover have introduced the exotic dark
spinor fields, which dynamics constraints both the spacetime met-
ric structure and the non-trivial topology of the universe. In par-
ticular, it brings exotic couplings among dark spinor fields and
scalar field topological solutions. The topics here introduced are
merely the tip of the iceberg, and there are more useful proper-
ties on spinor fields (and their application in physics) still to be
explored.
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2.1 Espinores Exóticos

Um dos tópicos abordados no trabalho introdutório diz respeito à relevância do

estudo de espinores escuros exóticos. Sobre espinores escuros, e suas propriedades

definidoras por assim dizer, falaremos detidamente nos capítulos ulteriores. Assim,

uma vez que a formulação para a compreensão das estruturas exóticas faz-se a

mesma para todos os espinores vamos nos ater a apresentá-la, chamando a atenção,

posteriormente, às peculiariedades dos espinores escuros exóticos.

No trabalho que reproduzimos nesta seção há uma abordagem bastante formal

e sólida da adequação de espinores exóticos ao caso de espinores escuros, com um

posterior vislumbre de aplicação em cosmologia. Gostaríamos aqui, entretanto,

de aproveitar o ensejo para realizar uma introdução menos precisa, porém mais

intuitiva, da noção de espinor exótico. Também, devido ao fato dos termos de

exoticidade espinorial serem pouco vistos na literatura corrente, estenderemo-nos

um pouco mais na sua apresentação.

Comecemos por trabalhar o conceito de espinor do ponto de vista puramente

geométrico. Devido ao caráter pseudo-euclideano do espaço-tempo sabemos haver

vetores tipo-luz que, sob atuação da métrica, levam ao conceito de cone-de-luz1.

Considerando uma intersecção de um dado hiperplano (𝑇1 =1,𝑋,𝑌,𝑍) (com 𝑇1 = 1

por simplicidade) com o cone de luz, temos como resultado uma casca esférica de

raio unitário, a esfera de Riemann (ver figura 2.1). Em seguida, consideremos um

mapa injetivo associando a cada ponto na esfera um dado ponto em um plano

complexo que intersepta a esfera em 𝑍 = 0. Essa é a chamada projeção estereográ-

fica. Nessa projeção, as coordenadas (𝑋,𝑌,𝑍) na esfera podem ser descritas por

1A abordagem que descreveremos é válida para qualquer tipo de vetor, mas para os tipo-luz
ela é mais simples.
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Figura 2.1: Origem da esfera de Riemann.

um número complexo 𝛽 = 𝑋 ′ + 𝑖𝑌 ′. A figura 2.2 mostra como podemos construir

o mapeamento a partir dos triângulos 𝑃 ′𝐶𝑁 e 𝑃𝐵𝑁 de modo que

𝛽 = 𝑋 − 𝑖𝑌

1 − 𝑍
.

Entretanto para que se possa descrever o polo norte (𝛽 = ∞) é conveniente se

associar aos pontos da esfera não apenas um único complexo, mas um par (𝜂,𝜉)

tal que 𝛽 = 𝜉/𝜂. Desse modo, o polo norte é obtido pela coordenada

(︃
𝜉

𝜂

)︃
=
(︃

1
0

)︃
.

Figura 2.2: Construção do mapeamento.

O ponto de vista formal que queremos apreciar nesta seção pode agora ser

anunciado: espinores são, de fato, as coordenadas projetivas da projeção estereo-
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gráfica de uma seção do cone de luz (com a ressalva da nota de rodapé da página

13) no plano complexo. É uma questão de simples álgebra agora se ver que

𝑋 = 𝜉𝜂 + 𝜂𝜉

𝜉𝜉 + 𝜂𝜂
, 𝑌 = 𝜉𝜂 − 𝜂𝜉

𝑖(𝜉𝜉 + 𝜂𝜂)
, 𝑍 = 𝜉𝜉 − 𝜂𝜂

𝜉𝜉 + 𝜂𝜂
,

onde a barra indica conjugação. Nota-se agora o caráter especial de “raíz quadrada

da geometria” atribuído aos espinores. A concepção padrão de entendimento de

espinores como elementos que carregam representações irredutíveis do grupo de

Lorentz pode ser obtida da análise acima como se segue: considere um ponto dado

por (1,𝑋,𝑌,𝑍)(𝜉𝜉− 𝜂𝜂)/
√

2. Uma transformação de 𝑆𝐿(2,C) nas coordenadas do

ponto (equivalentemente, em (𝜉, 𝜂)) deixa invariante o determinante

det
⎡⎣(︃𝜉
𝜂

)︃
(𝜉 𝜂)

⎤⎦,
que, traduzido em termos das coordenadas do espaço-tempo, nada mais é do que

a métrica de Minkowski.

Voltando ao tópico central de espinores exóticos, notemos que a existência

de “buracos” no espaço-tempo (levando a uma topologia não-trivial) inviabiliza a

concepção usual de espinores (ver Figura 2.3). A topologia não-trivial é refletida

Figura 2.3: Visualização da topologia não-trivial na estrutura espinorial.

(dentre outros efeitos) por um primeiro grupo de homotopia não-trivial do espaço-
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tempo 𝜋1(𝑀). Por outro lado o grupo de homomorfismos de 𝜋1(𝑀) em Z2 rotula

os diferentes (e não equivalentes) cobrimentos locais necessários para se contornar

a região com o “buraco”. Esse grupo de homomorfismos é o primeiro grupo de

cohomologia do espaço-tempo, e sua não trivialidade é herdada do fato de 𝜋1(𝑀)

ser não-trivial. Assim a topologia não-trivial dá origem a cobrimentos inequiva-

lentes, que por sua vez levam a projeções estereográficas também inequivalentes e,

portanto, espinores diferentes surgem. Dá-se assim origem aos espinores exóticos.

Por fim, enfatizamos que a única diferença na dinâmica de ambos os espinores se

dá na conexão relacionada ao espinor exótico, que deve levar em conta a topologia

não-trivial.
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Av. Dr. Ariberto Pereira da Cunha, 333 12516-410, Guaratinguetá-SP, Brazil.
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Abstract: Exotic dark spinor fields are introduced and investigated in the context of

inequivalent spin structures on arbitrary curved spacetimes, which induces an additional

term on the associated Dirac operator, related to a Čech cohomology class. For the most

kinds of spinor fields, any exotic term in the Dirac operator can be absorbed and encoded

as a shift of the electromagnetic vector potential representing an element of the cohomology

group H1(M,Z2). The possibility of concealing such an exotic term does not exist in case

of dark (ELKO) spinor fields, as they cannot carry electromagnetic charge, so that the full

topological analysis must be evaluated. Since exotic dark spinor fields also satisfy Klein-

Gordon propagators, the dynamical constraints related to the exotic term in the Dirac

equation can be explicitly calculated. It forthwith implies that the non-trivial topology

associated to the spacetime can drastically engender — from the dynamics of dark spinor

fields — constraints in the spacetime metric structure. Meanwhile, such constraints may

be alleviated, at the cost of constraining the exotic spacetime topology. Besides being

prime candidates to the dark matter problem, dark spinor fields are shown to be potential

candidates to probe non-trivial topologies in spacetime, as well as probe the spacetime

metric structure.
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1 Introduction

ELKO — Eigenspinoren des Ladungskonjugationsoperators — spinor fields1 describe a non-

standard Wigner class of fermions, for which charge conjugation and parity are commuting

operators, rather than anticommuting ones [1–4]. They support two types of dispersion

relations, accomplish dual-helicity eigenspinors of the spin-1/2 charge conjugation operator,

and carry mass dimension one, besides having non-local properties. At low-energy limits,

ELKO behaves as a representation of the Lorentz group through the setup of a preferred

frame related to its wave equation [3–6]. Ahluwalia-Khalilova and Grumiller embedded

ELKO [1] into the quantum field theory, from which large applications in cosmology and

gravity can be outlined. The corresponding ELKO Lagrangian neither predicts interactions

with Standard Model (SM) fields nor shows coupling with gauge fields. Otherwise, exotic

interactions with the Higgs boson can somehow be depicted in order to endow such spinor

fields to be prime candidates to describe dark matter [7]. In particular, observational

aspects on such a possibility has been proposed at LHC: dark (ELKO) spinor fields can

be observed, at center of mass energy around 7 TeV and total luminosity from 1 fb−1 to

10 fb−1, indicating that the number of events is large enough to motivate a detailed analysis

about ELKO particle at high energy experiments [8].

In addition, the embedding of dark spinor fields into the SM [10, 11] was introduced.

ELKO spinor fields dominant interaction via the gravitational field makes them naturally

dark, and recently [12–14] dark spinor fields were investigated in a cosmological setting,

where interesting solutions and also models where the spinor is coupled conformally to

gravity are provided. Some additional applications of ELKO spinor fields to cosmology

1ELKO is the German acronym for eigenspinors of the charge conjugation operator.
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can be seen, e.g., in [15–27]. In particular, possible applications of ELKO spinor fields to

more general f(R) gravitational theories were accomplished in [28], and supersymmetric

models concerning ELKO were introduced in [29].

The main aim of our manuscript is to investigate dark spinor fields in spacetimes

with non-trivial topologies, in order to clarify how the dynamics of such dark spinor fields

can induce constraints on the metric spacetime structure, as well as in the non-trivial

topology itself. Physical applications of non-trivial topologies on spacetime, including

thermodynamics, superconductivity, and condensed matter have been extensively explored

in the last years. For instance, the quantum theory of fields propagating on a manifold M

not simply connected was investigated in [30]. The existence of a nontrivial line bundle

on a manifold M , whose sections may be regarded as a generalization of the concept of

a scalar field, is inherent in multiply connected manifolds, which in addition can imply

in the existence of inequivalent spin structures. It is well known that the set of real line

bundles on M and the set of inequivalent spin structures are both labeled by elements

of the cohomology group H1(M,Z2) — the group of homomorphisms of the fundamental

group π1(M) into Z2. Namely, there are many globally different spin structures which

arise from inequivalent patchings of the local double coverings, see, e.g., [31]. The use of

generalized spin structures has been discussed in [32–36], in particular the ones considered

by [37] for the case where the original fiber bundle has no spin structure at all.

Whereas the manifold M may have no spinor bundle — when it does not satisfy

Geroch theorem hypotheses [38, 39] — it may have also many of them, which are split into

equivalence classes — called spin structure. The formal aspects about the inequivalent spin

structures in spacetime in terms of the different possible spin connections [30, 36, 40, 41]

have been explored and reveal prominent physical applications. In an arbitrary spacetime

that admits spin structure we delve into the problem of how to select a particular spin

structure and its corresponding Dirac equation. In [30] it is discussed in what content the

quantum field theory associated with a spinor field must involve some kind of “average” of

all the spin connections.2

On simply connected spacetimes, the associated fundamental group satisfies π1(M) =

0, therefore there is only one spin structure. Although compact simply connected 4-

dimensional manifolds admitting a spin structure can be classified in terms of the Euler

and Pontryagin numbers [42], multiply connected spacetimes are devoid in general of such

a classification. As argued in [30, 40, 41], since Nature seems to use all mutually consistent

degrees of freedom in a physical system, the Feynman path integral formalism, for instance,

should also include multiply connected manifolds — which is among other prominent mo-

tivations to investigate quantum field theory on such spacetimes, which in addition are

used in quantum gravity at both cosmological and Planck length scales [42, 43]. Multiply

connected manifolds are also elicited in the theory of superconductivity. In fact, in [36]

the inequivalent generalized spin structures are investigated in order to explain Cooper

pairing phenomena in superconductors. In addition, such manifolds are used in the instan-

ton compactification [44–46] of 4-dimensional Euclidean spacetimes and also in t’ Hooft’s

2As it must be summed over all topological sectors in instanton physics [30].
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treatment of confinement. In [47, 48], the finite-temperature stress-energy-momentum for

a conformally coupled massive scalar field in multiply connected spaces was calculated and

cogently investigated from a thermodynamic viewpoint. Also, in [49] and [50–54] covariant

Casimir calculations were performed for the massless scalar field in several flat multiply

connected spaces, expressing the stress expectation values as the coincidence limit of a

bilinear operator acting on the Feynman propagator for the manifold, motivating the in-

troduction of a robust mathematical approach [55, 56]. Finally, in [36] exotic spinor fields

provides pure geometrical explanation of the charge dependence on the quantized flux and

also the Joseph current in superconductivity.

To summarize, one of the main outstanding exotic spinor fields features is that they

must be taken into account and employed in a variety of problems, wherein standard spinor

fields cannot. For instance, when the vacuum polarization tensor of spinor electrodynamics

is calculated [57, 58], it was found that the two types of spinor fields — standard and exotic

— generate different vacuum polarization effects, which are physically inequivalent. When

the effect of the vacuum polarization upon photon propagation is considered, it is shown

that standard spinor fields give rise to non causal photon propagation, whereas exotic

spinor fields do not. Even when the vacuum energy for a free spinor field is calculated,

it is found that the exotic configuration gives rise to a vacuum state of lower energy than

the standard one. These prominent features make exotic spinor fields as a broad audience

candidate for concrete physical problems.

We shall address to the question about such inequivalent spin structures and their

consequences to the coupled system of Dirac equations satisfied by the four types of dark

spinor fields. The physical assumption that — under the exotic spin structure — the

exotic dark spinor fields satisfy the Klein-Gordon propagator brings up some constraint on

the metric spacetime structure, as well as in the exotic topology, both arbitrary a priori.

The characterization of dark (ELKO) spinor fields, and its inherent analysis is obtained

through the natural introduction — topologically impelled — of an exotic term in the

Dirac operator that, contrary to the case of the Dirac spinor field, cannot be absorbed in

any external electromagnetic vector field. For Dirac fields, such term can be concealed and

encoded as a shift of the electromagnetic potential.3 Therefore, besides addressing feasible

aspect to the dark matter problem, dark spinor fields are also useful to probe non-trivial

topological properties in spacetime.

The manuscript is organized as follows. After briefly presenting some algebraic prelimi-

naries in section 2 regarding inequivalent spin structures, in section 3, the ELKO properties

are introduced, together with the bilinear covariants that completely characterize a spinor

field through the Fierz identities. In section 4 the exotic structure is introduced and the

corresponding implications on the behaviour of ELKO are depicted. Dark spinor dynamics

not only constrains the possibilities for the exotic topology but also induces constraints in

the spacetime geometry through the exotic topology coming from the dynamics of dark

spinor fields. We prove that it brings up some subtle consequences on the spacetime geom-

etry. A brief summary of important useful results throughout the manuscript is described

in the appendices A and B, and we draw our conclusions in section 5.

3Representing an element of the cohomology group H1(M,Z2).
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2 Preliminaries: exotic spin structures

In this section we review some results concerning general inequivalent spin structures in

spinor bundles. For more details see the appendix.

One denotes by (M,g,∇, τg , ↑) the spacetime structure [59, 60]: M denotes a 4-

dimensional manifold — which we shall assume as a compact, paracompact, pseudo-

Riemannian manifold which is both space and time orientable and which admits spinor

fields — g is the metric, ∇ denotes the connection associated to g, τg defines a spacetime

orientation and ↑ refers a time orientation. As usual T ∗M [TM ] denotes the cotangent

[tangent] bundle over M , F (M) denotes the principal bundle of frames, and PSOe
1,3

(M) de-

notes the orthonormal coframe bundle. Such bundles do exist on spin manifolds. Sections

of PSOe
1,3

(M) are orthonormal coframes, and sections of PSpine
1,3

(M) are also orthonormal

coframes such that although two coframes differing by a 2π rotation are distinct, two

coframes differing by a 4π rotation are identified.

A spin structure on M consists of a principal fiber bundle πs : PSpine
1,3

(M) → M , with

group Spine
1,3, and the fundamental map — indeed a two-fold covering

s : PSpine
1,3

(M) → PSOe
1,3

(M),

satisfying the following conditions:

1. π(s(p)) = πs(p), ∀p ∈ PSpine
1,3

(M); π is the projection map of PSOe
1,3

(M) on M .

2. s(pφ) = s(p)Adφ, ∀p ∈ PSpine
1,3

(M) and Ad : Spine1,3 → Aut(Cℓ1,3), Adφ : Ξ 7→
φΞφ−1 ∈ Cℓ1,3 [59].

Namely, the following diagram

PSpine
1,3

(M)
s - PSOe

1,3
(M)

M
�

π
π
s

-

commutes. The conditions for existence of a spin structure in a general manifold are

discussed in [61, 62].

It is well known that a spin structure (PSpine
1,3

(M), s) exists if and only if the second

Stiefel-Whitney class associated to M satisfies certain properties. If H1(M,Z2) is not

trivial, the spin structure is not uniquely defined,4 and all the other inequivalent spin

structures can be provided from (PSpine
1,3

(M), s).

4Up to trivial bundle isomorphisms.
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Two spin structures P :=(PSpine
1,3

(M), s) and P̊ := ((P̊Spine
1,3

(M), s̊) are said to be

equivalent if there exists a Spine
1,3-equivariant map ζ : P → P̊ compatible with s and s̊:

P
ζ - P̊

PSOe
1,3

(M)
�

s̊s
-

Now we briefly review some few definitions necessary to introduce exotic spinor fields.

Spinor fields are sections of vector bundles associated with the principal bundle of spinor

coframes. A complex spinor bundle for M is a vector bundle Sc(M) = PSpine
1,3

(M)×µc Mc,

where Mc is a complex left module for C⊗Cℓ1,3 ≃ M(4,C), and where µc is a representation

of Spine
1,3 in End(Mc) given by left multiplication by elements of Spine

1,3. When Mc =

C4 and µc the D(1/2,0) ⊕ D(0,1/2) representation of Spine
1,3 ≃ SL(2,C) in End(C4), we

immediately recognize the usual definition of the covariant spinor bundle of M as given,

e.g., in [61] and [62].

Classical spinor fields5 carrying a D(1/2,0) ⊕D(0,1/2), or D(1/2,0), or D(0,1/2) represen-

tation of SL(2,C) are sections of the vector bundle PSpine
1,3

(M) ×ρ C4, where ρ stands for

the D(1/2,0) ⊕ D(0,1/2) (or D(1/2,0), or D(0,1/2)) representation of SL(2,C) in C4. Other

important spinor fields, like Weyl spinor fields are obtained by imposing some constraints

on the sections of PSpine
1,3

(M) ×ρ C4, see, e.g., [70, 71] for details.

Two spin structures (PSpine
1,3

(M), s) and (P̊Spine
1,3

(M), s̊) are respectively described by

the maps hjk and h̊jk from Ui∩Uj to Spine
1,3, both satisfying eq. (A.1), and also the property

ς ◦hjk = ajk = ς ◦ h̊jk. The following diagram illustrates such relations, summarizing what

should be emphasized heretofore:

Ui ∩ Uj ⊂ M
hij - Spine

1,3

SOe
1,3

�

ς
a
ij

-

PSpine
1,3

(M)

⊂

-

˚Spin
e
1,3

h̊ij

?

ς

-

- P̊Spine
1,3

(M)

?
ζ

-

PSOe
1,3

(M)
?

∩

id - PSOe
1,3

(M)

s

?

s̊
-

5Quantum spinor fields are operator valued distributions, as well known. It is not necessary to introduce

quantum fields in order to know the algebraic classification of ELKO spinor fields.
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Here another identical copy of Spine
1,3 is denoted by ˚Spin

e
1,3, in order to become clearer the

analysis about the inequivalent spin structures.

Now one defines a map cjk by the relation hij(x) = h̊ij(x)cij such that cij : Ui ∩Uj →
ker ς = Z2 →֒ Spine

1,3, satisfying cij ◦ cjk = cik. Such a map cij defines an 1-dimensional

real bundle denoted [72]. Given the irreducible representation ρ : Cℓ1,3 → M(4,C) in

PSpine
1,3

(M) ×ρ C4, as the map cij(x) is an element of Z2, it follows that ρ(cij(x)) = ±1,

since ρ is faithful. When ρ is restricted to Spine
1,3, it is called Dirac representation.

We assume as in [30, 36, 37, 40, 41] that there is a set of functions ξi : Ui → C such

that ‖ξi(x)‖ = 1, namely ξi(x) ∈ U(1), and

ξi(x)(ξj(x))
−1 = ρ(cij(x)) = ±1. (2.1)

In the case where the second integral cohomology H2(M,Z2) has no 2-torsion, such func-

tions always do exist [30, 36, 40, 41, 72], and ξ2i (x) = ξ2j (x), x ∈ Ui ∩Uj. Consequently the

local functions ξi define a unique unimodular function ξ : M → C such that for all x ∈ Ui

it follows that ξ(x) = ξ2i (x).

Given now an arbitrary spinor field ψ ∈ sec PSpine
1,3

(M) ×ρ C4, to each element of

H1(M,Z2), associate a covariant derivative ∇. This construction provides indeed a one-

to-one correspondence between elements of H1(M,Z2) and inequivalent spin structures.

A local component ψi : Ui → C4 of a spinor field in PSpine
1,3

(M) ×ρ C4 is the unique

function such that ρ(ℓi, ψi(x)) = ψ(x), given local sections ℓi : Ui → (PSpine
1,3

(M), s), we

have the transition law

ψi(x) = ρ(hij(x))ψj(x), where x ∈ Ui ∩ Uj.

A system of local sections ℓ̊i : Ui → P̊Spine
1,3

(M) can be constructed from the standard

ones ℓi in such a way that s ◦ ℓi = s̊ ◦ ℓ̊i, as presented in the following diagram:

Ui

P̊Spine
1,3

(M)
s̊-

�

ℓ̊ i

PSOe
1,3

(M)

mi

?
�s PSpine

1,3
(M)

ℓ
i

-

It enables the (exotic) local spinor field components to present the respective transition

property

ψ̊j(x) = ρ(̊hij) = ρ(hij(x))ρ(cij(x))ψ̊i(x), where x ∈ Ui ∩ Uj . (2.2)

From eq. (2.1) it follows that ρ(ξi) = ρ(cij(x))ρ(ξj) and if we compare it with eq. (2.2),

it is clear that ρ(ξi)ψ̊i transforms as the local component ψi of PSpine
1,3

(M) ×ρ C4, which

subsequently induces a bundle map

f : P̊Spine
1,3

(M) ×ρ C4 → PSpine
1,3

(M) ×ρ C4

ψ̊i 7→ f(ψ̊i) := ρ(ξi)ψ̊i = ψi (2.3)
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such that

∇̊Xf(ψ̊) = f(∇X ψ̊) +
1

2
(Xy(ξ−1dξ))f(ψ̊) (2.4)

holds for all sections ψ ∈ PSpine
1,3

(M) ×ρ C4 and all vector fields X. Details on how to

derive eq. (2.4) are comprehensively given in, e.g., [30, 36, 37, 40, 41, 72, 73].

3 Dark (ELKO) spinor fields

This section is devoted to a brief review of the bilinear covariants through the programme

introduced in [70, 71, 74]. The spinor fields classification is provided by a brief review

of [10, 11, 74–76].

Given a spinor field ψ ∈ secPSpine
1,3

(M)×ρ C4, the bilinear covariants are the following

sections of Λ(TM) = ⊕4
r=0 Λr(TM) →֒ Cℓ(M,g) [59, 77, 78]:

σ = ψ†γ0ψ, J = Jµe
µ = ψ†γ0γµψe

µ, S = Sµνe
µν =

1

2
ψ†γ0iγµνψe

µ ∧ eν ,

K = ψ†γ0iγ0123γµψe
µ, ω = −ψ†γ0γ0123ψ, (3.1)

with σ, ω ∈ sec Λ0(TM), J,K ∈ sec Λ1(TM) and S ∈ sec Λ2(TM). In the formulæ ap-

pearing in eq. (3.1) the set {γµ} refers to the Dirac matrices in chiral representation (see

eq. (3.3)). Also, {1, eµ, eµeν , eµeνeρ, e0e1e2e3}, where µ, ν, ρ = 0, 1, 2, 3, and µ < ν < ρ is

a basis for Cℓ(M,g), and {14, γµ, γµγν , γµγνγρ, γ0γ1γ2γ3} is a basis for M(4,C). In addi-

tion, these bases satisfy the respective Clifford algebra relations [70] γµγν + γνγµ = 2gµν14

and eµeν + eνeµ = 2gµν , where 14 is the identity matrix. When there is no opportunity

for confusion we shall omit the 14 identity matrix in our formulæ. For the orthonormal

covector fields eµ and eν , µ 6= ν, their Clifford product eµeν is equal to the exterior product

of those vectors, i.e., eµeν = eµ ∧eν = eµν . Also, for µ 6= ν 6= ρ, eµνρ = eµeνeρ, etc. More

details on our notations, if needed, can be found in [59, 60].

In Minkowski spacetime, the case of the electron is described by Dirac spinor fields

(classes 1, 2 and 3 below), J is a future-oriented timelike current vector which gives the

current of probability, and J2 = JµJ
µ > 0. Furthermore, for the case of Dirac spinor fields,

the bivector S is associated with the distribution of intrinsic angular momentum, and the

spacelike vector K is associated with the direction of the electron spin. For a detailed

discussion concerning such entities, their relationships and physical interpretation, and

generalizations, see, e.g., [70, 71, 77–79].

The bilinear covariants satisfy the Fierz identities6 [70, 71, 77–79]

J2 = ω2 + σ2, K2 = −J2, JxK = 0, J ∧ K = −(ω + σγ0123)S.

A spinor field such that not both ω and σ are null is said to be regular. When

ω = 0 = σ, a spinor field is said to be singular, and in this case the Fierz identities are in

6 Given the spacetime metric g, it is possible to extend g to the exterior bundle Λ(TM). Given ψ = u1∧
· · ·∧uk and φ = v1∧· · ·∧vl, for ui, vj ∈ sec TM , one defines g(ψ,φ) = det(g(ui, vj)) if k = l and g(ψ,φ) = 0

if k 6= l. Given ψ, φ, ξ ∈ Λ(TM), the left contraction is defined implicitly by g(ψyφ, ξ) = g(φ, ψ̃ ∧ ξ).
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general replaced by the more general conditions [79]

Z2 =4σZ, ZγµZ=4JµZ, ZiγµνZ=4SµνZ, Ziγ0123γµZ=4KµZ, Zγ0123Z=−4ωZ,

where Z = σ + J + iS + iKγ0123 + ωγ0123.

Lounesto spinor field classification is given by the following spinor field classes [70, 71],

where in the first three classes it is implicit that J, K, S 6= 0:

1) σ 6= 0, ω 6= 0.

2) σ 6= 0, ω = 0.

3) σ = 0, ω 6= 0.

4) σ = 0 = ω, K 6= 0, S 6= 0.

5) σ = 0 = ω, K = 0, S 6= 0.

6) σ = 0 = ω, K 6= 0, S = 0.

The current density J is always non-zero. Type 1, 2 and 3 spinor fields are denominated

Dirac spinor fields for spin-1/2 particles and type 4, 5, and 6 are respectively called flag-

dipole, flagpole and Weyl spinor fields. Majorana spinor fields are a particular case of a

type 5 spinor field. It is worthwhile to point out a peculiar feature of types 4, 5 and 6

spinor fields: although J is always non-zero, J2 = −K2 = 0. It shall be seen below that

the bilinear covariants related to an ELKO spinor field, satisfy σ = 0 = ω, K = 0, S 6= 0

and J2 = 0.

Since Lounesto proved that there are no other classes based on distinctions among

bilinear covariants, ELKO spinor fields must belong to one of the disjoint six classes.

In [74] it is shown that ELKO spinor fields are indeed in class 5 above.

Some properties of dark (ELKO) spinor fields,7 as introduced in [1, 2, 7] can be now

briefly reviewed. An ELKO Ψ corresponding to a plane wave with momentum p = (p0,p)

can be written, without loss of generality, as Ψ(p) = λ(p)e±ip·x where

λ(p) =

(
iΘφ∗(p)

φ(p)

)
, (3.2)

and given the rotation generators J, the Wigner’s spin-1/2 time reversal operator Θ satisfies

ΘJΘ−1 = −J∗. Hereon, as in [1], the Weyl representation of γµ is used

γ0 =γ0 =

(
O I
I O

)
, −γk=γk =

(
O −σk
σk O

)
, γ5 =−iγ0γ1γ2γ3 =−iγ0123 =

(
I O
O −I

)
,

(3.3)

7Hereon throughout the text the term dark spinor field and ELKO are alternatively used having the

same meaning, since ELKO is a candidate to describe dark matter, as comprehensively proposed, derived,

and investigated in, e.g., [1–4, 7, 8, 10–14, 19–24, 74, 75, 80–82]. We choose the acronym ELKO to denote

field theoretical and more formal properties of such a spinor field, whereas the naming dark spinor fields

shall be used hereon alternatively to ELKO, in order to present and investigate the potentially cosmological

applications as well as its usefulness as an attempt to the dark matter problem.
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where I =
(

1 0

0 1

)
, O =

(
0 0

0 0

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. The σi are the Pauli

matrices.

ELKO spinor fields are eigenspinors of the charge conjugation operator C

Cλ(p) = ±λ(p), for C =

(
O iΘ

−iΘ O

)
K.

The operator K C-conjugates 2-component spinor fields appearing on the right. The plus

sign stands for self-conjugate spinor fields, λS(p), while the minus yields anti self-conjugate

spinor fields, λA(p). Explicitly, the complete form of ELKO can be found by solving the

equation of helicity (σ · p̂)φ± = ±φ± in the rest frame and subsequently make a boost, to

recover the result for any p [1]. Here p̂ := p/‖p‖. The boosted four spinor fields are

λ
S/A
{∓,±}(p)=

√
E +m

2m

(
1 ∓ p

E +m

)
λ
S/A
{∓,±}(0), where λ

S/A
{∓,±}(0)=

(
±iΘ[φ±(0)]∗

φ±(0)

)
.

(3.4)

One should notice that, since Θ[φ±(0)]∗ and φ±(0) have opposite helicities, ELKO cannot

be an eigenspinor field of the helicity operator. The ELKO dual is given by [1]

¬S/A
λ {∓,±}(p) = ±i

[
λ
S/A
{±,∓}(p)

]†
γ0. (3.5)

Now let one denotes the eigenspinors of the Dirac operator for particles and antipar-

ticles respectively by u±(p) and v±(p). The subindex ± regards the eigenvalues of the

helicity operator (σ · p̂). The parity operator acts as

Pu±(p) = +u±(p), Pv±(p) = − v±(p),

which implies that P 2 = I in this case. The action of C on these spinors is given by

C(u±1/2(p)) = ∓v∓(p), C(v±1/2(p)) = ±u∓1/2(p). (3.6)

which implies that {C,P} = 0.

On the another hand the parity operator P acts on ELKO by

PλS
∓,±(p) = ± i λA

±,∓(p) , PλA
∓,±(p) = ∓ i λS

±,∓(p), (3.7)

and it follows that [C,P ] = 0.

Denoting [1] for Dirac spinor fields

u+(p) = d1, u−(p) = d2, v+(p) = d3 v−(p) = d4,

and for the ELKO

λS
{−,+}(p) = e1, λS

{+,−}(p) = e2, λA
{−,+}(p) = e3, λA

{+,−}(p) = e4,

it is possible to write ELKO as [80]

ei =

4∑

j=1

Ωijdj , i = 1, 2, 3, 4, where Ωij =

{
+ (1/2m) dj eiI, for j = 1, 2 ,

− (1/2m) dj eiI, for j = 3, 4 .
(3.8)
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In matrix form, Ω reads

Ω =
1

2




I −iI −I −iI
iI I iI −I
I iI −I iI

−iI I −iI −I


 =

1

2

(
B −B∗

B∗ −B

)
⊗ I, (3.9)

where B := (I + σ2), Such results show that ELKO can be expressed somehow as a linear

combination of the Dirac particle and antiparticle spinor fields. It reinforces the Lounesto

theorems, showing that classes of spinor fields under Lounesto spinor fields classification are

not preserved by sum (for details see [70, 71, 83]). In order to obtain the ELKO evolution,

a prescription where the momentum is written in terms of the covariant derivative as pµ 7→
i∇µ is regarded. As one shall see in the following section, such a prescription is convenient

when one considers the coordinate representation λS/A(x) = λS/A(p) exp
(
εS/A ipµx

µ
)
.

However, that is not the only way to prescribe the ELKO evolution. The momentum can

also be replaced with the derivatives times the γ5 matrix as performed, for instance, in the

investigation of ELKO auto interactions when one considers the ELKO field interacting

with its own spin density via contorsional auto interactions [84].

4 ELKO dynamics in the exotic spin structure

In spacetimes with non-trivial topology it is well known that there is an additional degree

of freedom for fermionic particles [85]. Albeit in the classical level it might be naively

suggested that exotic spinor fields describe different particles, the breakthrough idea pro-

posed is that, in the quantum framework, a new partition function which is the sum over all

possibilities must be taken into account. See [30, 85] and references therein for more details.

In this section it is thoroughly shown that dark spinor fields are a natural probe of the

non-trivial topology and also provide, from their inherent dynamics, constraints either in

the spacetime metric structure or in its topology, or in both.

Essentially, exotic spinor fields are parallel transported like standard spinor fields, but

an outstanding property distinguishes both kinds of spinor fields: the covariant derivative

acting on these exotic spinor fields changes by an additional one-form field that is manifes-

tation of the non-trivial topology, as it was shown in section 2. The exotic structure endows

the Dirac operator with an additional term ξ−1(x)dξ(x), x ∈ M , where d : sec Λ0(TM) →
sec Λ1(TM) denotes the exterior derivative operator. The term 1

2πiξ
−1(x)dξ(x) is real and

closed, but not exact, and defines an integer cohomology class in the Čech sense [30, 36,

37, 40, 41]. Using the relation between Čech and de Rham cohomologies, the integral of
1

2πiξ
−1(x)dξ(x) around any closed curve is an integer. In the context of the exotic Dirac

equation, the electromagnetic vector potential A term is affected by the transformation

A 7→ A + 1
2πiξ

−1dξ, which exactly corresponds to the addition of another electromagnetic

potential, when Dirac spinor fields are taken into account. In such case the exotic term

may be then absorbed in an external electromagnetic potential, representing an element of

H1(M,Z2) [36, 40, 41, 73, 86]. Namely, in this case the interaction is encoded as a shift in

the vector potential.
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The importance to analyze dark spinor fields in this context is that this possibility

is not present if ELKO spinor fields are employed, as they cannot carry electromagnetic

charge and the full topological treatment is appropriate in this case [73].

In addition to the ELKO spinor fields λ(x) — that was indeed defined as sections in

the bundle PSpine
1,3

(M) ×ρ C4, in section 2 — one can get a second type of ELKO λ̊(x),

which can be described by sections in the inequivalent spin structure-induced spinor bundle

P̊Spine
1,3

(M) ×ρ C4, (4.1)

with a variation of the covariant derivative, given by [36]

∇̊X λ̊(x) = ∇X λ̊(x) − 1

2

[
Xy
(
ξ−1(x)dξ(x)

)]
λ̊(x), (4.2)

where X denotes a vector field in M .

In general, the exotic term in eq. (4.2) is assumed — in order to be an integer of a

Čech cohomology class — to be indeed 1
2πi

(
ξ−1(x)dξ(x)

)
[30, 36, 37, 40, 41]. We henceforth

redefine ξ(x) 7→ ξ(x)/
√

2π in such a way that the exotic Dirac operator can be written as

(see eq. (2.4))

iγµ∇̊µ = iγµ∇µ + ξ−1(x)dξ(x). (4.3)

The exotic Dirac equation is given by

(iγµ∇µ + (ξ−1(x) dξ(x)) −mI)ψ(x) = 0, where ψ denotes a Dirac spinor field.

The exotic Dirac spinor fields are annihilated by
(
iγµ∇µ + (ξ−1(x) dξ(x)) ±mI

)

{
For particles:

(
iγµ∇µ + (ξ−1(x) dξ(x)) −mI

)
u(x) = 0 ,

For antiparticles:
(
iγµ∇µ + (ξ−1(x) dξ(x)) +mI

)
v(x) = 0 .

(4.4)

Hereon we denote ξ−1(x) dξ(x) by a(x) in order to shorten all formulæ notations.

Now it is straightforward to show that ELKO can not be eigenspinors of the exotic

Dirac operator iγµ∇µ + a(x). Indeed, denoting

e :=




e1
e2
e3
e4


 , d :=




d1

d2

d3

d4


 ,

and Γ := I ⊗ (iγµ∇µ + a(x)), eq. (3.8) becomes e = Ωd. Using [Γ,Ω] = 0 yields Γe = ΩΓd.

Eqs. (4.4) imply Γd = mγ5 ⊗ I d and then Γe = Ω
(
mγ5 ⊗ I

)
Ω−1e. An explicit evaluation

of µ := Ω
(
mγ5 ⊗ I

)
Ω−1 reveals

µ = m

(
σ2 O
O −σ2

)
⊗ I .
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Thus, making the direct product explicit again, finally one reaches the result




iγµ∇µ+a(x) O O O
O iγµ∇µ+a(x) O O
O O iγµ∇µ+a(x) O
O O O iγµ∇µ+a(x)







λ̊S
{−,+}
λ̊S

{+,−}
λ̊A

{−,+}
λ̊A

{+,−}




−imI




−̊λS
{+,−}

λ̊S
{−,+}
λ̊A

{+,−}
−̊λA

{−,+}




=0 (4.5)

which establishes that (iγµ∇µ + a(x) ±mI) do not annihilate the ELKO (dark) spinor

fields. The antisymmetric symbol defined as ε
{−,+}
{+,−} := −1, the above equations reduces to

(
(iγµ∇µ+a(x))δβα+mIεβα

)
λ̊S
β(x) = 0,

(
(iγµ∇µ+a(x))δβα−mIεβα

)
λ̊A
β (x) = 0, (4.6)

which are the inherent counterparts of eqs. (4.4). The term of δβα is iγµ∇µ + a(x), and

the existence of εβα in the mass term forbids ELKO spinor fields to be eigenspinors of the

iγµ∇µ + a(x) operator. Namely, the mass terms carry opposite signs and consequently

ELKO cannot be annihilated by (iγµ∇µ + a(x) ±mI), because the term εβα in eq. (4.6),

which implies that ǫS = −1 and ǫA = +1.

Furthermore, as comprehensively discussed in, e.g., [36, 87], we can express ξ(x) =

exp(iθ(x)) ∈ U(1), x ∈ M . The exotic spin structure term in this way reads

ξ−1(x)dξ(x) = exp(−iθ(x))(iγµ∇µθ(x)) exp(iθ(x)) = iγµ∂µθ(x). (4.7)

From eq. (4.7), eqs. (4.6) are written as
(
(iγµ∇µ + iγµ∂µθ)δ

β
α ±mIεβα

)
λ̊

S/A
β (x) = 0 . (4.8)

The exotic Dirac operator iγµ∇µ + iγµ∂µθ −mI, annihilates each of the four exotic Dirac

spinor fields u±(x) and v±(x), but as the wave operator in (4.8) couples the {±,∓} degrees

of freedom such exotic Dirac operator does not annihilate ELKO.

Much has been extensively discussed about the subtle differences between Majorana

and ELKO spinor fields, see e. g., [74]. Both in the Lounesto spinor field classification are

type-(5) spinor fields, satisfying (3).

We now shall discuss whether the exotic Dirac operator can be considered as a square

root of the Klein–Gordon operator – in the sense that (iγµ∇µ + iγµ∂µθ −mI)(iγµ∇µ +

iγµ∂µθ +mI) = (gµν∇µ∇ν +m2)I. This feature must remain true for the ELKO and its

exotic partner:

((iγµ∇µ+iγµ∂µθ)δ
β
α±mIεβα)((iγµ∇µ+iγµ∂µθ)δ

β
α ∓mIεβα)=(gµν∇µ∇ν+m2)I δβα, (4.9)

since the introduction of an exotic spin structure does not modify the Klein–Gordon prop-

agator fulfillment by dark spinor fields.

The corresponding Klein-Gordon equation is given by

(� +m2 + gµν∇µ∇νθ + ∂µθ∇µ + ∂µθ∂µθ)̊λ(x)
S/A
{±,∓} = 0, (4.10)

where � denotes the square of the spin-Dirac operator, that can be related to the Laplace-

Beltrami operator by the Lichnerowicz formula [88–90]. In order that the Klein-Gordon
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propagator for the exotic ELKO remains the same as the standard Klein-Gordon propagator

for the ELKO spinor field, from eq. (4.10) it follows that

(�θ + ∂µθ∇µ + ∂µθ∂µθ)̊λ
S/A
{±,∓}(x) = 0. (4.11)

Explicitly, for consistency with the standard formalism it can be written that

λ̊(x) =

(
σ2φ

∗(x)
φ(x)

)
, where φ(x) =

(
α(x)

β(x)

)
, α(x), β(x) ∈ C, (4.12)

implying that

(
�θ + i∂µθ∇µ − i∂µθ∂µθ 0

0 �θ + i∂µθ∇µ − i∂µθ∂µθ

)(
β − iβ∗

α+ iα∗

)
=

(
0

0

)
. (4.13)

Still, the carrier of the representation space can be written as

λ̊
S/A
{±,∓}(x) =

(
(β1 ∓ β2) exp(∓iπ4 )

(α1 ± α2) exp(±iπ4 )

)
, β = β1 + iβ2, α = α1 + iα2. (4.14)

Note that the condition in eq. (4.13) is independent of the function θ(x) in the case where

Im(α) = −Re(α) and Im(β) = Re(β), by eq. (4.14). As this condition is too stringent,

since we want to analyze the function θ(x) for an arbitrary ELKO and not for such so

particular case, we demand the most general condition given by eq. (4.11) when arbitrary

exotic dark spinor fields are taken into account, since the general case must be formulated

without restricting the theory on any particular case as in eq. (4.14).

Our analysis hereon sheds new light on the character of the function θ — that is a

priori arbitrary — that defines the exotic topology. Furthermore, it delves into the way

how the exotic topology can be constrained to the spacetime metric structure, via the

dynamics of exotic ELKO spinor fields.

Since eq. (4.11) holds for every exotic dark spinor field λ̊
S/A
{±,∓}(x), in particular let us

analyze the solutions of eq. (4.11) applied to, for instance, λ̊S{−,+}(x). We omit hereon the

argument “(x)” for simplicity. Using the expression8

∇µλ̊
S/A
{∓,±} = ∂µλ̊

S/A
{∓,±} − 1

4
Γµρσγ

ργσλ̊
S/A
{∓,±}, (4.15)

8Assume a metric compatible covariant derivative operator, we emphasize here that the connection is

not required to be symmetric, and it is decomposed into the Christoffel symbol and the contortion tensor.

– 13 –

30



J
H
E
P
0
4
(
2
0
1
1
)
1
1
0

for such case, after some calculation9 — denoting x0 = t — it follows that

(�θ) λ̊S/A{∓,±} + (∂0θ)
[
∂0λ̊

S/A
{∓,±} − 1

4

(
(Γ000 − Γ011 − Γ022 − Γ033)̊λ

S/A
{∓,±} + iΓ001λ̊

A/S
{±,∓}

+Γ002λ̊
S/A
{±,∓} ∓ Γ003λ̊

S/A
{∓,±} ± iΓ012λ̊

A/S
{∓,±} + iΓ013λ̊

A/S
{±,∓} ∓ Γ023λ̊

S/A
{±,∓}

)]

−g00(∂0θ)
2λ̊

S/A
{∓,±} = 0 (4.16)

The equation above couples again all the four exotic spinor fields λ̊
S/A
{±,∓}, in the case of

spacetimes which the associated connection are non zero.

As proposed in, e. g., [12–14, 21, 22], it is possible for cosmological applications, to

assume that the dark spinor fields depend only on the time variable t via a matter field κ(t)

compatible with homogeneity and isotropy [22] and acts as the only dynamical cosmological

variable, in such a way that λ̊
S/A
{±,∓}(x) can be explicitly written as

λ̊
A/S
{−,+}(x) = κ(t)χ

A/S
{−,+}, λ̊

A/S
{+,−}(x) = κ(t) ζ

A/S
{+,−}, (4.17)

where ζS/A and χS/A are linearly independent constant spinor fields given by [22]

χS
{−,+} =




0

i

1

0


 , χA

{−,+} =




0

−i
1

0


 , ζS{+,−} =




1

0

0

−i


 , ζA{+,−} = −




1

0

0

i


 . (4.18)

The matter field κ(t) was introduced and satisfies a first order ordinary differential equation

in time derivative, involving the time component of the total energy-momentum tensor Σtt,

the Planck mass, and the Hubble constant. In the limits proposed in [22] we can write

κ̇

κ
= −1

3

√
1

3M2
Pl

Σtt + O(κ4). (4.19)

where M−2
Pl = 8πG is the coupling constant. The last term in the right hand side of

the equation above is in ref. [22] kept apart, and such an approximation gives robust

cosmological results in full compliance with the references therein. The most general case

shall be considered still in this section.

Therefore we can write κ(t) = exp(at), where a is the constant given in the equation

above. Using now eqs. (4.17) and (4.18), and considering each one of the four exotic dark

9Here we consider the torsionless connection. For the torsion case it must be written ∇µλ = ∂µλ −
1
4
Γµρσ[γµ, γσ]λ+ 1

4
Kµρσγ

ργσλ, where Kµρσ are the contorsion tensor coefficients. Such case is used in the

analysis of dark spinor fields in Cosmology in [19, 20, 22], and it is important to remark that in the presence

of torsion an additional dynamical term appears [91]. Such more general formalism for while is unnecessary

here, since our main aim now is to verify that exotic dark spinor fields dynamics indeed can constraint the

metric spacetime structure. By now, we just call some attention to the fact that the torsion fields may act

in order to cancel the connection effects in the constraint equation.
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spinor λ
S/A
{−,+} components in eq. (4.16), we have the system




(−iΓ001 + Γ002 − iΓ013 − Γ023)∂0θ = 0

i�θ+∂0θ
(
i− 1

4 (iΓ000−iΓ011−iΓ022−iΓ033+Γ012−iΓ003)
)
−i(∂0θ)

2 = 0

�θ+∂0θ
(
1− 1

4 (Γ000−Γ011−Γ022−Γ033+iΓ012−Γ003)
)
−(∂0θ)

2 = 0

(Γ001 − iΓ002 + Γ013 + iΓ023)∂0θ = 0.

(4.20)

The first and fourth equations above together imply that

(∂0θ)Γ012 = 0, (4.21)

what means that if θ is time dependent, it necessarily means that Γ012 = 0. Otherwise, in

the case where θ does not depends on time, it implies that ∂0θ = 0, and then we obtain

the Laplace equation for θ

∇2θ = 0. (4.22)

It is worthwhile to note, by passing, that eq. (4.16) in spacetimes where the connection

symbols above are zero — in the Minkowski space with Cartesian coordinates, for instance

— is reduced to
(
�θ + (∂0θ)a− (∂0θ)

2
)
λ̊
S/A
{∓,±} = 0, (4.23)

and in this way the dark spinor field dynamics imposes constraints only on the topological

sector determined by θ, and there is no coupling among the four exotic spinor fields.

On the another hand, the second and the third equations in the system above together

imply that

�θ + (∂0θ)

(
1 − 1

2
(Γ000 − Γ011 − Γ022 − Γ033 − Γ003)

)
− (∂0θ)

2 = 0, (4.24)

what means that if θ = θ(t), so necessarily 4 − (Γ000 − Γ011 − Γ022 − Γ033 − Γ003) = ∂0θ.

Otherwise, again eq. (4.22) holds.

Now, using eqs. (4.17) and (4.18) and considering each one of the four exotic dark

spinor λ
S/A
{+,−} components in eq. (4.16), we have the same results as for the λ

S/A
{−,+}. It

shows that the exotic topology induces constraints in the spacetime geometry, coming

from the dynamics of dark spinor fields. Indeed it is the case in such an approach when

the function θ(x) that generates the exotic structure — realized by eq. (4.7) — is most

general, time dependent.

As previously observed, eq. (4.15) was solved for λ̊
S/A
{∓,±}(x), in order to illustrate the

exotic dark spinor fields dynamics. It evinces the constraints either on the spacetime

metric structure — given an arbitrary 1-form field in spacetime, manifestation of the exotic

topology encrypted in the term θ(x) in eq. (4.7) — or on the exotic parameter θ(x).

To the most general case, it is not necessary indeed to consider any particular case

about κ(t), and the system (4.20) is written as




(−iΓ001 + Γ002 − iΓ013 − Γ023)∂0θ = 0

�θ−∂0θ
(

1
4 (Γ000−Γ011−Γ022−Γ033+iΓ012−Γ003)

)
−(∂0θ)

2 = −(∂0θ)
κ̇(t)
κ(t)

�θ+∂0θ
(
−1

4 (Γ000−Γ011−Γ022−Γ033+iΓ012−Γ003)
)
−(∂0θ)

2 = −(∂0θ)
κ̇(t)
κ(t)

(Γ001 − iΓ002 + Γ013 + iΓ023)∂0θ = 0.

(4.25)
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The analysis that evinces the constraints among topological and geometrical terms is simi-

lar, except for the term −(∂0θ)
κ̇(t)
κ(t) on the right hand side of the second and third equations

above. For instance, in the case previously analyzed, all terms in eq. (4.19) are given by

κ̇

κ
= −

√
1/M2

pl

4
√

3

(
8 + 3κ4/M4

pl

12 − κ4/M4
pl

)√
4 − κ4/M4

pl, (4.26)

and cogently the exotic dark spinor fields dynamics constraints the spacetime topology, or

the spacetime metric structure, or both, whatever the form of κ(t), and also even for the

most general dark spinor fields λ̊
S/A
{∓,±}, predicted by eq. (4.11).

5 Concluding remarks and outlook

Given an a priori arbitrary manifold M with non-trivial topology, and using the fact that the

inequivalent spin structures give rise to the exotic term endowing the Dirac operator — in

our analysis, the exotic term in the Dirac operator (evinced when an arbitrary inequivalent

spin structure is taken into account) — we have shown that the exotic dark spinor fields

dynamics indeed can constraint the metric spacetime structure. Such constraints can be

mitigated for some particular choices of the exotic term θ in (4.7) — but in the most general

case both the spacetime metric structure and the non-trivial topology are constrained by

the exotic dark spinor field dynamics.

Much has been discussed the about equations constraining the dynamics and the spinor

structures, and some questions were addressed about the validity of Klein-Gordon propaga-

tor globally, but not locally, for dark spinor fields [12–14]. The formalism here introduced is

promising to derive and provide open questions on the dark spinor fields models structures

and their subsequent application in cosmology — in particular the dark matter problem.

Eq. (4.17) is successful to decouple topological terms evinced by the exotic θ function

and the geometrical terms given by the connection symbols, in some particular cases an-

alyzed from eq. (4.20) on. As in such situations the connection symbols are constrained,

it also induces constraints among Christoffel symbols and contorsion tensor components,

in the case where torsion is taken into account in the covariant derivative. In addition,

eq. (4.16) is the most general coupling between topological and geometrical terms when no

particular exotic dark spinor field is considered.

Besides analyzing the exotic dark spinor fields elicited from a non-trivial topology

endowed manifold, such additional term in the Dirac operator may be useful to solve some

open questions addressed in the current literature [1, 2, 5–7, 9, 12–14, 21–23, 25, 26].

In certain sense, that idea that is in the background of the theoretical tools through

which one set the quoted constraints can be identified with the problem of constraints in

gauge theories known as the Velo-Zwanziger problem [92]. In the context of such theories,

to avoid algebraic inconsistencies originated from a kind of exotic interactions, one sets

the constraints independently of the equations of motion. Furthermore, in [93] it is used a

similar prescription to introduce a more suitable Dirac operator, that can be also related to

the one introduced in [94]. In some cases, the Lagrangian device by itself does not provide
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satisfactory wave equations [93], a problem that is given an adequate interpretation, and

we expect to have overcome.
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A Clifford bundles

One thus introduces the Clifford bundle of differential forms Cℓ(M,g), which is a vector

bundle associated with PSpine
1,3

(M) [90, 95]. Sections of the Clifford bundles are sums

of non-homogeneous differential forms, called Clifford fields. Remember that Cℓ(M,g) =

PSOe
1,3

(M) ×Ad′ Cℓ1,3, where Cℓ1,3 ≃ M(2,H) is the spacetime algebra and H denotes the

quaternions. Details of the bundle structure are as follows:

1. Let πc : Cℓ(M,g) → M be the canonical projection of Cℓ(M,g) and let ∪i∈IUi be an

open simple covering of M , together with a set of transition functions aij : Ui ∩Uj →
SOe

1,3 such that aij ◦ ajk = aik in Ui ∩ Uj ∩ Uk and ajj = id. There are trivialization

mappings ψi : π−1
c (Ui) → Ui×Cℓ1,3 of the form ψi(p) = (πc(p), ψi,x(p)) = (x, ψi,x(p)).

If x ∈ Ui ∩ Uj and p ∈ π−1
c (x), then

ψi,x(p) = hij(x)ψj,x(p),

for hij(x) ∈ Aut(Cℓ1,3), where hij : Ui ∩ Uj → Aut(Cℓ1,3) are the transition map-

pings of Cℓ(M,g). Since every automorphism of Cℓ1,3 is inner, then hij(x)ψj,x(p) =

aij(x)ψi,x(p)aij(x)
−1 for some aij(x) ∈ Cℓ⋆1,3, the group of invertible elements of Cℓ1,3.

In particular, a spin structure (PSpine
1,3

(M), s) on M is precisely comprised by the

system of transition functions hij : Ui ∩ Uj → Spine
1,3 such that

ς ◦ hij = aij, hij ◦ hjk = hik, hii = id, (A.1)

where ς is defined in eq. (A.2).

2. Since Cℓ⋆1,3 acts naturally on Cℓ1,3 as an algebra automorphism through its adjoint

representation, the group SOe
1,3 has a natural extension in the Clifford algebra Cℓ1,3.

A set of lifts of the transition functions in Cℓ(M,g) is a set of elements {aij} ⊂ Cℓ⋆1,3
such that, if10

Ad : φ 7→ Adφ

Adφ(Ξ) = φΞφ−1, ∀Ξ ∈ Cℓ1,3,

then Adaij = hij in all intersections.

10It is well known that Spine
1,3 = {φ ∈ Cℓ01,3 : φφ̃ = 1} ≃ SL(2,C) is the universal covering group of the

restricted Lorentz group SOe
1,3. Notice that Cℓ01,3 ≃ Cℓ3,0 ≃ M(2,C), the even subalgebra of Cℓ1,3 is the

Pauli algebra.
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3. The application Ad|Spine
1,3

defines a group homomorphism

ς : Spine
1,3 → SOe

1,3, which is onto and ker ς = Z2. (A.2)

Then Ad±1 = identity, and Ad : Spine
1,3 → Aut(Cℓ1,3) descends to a representation

of SOe
1,3. Let us call Ad′ this representation, i.e., Ad′ : SOe

1,3 → Aut(Cℓ1,3). Then

Ad′
ς(φ)Ξ = AdφΞ = φΞφ−1.

4. It is clear that the structure group of the Clifford bundle Cℓ(M,g) is reducible from

Aut(Cℓ1,3) to SOe
1,3. The transition maps of the principal bundle PSOe

1,3
(M) can thus

be — through Ad′ — taken as transition maps for the Clifford bundle. It follows

that [63–65]

Cℓ(M,g) = PSOe
1,3

(M) ×Ad′ Cℓ1,3,
i.e., the Clifford bundle is a vector bundle associated with the principal bundle

PSOe
1,3

(M) of orthonormal coframes.

B Principal bundles and associated vector bundles

In this section it is reviewed the main definitions and concepts of the theory of principal

bundles and their associated vector bundles, which is needed to introduce the Clifford and

spin-Clifford bundles used in this paper. Propositions are in general presented without

proofs, which can be found, e.g., in [90, 96, 97].

A fiber bundle on a manifold M with Lie group G is denoted by (E,M, π,G, F ). E

is a topological space called the total space of the bundle, π : E → M is a continuous

surjective map, called the canonical projection, and F is the typical fiber. The following

conditions must be satisfied:

a) π−1(x), the fiber over x, is homeomorphic to F .

b) Let {Ui, i ∈ I}, where I is an index set, be a covering of M , such that:

b1) Locally a fiber bundle E is trivial, namely it is diffeomorphic to a product bundle

π−1(Ui) ≃ Ui × F for all i ∈ I.

b2) The diffeomorphisms Φi : π−1(Ui) → Ui × F have the form

Φi(p) = (π(p), φi,x(p)), φi|π−1(x) ≡ φi,x : π−1(x) → F is onto (B.1)

The collection {(Ui,Φi)}, i ∈ I, are said to be a family of local trivializations

for E.

b3) The group G acts on the typical fiber. Considering x ∈ Ui∩Uj , then, φj,x◦φ−1
i,x :

F → F must coincide with the action of an element of G, for all x ∈ Ui ∩ Uj

and i, j ∈ I.

b4) One calls transition functions of the bundle the continuous induced mappings

aij : Ui ∩ Uj → G, where aij(x) = φi,x ◦ φ−1
j,x. (B.2)
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For consistence of the theory the transition functions must satisfy the cocycle condi-

tion aij(x)ajk(x) = aik(x).

The 5-tuple (P,M, π,G, F ≡ G) ≡ (P,M, π,G) is called a principal fiber bundle (PFB)

if all the conditions about fiber bundles are fulfilled and, moreover, if there is a right action

of G on elements p ∈ P , such that:

a) the mapping (defining the right action) P ×G ∋ (p, g) 7→ pg ∈ P is continuous.

b) given g, g′ ∈ G and ∀p ∈ P , (pg)g′ = p(gg′).

c) ∀x ∈ M,π−1(x) is invariant under the action of G: each element of p ∈ π−1(x) is

mapped into pg ∈ π−1(x), i.e., it is mapped into an element of the same fiber.

d) G acts free and transitively on each fiber π−1(x), which means that all elements within

π−1(x) are obtained by the action of all the elements of G on any given element of

the fiber π−1(x). This condition is, of course, necessary for the identification of the

typical fiber with G.

A bundle (E,M, π, G = GL(n,K), V ), where K = R or C, and V is an n-dimensional

vector space over K is called a vector bundle.

A vector bundle (E,M, π,G, F ) denoted E = P ×ρF is said to be associated to a PFB

bundle (P,M, π,G) by the linear representation ρ : G → GL(V ) — which is called the

carrier space of the representation — if its transition functions are the images under ρ of

the corresponding transition functions of the PFB (P,M, π,G). This precisely means the

following: consider the following local trivializations of P and E respectively

Φi :π−1(Ui) → Ui ×G, Ξi : π−1
1 (Ui) → Ui × F, (B.3)

Ξi(q) = (π1(q), χi(q)) = (x, χi(q)), χi|π−1
1 (x) ≡ χi,x : π−1

1 (x) → F, (B.4)

where π1 : P ×ρ F → M is the projection of the bundle associated to (P,M, π,G). Then,

for all x ∈ Ui ∩ Uj , i, j ∈ I, it follows that

χj,x ◦ χ−1
i,x = ρ(φj,x ◦ φ−1

i,x ). (B.5)

In addition, the fibers π−1(x) are vector spaces isomorphic to the representation space V .

Let (E,M, π,G, F ) be a fiber bundle and U ⊂ M an open set. A local section of the

fiber bundle (E,M, π,G, F ) on U is a mapping

s : U → E such that π ◦ s = IdU , (B.6)

If U = M s is said to be a global section.

There is a relation between sections and local trivializations for principal bundles.

Indeed, each local section s (on Ui ⊂ M) for a principal bundle (P,M, π,G) determines a

local trivialization Φi : π−1(U) → U × G, of P by setting Φ−1
i (x, g) = s(x)g = pg = Rgp.

Conversely, Φi determines s since

s(x) = Φ−1
i (x, e). (B.7)
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A principal bundle is trivial if and only if it has a global cross section. A vector

bundle is trivial if and only if its associated principal bundle is trivial. Any fiber bundle

(E,M, π,G, F ) such that M is a paracompact manifold and the fiber F is a vector space

admits a cross section. Then, any vector bundle associated to a trivial principal bundle has

non-zero global sections. Note however that a vector bundle may admit a non-zero global

section even if it is not trivial. Indeed, as shown in the main text, any Clifford bundle

possesses a global identity section, and some spin-Clifford bundles admits also identity

sections once a trivialization is given.
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2.2 Álgebra Espinorial

Para os dois trabalhos que se seguirão nesse capítulo, gostaríamos de realizar uma

contextualização conjunta. Isso se deve ao fato de ambos tratarem, de modo geral,

da classificação algébrica de espinores baseada em seus bilineares covariantes.

Aqui, entenderemos espinores como seções do fibrado principal 𝑃𝑆𝐿(2,C) ×𝜌 C4,

onde 𝜌 diz respeito ao espaço de representação (1/2,0), (0,1/2) ou (1/2,0)⊕(0,1/2).

Fato importante, cuja demonstração remonta à década de oitenta, é que um

determinado espinor pode ser escrito em termos de seus bilineares. Note-se que

essa concepção é oposta à que usualmente se tem no trabalho usual com espinores.

De fato, bastante comum é a utilização de espinores para o computo dos bilineares

a ele associados. O resultado do qual nos valemos, entretanto, utiliza os bilineares

para compor o espinor que lhes deu origem. Essa é a tônica do chamado Teorema

da Inversão.

De modo taquigráfico, mas bastante ilustrativo, o teorema da inversão permite

que escrevamos um determinado espinor 𝜓 da seguinte forma:

𝜓 ≃ {“𝑆𝑜𝑚𝑎′′ 𝑑𝑜𝑠 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟𝑒𝑠 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑒𝑠}𝑒𝑖𝜃𝜂,

onde 𝜂 é um espinor arbitrário, 𝜃 uma fase (cuja presença é necessária para que se

obtenha os graus de liberdade corretos) e os bilineares estão contraídos com a base

apropriada da álgebra de Clifford para permitir a soma de elementos pertencentes

a diferentes seções da álgebra exterior.

As diferentes classes de espinores surgem quando consideramos diferentes

combinações dos bilineares. Entretanto, nem toda combinação de bilineares leva
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a um novo espinor. A razão é que os bilineares precisam satisfazer um conjuntos

de identidades algébricas, as identidades de Fierz-Pauli-Kofink. Levando-se em

contas tais identidades, mostra-se a existência de seis, e somentes seis, classes

distintas de espinores. As três primeiras classes são reservadas aos chamados

espinores regulares, isto é aqueles que possuem 𝜎 = 𝜓𝜓 e/ou 𝜔 = 𝜓𝛾5𝜓 não nulos

e os outros bilineares podendo ou não ser nulos (exceção feita a J = 𝑗𝜇𝛾
𝜇 que é

sempre não-nulo na formulação usual), desde que as identidades de Fierz-Pauli-

Kofink sempre sejam satisfeitas. As demais categorias de espinores perfazem os

chamados espinores singulares, para os quais 𝜎 = 0 = 𝜔 com os outros bilineares

respeitando os mesmos preceitos do caso anterior.

Em primeiro lugar, é relevante se salientar que a classificação acima descrita é

bastante relevante do ponto de vista físico, uma vez que se vale dos bilineares, ou

seja dos observáveis fermiônicos, para ser estabelecida. Há dois pontos, contudo,

que merecem ser enfatizados aqui, haja visto o fato que a observação de cada um

deles deu origem a um dos trabalhos que se seguirão. O primeiro ponto é um

resultado da classificação: o caso particular do espinor tipo-4 nunca havia tido

uma contrapartida física. Dito de outro modo, nunca havia se encontrado um

sistema físico envolvendo espinores que se encaixavam na descrição de um tipo-4.

O próprio autor da classificação chama a atenção para esse ponto. O primeiro

dos dois trabalhos a seguir trata exatamente de um sistema físico cujos espinores

se enquadram na descrição de um tipo-4.

O sistema que possibilita um tal resultado é, entretanto, bastante não usual.

Trata-se de férmions em espaços curvos cujo background é dado pela gravitação

𝑓(𝑅) com campos de torção. Apesar da complexidade, o sistema admite solu-

ção; dada exatamente em termos dos referidos espinores tipo-4. Obviamente é
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um caso restrito, por tratar-se de um modo do campo espinorial. Ainda assim,

dada o caráter do espinor, é digno de nota. Antes de nos voltarmos ao segundo

ponto relevante da classificação, gostaríamos apenas de enfatizar o fato de que

espinores em espaços curvos também são passíveis de classificação através dos

bilineares covariantes frente transformações de Lorentz bastando que, para tanto,

procedamos à construção do fibrado tangente à variedade de base em questão.

O ponto que nos remete ao segundo trabalho a seguir reside no fato de que

toda a classificação de espinores baseada nos bilineares se utiliza do vínculo

J ̸= 0. Essa imposição não é algébrica, mas física. De fato, levando-se em conta

espinores que obedecem à equação de Dirac, as componentes 𝑗𝜇 do bilinear J são

as componentes da corrente conservada. Logo, J = 0 implicaria a não existência de

corrente fermiônica conservada o que, já no caso mais simples, levaria à inexistência

da partícula fermiônica a que se quer descrever com o espinor. O raciocínio que

embasa o segundo trabalho é, então, o seguinte: se J = 0 o espinor em questão não

pode satisfazer a equação de Dirac (pelos motivos anteriormente expostos). Assim,

levando-se em conta que toda a classificação é relativista, o espinor com J = 0 pode

obedecer apenas à equação de Klein-Gordon. Logo, se as identidades de Firez-

Pauli-Kofink permitirem, seria possivel se classificar espinores que satisfazem

exclusivamente a equação de Klein-Gordon. Isso de fato foi verificado, e via

formalismo operatorial encontramos três diferentes classes de espinores nesse caso,

todos eles singulares.

A partir daí extrapolamos a análise, do ponto de vista semântico, chamando

tal categorização de classificação de (alguns) espinores de dimensão canônica

de massa um. Nesse caso, os espinores que encontramos seriam os coeficientes

de expansão do campo quântico correspondente cuja dinâmica seria herdada da
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análise anterior.
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We consider the Riemann-Cartan geometry as a basis for the Einstein-Sciama-Kibble
theory coupled to spinor fields: we focus on f(R) and conformal gravities, regarding
the flag-dipole spinor fields, type-(4) spinor fields under the Lounesto classification.
We study such theories in specific cases given, for instance, by cosmological scenar-
ios: we find that in such background the Dirac equation admits solutions that are not
Dirac spinor fields, but in fact the aforementioned flag-dipoles ones. These solutions
are important from a theoretical perspective, as they evince that spinor fields are
not necessarily determined by their dynamics, but also a discussion on their struc-
tural (algebraic) properties must be carried off. Furthermore, the phenomenological
point of view is shown to be also relevant, since for isotropic Universes they cir-
cumvent the question whether spinor fields do undergo the Cosmological Principle.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826499]

I. INTRODUCTION

In a geometry that incorporates a differential structure, the introduction of covariant derivatives
is as inevitable as the definition of the metric. Moreover, the connection in the most general case is
not symmetric as well as the metric is not a constant, giving rise respectively to torsion and curvature.

On the other hand, torsion might play an important role from a genuine physical point of view,
as the spacetime curvature already does and is undeniably measured in numerous experiments. In
fact, according to the Wigner classification of particles in terms of their masses and spin, physical
fields are known to be characterized by both the energy and the spin density. In the most general
case, all geometric quantities can be coupled to corresponding physical fields, through specific field
equations. Therefore, in the same spirit in which Einstein gravity couples curvature to energy, in
the most general case this coupling is still valid. Besides, it is also accompanied by a correspondent
coupling between torsion and spin. Then Einstein gravity is not the most general case but the
most general spinless situation, in the sense that it is only the most general dynamical solution in
absence of any spinning matter of Einstein-Sciama-Kibble theory.1 Here, by Einstein-Sciama-Kibble
(ESK) theory we assume it in a broad sense as any torsional completion of gravity, no matter the
order-derivatives of the field equations that define it.
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The structure of ESK gravity is then constructed on the scheme for which we have curvature-
energy as well as torsion-spin field equations. What is known to be the ESK theory in the strict
sense is realized by insisting that those field equations have the least-order derivative possible,
but more general ESK-like theories are possible by relaxing this condition. Of course all pos-
sible ESK-like theories are infinite, not all of them are physical, and even among the phys-
ical ones, not all of them can be sensibly considered. So a choice is to be made, and ours
shall be on those that at the moment are the most in fashion: f(R)-gravity and the conformally
gravity.

Motivated by those considerations, the ESK theory may be considered, both in its f(R) and
in its conformal realization, with general spinning matter fields. For the case of spinorial matter,
throughout the paper we shall employ spin- 1

2 spinor fields, solely. As for the case of gravity we
allowed ourselves to consider higher-order derivative extensions, for the case of matter fields we
shall do the same by allowing ourselves to take into account higher-order derivative spinorial matter
field equations, but we shall not take into account higher-spin fields. This restriction can be dictated
by the fact that such higher-spin fields may be unphysical, displaying inconsistency, non-causality,
and other problems,2 or simply because it is not possible to consider all possibilities and a choice
must be made. Nevertheless, as just noticed, we shall allow ourselves to go beyond the first-order
derivative field equations.

In this paper, the spinor fields shall not be called Dirac spinors, as many more possibilities
can be met.3, 20 In Ref. 3, Lounesto proceeds with the classification of the possible spin- 1

2 spinors,
categorizing them within six classes: Dirac fields, in various forms, belong to the first three of them;
flag-dipoles and flagpoles are the fourth and fifth type of spinor fields, disseminated in the literature
as a mathematical apparatus to support Penrose flags,7 among other interesting applications; Weyl
spinors is within the sixth class. As the first three classes, as well as the fifth and sixth ones, are
prominently relevant in quantum field theory and its phenomenology, the fourth class should be
better understood, and hereon we shall therefore focus mainly on the flag-dipoles.

No matter what spinor field we consider, in ESK theories torsion shall always be coupled to
the spin density of the matter field. Therefore, after that all terms involving the covariant deriva-
tives and the curvature are split in their torsionless counterparts plus torsional contributions, the
latter can be substituted through the torsion-spin field equations in terms of the spin density of the
spinorial matter field. All field equations of the ESK theory thus reduce to the same equations of
the torsionless theory complemented by spin-spin self-interacting potentials, and thus nonlineari-
ties appear in the matter field equations. This is general, and the specific gravitational background
(f(R) of conformal) and type of spinor (Dirac or flag-dipole, or other still) shall determine the ex-
act structure of these nonlinearities in the matter field equations. For example, in the least-order
derivative ESK gravity with Dirac fields, the nonlinearities are given in terms of axial current
squared contact interactions, that is with the structure of the Nambu-Jona-Lasinio (NJL) potential.5

As we shall see, in f(R) gravity they shall turn out to be structurally similar apart from a scal-
ing function as a running coupling, while in conformal gravity they might be entirely different.
In all these cases, however, when the spinor field is a flag-dipole, the interaction is shown to
change.

In what follows, we aim to study the flag-dipole type-(4) spinor fields dynamics in the case of
an ESK theory, whether f(R) or conformal gravity: we plan to show that in such a context, matter
fields which are solutions of the Dirac equation are not necessarily Dirac spinor fields by exhibiting
a physical solution of the Dirac equation that is instead a flag-dipole spinor field; in this case then,
we shall be able to show, through a specific example, that a spinor field is not fully determined
by its dynamics since spinor fields obeying the Dirac equation are not necessarily Dirac spinor
fields.

This paper is organized as follows: in Sec. II we introduce the Lounesto classification program
according to the bilinear covariants and provide some necessary concepts concerning type-(4) spinor
fields. In Sec. III we study the spinor fields solutions in the context of torsional f(R) gravity and
conformal gravity cases, showing that they are non-standard singular classes under Lounesto spinor
field classification. In Sec. IV we conclude. In the Appendix we show how to construct the most
general type-(4) flag-dipole spinor field.
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II. NON-STANDARD (FLAG-DIPOLE) SPINOR FIELDS

This section is devoted to briefly provide some properties on the flag-dipole spinor fields, where
the most relevant general properties regarding such spinor fields, and the notation fixed throughout
the text as well, are introduced.

Classical spinor fields carry the (1/2, 0) ⊕ (0, 1/2) representation of the Lorentz group
SL(2,C) " Spine

1,3. They are sections of the vector bundle PSpine
1,3

(M) ×ρ C4, where ρ denotes
the (1/2, 0) ⊕ (0, 1/2) representation of SL(2,C) in C4. Furthermore, classical spinor fields can be
sections of the vector bundle PSpine

1,3
(M) ×ρ ′ C2, where ρ ′ is the (1/2, 0) or the (0, 1/2) representation

of SL(2,C) in C2. Given a spinor field ψ , the bilinear covariants are defined as

σ = ψ†γ0ψ, J = Jµθµ = ψ†γ0γµψθµ, S = Sµνθ
µν = 1

2
ψ†γ0iγµνψθµ ∧ θν,

K = Kµθµ = ψ†γ0iγ0123γµψθµ, ω = −ψ†γ0γ0123ψ. (1)

Here {γ µ} denotes to the Dirac matrices, and the objects in (1) satisfy the Fierz identities3,8, 9

J2 = ω2 + σ 2, J!K = 0, K2 = −J2, and J ∧ K = −(ω + σγ0123)S. A spinor field such that at
least one of the ω and the σ are null [not null] is said to be singular [regular]. The Lounesto spinor
field classification is provided by the following spinor field classes:3

(1) σ '= 0, ω '= 0 (4) σ = 0 = ω, K '= 0, S '= 0
(2) σ '= 0, ω = 0 (5) σ = 0 = ω, K = 0, S '= 0
(3) σ = 0, ω '= 0 (6) σ = 0 = ω, K '= 0, S = 0

Types-(1), -(2), and -(3) are named Dirac spinor fields in the Lounesto classification, and in these
cases it is implicit that J, K, S '= 0. Types-(4), -(5), and -(6) are, respectively, called flag-dipole,
flagpole, and Weyl spinor fields. For Dirac spinor fields, S is the distribution of intrinsic angular
momentum; J is associated with the current of probability, and K is associated with the direction
of the electron spin.3, 8, 9 By introducing the element Z = σ + J + iS + iKγ0123 + ωγ0123, Z is
denominated a boomerang whenever it satisfies γ 0Z†γ 0 = Z. When a spinor field is singular, namely
it satisfies σ = 0 = ω, the Fierz identities are substituted by the more general identities:8

Z2 = σ Z , Ziγµν Z = 4Sµν Z , ZγµZ = 4JµZ , Ziγ0123γµZ = 4KµZ , Zγ0123 Z = −4ωZ .

(2)

When one considers a type-(4) flag-dipole spinor field, the distribution of intrinsic angular momentum
is provided by S = J ∧ s, where s is a spacelike vector orthogonal to J. The real number h '= 0 is
such that K = hJ, evincing thus the definition of helicity. It satisfies h2 = 1 + s2, implying the
definition of helicity h in quantum mechanics.10 Type-(5) spinor fields are a particular case where
h = 0. Indeed, by K = hJ, when h = 0 the expressions ω = 0 = σ , K = 0, J '= 0 hold. Type-(5)
spinor fields are therefore limiting cases of type-(4) spinor fields. More details on the most general
form of type-(4) spinor fields are provided in the Appendix.

III. MATTER FIELDS IN RIEMANN-CARTAN GEOMETRIES

Once some features related to type-(4) spinor fields are introduced, we shall take into account
the Wigner classification, to further study the spinor fields properties. According to the Wigner
classification, in terms of irreducible representations of the Poincaré group, quantum particles are
classified in terms of their mass and spin labels. The corresponding quantities for the quantum fields
are given in terms of energy and spin densities. If one wishes to pursue the same spirit that Einstein
followed to develop a theory for gravity, expressing the field equations by coupling the curvature
to energy, in the most general case where torsion is present, one is compelled to recover the field
equations coupling the curvature to energy but accompanied by similar field equations coupling the
torsion to spin. When this is accomplished in the most straightforward way, the Einstein equations
for the curvature-energy coupling are generalized as to include the Sciama-Kibble equations for
the torsion-spin coupling. Namely, the ESK system of field equations, which can be obtained by
generalizing the Ricci scalar written in terms of the metric R(g) by the Ricci scalar written in terms
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of both metric and torsion R(g, T) in the action, and subsequently varying it with respect to the two
independent fields.

Notwithstanding, this is merely the most straightforward generalization of gravity with torsion.
Other more general theories can be obtained by adding torsion not only implicitly through the
curvature, but explicitly as well, as quadratic terms beside the curvature R(g, T) + T2 in the action.
Once the field equations are written down, and all torsional contributions are separated and evinced
as spinor interactions, the effects of these extensions are reduced to a simple scaling of the torsional
terms, or equivalently of the spinor interaction. It is evinced by introducing new coupling constants
for such spin potentials. One of the most important problems about torsion in gravity, namely the
fact that torsion should have been relevant only at the Planck scales, can thus be overcome since
in these theories torsion has its own coupling constant, that does not necessarily coincide with the
gravitational constant.11, 12

On the other hand, however, those theories do not encompass the possibility to have dynamical
extensions, such as those provided by higher-order derivative field equations. The two most important
ones are the case for which the Ricci scalar R is replaced by an arbitrary function f(R) in the action,13

and the one that is capable of implementing the conformal symmetry in the action itself.14, 15 In the
following we shall deal with both of them.

A. Torsional f (R)-Gravity

The extension of the Einstein-Hilbert action regarding an arbitrary function f(R) is captivating,
since it is the most general whenever one restricts the Ricci scalar as the sole source of dynamical
information. In the case where both the metric and the torsion as well are taken into account, the
variation with respect to an arbitrary metric g and a g-compatible connection ( (or equivalently a
tetrad field e and a spin-connection ω) yields the metric-affine (or tetrad-affine) approach(es).16–19

The correspondent field equations are

T h
i j = 1

f ′(R)

[
1
2

(
∂ f ′(R)
∂x p

+ S q
pq

)
ε ph

r ε r
i j + S h

i j

]
, (3a)

+i j = f ′(R)Ri j − 1
2

f (R)gi j , (3b)

where Rij, εijk, and T h
i j are the Ricci, the Levi-Civita, and the torsion tensors, respectively. The

+ij and S h
i j denote the stress-energy and spin density tensors associated to the matter fields: the

conservation laws

∇i+
i j + Ti+

i j − +pi T jpi − 1
2

Ssti Rsti j = 0, (4a)

∇h Si jh + Th Si jh + +i j − + j i = 0, (4b)

come from the Bianchi identities.13 In Eq. (4) the symbols ∇ i and Rijkl denote, respectively, the
covariant derivative and the curvature tensor, with respect to the dynamical connection (. By
denoting (i = ei

µγ µ, where eµ
i is a tetrad associated with the metric, and by introducing Sµν :=

1
8 [γµ, γν], the covariant derivatives of the matter field ψ and its Dirac adjoint are denoted by

Diψ = ∂ψ
∂xi + ω

µν
i Sµνψ and Di ψ̄ = ∂ψ̄

∂xi − ψ̄ω
µν

i Sµν , where ω
µν

i is the spin connection. One can

furthermore indite Diψ = ∂ψ
∂xi − ,iψ and Di ψ̄ = ∂ψ̄

∂xi + ψ̄,i

,i := −1
4

g jh

(
(

j
ik − e j

µ∂i e
µ
k

)
(h(k, (5)

where (
j

ik denote the coefficients of the linear connection (, since the relation between lin-
ear and spin connection is provided by ( h

i j = ω
µ

i νeh
µeν

j + eh
µ∂i e

µ
j , as can be immediately
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calculated. In the case of matter fields, the spin density tensor is given by SS h
i j = i

2 ψ̄
{
(h, Si j

}
ψ ≡

− 1
4ηµσ εσνλτ K τ eh

µeν
i eλ

j . Remember that K τ is the component of the pseudo-vector bilinear covariant
defined at (1). The stress-energy tensor components of the matter fields are hence described as

+D
i j := i

4

(
ψ̄(i D jψ − Dj ψ̄(iψ

)
and +F

i j := (ρ + p)UiU j − pgi j . (6)

In Eq. (6), ρ, p, and Ui denote, respectively, the matter-energy density, the pressure, and the four-
velocity of the fluid. The trace of Eq. (3b), given by

f ′(R)R − 2 f (R) = +, (7)

is supposed to relate the Ricci scalar curvature R and the trace + of the stress-energy tensor, as in
Ref. 13 and 16–18. Furthermore, it is assumed that f (R) '= k R2—since the case f(R) = kR2 is solely
compatible to the condition + = 0. Now, from Eq. (7) it is possible to express R = F(+), where
F is an arbitrary function. Furthermore, introducing the scalar field ϕ := f ′(F(+)) as well as the
effective potential V (ϕ) := 1

4

[
ϕF−1(( f ′)−1(ϕ)) + ϕ2( f ′)−1(ϕ)

]
, the field equations (3b) are written

in the Einstein-like form

R̊i j − 1
2

R̊gi j = 1
ϕ

+F
i j + 1

ϕ
+D

i j + 1
ϕ2

(
−3

2
ϕiϕ j + ϕ∇̊ jϕi + 3

4
ϕhϕkghkgi j

−ϕ∇̊hϕhgi j − V (ϕ)gi j

)
+ ∇̊h Ŝ h

ji + Ŝ p
hi Ŝ h

jp − 1
2

Ŝ p
hq Ŝq h

p gi j ,

(8)

where R̊i j , R̊, and ∇̊i denote, respectively, the Ricci tensor, the Ricci scalar curvature, and the
covariant derivative of the Levi–Civita connection. Here Ŝ h

i j := − 1
2ϕ

S h
i j and ϕi := ∂ϕ

∂xi . In addition,
the generalized Dirac equations for the spinor field are in this context

i(h Dhψ + i
2

Th(
hψ − mψ = 0, (9)

where Th := T j
hj is the axial torsion.30 The symmetrized part of the Einstein-like equations (8) as

well as the Dirac equations (9) are written as13

R̊i j − 1
2

R̊gi j = 1
ϕ

+F
i j + 1

ϕ
+̊D

i j + 1
ϕ2

(
−3

2
ϕiϕ j + ϕ∇̊ jϕi + 3

4
ϕhϕkghkgi j

−ϕ∇̊hϕhgi j − V (ϕ)gi j

)
+ 3

64ϕ2
K τ Kτ gi j

(10)

and

i(h D̊hψ − 3
16ϕ

[σ + iωγ5] ψ − mψ = 0, (11)

where +̊D
i j := i

4

[
ψ̄((i D̊ j)ψ −

(
D̊( j ψ̄

)
(i)ψ

]
and D̊i is the covariant derivative of the Levi–Civita

connection.
As spinor fields satisfying the Dirac equation in this scenario are incompatible with stationary

spherical symmetry,21 the simplest choice for the background must be at least an axially symmetric
Bianchi-I type metric, given by the form ds2 = dt2 − a2(t) dx2 − b2(t) dy2 − c2(t) dz2, where the
(i = ei

µγ µ are given by

(0 = γ 0, (1 = 1
a(t)

γ 1, (2 = 1
b(t)

γ 2, (3 = 1
c(t)

γ 3, (12)

and the tetrad field is given by eµ
0 = δ

µ
0 , eµ

1 = a(t)δµ
1 , eµ

2 = b(t)δµ
2 , and eµ

3 = c(t)δµ
3 , for µ =

0, 1, 2, 3. The spin-Dirac operator acts on spinor fields and their conjugates, respectively, as
D̊iψ = ∂iψ − ,̊iψ and D̊i ψ̄ = ∂i ψ̄ + ψ̄,̊i , where the spin connection coefficients ,̊i are given by
(introducing the notation a1 = a, a2 = b, and a3 = c)

,̊0 = 0, ,̊i = 1
2

ȧiγ
iγ 0.
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Therefore, the Einstein-like equation (10) reads

ȧ
a

ḃ
b

+ ḃ
b

ċ
c

+ ȧ
a

ċ
c

= ρ

ϕ
− 3

64ϕ2
K σ Kσ + 1

ϕ2

[
−3

4
ϕ̇2 − ϕϕ̇

τ̇

τ
− V (ϕ)

]
, (13a)

är

ar
+ äs

as
+ ȧr

ar

ȧs

as
= − p

ϕ
+ 1

ϕ2

[
ϕϕ̇

ȧt

at
+ 3

4
ϕ̇2 − ϕ

(
ϕ̈ + τ̇

τ
ϕ̇

)
− V (ϕ)

]
+ 3

64ϕ2
K σ Kσ , (13b)

where r, s, t denote indexes 1, 2, 3 different from each other. The Dirac field equation (11) assumes
the form

ψ̇ + τ̇

2τ
ψ + imγ 0ψ − 3i

16φ
(σγ 0 + iωγ 0γ 5)ψ = 0, (14)

where τ := abc.22, 23 Together with the conditions

+̊D
rs = 0 ⇒ ar ȧs − asȧr = 0 ∪ K ᵀ = 0, (15)

the equations +̊D
0i = 0 are automatically satisfied. Finally, the conservation laws together with an

equation of state of the kind p = λρ (here λ is a number between 0 and 1) yield ρ̇ + τ̇
τ
(1 + λ)ρ = 0,

which completes the whole set of field equations, having the general solution given by

ρ = ρ0τ
−(1+λ) , ρ0 = constant. (16)

The matter field in such axially symmetric background is such that conditions (15) are constraints
imposed on the metric or on the matter field. They exist if and only if one of the following conditions
holds:

a) by imposing constraints of purely geometrical origin, as aḃ − bȧ = 0, aċ − cȧ = 0, cḃ − bċ =
0. In this scenario there are fermionic matter fields in an isotropic Universe, which might
a priori cause some pathology, as Dirac fields are well known not to undergo the Cosmological
Principle.24 But the result by Tsamparlis,24 although valid for Dirac spinor fields, does not hold
for the other spinor field classes, according to Lounesto classification;

b) another condition is to impose constraints of purely material origin by requiring that the spatial
components of the spin direction satisfy Ki = 0. This represents an anisotropic Universe devoid
of terms coupling matter to the axial torsion. In this case there is no fermionic torsional
interactions. Indeed, the particle spin interacts with the axial component of the torsion tensor,
and when the spatial components of the spin direction equal zero it implies that such particles
described by the field ψ do not interact to the torsion. Besides, if Dirac fields are absent then
it is not clear what may then justify anisotropies;6

c) the last situation would be originated by the geometry and the matter as well, by insisting that,
for instance, aḃ − bȧ = 0 and K1 = 0 = K2. It provides partial isotropy for only two axes,
with the corresponding components of the spin vector vanishing. It describes a Universe an
ellipsoid of rotation about the axis along which the spin vector does not vanish. By insisting
on the proportionality between two pairs of axes we inevitably get the total isotropy of the
3-dimensional space. Therefore, the situation in which we have a = b, with K1 = 0 = K2, is
the only one be entirely satisfactory. Henceforth, this situation shall be considered, where the
sole spatial component of the spin direction is K3 '= 0.

Here, the Dirac and Einstein-like equations (13) and (14) can be worked out as in Refs. 22 and 23:
for instance, through suitable combinations of (13) we obtain the equations

d
dt

(J0τ ) = 0 = d
dt

(στ ) + 3ωK0τ

8ϕ
, (17a)

− d
dt

(ωτ ) +
[
2m + 3σ

8ϕ

]
K0τ = 0 = d

dt
(K0τ ) + 2mωτ. (17b)
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while from Eqs. (17) it is straightforward to deduce that

(K3)2 = σ 2 + ω2 + (K0)2 = C2

τ 2
, (J0)2 = D2

τ 2
, (18)

with C and D constants. It is worthwhile to emphasize that in this special case the theory has
an additional discrete symmetry provided by the transformation ψ ,→ γ 5γ 0γ 1ψ , making all field
equations are invariant. In the Dirac equation the four complex components is in this case reduced to
two complex components. Such assertion is equivalent to take flagpole spinor fields, that have four
real parameters. Hence (17) are the field equations to be solved. The compatibility to all constraints
allows only three classes of spinor fields, each of which has a general member written in one of the
following forms:

ψ = 1√
2τ




√
K − C cos ζ1eiθ1

√
K + C cos ζ2eiϑ1

√
K − C sin ζ1eiϑ2

√
K + C sin ζ2eiϑ2




,

with constraints tan ζ 1tan ζ 2 = ( − 1)n + 1 and θ1 + θ2 − ϑ1 − ϑ2 = πn for any n integer, and
also

ψ = 1√
2τ




√
K − C cos ζ1eiθ1

0
0√

K + C sin ζ2eiθ2


 and ψ = 1√

2τ




0
√

K + C cos ζ1eiϑ1

√
K − C sin ζ2eiϑ2

0




. (19)

where ζ 1, ζ 2, θ1, θ2, ϑ1, ϑ2 are time dependent. The most interesting case is one the provided by
(19). For instance, the second spinor field at (19) is

ψ = 1√
2τ




0
√

K + Ceiβ(t)

√
K − Ce−iβ(t)

0




, (20)

for β(t) = −mt − 3C
16

∫ dt
τ

. There are further constraints σ = C
τ

, ψ†ψ = K
τ

and ω = 0 = K0.
Such a spinor field is a type-(4) flag-dipole spinor field, according to the Lounesto spinor fields
classification.25 This is a remarkable fact: once it is assumed a spinor field ψ in a f(R) Riemann-
Cartan cosmology, some type-(4) spinor fields are obtained as the spinor fields (19). Indeed, there is
no assumption in Eq. (9) that makes ψ a legitimate Dirac spinor field, as it merely regards a priori
a spinor field ψ that satisfies the Dirac equation. As far as we know, this is up to now the unique
physical system whose acceptable solution is given in terms of such spinor fields.

On the other hand, when one imposes K3 = 0 as a constraint of purely material origin, Eq. (18)
implies that K0 = 0. Therefore, Kµ = 0 and we obtain a type-(5) spinor field under Lounesto spinor
field classification, which encompasses Majorana and Elko dark spinor fields. It must be stressed
that the condition K3 = 0 does not necessarily imply that in this case there is no fermion fields
satisfying the Dirac equation (9). In fact, Elko fields do not satisfy the Dirac equation at all.31

In summary, by the solutions above, the so-called Dirac field ψ in (19) and (20) is not a Dirac
spinor field according to Lounesto classification, but a type-(4) flag-dipole spinor field. Besides,
since Ki = 0 and in particular K3 = 0, by (18) it implies that we are concerning now a type-(5)
spinor field, which is a flagpole. But in this case, it is well-known that type-(5) encompasses Elko,
Majorana, and the complementary spinor fields, presented at (A7). Elko, however, is well known not
to satisfy Dirac equations, so as we departure from (18), Elko is excluded to be a solution of such
system. The point to be stressed here is that according to the Lounesto spinor field classification, ψ
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can be allocated in any of the six disjoint classes and there is no ab initio relation between the type
of the spinor field and the associated dynamics. As mentioned, for instance, the types-(1), (2), and
(3) are Dirac spinor fields in the Lounesto classification, having some subset satisfying the Dirac
equation. By the same token, type-(6) spinor fields encompass Weyl spinor fields, that indeed satisfy
Dirac equations. Nevertheless, it was an open problem whether type-(4) spinor fields satisfy or not
the Dirac equations, but the Dirac equations is shown to be dynamically forbidden for the solutions
found.6

B. Torsional conformal-gravity

It is worth to point some recent progress in the study of spinor fields in generalized gravity, as
well as some open issues which are under current investigation. While it is somewhat apart of the
main theme of the paper, it is certainly enriching from the bookkeeping purposes. In this vein, another
interesting higher-order theory of gravity is the one with two curvatures, because this is the only case
in which conformal invariance can be obtained.14 As it turns out, there are two ways to implement
conformal transformations for torsion: the first is to require the most general (reasonable) conformal
transformation for torsion (where by reasonable we mean reasonable according to what is discussed,
for instance, in Ref. 27). The another is to insist on the fact that no conformal transformation is
to be given to torsion (because conformal transformations are of metric origin while torsion is
independent on the metric). In the former case, because conformal transformations link the metric
to torsion, one must modify the Riemann curvature with quadratic-trace torsion terms in order to
get a curvature whose irreducible part is conformally invariant.14 In the latter case, torsion and
curvature are separated and essentially independent. Consequently, in the former case14 the field
equations are closely intertwined together, while in the latter case the field equations are independent
thus maintaining the curvature-energy and torsion-spin coupling in the spirit of the ESK field
equations.

1. Torsion with general conformal transformations

In the first case the coupling to the Dirac field has been studied in Ref. 14. However, as in this
case the field equations that couple torsion to spin are not invertible in general, torsion cannot be
substituted by the spin density into the Dirac field equations, which therefore remain of the general
form

iγ µ D̊µψ + 3
4 Wσ γ 5γ σψ = 0, (21)

where Wσ is the axial vector dual of the completely antisymmetric part of the torsion tensor. Hence
the arguments used in Ref. 21 cannot be recovered, and therefore stationary spherically symmetric
symmetries are possible. However in such a case, the complete antisymmetry of the Dirac field does
not turn into the complete antisymmetry of torsion. Instead, rather in constraints for the gravitational
fields that cannot be satisfied in general situations. In this case of general torsional conformal
transformations the Dirac field appears to be ill-defined.

An alternative situation is therefore to study Elko fields, which has been accomplished in
Ref. 15. However, their dynamics in terms of cosmological solutions has not been studied yet.

2. Torsion with no conformal transformations

The coupling to the Dirac field was studied,14 showing that the complete antisymmetry of the
spin density results into the complete antisymmetry of the torsion tensor, which dual is an axial
vector given by

Wρ =
( 4a

! K µKµ

)−1/3
Jρ, (22)

so that torsion can be replaced with the spin density of the spinor field, and the Dirac field equation
becomes

iγ µ D̊µψ −
( 256a

27 K ρ Kρ

)− 1
3 ψγνψγ νψ = 0, (23)
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with a nonlinear self-interaction that is renormalizable nonetheless. After a straightforward Fierz
rearrangement they can be written as

iγ µ D̊µψ −
( 27

256a

)1/3 (
σ 2 + iω2

)−1/3 (σI − ωγ5) ψ = 0, (24)

clearly showing that the type-(4) spinor fields would verify a Dirac field equation of the form
iγ µ D̊µψ = 0, as if torsion were never present, precisely like the ESK theory. In this case, it again
happens that the reasoning performed in Ref. 21 does not apply, and stationary spherically symmetric
solutions are possible, the gravitational field equations would reduce to the torsionless spherically
symmetric Weyl field equations in a Schwarzschild spacetime. For this type of conformal gravity,
the case of Elko fields has not been studied yet.

IV. CONCLUSIONS

In this paper, we have explored both the regular and singular spinor fields, establishing the
general gravitational background with torsion in which the spinor fields are supposed to live in. We
proved that some singular flag-dipoles spinor fields are physical solutions for the Dirac equation in
ESK theories: in particular this has been obtained in f(R)-gravity but it could not be recovered in
conformal gravity as well.

In the case of cosmology, when considering Dirac-like fields in f(R)-gravity, the presence of
torsion imposes the use of an anisotropic background in which the geometric side is diagonal,
while the energy tensor is not, due to intrinsic features of the spinor field. In this circumstance, the
non-diagonal part of the gravitational field equations results into the constraints (15) characterizing
the structure of the spacetime, or the helicity of the spinor field, or both. In our understanding,
the only physically meaningful situation is the one in which two axes are equal and one spatial
component of the axial vector torsion does not vanish. It provides a Universe that is spatially an
ellipsoid of rotation revolving about the only axis along which the spin density is not equal to
zero.

In the case of conformal gravity, except for the case of torsional conformal transformations, for
which the Dirac field seems not well-defined, the case of torsion without conformal transformations
appears to be well-posed. In this case, the gravitational background is much like the torsionless one,
and although we have not proved it mathematically, there are reasons to believe that singular type-(4)
spinor fields may still emerge.

In summary, the presence of torsion induces nonlinear interactions, whose details depend
on whatever conformal of f(R) gravitational background is used, but in general such torsionally-
induced self-interactions for the spinors affect the dynamics of the spinor itself: specifically, it is
possible to find perfectly physical solutions of the Dirac equation which are nevertheless not Dirac
fields, but flag-dipoles, and thus singular. We have also found that, in addition, the new solutions
encompass Elko and Majorana spinor fields, when the associated spin direction vanishes, providing
an anisotropic Universe without fermionic torsional interactions.

However, we believe that the main message that is to be taken is that a spinor field sat-
isfying the Dirac field equation is not necessarily nonsingular: with a metaphoric analogy, we
may say that the Dirac equations does not necessarily take care of itself by forbidding singular
solutions.

To remove them, an even deeper analysis must be carried over at an algebraic level.
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APPENDIX: CLIFFORD ALGEBRAS AND GENERAL TYPE-(4) AND TYPE-(5)
SPINOR FIELDS

Let V be a finite n-dimensional real vector space and 7(V ) =
⊕n

k=0 7k(V ) the space of
multivectors over V , where 7k(V ) denotes the k-forms vector space. By defining the reversion,
given τ,ψ, ξ ∈ 7(V ), the left contraction is defined implicitly by η(τ"ψ, ξ ) = η(ψ, τ̃ ∧ ξ ). The
Clifford product between v ∈ V and ψ is provided by vψ = v ∧ ψ + v"ψ . Given a metric η, the
pair (7(V ), η) endowed of the Clifford product is the Clifford algebra C91,3 of R1,3. All spinor fields
are placed in a manifold which locally is a Minkowski spacetime (M, η, D̊, τη,↑) in what follows,
where M is a manifold, D̊ denotes the Levi-Civita connection associated with η, M is oriented by
the 4-volume element τη and time-oriented by ↑. Furthermore, {eµ} is a section of the frame bundle
PSOe

1,3
(M). {eµ} is the dual frame: eµ(eν) = δµ

ν , with {θµ} and {θµ}, respectively, the dual bases of
{eµ} and {eµ}. Hereupon we denote eµν = eµeν and eµνρ = eµeνeρ .

In order to better understand the structure of type-(4) and their limiting case type-(5) spinor
fields, the question is: what is the general form of these spinor fields? In order to answer it, let us
take a general spinor given by ψ = (f, g, η, ξ )ᵀ, with f, g, η, ξ ∈ C, and the definition of these
spinor types given by Lounesto classification.3

1. Spinor fields of type-(4)

As we aim to characterize the most general type-(4) flag-dipole spinor field, the conditions σ =
0 = ω results ηf∗ + ξg∗ = 0. We have to analyze the possibilities evinced from this equation. If f =
0 = g or η = 0 = ξ , it implies a type-(6) spinor field, with S = 0, and therefore this possibility must
be dismissed here. It remains the conditions: either η = 0 = ξ , f = 0 = g, or none of the components
can be zero. In this last case, one can isolate a part of them, for example f = gηξ∗

‖η‖2 . Further, the
condition K '= 0 induces the following possibilities:

a) If η = 0 = ξ , hence K1 = K2 = 0, and K0 '= 0 '= K3⇒‖f‖2 '= ‖ξ‖2;
b) If f = 0 = ξ , it implies that K1 = K2 = 0, and K0 '= 0 '= K3⇒‖g‖2 '= ‖η‖2;
c) If all the components are not zero, K1 '= 0 '= K2⇒‖g‖2 '= ‖η‖2.

In the third case, if ‖g‖2 = ‖η‖2, therefore K = 0. Furthermore, still in the third case, ‖g‖2 '=
‖η‖2⇔‖f‖2 '= ‖ξ‖2. Thus, the possible type-(4) spinor fields are

ψ(4) = ( f, 0, 0, ξ )ᵀ , ‖ f ‖2 '= ‖ξ‖2 , or

ψ(4) = (0, g, η, 0)ᵀ , ‖g‖2 '= ‖η‖2 , or

ψ(4) =
(

gηξ ∗

‖η‖2
, g, η, ξ

)ᵀ
, ‖g‖2 '= ‖η‖2 . (A1)

If some inequality associated to one of the spinors above does not hold, it turns forthwith to be a
type-(5), which shall be analyzed in what follows.

2. Spinor fields of type-(5)

We start by noticing how the conditions on the bilinear covariants associated to a type-(5) spinor
field imply the following conditions on the spinor field components:

σ = ψψ = 0 = −ψγ0123ψ = ω ⇒ η f ∗ + ξg∗ = 0, (A2)

K1 = ψiγ0123γ1ψ = 0 = ψiγ0123γ2ψ = K2 ⇒ g f ∗ + ξη∗ = 0, (A3)

K0 = ψiγ0123γ0ψ = 0 = ψiγ0123γ3ψ = K3 ⇒ ‖ f ‖2 = ‖ξ‖2 and ‖g‖2 = ‖η‖2. (A4)
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Equation (A4) can be obtained from (A2) and (A3), which are therefore essential to characterize
type-(5) spinor fields. In this vein, an equation candidate to describe the dynamics of these general
spinor fields must keep (A2) and (A3) invariant. Elko spinor fields obey these equations.

By performing a straightforward calculation with the aid of Eqs. (A2) and (A3) it is possible to
obtain

f = −ξ ∗(η + g)(η∗ + g∗)−1 = −ξ ∗
(

η + g
‖η + g‖

)2

, (A5)

and by taking tan ϕ1 = −i η+g−(η+g)∗

η+g+(η+g)∗ , we can write f = −ξ ∗e2iϕ1 and g = −η∗e2iϕ2 , where ϕ1 and
ϕ2 are related by32

tan ϕ2 = −i
ξ (1 + e−2iϕ1 ) − [ξ (1 + e−2iϕ1 )]∗

ξ (1 − e−2iϕ1 ) + [ξ (1 − e−2iϕ1 )]∗
= − cot ϕ1.

However, tan ϕ2 = − cot ϕ1 ⇒ ϕ2 = ϕ1 + (2k + 1)π
2 , and then e2iϕ2 = e2iϕ1ei(2k+1)π = −e2iϕ1 , for

every k = 0, 1, 2, . . . . Hence a general type-(5) spinor can be represented by

ψ(5) =
(
−ξ ∗e2iϕ1 , η∗e2iϕ1 , η, ξ

)ᵀ
. (A6)

Writing ψ(5) = (χ2,χ1)ᵀ, it is straightforward to realize that χ2 = −iσ2χ
∗
1 e2iϕ1 = σ2χ

∗
1 ei(2ϕ1− π

2 ). By
taking ϕ ≡ 2ϕ1 − π

2 a more compact form of (A6) is

ψ(5) =
(
eiϕσ2χ

∗
1 , χ1

)ᵀ
. (A7)

By acting now the charge conjugation operator,4, 26 with i; = σ 2, it yields

Cψ(5) = µψ(5), for C =
( O i;
−i; O

)
K and µ = −eiϕ .

Here K conjugates the spinor components. Hence the eigenvalues take place on the sphere S1. When
these eigenvalues are real and χ1, χ2 are dual helicity eigenstates, Elko spinor fields are obtained.
The type-(5) flagpole spinor fields were shown to have a prominent role on the derivation of all
Lagrangians for the gravity from the one for supergravity.28, 29
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Abstract This work deals with new classes of spinors
of mass dimension 1 in Minkowski spacetime. In order
to accomplish it, Lounesto’s classification scheme and the
inversion theorem are going to be used. The algebraic frame-
work shall be revisited by explicating the central point per-
formed by the Fierz aggregate. Then the spinor classification
is generalized in order to encompass the new mass dimension
1 spinors. The spinor operator is shown to play a prominent
role to engender the new mass dimension 1 spinors, accord-
ingly.

1 Introduction

There is a spinor classification due to Lounesto [1], which is
particularly interesting for physicists due to its twofold ubiq-
uitous aspect: on the one hand it is based upon bilinear covari-
ants, and thus upon physical observables. On the other hand,
by a peculiar multivector structure—the Fierz aggregate—
that leads to the so-called boomerang [1], a quite elegant
geometrical interpretation may be added to the classifica-
tion. Moreover, with the aid of the boomerang it is possible
likewise to prove that there are precisely six different classes
of spinors in Lounesto’s classification [1]. The most general
forms of the respective spinors in each class were introduced
in [2]. Lounesto’s spinor classification was further employed
to derive all the Lagrangians for gravity from the quadratic
spinor Lagrangian [3]. Higher dimensional spaces have a
similar spinor classification [4], however, the so-called geo-
metric Fierz identities [5] obstruct the proliferation of new
spinors classes in higher dimensions [4].

Within the Lounesto classification, a specific bilinear
covariant plays a crucial role, since it cannot be zero. This
bilinear represents the current density, at least for the case
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of a regular spinor describing the electron. Its components
read J = Jμeμ = ψ†γ0γμψeμ, where ψ denotes a spinor

and eμ is a dual basis in C �1,3. Additionally, it is valuable
to remark that J = Jμeμ is essential for the definition of

the boomerang structure. Regarding the electron theory, it is
straightforward to realize the physical argument to explain
why J must not vanish. Indeed, J is the conserved current in
this case and therefore if J = 0 there is no associated particle

[6]. In particular the time component J0 = ψ†ψ provides the
probability density of the electron, and when integrated over
the spacetime it should obviously be non-null.

One of the main points that shall be pursued in this work is
that J can be understood as a conserved current solely when
the considered spinor obeys the usual dynamics rules by the
Dirac equation, namely, it is an eigenspinor of the Dirac oper-
ator or, equivalently, it is described by the Dirac Lagrangian.
The canonical mass dimension in this case is the same mass
dimension 3/2 associated to usual spin-1/2 fermions in the
standard model. Since we are looking for possible manifes-
tations of mass dimension 1 fermions in Minkowski space-
time, it is indeed possible to set J = 0, accordingly. In fact,
by accomplishing it, even the previously mentioned alge-
braic argument precluding new spinor classes may be cir-
cumvented. Nevertheless, in this novel context, we should
emphasize that the underlying dynamics shall not be dictated
by the well-known Dirac equation. As the construction is rel-
ativistic, the spinors arising from the analysis withJ = 0 shall
respect a priori merely the Klein–Gordon equation. Actually,
in a very conventional scheme, they must do so. Hence, the
epigraph is now explained: the resulting spinors must have
mass dimension 1. Clearly by “mass dimension” we mean the
canonical mass dimension of the associated quantum field,
which inherits this property from the dynamics respected by
its expansion coefficients.

Mass dimension 1 spinors have attracted attention mainly
due to the fact that they can be coupled only to gravity, and to
scalar fields as well, in a perturbatively renormalizable way.
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It thus makes it suitable for exploration under the ensign of
dark matter. Mass dimension 1 spinors in Minkowski space-
time known in the literature are the so-called Elko spinors,
which have been studied in a comprehensive context. They
comprise prominent applications in 4D gravity and cosmol-
ogy [3,7–11], and in brane-world models as well [12,13],
besides their exotic counterparts [14,15]. Moreover, in spite
of the robust and rich framework already developed [16–20],
Elko has been predicted to be measured in Higgs processes at
LHC [21,22] and explored in tunneling methods concerning
black holes [23]. Massive spin-1/2 fields of mass dimension
were obtained by constructing quantum fields from higher-
spin Elkos, however, these fields are still linked to the Elko
construct. We stress, however, that the spinors to be found
here are intrinsically different from the Elkos by the simple
fact that J �= 0 in the Elko case.

The classification of mass dimension 1 spinors is per-
formed by a possible and consistent modification in the
Lounesto classification. However, in order to have an explicit
form for them it is necessary the use of the so-called inversion
theorem [24,25].

This paper is organized as follows: in the next section
the main steps of the framework which supports our analy-
sis shall be revisited, namely the standard Lounesto classi-
fication and the inversion theorem. In Sect. 3 we show the
existence of three new classes of mass dimension 1 spinors,
obtaining the algebraic form in each case accordingly. In the
last section we make our concluding remarks and present a
brief outlook.

2 The framework

In order to properly address the problem to be approached
and solved, it is pivotal to review some key aspects of the stan-
dard formalism, highlighting the structures to be studied and
generalized. To start, Lounesto’s spinor classification shall be
revisited, and subsequently the inversion theorem algorithm
shall be thereafter employed, accordingly.

2.1 The Lounesto’s spinors classification and
generalizations

Consider the Minkowski spacetime (M, ημν) and its tangent
bundle T M . Denoting sections of the exterior bundle by
sec Λ(T M), given a k-vector a ∈ sec Λk(T M), the rever-
sion is defined by ã = (−1)|k/2|a, while the grade involution
reads â = (−1)ka, where |k| stands for the integral part of
k. By extending the Minkowski metric from sec Λ1(T M) =
sec T ∗M to sec Λ(T M), and considering a1, a2 ∈ sec Λ(V ),
the left contraction is given by g(a�a1, a2) = g(a1, ã ∧ a2).

The well-known Clifford product for (the dual of) a vec-
tor field v ∈ sec Λ1(T M) and a multivector is prescribed

by va = v ∧ a + v�a, defining thus the spacetime Clif-
ford algebra C�1,3. The set {eμ} represents sections of the
frame bundle PSOe

1,3
(M) and {γ μ} can be further thought of

as being the dual basis {eμ}, namely, γ μ(eμ) = δ
μ
ν . Clas-

sical spinors are objects of the space that carries the usual
τ = (1/2, 0)⊕ (0, 1/2) representation of the Lorentz group,
which can be thought of as being sections of the vector bundle
PSpine1,3

(M) ×τ C
4.

Given a spinor field ψ ∈ secPSpine1,3
(M)×τ C

4, the bilin-
ear covariants are sections of the bundle Λ(T M) [1,24].
Indeed, the well-known Lounesto spinors classification is
based upon bilinear covariants and the underlying multivec-
tor structure. The physical nature of the classification focuses
on the bilinear covariants, which are physical observables,
characterizing types of fermionic particles. The observable
quantities are given by the following multivector structure:

σ = ψ†γ0ψ, ω = −ψ†γ0γ0123ψ,

Jμ = ψ†γ0γμψ, Kμ = ψ†γ0iγ0123γμψ,

Sμν = 1

2
ψ†γ0iγμνψ, (1)

where γ0123 := iγ5 = γ0γ1γ2γ3. The set {1, γI } (where
I ∈ {μ,μν,μνρ, 5} is a composed index) is a basis for
M (4,C) satisfying γμγν + γνγμ = 2ημν1.

The above bilinear covariants in the Dirac theory are
interpreted, respectively, as the mass of the particle (σ ), the
pseudo-scalar (ω) relevant for parity-coupling, the current of
probability (J), the direction of the electron spin (K), and the
probability density of the intrinsic electromagnetic moment
(S) associated to the electron. The most important bilinear
covariant for our goal here is J, although with a different
meaning. In fact, in the next section we shall set J = 0,
enabling the extension of the standard Lounesto classifica-
tion to this case.

A prominent requirement for Lounesto’s spinors classifi-
cation is that the bilinear covariants satisfy quadratic alge-
braic relations, namely, the so-called Fierz–Pauli–Kofink
(FPK) identities, which read

Jμ J
μ = σ 2 + ω2, Jμ J

μ = −KμK
μ,

JμK
μ = 0, J ∧ K = −(ω + σγ0123)S. (2)

It is worth to remark that the above identities are funda-
mental, not merely for the aims regarding the classification,
but, moreover, for asserting the inversion theorem, as we are
going to see in the next subsection.

Within the Lounesto classification scheme, a non-
vanishing J is crucial, since it enables one to define the so-
called boomerang [1], which has an ample geometrical mean-
ing in asserting that there are precisely six different classes of
spinors. This is a prominent consequence of the definition of a
boomerang [1]. As far as the boomerang is concerned, it is not
possible to exhibit more than six types of spinors, according
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to the bilinear covariants. Indeed, Lounesto’s spinor classifi-
cation splits regular and singular spinors. The regular spinors
are those which have at least one of the bilinear covariants
σ and ω non-null. On the other hand, singular spinors corre-
spond to σ = 0 = ω, and in this case the Fierz identities are
in general replaced by the more general conditions [24]:

Z2 = 4σ Z , ZγμZ = 4JμZ , Zγ0123Z = −4ωZ

Ziγμν Z = 4Sμν Z , Ziγ0123γμZ = 4KμZ . (3)

When an arbitrary spinor ξ satisfies ˜ξ∗ψ �= 0 and
belongs to C ⊗ C �1,3—or equivalently when ξ†γ0ψ �= 0 ∈
M (4,C)—it is possible to recover the original spinor ψ from
its aggregate Z given by

Z = σ + J + iS + iKγ0123 + ωγ0123 (4)

and the spinor ξ by the so-called Takahashi algorithm [25]
likewise. In fact, the spinor ψ and the multivector Zξ differ
solely by a multiplicative constant, and can be thus written
as

ψ = 1

2
√

ξ†γ0Zξ
e−iθZξ, (5)

where e−iθ = 2(ξ†γ0Zξ)−1/2ξ†γ0ψ ∈ U(1). For more
details see, e.g., [24]. Equivalently to Eq. (5), we shall use
hereupon the notation ψ � Zξ to say that both sides of this
equivalence are in the same equivalence class with respect to
the quotient by C. Moreover, when σ, ω, J,S,K satisfy the
Fierz identities, then the complex multivector operator Z is
named a Fierz aggregate. When γ0Z†γ0 = Z, thus Z is said
to be a boomerang [1].

The Takahashi algorithm reveals the importance of the
aggregate. Moreover, the inversion theorem (to be regarded in
the next subsection) is inspired on this spinor representation
(5). More significantly here, the aggregate plays a central role
within the Lounesto classification since, in order to complete
the classification itself,Z has to be promoted to a boomerang,
satisfying

Z2 = 4σZ. (6)

Obviously, for the regular spinors case the above condition is
satisfied and Z is automatically a boomerang. However, for
singular spinors it is not so straightforward. Indeed, for singu-
lar spinors we must envisage the geometric structure under-
lying the multivector. From the geometric point of view the
following relations between the bilinear covariants must be
fulfilled in order to ensure that the aggregate be a boomerang:
J must be parallel to K and both are in the plane formed by
the bivector S. Hence, using Eq. (4) and taking into account
that we are dealing with singular spinors, it is straightforward
to see that the aggregate can be recast in the form

Z = J(1 + is + ihγ0123), (7)

where s is a space-like vector orthogonal to J, and h is a
real number. The multivector as expressed in Eq. (7) is a
boomerang [19]. By inspecting the condition (6) we see that
for singular spinors Z2 = 0. However, in order for the FPK
identities to hold it is also necessary that both conditions1

J2 = 0 and (s + hγ0123)
2 = −1 must be satisfied. These

considerations are important in order to constrain the possible
spinor classes.

Now, let us make explicit that from (5) one can see that dif-
ferent bilinear covariants combinations may lead to different
spinors, taking into account the constraints coming from the
FPK identities. Altogether, the algebraic constraints reduce
the possibilities to six different spinor classes, namely:

1. σ �= 0, ω �= 0;
2. σ �= 0, ω = 0;
3. σ = 0, ω �= 0;
4. σ = 0 = ω, K �= 0, S �= 0;
5. σ = 0 = ω, K = 0, S �= 0;
6. σ = 0 = ω, K �= 0, S = 0.

The spinors types-(1), (2), and (3), are called Dirac spinor
fields (regular spinors). The spinor field (4) is called flag-
dipole [26], while the spinor field (5) is named flag-pole [27].
Majorana [28] and Elko [16,19] spinors are elements of the
flag-pole class. Finally, the type (6) dipole spinors are exem-
plified by Weyl spinors. Note that there are only six different
spinor fields. To see that, notice that for the regular case,
since J �= 0, it follows that S �= 0 and K �= 0 as impositions
from the identities (2). On the other hand, for the singular
case, the geometry asserts that J(s+ hγ0123) = S+Kγ0213.
Hence, as far as J �= 0, we have already considered all the
possibilities.

As is clear from the above reasoning, J �= 0 is much
more a matter of taste. There is instead algebraic necessity
of demonstrating the existence of six different classes. In
fact, however, a non-vanishing J is indispensable only for the
regular spinor case. As mentioned, the above classification
makes use of this constraint in all the cases, since the very
idea of the classification was to categorize spinors which
could be related to Dirac particles in some respect. As far as
we leave this (physical) concept, more spinors can be found.

By taking J = 0, we cannot describe Dirac particles any-
more. Therefore, the spinors arising from this consideration
must be merely ruled by the Klein–Gordon dynamics and,
therefore, they must have mass dimension 1. We finalize by
stressing that the resulting spinors (see Sect. 3) have to be
singular, as in the contrary case they would violate the FPK
identities and, besides, the geometrical aspects underlying
the algebraic structure need to be reconsidered.

1 We remark that J must be different from zero in the Lounesto classi-
fication.
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2.2 The inversion theorem

It is well known, in the quantum mechanical context, that
all the physical observables are represented by quadratic
quantities of the wave function, for example the probabil-
ity density. In the specific case of the Dirac particle, rep-
resented by a four-component spinor wave function ψ , we
can write sixteen real quadratic forms, called bilinear covari-
ants ρi = ˜ψΓiψ . The bilinear covariants are represented in
the set of Eq. (1). The bilinear covariants are not individual
quantities [25], since their structure depends on the spinor
itself. Crawford makes use of the FPK identities to define
the inversion theorem, which asserts that the general form of
an arbitrary spinor may be expressed in terms of the bilinear
covariants as

ψ = e−iϕ
(

Σ − iΠγ5 + Jμγ μ−Kμγ5γ
μ + 1

2
Sμνσ

μν

)

ξ,

= e−iϕRiΓiξ, (8)

where the set {ϕ, Ri }, contains real functions, and ξ is an
arbitrary constant spinor. It is clear that even if we choose
a specific spinor ξ , we have the freedom to choose a set
{ϕ, Ri }, since the function ψ contains only eight independent
functions. Another important assertion, taken into account by
Crawford, is that the set of functions Ri must always satisfy
the corresponding equations from the FPK identities. A proof
for this statement can be found in Ref. [24].

It is important to stress that the alluded inversion is not
unique, since we can choose an arbitrary phase ϕ, and the
constant spinor ξ . Thus, concerning the inversion program,
it is fairly important to bear in mind that it is useful within the
formal algebraic context. In the next section, we shall apply
the inversion theorem in order to recover mass dimension 1
spinors coming from a suitable modification of Lounesto’s
scheme.

3 Algebraic construction of new spinors

After briefly revisiting the equivalence among the classical,
algebraic, and operator spinor formulations in what follows,
we shall be able to analyze the possible constructions for
the new mass dimension 1 spinors. Let us hence start by
expressing an arbitrary multivector in C �1,3 as (henceforth
eμeνeλ = eμνλ)

Γ = α + αμeμ + αμνeμν + αμνσ eμνσ + α0123e0123. (9)

Given the isomorphismC �1,3 � M (2,H), whereH denotes
the quaternionic ring, and a primitive idempotent f = 1

2 (1+
e0) is taken to define a minimal left ideal C �1,3 f . This is
relevant, in particular, to attain a spinor representation of
C �1,3. The most general multivector in C �1,3 f reads

ζ = (β1 + β2e23 + β3e31 + β4e12) f

+(β5 + β6e23 + β7e31 + β8e12)e0123 f. (10)

Since the identification ζ = Γ f ∈ C�1,3 f holds, it implies
the following equivalence between their respective compo-
nents:

β1 = α + α0, β2 = α23 + α023, β3 = −α13 − α013,

β4 =α12 + α012, β5 =−α123 + α0123, β6 = α1 − α01,

β7 = α2 − α02, β8 = α3 − α03. (11)

By denoting i = e2e3, j = e3e1, and k = e1e2, it is clear
that the set {1, i, j, k} is a basis for the quaternion algebra H.
The two quaternions appear as coefficients in (10), namely,

q1 = β1 + β2e23 + β3e31 + β4e12,

q2 = β5 + β6e23 + β7e31 + β8e12 ∈ H , (12)

where H = f C�1,3 f = spanR{1, e23, e31, e12} commutes
with f and e0123. This yields the equality q1 f +q2e0123 f =
f q1 + e0123 f q2, evincing that the left ideal C�1,3 f is in
fact a right module over K with a basis { f, e0123 f }. More-
over, the orthonormal basis {eμ} has an immediate standard
representation,

e0 =
(

1 0
0 −1

)

, e1 =
(

0 i

i 0

)

, e2 =
(

0 j

j 0

)

,

e3 =
(

0 k

k 0

)

,

which consequently induces representations for the idempo-
tent f and the multivector e0123 f :

[ f ] =
(

1 0
0 0

)

and [e0123 f ] =
(

0 0
1 0

)

.

Therefore, a general element Γ ∈ C �1,3 can be expressed as
(

q1 q2

q3 q4

)

∈ M (2,H) (13)

where q1 = α+α0 + (α23 +α023)i− (α13 +α013)j+ (α12 +
α012)k, q2 = (α0123 − α123) + (α1 − α01)i+ (α2 − α02)j+
(α3 − α03)k, q3 = −(α123 + α0123) + (α1 + α01)i + (α2 +
α02)j + (α3 + α03)k and q4 = (α − α0) + (α23 − α023)i +
(α013 − α13)j + (α12 − α012)k.

A multivector Ψ in the even subalgebra C�+
1,3 is named

spinor operator; it reads

Ψ = α + αμνeμν + α0123e0123 . (14)

From the point of view of Eq. (13) it yields

[Ψ ] =
(

q1 −q2

q2 q1

)

=
(

α + α23i − α13j + α12k −α0123+α01i+α02j+α03k

α0123−α01i−α02j−α03k α+α23i−α13j+α12k

)

.
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The isomorphisms C �1,3
1
2 (1 + e0) � C �+

1,3 � H
2 � C

4

among vector spaces, respectively, evince the correspon-
dence among the algebraic, the operatorial, and the classical
definitions of a spinor in Minkowski spacetime. Indeed, the
spinor space H

2 carries the (1/2, 0) ⊕ (0, 1/2) (or (1/2, 0)

or (0, 1/2)) representations of the Lorentz group, and it is
isomorphic both to the minimal left ideal C �1,3

1
2 (1 + e0),

which is equivalent to the algebraic spinor, and to the even
subalgebra C �+

1,3, which corresponds to the space of spinor
operators [29,30]. Thus the Dirac spinor is expressed equiv-
alently as
(

q1 −q2

q2 q1

)

[ f ] =
(

q1 0
q2 0

)

∼=
(

q1

q2

)

=
(

α + α23i − α13j + α12k

α0123 − α01i − α02j − α03k

)

∈ C�1,3 f � H
2. (15)

Now by employing the usual representation

1 
→
(

1 0
0 1

)

, i 
→
(

i 0
0 −i

)

, j 
→
(

0 1
−1 0

)

,

k 
→
(

0 i
i 0

)

,

in 2 ×2 complex matrices, the spinor operator Ψ in (14) can
be viewed furthermore as a 4 × 4 matrix, as follows:
⎛

⎜

⎜

⎝

α+α23i −α13+α12i −α0123+α01i α02+α03i
α13+α12i c−α23i −α02+α03i −α0123−α01i

α0123−α01i −α02−α03i α+α23i −α13+α12i
α02−α03i α0123+α01i α13+α12i α−α23i

⎞

⎟

⎟

⎠

≡

⎛

⎜

⎜

⎝

ψ1 −ψ∗
2 −ψ3 ψ∗

4
ψ2 ψ∗

1 −ψ4 −ψ∗
3

ψ3 −ψ∗
4 ψ1 −ψ∗

2
ψ4 ψ∗

3 ψ2 ψ∗
1

⎞

⎟

⎟

⎠

. (16)

The spinor ψ lives in the left (minimal) ideal (C⊗C�1,3) f ,
where f = 1

4 (1 + e0)(1 + ie12) is an idempotent that equals
diag(1, 0, 0, 0) in the Dirac representation, making eμ 
→
γμ ∈ M (4,C). Hence it follows that

ψ �

⎛

⎜

⎜

⎝

ψ1 0 0 0
ψ2 0 0 0
ψ3 0 0 0
ψ4 0 0 0

⎞

⎟

⎟

⎠

∈ (C ⊗ C�1,3) f, or

⎛

⎜

⎜

⎝

ψ1

ψ2

ψ3

ψ4

⎞

⎟

⎟

⎠

∈ C
4,

illustrating the usual prescription between the multivector ψ

and the classical Dirac spinor field.
In this context, the posed conundrum is thus reduced to

the calculation of the spinor operator (14), finding ψ [1,31].
Prior to accomplishing it, however, it is necessary to define
the bilinear covariants in terms of the spinor operator Ψ [29]:

σ = 〈Ψ ˜Ψ 〉0, ω = −〈Ψ e5 ˜Ψ 〉0, J = Ψ e0 ˜Ψ ,

S = Ψ e1e2 ˜Ψ , K = Ψ e3 ˜Ψ , (17)

where e5 = e0e1e2e3 and 〈 · 〉0 denotes the scalar part of
the multivector taken into account.

It is important to highlight that the bilinear covariants in
(1) provide 16 independent quantities. On the other hand, it
is also possible to express the spinor as a function of such
bilinear covariants with an arbitrary phase (see Sect. 2.2),
according to the Takahashi theorem [25]. Thus, keeping in
mind that the spinor exhibits only 8 degrees of freedom and
the bilinear covariants have 16 degrees of freedom, it is nec-
essary to use the Fierz identities. Such identities reduce the
degrees of freedom to 7, being the extra degree of freedom
associated to a phase factor.2 Taking into account Eq. (15),
it is usual, in order to reduce the degrees of freedom of Ψ , to
define the following relation:

α exp(e12θ) ∼= 1

4

(

Ψ +e0Ψ e0+e21Ψ e12+e210Ψ e012
)

, (18)

where α is a constant and θ is an arbitrary phase. To find the
constant α, we use the complex conjugate of Eq. (18), which
for the algebra here considered is equivalent to the reversion.
It yields the following expression:

α exp(e21θ)∼= 1

4

(

˜Ψ +e0 ˜Ψ e0 + e12 ˜Ψ e21 + e012 ˜Ψ e210
)

, (19)

and by multiplying Eqs. (18) and (19) we obtain

α2 = 1

16

(

σ + e5ω + Je0 + Se21 − e0123Ke210 + Je0 + σ

+ e5ω − e0e0123Ke21 + e0Se210 − e21(σ + e5ω)e21

+ e21S − e21e0123Ke0 − e21Je210 − e210e0123K

+ e210Se0 − e210Je21 − e210(σ + e5ω)e210
)

.

Making use of eμeν + eνeμ = 2ημν , it yields

α = 1

2

(

σ + e5ω + Je0 − Ke3 − Se12
)1/2

. (20)

The final step to determine Ψ in terms of α and its bilinear
covariants is to multiply Eq. (19), from which we get

Ψ α exp(e21θ) ∼= 1

4

(

Ψ ˜Ψ + Ψ e0 ˜Ψ e0 + Ψ e12 ˜Ψ e21

+Ψ e012 ˜Ψ e210
)

. (21)

By using the relations (17), the expression for Ψ is given by

Ψ = 1

4α

(

σ + e5ω + Je0 − Ke3 − Se12
)

exp(e12θ).

Through Eq. (14), it is possible to define the algebraic
spinor ψ by

2 For completeness, by considering Pauli spinors we have 4 degrees of
freedom, while the Fierz identities take account of 3 of them. Again,
the extra degree of freedom is associated to a phase [31].
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ψ = 1

4α

(

σ + e5ω + Je0 − Ke3 − Se12
)

exp(e12θ)

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

.

(22)

By means of Eq. (22) it is possible to recover the algebraic
spinor from its bilinear covariants via the inversion theorem
setup. Having completed the above program for the general
case, the application to new mass dimension 1 spinors follows
straightforwardly.

As remarked in Sect. 2, the Lounesto classification is based
upon the FPK identities. As far as these relations are satis-
fied, novel possibilities involving spinors can be considered.
We propose a classification of new spinors, arising from con-
sidering that the bilinear covariant J is always null and the
aggregate associated (Z) is no longer a boomerang as well.
On the other hand, the bilinear covariants still satisfy the
identities (2). As emphasized by the previous analysis, this
last requirement is important, since we shall express the new
algebraic spinors functional form.

The consideration that the bilinear covariants must satisfy
the FPK identities with J = 0 reveals the existence of three
new spinors. We shall finalize this section by evincing their
bilinears and their algebraic structure.
Case 1: σ = 0 = ω, J = 0, K �= 0 and S �= 0. It can be
verified that all the FPK identities (2) are satisfied. Moreover,
the aggregate (not a boomerang) associated with this spinor
reads

Z = i(S + Ke0123). (23)

Finally, considering this particular arrangement of the bilin-
ear covariants, the spinor operator is given by

Ψ ∼= 1

2
√−K3 − S21

(−Ke3 − Se21) exp(e12θ),

and the algebraic spinor turns out to be

ψ = 1

2
√−K3 − S21

(−Ke3 − Se21) exp(e12θ)

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

.

The next cases follow in straightforward analogy.
Case 2: σ = 0 = ω, J = 0, K = 0 and S �= 0. Here, the
FPK identities are also satisfied and the aggregate associated
is simply given by

Z = iS. (24)

The spinor operator reads

Ψ ∼= 1

2
√−S21

(−Se21) exp(e12θ),

and the algebraic spinor can be written as

ψ = 1

2
√−S21

(−Se21) exp(e12θ)

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

.

Case 3: σ = 0 = ω, J = 0, K �= 0, and S = 0, again the
FPK identities hold, and the associated spinor operator has
the following form:

Ψ ∼= 1

2
√−K3

(−Ke3) exp(e12θ),

leading to the following algebraic spinor:

ψ = 1√−K3
(−Ke3) exp(e12θ)

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

.

The cases we have shown demonstrate the existence of three
new classes of spinors not cataloged previously, which in par-
ticular, present mass dimension 1 in Minkowski spacetime.
These spinors have the specific bilinear covariant J equal to
zero. Since for spinors respecting the Dirac dynamics J is
the conserved current, here we must be dealing with spinors
obeying only the Klein–Gordon equation. Notice that it is a
natural consequence, since a given spinor in this context is
nothing but a section of the bundle comprised by SL(2,C)

and C4. Thus, it must respect relativistic dynamics. From the
mathematical point of view, instead, J �= 0 is also a necessary
condition to promote the Fierz aggregate to a more mean-
ingful quantity (in the geometrical context), the boomerang
which, in turn, is essential in reducing the number of differ-
ent spinor classes to six in the Lounesto classification. In the
consideration of J = 0 the classification itself is rebuilt and
new spinors arise.

4 Concluding remarks and outlook

We have shown the existence of three new spinors of mass
dimension 1, via the inversion theorem and a consistent mod-
ification of the Lounesto spinor field classification. This has
been achieved considering the specific bilinear covariant J
to be equal to zero. Physically, it means that the new spinors
cannot respect the Dirac dynamics, only the Klein–Gordon
one, enabling thus the canonical mass dimension to be equal
to 1.

A word of caution may be added to these final remarks. As
remarked along in the text, the adopted procedure is consis-
tent; and bearing in mind the precedent opened by previous
mass dimension 1 spinors (the Elkos), the spinors found may
have several physically relevant aspects to be explored [21].
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This is, in fact, our belief concerning the generalization pre-
sented here. However, one must take into account that the
classification and the algebraic functional form do not say
much about the emergence of these spinors in nature. As it
is, the quantities described in the cases 1, 2, and 3 of the
previous section are mathematically well-defined structures
whose associated physical field would have interesting prop-
erties. The possibility of a physical manifestation of such
spinors is currently under investigation.
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Capítulo 3

Física dos Espinores Escuros

Nossa intenção neste capítulo é nos focarmos em algumas das consequências

que a estrutura formal de trabalho com os espinores escuros trazem para a física.

Vamos nos ater, em particular, aos chamados espinores Elko (sigla em alemão para

Eigenspinoren des LadungsKonjugationsOperators, autoespinores do operador de

conjugação de carga). A sigla remete ao nome que abarca uma de suas principais

características. Vamos a elas.

Um espinor pertencente ao espaço de representação completo (0,1/2)⊕(1/2,0) é

composto, via de regra, por dois espinores de Weyl (bi-espinores), um mão direita

(frente boosts de Lorentz) outro mão esquerda. Cada um desses bi-espinores

pertence a um setor do espaço de representação completo. Usualmente, a relação

entre ambos os setores do espaço de representação é dada através do operador

de paridade. De fato, se tal procedimento é adotado então a dinâmica do espinor

fixa-se como dada pela equação de Dirac. Em outras palavras, a adoção de

autoespinores do operador paridade como bi-espinores compondo o quadri-espinor

completo implica a dinâmica de Dirac. Entretanto a utilização do operador de
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paridade não é a única maneira de se relacionar ambas as partes do espaço de

representação. Uma identidade algébrica entre as matrizes de Pauli (conhecida na

literatura como “mágica das matrizes de Pauli”) permite-nos essa correlação, tal

como se dá com a utilização do operador de paridade, porém sem a necessidade

de introdução de nenhuma simetria discreta.

Um resultado direto da observação feita ao final do parágrafo precedente é o

fato de que os espinores resultantes não obedecem a equação de Dirac, mas apenas

a equação de Klein-Gordon. Ainda no que diz respeito à estrutura do espinor,

uma base explícita pode ser estabelecida via atuação do operador de helicidade

no referencial de repouso. Esse detalhe é particularmente relevante, uma vez que

vale apenas para espinores de massa não nula, necessariamente. Prosseguindo na

formulação básica, uma característica importante é o fato dos espinores encontra-

dos terem fases fixadas pela exigência de que sejam autoespinores do operador

conjugação de carga. Isso implica, em última análise, a neutralidade desejada.

Sendo neutro, o espinor não carregará cargas de gauge em geral, e em particular

no que diz respeito ao grupo 𝑈(1). Logo, o termo “escuro” torna-se preciso para

a descrição desse espinor.

Outra característica relevante advém da construção do dual (adjunto) asso-

ciado ao espinor Elko. Com efeito, um procedimento bastante criterioso para a

construção do dual, impondo apenas condições físicas, mostra a existência de um

novo dual para o Elko cuja principal consequência está relacionada ao campo

quântico. Notemos, antes, que assim como acontece com espinores de Dirac, é pos-

sível se mostrar (via identidade algébrica de primeira ordem na derivada) que os

Elkos não se transformam de maneira unitária. Portanto não podemos associá-los

a um estado quântico, exigindo assim o procedimento de segunda quantização.
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Nesse ponto, é importante explicitarmos que o procedimento usual de se extrair

a teoria de campos da lagrangiana respeitada pelo campo em questão não deve ser

adotado a priori. A razão para tal é que todo o processo de construção do Elko é

feito em uma perspectiva bottom-up dotando a teoria, o quanto possível, de um

caráter de inevitabilidade. Assim, uma vez estabelecido o campo quântico cujos

coeficientes espinoriais de expansão são os espinores descritos até aqui, podemos

calcular o propagador de Feymann-Dyson e os correlatores a tempo fixo. O cálculo

do propagador revela, de fato, possuir o campo dimensão canônica de massa um,

evidenciando, uma vez mais, o fato do Elko obedecer exclusivamente à equação de

Klein-Gordon. Esse fato será importante para o desenvolvimento de parte desse

capítulo. Antes, porém, remetemo-nos a um aspecto sutil, porém importante, da

formulação. As somas de spin do Elko possuem um fator não usual que depende da

parametrização do momento, levando a uma quebra da simetria de Lorentz. Fato

é que tal fator é invariante por transformações do grupo 𝑆𝐼𝑀(2), um subgrupo

do grupo de Lorentz obtido quando as simetrias discretas são retiradas do grupo e

os geradores do setor ortócrono-próprio são rearranjados. É mister relembrarmos

que na formulação primeva do espinor o operador de paridade não foi levado em

conta, logo não há inconsistência interna na formulação da teoria. A modificação

nas somas de spin, entretanto, leva a uma consequência direta na localidade do

campo quântico: o cálculo dos correlatores mostra a existência de um eixo de

localidade, cuja existência novamente encontra respaldo no grupo 𝑆𝐼𝑀(2).

Nas próximas seções exporemos dois trabalhos que visam extrair algum possí-

vel sinal do Elko no LHC e, em seguida, um trabalho (em um contexto inteiramente

diverso) que trata de forma aproximada a radiação Hawking de Elkos.
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3.1 Sinais no LHC

Como mencionado ao longo das páginas precedentes, a formulação de um campo

espinorial escuro, e particularmente do Elko, é tal que os habilita a candidatos

à matéria escura. Assim, a própria formulação precisa garantir (por construção)

limitações severas nas possibilidades de interação do campo (pois do contrário o

campo não seria escuro). A questão que se coloca aqui, então, é: como detectar

um campo cuja principal característica é ter pouca possibilidade de detecção?

Vejamos o panorama geral.

Primeiramente, o fato dos coeficientes de expansão do campo espinorial serem

autoespinores do operador de conjugação de carga impede que a imposição de

simetrias de gauge sejam efetuadas. Deste modo, o campo é neutro com relação a

cargas de gauge e não interage, portanto, com o campo eletromagnético. Não há

então a possibilidade de termos de interação do tipo 𝑒𝑠𝑝𝑖𝑛𝑜𝑟 𝑑𝑢𝑎𝑙 𝐴𝜇𝐴𝜇 𝑒𝑠𝑝𝑖𝑛𝑜𝑟.

Ademais, a dimensão canônica de massa do campo reduz drasticamente outros

possíveis acoplamentos. De fato, a fim de que tenhamos acoplamentos renorma-

lizáveis perturbativamente, não devemos ter dimensão de massa negativa nas

constantes de acoplamento1. Assim sendo, resta-nos apenas o acoplamento com

o campo gravitacional (do qual nos ocuparemos no próximo capítulo) e com o

campo de Higgs. Nos próximos dois trabalhos nos ocuparemos com a interação

do Elko com o campo de Higgs, visando sua detecção no LHC.

No primeiro dos dois próximos trabalhos duas características foram investiga-

das: a não localidade do Elko, decorrente da sutil violação de Lorentz do campo,

estudada via correções radiativas de sua interação com o campo de Higgs, e o
1Notemos que acoplamentos de ordem superior serão severamente suprimidos por ordens de

magnitude da escala de Planck.
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estudo em nível de árvore de uma fusão de bósons de Higgs produzindo Elkos, e

múons e missing energy no estado final. A criação de Elkos diminui a quantidade

de energia perdida ao final do processo, levando a um indicativo de sua presença

na reação.

No segundo trabalho, extendemos a análise anterior e investigamos ainda outro

acoplamento do Elko com o campo de Higgs: o acoplamento Elko-Elko-Higgs com

energia de centro de massa de 14𝑇𝑒𝑉 . Mostramos que esse último acoplamento

apresenta um sinal bastante promissor quando comparado aos anteriores.
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1. Introduction

Elko spinor fields are unexpected spin one-half matter fields
endowed with mass dimension 1 [1,2]. Since its recent theoreti-
cal discovery, it has attracted much attention, in part by the wide
range of possibility opened by such peculiar matter fields in cos-
mology and physics [3] and in part from the mathematical point
of view [4]. The word Elko is the acronym for Eigenspinoren des
Ladungskonjugationsoperators or Dual-helicity eigenspinors of the
charge conjugation operator (see Eq. (2)).

The two aforementioned characteristics of Elko (namely, spin
one-half and mass dimension 1) makes quite reduced the possible
coupling to the Standard Model fields. In fact, keeping in mind that
interaction terms with mass dimension greater than four should be
severely suppressed by some fundamental mass scale and focus-
ing in simple power counting renormalizable arguments, it turns
out that Elko spinor fields may have quartic self-interaction and
an Elko–Higgs (doublet) interaction.1 In this vein, such spinor field
may act as a dark matter candidate.

Another interesting feature about Elko is its non-locality. Elko
spinor fields do not belong to a standard Wigner’s class [5]. It was
demonstrated, however, that Elko breaks Lorentz symmetry (in a
subtle way) by containing a preferred direction [6]. It is worth to
note that the existence of a preferred direction – the so-called ‘axis
of evil’ – (as well as a self-interaction) is believed to be a prop-
erty of dark matter [7]. We also remark, for completeness, that the
quantum field associated to the Elko spinor is now better under-

* Corresponding author.
E-mail addresses: mafd@cern.ch (M. Dias), camposc@feg.unesp.br (F. de Campos),

hoff@feg.unesp.br, hoff@ift.unesp.br (J.M. Hoff da Silva).
1 We shall emphasize that Elko does not carry standard U (1) gauge invariance [1].

stood in the scope of Very Special Relativity (VSR) framework [8].
In fact, it is possible to describe, or construct, Elko spinor fields
as the spinor representation of SIM(2) subgroup of VSR [9]. In this
vein, since SIM(2) is the largest subgroup of VSR encompassing all
the necessary physical symmetries except some (violated) discrete
symmetry, the tension between Elko and Lorentz symmetries dis-
appears.

On the other hand, it is well known that accelerators will test,
in an incontestable way, theories in the scope of physics beyond
the Standard Model as well as shed some light to the mass gener-
ation problem [10–13]. Candidates of dark matter predicted in par-
ticle physics theories, like supersymmetry, are on the focus of such
studies and the answers will provide additional information for a
deeper level of our understanding on astrophysics and cosmology.
In such a way, the CERN Large Hadron Collider (LHC) results are
fundamental for any study connecting high energy physics and as-
trophysics/cosmology. The LHC will provide center-of-mass energy
enough to probe directly the weak scale and the origin of mass.
Therefore, since we still have the open question of the dark mat-
ter nature, it is possible the study of the origin of mass as well as
the candidate to the dark matter in the search of Elko. In consider-
ing some specific process for Elko production, radiative corrections
must be taken into account. In this case, as we will see, the Elko
non-locality is manifest leading to an exclusive output in the final
signature. At phenomenological grounds, such a behavior suggests
a different analysis for the search of Elko at accelerators. So, we
consider in some detail a tree level process (where the non-locality
is absent) concerning to the Elko production at the LHC, whose
signature is μ+ + μ− + 2ς . Such process includes the quartic self-
interaction and a coupling with the Higgs scalar field.

This Letter is organized as follows: In the next section we intro-
duce some formal aspects of the Elko spinor fields calling attention
to the main characteristics that will be relevant in the subsequent

0370-2693/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2011.11.030
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analysis. In Section 3 we explore the Elko non-locality, when con-
sidering radiative corrections. In Section 4 we analyze the tree
level case of a viable cross-section for Elko production at the LHC.
Then, we move forward investigating some peculiar aspects of our
signal. In the last section we conclude.

2. Elko spinor fields

In this section we briefly introduce the main aspects concerning
the construction of Elko spinor fields. Its formal structure may be
outlined as follows. Let C be the charge conjugation operator given,
in Weyl realization, by

C =
(

0 σ2

−σ2 0

)
K , (1)

being K the operator that complex conjugate a spinor which ap-
pears on its right and σ2 the usual Pauli matrix. The Elko spinor,
λ(p), is defined by

Cλ(p) = ±λ(p), (2)

where plus sign yields self-conjugate spinors (λS (p)) and minus
anti self-conjugate spinors (λA(p))

λ(p) =
(

±σ2φ
∗
L (p)

φL(p)

)
. (3)

In the above equation φL(p) transforms as a left-handed (Weyl)
spinor, hence σ2φ

∗
L (p) transforms as a right-handed spinor. In

this vein, Elko spinor belongs to the ( 1
2 ,0) ⊕ (0, 1

2 ) representa-
tion space. Now, let us set the explicit form of Elko, in the rest
frame2 (p = 0). In order achieve the formal profile of Elko, one
may look at the helicity equation (σ · p̂)φ±(0) = ±φ±(0). Taking
p̂ = (sin θ cosφ, sin θ sin φ, cos θ) we arrive at four spinors, follow-
ing the standard notation, given by

λS{+,−}(0) =
(

+σ2[φ−
L (0)]∗

φ−
L (0)

)
,

λS{−,+}(0) =
(

+σ2[φ+
L (0)]∗

φ+
L (0)

)
,

λA{+,−}(0) =
(

−σ2[φ−
L (0)]∗

φ−
L (0)

)
,

λA{−,+}(0) =
(

−σ2[φ+
L (0)]∗

φ+
L (0)

)
, (4)

with phases adopted such that

φ+
L (0) = √

mς

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
(5)

and

φ−
L (0) = √

mς

(
− sin(θ/2)e−iφ/2

cos(θ/2)eiφ/2

)
. (6)

We remark that −iσ2[φ±
L (0)]∗ and φ±

L (0) present opposite helic-
ities and, hence, Elko carries both helicities. Another important
formal aspect of Elko spinor fields is its dual spinor. In order to

2 Of course, the explicit form for any momentum is obtained by performing a
boost in λ(p).

guarantee an invariant real norm, being positive definite for two
Elko spinor fields and negative definite norm for the other two,
the dual for Elko is defined by

λ
¬S/A

{∓,±}(p) = ±i
[
λ

S/A
{±,∓}

(
(0)

)]†
γ 0. (7)

With such a definition for the Elko dual, one arrives at the follow-
ing spin sums [1]∑
κ

λS
κλ

¬S
κ = +mς

[
I + G(φ)

]
,

∑
κ

λA
κ λ

¬A
κ = −mς

[
I − G(φ)

]
, (8)

where G(φ) is given by [6]

G(φ) = γ 5(γ1 sinφ − γ2 cosφ), (9)

and the gamma matrices are

γ 0 =
(

0 1

1 0

)
, γ i =

(
0 −σ i

σ i 0

)
, (10)

being γ 5 = −iγ 0γ 1γ 2γ 3. Spin sums entering in a profound level
into the local structure, as well as the statistic, of the theory. It
is important to note that the right-hand side of Eqs. (8) is not
proportional (or unitary connected) to the momentum operators.3

Therefore the relations (8) are responsible for the peculiar charac-
teristics of Elko locality structure, as well as its breaking of Lorentz
invariance. Such peculiarity, obviously, brings important modifica-
tions in the S-matrix calculations (see next section).

After studying the formal structure of Elko spinor fields, we
shall examine the quantum field associated to such spinor. It is
possible to define an Elko-based quantum field, respecting its for-
mal properties, by

η(x) =
∫

d3 p

(2π)3

1√
2mE(p)

×
∑
α

[
cα(p)λS

α(p)e−ipμxμ + c†
α(p)λA

αe+ipμxμ]
, (11)

being c†
α(p) and cα(p) the creation and annihilation operators, re-

spectively, satisfying the fermionic anticommutation relations

{
cα(p), c†

α′
(
p′)} = (2π)3δ3(p − p′)δαα′ , (12){

c†
α(p), c†

α′
(
p′)} = {

cα(p), cα′
(
p′)} = 0. (13)

The Elko dual η
¬ is obtained by replacing λ by its dual, c by c†

and ipμxμ by −ipμxμ (and vice versa). There is a crucial identity
obeyed by Elko, given by the application of the γμpμ operator to
λS/A(p):

(
γμpμδ

β
α ± imIεβ

α

)
λ

S/A
β (p) = 0, (14)

where ε
{−,+}
{+,−} := −1 and δ

β
α is the usual Kronecker symbol. In view

of (the simply algebraic) Eq. (14) it turns out that Elko satisfies
the Klein–Gordon (not Dirac) equation and, therefore, it must be
associated to a Klein–Gordon-like Lagrangian:

Lfree = ∂μη¬(x)∂μη(x) − m2
ςη¬(x)η(x). (15)

As already mentioned in the Introduction, we shall study the
coupling between Elko and Higgs fields, since it is the unique

3 In acute contrast with the usual Dirac case.
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renormalizable (perturbatively) Elko coupling. Therefore, in the
next section we shall explore the features of the (15) Lagrangian,
plus the interaction given by

Lint = λςφ2(x)η¬(x)η(x). (16)

In this work, and consequently to obtain the Feynman rules rel-
evant to it (see Ref. [15]), our object of study is (15) and (16)
added with the usual kinetic and interaction terms for the Higgs
boson, the Z vector field and summing over all the quarks in
the theory, as they appear in the Standard Model after symme-
try breaking.

As the last remark we emphasize that, in general, Eqs. (8) and
(9) suggest that there is a preferred axis for Elko. In fact, it is possi-
ble to show that Elko enjoys locality in the direction perpendicular
to its plane [6], or, equivalently, along the preferred axis ẑe . Let us
give an example coming from the canonical structure of Elko fields
in order to clarify this point. The canonical conjugate momenta to
the Elko fields are given by

Π(x) = ∂LKG

∂η̇
= ∂η¬

∂t
, (17)

where LKG stands for a Klein–Gordon-like Lagrangian. The equal
time anticommutator for η(x) and its conjugate momentum is

{
η(x, t),Π

(
x′, t

)} = i

∫
d3 p

(2π)3

1

2m
eip·(x−x′)

×
∑
α

[
λS
α(p)λ

¬S
α(p) − λA

α(−p)λ
¬A
α(−p)

]
,

(18)

which, in the light of the spin sums, may be recast in the following
form

{
η(x, t),Π

(
x′, t

)} = iδ3(x − x′)I + i

∫
d3 p

(2π)3eip·(x−x′) G. (19)

The existence of a preferred axis is now evident, since the second
integral in the right-hand side of Eq. (19) vanishes along the ẑe .
So, this preferred axis may be understood as an axis of locality.

3. Exploring Elko non-locality

According to its typical Lagrangian Elko spinor fields couple
only to the Higgs boson and, hence, any production mechanism
of such particle must occur via Higgs production or decay process.
A very specific feature of Elko production is its non-locality, en-
coded in the propagator behavior which has a different form (the
G(φ) term appears explicitly) when computed outside its axis of
propagation. In order to explore a little further this effect, let us
consider for instance the first graph of a cascade production of
Elko particles (Fig. 1).

If one chooses to compute (or measure) such a higher order
process in the same plane where the intermediary Elko is propa-
gating, the amplitude reads

iM = λ3
ς

λA
α(p3)λ

A
ρ(q1)λ

¬S
β(p4)λ

¬S
σ (q2)

(p4 + q1 + q2)2 − m2
ς

×
∫

d4k

(2π)4

1

[k2 − m2
H ][(k − q1 − q2)2 − m2

H ] .

Otherwise, there is also in the amplitude the presence of the G(φ)

term

Fig. 1. Example of higher order graphic relevant to Elko production and its non-
locality. Dotted lines stand for Higgs boson and continuous lines for Elko.

iM = λ3
ς

λA
α(p3)λ

A
ρ(q1)[1 + G(φ)]λ¬S

β(p4)λ
¬S
σ (q2)

(p4 + q1 + q2)2 − m2
ς

×
∫

d4k

(2π)4

1

[k2 − m2
H ][(k − q1 − q2)2 − m2

H ] .

The divergence appearing in the above amplitude was treated
via Pauli–Villars regularization, subtracted this amplitude from its
value at q1 = q2 = 0. The result is given by

iMRG = λ3
ς

λA
α(p3)λ

A
ρ(q1)[I + G(φ)]λ¬S

β(p4)λ
¬S
σ (q2)

(p4 + q1 + q2)2 − m2
ς

×
1∫

0

ln

(
(q1 + q2)

2x(x − 1) + m2
H

m2
H

)
. (20)

Computing the traces (where E1 and E2 are, respectively q1 and q2
particle energies) the average spin squared sum is

1

16

∑
spins

|MRG|2

= E2 E4(E3 + p3)(E1 + q1)trace[(I − G(φ))(I + G(φ))(I + G(φ))]trace[I − G(φ)]
[(p4 + q1 + q2)2 − m2

ς ]2

×
[ 1∫

0

ln

(
(q1 + q2)

2x(x − 1) + m2
H

m2
H

)]2

λ6
ς

= λ6
ς

8E2 E4(E3 + p3)(E1 + q1)

[(p4 + q1 + q2)2 − m2
ς ]2

×
[ 1∫

0

ln

(
(q1 + q2)

2x(x − 1) + m2
H

m2
H

)]2

. (21)

Note that if one lies on the �p4 + �q1 + �q2 direction the obtained
result is divided by two. Since the decay rate is proportional to
the average spin squared amplitude integrated over the four-body
phase space, the Elko particle decays in a preferred axis. Besides,
the decay process in such a channel is one half lower than in any
other direction.

74



M. Dias et al. / Physics Letters B 706 (2012) 352–359 355

Fig. 2. Kinematics of Elko production.

Fig. 3. q + q̄ → μ+ +μ− + 2ς scattering. The loop is composed by two Higgs and a
Z boson.

The above considerations lead to an important result: if the cut
applied on φ includes the intermediary Elko propagation axis, the
measured decay is lower than any other cut in which this spe-
cific direction is not included. Therefore it breaks φ isotropy which
is, obviously, fully observed in all Standard Model particles. Such
a process makes then manifest the Elko non-locality, giving also
a clue for its signature. We should also note another feature in
this production, as reflect of momentum conservation, represented
in Fig. 2. An increase in the Elko production, in a preferred di-
rection, should implicate a decrease of the remain particles final
momentum in the same direction (as a missing energy in the de-
tector), reflecting in a complementary angular distribution, when
compared with its possible background.

4. Tree level case

For tree level calculations, the non-locality effect is not man-
ifest, and the study of possible signals of Elko decay at accelera-
tors is addressed to the standard searching. For this purposes, we
have considered the case where Elko can be produced at the LHC
through the Higgs boson fusion, via quartic coupling as depicted in
Fig. 3. In both cases (Higgs production or decay process), however,
the production is suppressed according to the value of the cou-
pling constant, leaving the number of events and the signature of
the decay expressed as a function of two fundamental parameters
of the model: the Elko mass and the Elko–Higgs boson coupling
constant, which will be taken as less than or equal to one, in order
to ensure renormalizability. At the LHC, signatures with leptons as
a final state are preferred, specially muons, whose background can
be calculated directly from the Standard Model. Besides, the iden-
tification of muons are well given as, for example, at CMS technical
proposal. In this vein, we will be focused in a two muons + Elko
signal, according to the process illustrated in the graph (Fig. 3).
In this case the process is q + q̄ → μ+ + μ− + 2ς , where 2ς
stands for the two Elko particles with mass mς produced in the
threshold were they will be on rest in the CoM frame. We do not
considered here the direct production of two Higgs from Elko fu-
sion, since the Higgs boson is, indeed, the key block to be detected

Fig. 4. Performed loop calculation.

at the LHC. We have fixed the Higgs mass boson in the experi-
mental limit [14] and also considered jets with high energy and
momentum. In such case, they will emerge almost collinear with
the beam. The interaction rate is proportional to the cross section
calculated as follows:

We shall label p A = xA P A and pB = xB P B , respectively, as the
momentum for the quark and anti-quark, related to the initial
protons P A,B and the muons with momentum p1 and p2. The am-
plitude is given by:

iM = qr(p A)

[
ig Z

2
γ μ

(
c f

V − c f
Aγ 5)]

× q̄r′
(pB)

[ −i

q2 − m2
Z

(
gμν − qμqν

m2
Z

)]

× igmZ gνρ

2 cos (θw)

[ −i

k2 − m2
Z

(
gρσ − kρkσ

m2
Z

)
i

(q − k)2 − m2
H

]

× igmZ gσγ

2 cos (θw)

[
i

(q − k) − m2
H

]
λςλ

¬S
ΛλA

Ω

×
[ −i

q2 − m2
Z

(
gγ δ − qγ qδ

m2
Z

)]

×−ig Z

2
γ δ

(
−1

2
+ 2 sin2 (θw) + 1

2
γ 5

)
ūs(p1)vs′(p2), (22)

following the conventions of Ref. [15], where the factors for quarks
read

u ⇒ c f
A = 1/2, c f

V = 1/2 − 4/3 sin2(θw),

d ⇒ c f
A = −1/2, c f

V = −1/2 + 2/3 sin2(θw).

On partonic CoM reference frame and p A = pB = p1 = p2 ≈ 0 we
can set

p A =
√

ŝ

2
(1,0,0,1), pB =

√
ŝ

2
(1,0,0,−1),

p1 =
(√

ŝ

2
− mς

)(
1, sin (θ),0, cos (θ)

)
,

p2 =
(√

ŝ

2
− mς

)(
1,− sin (θ),0,− cos (θ)

)
,

p3 = mς (1,0,0,0), p4 = mς (1,0,0,0),

where q = √
ŝ.

Looking at Fig. 4 we can identify

P1 = (k − q)2 − m2
H ,

P2 = (q + 2mς − k)2 − m2
H ,

P3 = k2 − m2
Z = l20 − l2⊥ − m2

Z , (23)

as the denominators for the function to be integrated. In order
to use the functions well established (OneLoop2Pt) on xloops
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package [16] we need to reduce the number of functions on de-
nominator (23), using Feynman trick,

1

P1 P2 P3
=

1∫
0

1

P3

dx

[P1x + P2(1 − x)]2
=

1∫
0

1

P3

dx

(k + q′)2 − m2
,

q′ = −x
√

ŝ + (x − 1)(
√

ŝ + 2mς )

⇒ eμ
0 = q′μ

‖q′‖ = −(1,0,0,0),

m2 = [
x
√

ŝ + (1 − x)(
√

ŝ + 2mς )
] + m2

H − x
√

ŝ

− (1 − x)(
√

ŝ + 2mς )2, (24)

where x integration was performed with Maple using of the ap-
proximation where mς /

√
ŝ ≈ 0. Obviously, such an approximation

in the Elko mass is largely justified in order to guarantee Elko
spinor fields as a dark matter candidate. This choice restrict the
experimental analysis to events with low energy QCD jets in its
final state, since almost all momentum is transferred to the ini-
tial partons, providing a signature for the Elko production. One
can expect missing energy on detectors, due to the fact that Elko
particles will be unobserved by detectors and the only impact in
its production reduces the final μ+ + μ− quadrimomentum. With
this expression at hands, it is necessary to multiply by its con-
jugate and perform the respective polarization sums (8), taking
into account, obviously, the terms G(φ) responsible for the non-
locality outside ẑ axis. Is straightforward to perform those traces
for Elko polarization sums using the Elko dual definitions and the
spin sums [1]

∑
κ

λ
¬S
κ

(
λ
¬S
κ

)†

=
∑
κ

(
iερ

κ λS
ρ

†
γ 0)(iεσ

κ λS
σ

†
γ 0)† =

∑
κ

ε
ρ
κ εσ

κ λS
ρ

†
λS
σ (25)

= λS{−,+}
†
λS{−,+} + λS{+,−}

†
λS{+,−} = 4EI, (26)

where ε
{−,+}
{+,−} = −ε

{+,−}
{−,+} = −1.

After squaring, taking traces and averaging over the spin of the
initial and final particles (we approximate the masses for quarks
and muons to zero), we should obtain

∑
r,r′

∑
s,s′,Ω,Λ |M|2. One

could use it to calculate

dσ̂ = 1

2E A2E B

1

2

(
1

64

∑
spin

|M|2
)

dP S,

where dP S is the phase space for two muons with momentum p1
and p2 and two Elkos with mass mς on rest, i.e.,

dP S = (2π)4δ4(p A + pB − p1 − p2 − p3 − p4)

× d3 p1

(2π)3(2E1)

d3 p2

(2π)3(2E2)

= 1

4(2π)2
δ(

√
ŝ − E1 − E2 − 2mς )

p2
1 dp1 dΩ

E1 E2

= 1

32π2

√
ŝ√

ŝ − 2mς

dΩ, (27)

where |p1|dp1 = E1 dE1, being E1 = (
√

ŝ/2 − mς ). We emphasize
that we are working within mς ≈ 0 approximation. We also stress
that dσ̂ has no dependence on angular coordinates, so the inte-
gration on dΩ gives a multiplicative factor 4π for the total cross

section. Our final result, however, is to much huge to be presented
here.

On the hadronic frame, P A =
√

s
2 (1,0,0,1) and P A =

√
s

2 (1,0,

0,−1). Thus

s = (P A + P B)2 = ŝ

xA xB
,

and we will integrate using Cuba routines [17]

σ(p+p→μ++μ−+2ς) =
∑

q

1∫
0

1∫
0

dxA dxB
[

fq(xA) fq̄(xB)

+ fq̄(xA) fq(xB)
]
σ̂ (ŝ)δ(ŝ − xA xB s).

With the hadronic total cross section at hands, it is straightforward
to obtain the event rate R by multiplying σ by the integrated lu-
minosity L, estimated in 1 fb−1 and 10 fb−1.

The results of the studied process are presented in Fig. 5. We
show the total expected event rate for 2 Elkos + μ+μ− via the
Higgs boson fusion, at the LHC, for two different values of the
center-of-mass energy, as well as two different values for the total
luminosity. The total number of events is presented as a function
of the Elko mass. The main case we consider, with total luminos-
ity of 10 fb−1, at 7 TeV, for a coupling constant of an order of 1
shows a quite optimistic number of events, around a thousand. For
a smaller coupling constant, O (10−2), the number of events is also
large. In this sense, we can consider the LHC, for instance, as a
good scenario to study both, the Higgs boson and the Elko produc-
tion in order to shed some light to the dark matter problem. For
a 14 TeV center-of-mass energy case, in both 1 fb−1 and 10 fb−1

cases, the total number of events produced at the LHC is even big-
ger, for the different values of the coupling constant. By now, since
the number of events is encouraging, we shall keep our attention
in the exploration of a typical signature encoding the Elko non-
locality.

5. Detection possibility at LHC

Even though the decay in the preferred axis is estimated as
one half lower than in any other direction, a poor detector an-
gular resolution on this decay will smear out this effect, either
due to the detector tracking, or due to the poor event recon-
struction. Therefore it is mandatory to make an estimation of the
minimum angular resolution requirement to detect this effect. At
the LHC, the minimum angular resolution at, e.g., the CMS detec-
tor �φres = 10 mrad [18]. The relative significance on this interval
for an integrated luminosity L, taking into account our background
will be given by

Srel = S√
B

, (28)

since the background is isotropically distributed in the azimuthal
angle and the efficiency on the muon measurement is about 98%.
In Eq. (28), S stands for the number of events produced in the Elko
decay and B denotes the number of events related to the back-
ground.

The signal is characterized by a dimuon in the final state re-
constructed in a Z boson and some missing energy in the final
state. Thus the irreducible SM background consists of the ZZ de-
caying in two muons and two neutrinos, as already studied in
Ref. [19]. The background processes for the signal, considering
next-to-leading order cross section are presented in Table 1 (see
[18]). The irreducible SM background for the signal is the ZZ pro-
cess, where one of the Z bosons decays into neutrinos. Since we
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Fig. 5. Event rate (1/s) versus mass (GeV) for two luminosity values and the center-of-mass energy at the LHC for 7 TeV (a)–(b) and 14 TeV (c)–(d). The range for mass was
chosen to guarantee the fact that the Elko can be a possible candidate for dark matter [1]. We have considered two values for λς , namely, 1 and 10−2.

Table 1
Background estimative for the high-order process under study.

Channel Cross section (pb)

qq → WW → μ+μ− 11.7
tt̄ 840
gg → WW → μ+μ− 0.54
γ ∗ , Z 145 000
bb̄ → μ+μ− 710
ZW → μ+μ−l± 1.63
tW b → μ+μ− 3.4
ZZ → μ+μ− 1.52

are interested in making an estimate of the signal, taking into ac-
count the background without defining cuts for a detailed analysis,
we only consider the ZZ process, as it is much larger than the
signal. In such a case, the number of events for the background
considering a luminosity of 2 × 1033 cm−2 s−1, is around 99 000
events.

In order to explore the claimed angular dependence for the sig-
nal, we study the process qq̄ → Z∗ςς∗ → 2μ4ς , which is shown
in Fig. 6. The two final muons inherit the sensibility on azimuthal

Fig. 6. Feynman diagram for the production of 4 missing Elko bosons (solid lines)
and two muons, associated with some Higgs intermediary process.

angle by momentum conservation on the final states. Actually this
process is nothing but that one described in Fig. 3 followed by
the decay of Fig. 1, mediated by two loops involving Higgs parti-
cles.

An analytic expression for this process can be obtained using
the equation for 1

16

∑
spins |MRG|2 (see Section 3) and supposing

the limit q1+q2
mE

≈ 0,q1 + q2 > p4. One can expand the integrand,
and proceed with the integration for the first term to obtain
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1

16

∑
spins

|MRG|2 ≈ λ6
ς

8E2 E4(E3 + p3)(E1 + q1)

(p4 + q1 + q2)4

(q1 + q2)
4

36m4
H

≈ λ2
ς

2E2 E4(E3 + p3)(E1 + q1)

9m4
H

.

In the limit p3, p4 → 0, and with all final state energies near to
the Elko mass, we obtain a lower bound to this values given by

1

16

∑
spins

|MRG|2 � λ6
ς

2m4
E

9m4
H

, (29)

which shall be multiplied by the cross section obtained numeri-
cally before.

For the Elko production, on the simple decay 2μ + 2ς and fix-
ing the coupling constant at its maximum value (λς = 1) as well as
mς = 0.09 GeV, we have σsignal = 5.06 fb. At the LHC, for a 1 fb−1

integrated luminosity, one should obtain a ratio S√
B

= σsignal
√

L√
σbckg

around 5, where S stands for the number of events for the sig-
nal and B the number of events for the background (or actually
one half of this value, taking account the angular asymmetry).

However as the detection of this process signature depends on
the coupling constant, since under a certain value it would be re-
quired a better angular resolution in the detector to distinguish
the signal from the background. For an indirect search of Elko
particles via azimuthal angular asymmetry with 2μ + 4ς process,
using the angular resolution for the CMS detector (�φ � �φres),
mς = 0.09 GeV and

√
s = 7 TeV, the number of events decreases

substantially to S = 4.4 × 10−15 taking (29) into account. Hence,
one can see that for these parameters Eq. (28) gives a result which
is clearly insufficient to claim a discovery at the LHC. The process
on study has actually a dependency on λ6

ς , so the estimated min-

imum resolution for the λς = 1 × 10−2 case, maintaining Srel ≈ 5,
is �φres ≈ 9.1 × 10−11 rad. Lower values of λς should require a
better resolution on the detector. Of course, for this rough esti-
mate, none type of cuts was performed and a detailed study using
a Monte Carlo simulation for the final state Elko momenta would
be in order.

The main motivation for this analysis is the possibility of Elko
detection in a range of parameters making possible to address Elko
as possible dark matter candidate. We now shall look at the follow-
ing question: what should be the expected missing energy in the
dimuon + jet system, if Elko production is occurring taking into ac-
count the Elko non-locality? Considering the proton–proton energy
as (

√
s,0,0,0) in Fig. 2 we have the momentum configuration

p2μ =
√

s

2

(
1 + m2μ

s
− m2ς

s
, β sin(θ),0, β cos(θ)

)
,

p2ς =
√

s

2

(
1 + m2ς

s
− m2μ

s
,−β sin(θ),0,−β cos(θ)

)
,

where m2ς (m2μ) is the invariant mass, for instance m2ς = 2m2
ς −

2�p3 · �p4 + 2E3 E4, as the sum of two momentum vectors, and β =√
1 − 2

m2μ+m2ς

s + (m2μ−m2ς )2

s2 . Therefore the missing energy is

Emiss = √
s

(
1 + m2μ − m2ς

s

)
− √

s = m2μ − m2ς√
s

.

An important requirement is imposed by the minimum energy
resolution for the search of missing energy on this channel. Con-
sidering the same parametrization as used for the CMS detector
[18], we suppose that the threshold for the missing energy for the
signal is given by

Emiss = m2μ − m2ς√
E

.

In the limit that the two Elkos does not have a significant mo-
menta, it is possible to approximate m2μ ≈ mZ = 91.187 GeV and,
then, one should to select only events with Emiss > 25 GeV. This
means that a detailed analysis should take into account both, an-
gular and energy, resolutions.

6. Final remarks

By analyzing the consequences of the unusual Elko propagator
behavior, it was possible to derive a typical signature to the Elko
production, namely: due to the Elko non-locality, the measured
decay depends on the angular cut applied, breaking therefore the
angular isotropy (fully observed in all standard model processes).

We shall stress two important points: Fig. 1 may be under-
stood as the first term of a sum involving internal Elko productions
of the same type (a “cascade” of a “fork”), what means that its
contribution can be improved by the sum of those graphs, faced
as a finite geometric series on λ2; second, it should be stressed
for completeness, that another factor resulting as an unexpected
asymmetry on φ (for graphs involving four Elkos coupling) arises
from the inclusion of the η

¬
η
¬ and ηη type propagators, which are

proportional to N(p′) and M(p) matrices, the “twisted spin sums”:

M(p)

=

⎡
⎢⎢⎢⎣

e−iφ p cos(θ) p sin(θ) 0 −iE

p sin(θ) −eiφ p cos(θ) iE 0

0 −iE −e−iφ p cos(θ) −p sin(θ)

−iE 0 −p sin(θ) eiφ p cos(θ)

⎤
⎥⎥⎥⎦ ,

N
(

p′)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

√
p′ 2 + m2

ς 0 ip′ sin(θ ′) −ie−iφ′
p′ cos(θ ′)

0
√

p′ 2 + m2
ς −ieiφ′

p′ cos(θ ′) −ip′ sin(θ ′)

ip′ sin(θ ′) −ie−iφ′
p′ cos(θ ′) −

√
p′ 2 + m2

ς 0

−ieiφ′
p′ cos(θ ′) −ip′ sin(θ ′) 0 −

√
p′ 2 + m2

ς

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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The aim of this paper is to explore the possibility of discovering a fermionic field with
mass dimension one, the Elko field, in the Large Hadron Collider. Due to its mass
dimension, an Elko can only interact either with Standard Model spinors and gauge
fields at one-loop order or at tree level through a quartic interaction with the Higgs
field. In this Higgs portal scenario, the Elko is a viable candidate to a dark matter
constituent which has been shown to be compatible with relic abundance measurements
from WMAP and direct dark matter searches. We propose a search strategy for this dark
matter candidate in the channel pp → �+�− + E/T at the

√
s = 14 TeV LHC. We show

the LHC potential to discover the Elko considering a triple Higgs–Elkos coupling as small
as ∼ 0.5 after 1 ab−1 of integrated luminosity. Some phenomenological consequences of
this new particle and its collider signatures are also discussed.

PACS numbers: 13.85.Rm, 12.38.Bx, 95.35.+d

1. Introduction

The so-called Elko spinor fields are a set of four spinors, whose main characteristic

is to be eingenspinors of the charge conjugation operator. This construction renders

‖Corresponding author.
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these spinors an important property: they are blind with respect to electromagnetic

interactions. Moreover, the quantum field associated to an Elko spinor presents

the peculiarity of having mass dimension one, severely reducing the perturba-

tively renormalizable possible couplings of the quantum Elko field,1 as a matter

of fact, only a quartic interaction with two Elkos and two Higgs bosons is allowed

in the Standard Model (SM). These two characteristics underlying the formal Elko

structure are responsible for making the spinor to deserve the epithet of a first

principle dark matter candidate.1 A complementary analysis involving relic den-

sity and gravitational collapse of a primordial Elko suggest, further, an Elko mass

of order of a few MeV2 in order the Elko field to be a viable dark matter (DM)

candidate.

With the CERN Large Hadron Collider (LHC) in operation and its success in

the recent discovery of the Higgs boson, it is natural to ask whether the features

of the Elko field can be probed in this collider. In this paper, we investigate the

possibility for Elko production at the 14 TeV LHC.

Assuming only a quartic interaction with Higgs bosons makes a model for Elkos

a Higgs portal type model3 where DM communicates to the rest of the spectrum

only through Higgs interactions. In these scenarios, the search for DM at the LHC

has been made mainly looking for mono-X signatures, where X is any SM particle

that can serve as a tagging signal, once the DM, as the Elko, would leave no trace

in the detectors. These signatures have large SM backgrounds that can be typically

cleaned up by imposing a hard cut on the missing transverse momentum of the

events.

On the other hand, after electroweak symmetry breaking (EWSB), the Higgs

field acquires a nonzero vacuum expectation value (VEV) inducing a renormaliz-

able triple vertex with two Elkos and a single Higgs boson. In this case, the Elko

would get its mass from the EWSB mechanism and the production of Elkos pairs

is considerably enhanced compared to the quartic coupling scenario.

We present in this paper the prospects for search strategies, at the 14 TeV LHC,

in the mono-Z, mono-jet, mono-Higgs, and Weak Boson Fusion (WBF) channels.

We found that mono-Z process pp → Z∗ → Z +Elkos → �+�− +E/T , where � = e, μ

all charged leptons but the taus, is the most promising in the search for Elkos even

after taking into account all the dominant and sub-dominant SM backgrounds.

The paper is organized as follows. In Sec. 2, we shall briefly resume the Elko

construction and some of its properties; in Sec. 3, we make the phenomenological

analysis of channels mentioned above. In Sec. 4, we present our conclusions.

2. Elko Spinor Field

The charge conjugation operator, in the Weyl representation, is given by

C =

(
O iΘ

−iΘ O

)
K , (1)
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where K is responsible for complex conjugate the spinor it is acting on and Θ =

−iσ2. The very equation defining the Elko spinors is given by

Cλ(p) = ±λ(p) . (2)

It is possible to show that there are four eigenspinors, two corresponding to the +

plus — the self-conjugated spinors λS — and two related to the − sign, the antiself-

conjugated spinors. The functional form for these spinors may be found explicitly,

for instance in Refs. 1 and 2. Here, we shall focus on the main properties concerning

our analysis. We shall pinpoint that the explicit construction of the Elko spinors

defines it as a member of all the r ⊕ l Weyl representation space, i.e. the spinor

carries both helicities.

It is possible to find the correct dual for the Elko spinor by means of a quite

precise criteria, as follows. Let us demand that the product [λα]†ηλβ be invariant

under arbitrary Lorentz transformations, where the index labels one of the four

Elko. This requirement amounts out as the constraints [Ji, η] = 0 = {Ki, η}, being J

and K the Lorentz transformation generators of rotations and boosts, respectively.

It can be readily verified that the unique consistent solution is given by4 η = ±iγ0

and the dual representation so that the norm is well-defined (leading to a positive

definite Hamiltonian) is given by

¬
λ

S/A
{∓,±}(p) := ±i

[
λ

S/A
{±,∓}(p)

]†
γ0 . (3)

With the aid of the above equations, it is possible to set down the orthonormality

relations:
¬
λS

α(p)λI
α′(p) = +2mδαα′δSI , (4a)

¬
λA

α (p)λI
α′(p) = −2mδαα′δAI , (4b)

where I ∈ {S, A} and the completeness relation

1

2m

∑

α

[
λS

α(p)
¬
λS

α(p) − λA
α (p)

¬
λA

α (p)
]

= I , (5)

with α = {+, −}, {−, +}.

It is important to emphasize the emergence of unusual spin sums, given by
∑

α

λS
α(p)

¬
λS

α(p) = +m[I + G(p)] , (6a)

∑

α

λA
α (p)

¬
λA

α (p) = −m[I − G(p)] , (6b)

where one can write down the explicit form for G(p) as

G(p) =

⎛
⎜⎜⎝

0 0 0 −ie−iφ

0 0 ieiφ 0

0 −ie−iφ 0 0

ieiφ 0 0 0

⎞
⎟⎟⎠ .
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Notice that the spin sums are modified by a rather nontrivial term whose argument

is given by the momentum. These spin sums do violate (in a rather subtle way)

the full Lorentz invariance, making Elko fields invariant under a subgroup of the

Lorentz group (see Ref. 5 for an up to date account on the formalism). We point

out that in the case of the subgroup in question, namely HOM(2),6 rotations and

boosts are still present as generators.

It is easy to show that the Elko spinor satisfy a Dirac-like equation which is

only an algebraic identity (nothing to do with the field dynamics) given by

Dλ
S/A
β (p) =

(
γμpμδβ

α ± imIεβ
α

)
λ

S/A
β (p) = 0 ,

where δα
β is the usual Kronecker symbol and the antisymmetric symbol ε is defined

as ε
{−,+}
{+,−} := −1. The importance of such a relation shall not be underestimated.

In fact, the very existence of the operator D acting on the spinor space gives in-

formation about the physical content encoded on the Elko spinor: the covariance

condition arising from the D operator is the same of the Dirac one and, therefore,

the corresponding transformation on λS/A is not unitary. As a result, λS/A can-

not be associated to a quantum state in any sense and (second) quantization is

necessary.

The full consistent quantum field associated with the Elko can be written as1,2

η(x) =

∫
d3p

(2π)3
1√

2mE(p)

∑

β

[
cβ(p)λS

β (p)e−ipμxμ

+ c†
β(p)λA

β (p)e+ipμxμ
]
.

Analogously, its dual
( ¬
η(x)

)
is obtained by replacing λ for

¬
λ, c for c† and ipμxμ ↔

−ipμxμ. The anticommutators for the creation and destruction operators, c†
β(p)

and cβ(p), are:
{
cβ(p), c†

β′(p
′)
}

= (2π)3δ3(p − p′)δββ′ , (7)

{
c†
β(p), c†

β′(p
′)
}

=
{
cβ(p), cβ′(p′)

}
= 0 . (8)

In order to unveil the dynamics associated to the quantum field, a bottom-

up approach is necessary. The best procedure is to calculate the Feynman–Dyson

propagator inferring, then, the corresponding Lagrangian. After a slightly modified

textbook calculation, one arrives at

S(x − x′) =

∫
d4p

(2π)4
eipμ(xμ−x′μ) I

pμpμ − m2 + iε
, (9)

in the absence of a preferred direction, which is nothing but the Klein–Gordon

propagator. Hence, the Elko spinor field has mass dimension one and satisfy the

Klein–Gordon equation,

(pμpμ − m2)λS/A(p) = 0 .

As a consequence, the perturbatively renormalizable terms in the Lagrangian den-

sity are only the mass term and an interaction of a scalar field

L = ∂μ ¬
η(x)∂μη(x) − m2

ε
¬
η(x)η(x) + λE

¬
η(x)η(x)φ(x)2 ,
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where λE is the coupling constant. Thus, the only possible interaction with vector

bosons is via production of two Higgs mediated by a loop of these particles, with a

subsequent generation of a η
¬
η pair, in the form of an effective vertex.

Nevertheless, we can also shift the Higgs by a nonzero VEV, obtaining a triple

Higgs(H)–Elko(E)–Elko(E), HEE, vertex

Lint = αE
¬
η(x)η(x)φ(x) , (10)

with [αE ] = [mass], also renormalizable. This coupling constant naturally arises in

a theory where Elkos also get their masses from the electroweak symmetry breaking

mechanism, and its relation with λE and the Higgs VEV is

αE =
v√
2
λE .

As we are going to show, Elkos that couple to Higgs bosons according to Eq. (10)

have a relevant production cross-section at the 14 TeV LHC, unlike those that

couples to Higgs bosons through quartic interactions only.

2.1. Computation of the one-loop amplitudes

Let us illustrate the computation of the one-loop amplitude contributing to the

production mode pp → Z∗ → Z + EĒ. This computation will be extended for all

analysis containing a λE coupling. Afterwards, we propose a search strategy for

Elkos at the 14 TeV LHC.

The Feynman diagrams contributing to the process pp → Z + EĒ is shown

in Fig. 1.

The effective coupling between two Z bosons and two Elko fields, which gives

rise to the amplitude M1 in Fig. 1, in the on shell renormalization scheme is given

by (Ṽ
ZZ→λ

¬
λ

= V eff

ZZ→λ
¬
λ
(p5, p6) − V eff

ZZ→λ
¬
λ
(0)), due a Higgs loop, using a cutoff

scale,

Ṽ eff =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

g1
λE

16π2

(
2 +

√
1 − γ ln

∣∣∣∣
1 − √

1 − γ

1 +
√

1 − γ

∣∣∣∣
)

+ r , γ ≤ 1 ,

g1
λE

16π2

(
2 − 2

√
γ − 1 tan−1(

√
γ − 1)

)
+ r , γ > 1 ,

(11)

where g1 is the coupling between two Higgs and two Z bosons, γ =
4m2

H

|p5+p6|2 and

p5,6 are the final state Elkos four-momentum. The r function is

r = g2
λE

16π2

∫ 1

0

dx
tan−1

( (q+|p5+p6|)x+|p5+p6|
Δ

)

|p5 + p6|Δ
− tan−1

( (q+|p5+p6|)x
Δ

)

|p5 + p6|Δ
,

where

Δ =

√
−m2

H(x − 1) + m2
Zx −

(
q +

|p5 + p6|
2

)2

x ,
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Fig. 1. Feynman diagram for the production of a pair of Elko spinors associated with a SM gauge
boson Z0.

depending on the Z mass, mZ , the coupling between one Higgs and two Z bosons,

g2, and the quartic HEE coupling λE . The external momentum of a vector boson

entering in the effective vertex is denoted by q.

The second amplitude contributing to the effective vertex, M2, is a tadpole

diagram involving one Higgs and two Elkos, and is given by

Ṽ eff

H→λ
¬
λ

=
λE

16π2

(
2 −

2mH tan−1
( |p5+p6|

mH

)

|p5 + p6|
+ ln

∣∣∣∣
m2

H

m2
H + |p5 + p6|2

∣∣∣∣

)
. (12)

We also will need the spin sum of dimension-one Elko spinors to compute the

square amplitude to the partonic process qq̄ → Z and two Elkos depicted in Fig. 1.

To perform it, we use the fact that1

λ
S/A
{∓,±}(�p) =

√
E + mε

2mε

(
1 ∓ |�p|

E + mε

)
λ

S/A
{∓,±}(

�0) = λ
S/A
{∓,±}(−�p) , (13)

where E = Ecm

2 . Let us fix the spinor indices a, b = 1, 2, 3, 4 to write the amplitude

of the simplest scattering process — the two Higgs annihilation generating two

Elkos — as

M =
λE

mε
λI,a

α

¬
λJ,b

α′ δab ,

so that

|M|2 =
λ2

E

m2
ε

λI,a
α λI,c

α

† ¬
λJ,b

α′
¬
λJ,d

α′
†δabδcd .
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The spin and Elko type averages are

1

16

∑

α,α′

∑

I,J

|M|2 =
λE

16m2
ε

∑

α,α′

(
λA

α λA
α

†
+ λS

αλS
α

†)
ac

×
∑

I

( ¬
λI

α′
¬
λI

α′
†
)

bd
δabδcd . (14)

The sum in the first parenthesis of Eq. (14) is given by 2(EI−PG)ac (see Eqs. (B.18)

and (B.19) of Ref. 1), while in the second line we have
∑

α′

¬
λI

α′
¬
λI

α′
† =

∑

α

λI
α′

†
λI

α′ .

Thus,

1

16

∑

α,α′

∑

I,J

|M|2 =
λ2

E

8m2
ε

(Eδbd − pGbd)
∑

I

∑

α

λI,b
α

†
λI,d

α . (15)

Now making use of Eqs. (B.24) and (B.25) of Ref. 1
∑

α

λI
α

†
λI

α = 2(E − p) + 2(E + p) = 4E ,

we can write

1

16

∑

α,α′

∑

I,J

|M|2 =
λ2

E

16m2
ε

[
16E2 − 2p

∑

I

∑

α

(
λI,b

α

†GbdλI,d
α

)]

=
λ2

E

16m2
ε

[
16E2 − 2p tr(2EG + 2pI)

]

=
λ2

E

m2
ε

(E2 − p2) = λ2
E , (16)

where the ciclicity property of the trace on the first line was used.

Combining Eqs. (11), (12) and (16) one can construct an effective vertex relating

two vector bosons and two Elko fields to obtain relevant signal amplitudes.

3. Searching for Elkos at the LHC

3.1. Quartic coupling scenario

Consider only the λE type coupling. As a consequence of its sole tree-level coupling

being a quartic coupling to Higgs bosons pairs, Elkos can only be pair produced at

colliders. The associated gg → H∗ → H + EĒ production is the most straightfor-

ward tree-level mechanism to produce Elkos but with a too small cross-section. Tak-

ing into account the cleaner decay modes into photons and massive gauge bosons,

the number of events would be very small even for high luminosities.

However at one-loop level several possibilities are opened, including the Higgs

boson decay to Elkos. For example, processes like pp → H + X , where the Higgs
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boson decays to Elkos might lead to mono-X signatures, X = jet, photon, W , Z

or a Higgs. The quartic V V HH , V = W , Z, couplings might give rise to WBF

jj + EĒ and associated V = Z, W boson-Elkos V + EĒ events by their turn. We

are going to discuss the search prospects for these channels now.

Associated Z-Elkos channel

Let us analyze the associated production of a Z boson and two Elkos in the channel

�±�∓ + E/T , � = e, μ. The W -Elkos is a more difficult channel because it is much

harder to identify the signal events based solely on missing energy distributions.

We simulate the signal events with Madgraph58 modifying the SM ZZHH and

ZZH vertices to take into account the effective vertices of the Elko case. We stress

the fact that the vertex between two Higgs particles and λI,a
α and

¬
λJ,b

α′ , namely

λEδab ,

was chosen in order to maintain this coupling renormalizable. Also, we set the Elko

mass to mε = 0.01 GeV, in consonance with the Elko mass range estimated in DM

direct and indirect searches.1

The total cross-section for Elko production in association to a Z boson is around

10−5 fb at the 8 TeV LHC, which is far beyond the LHC reach for the current inte-

grated luminosity. Thus, we proceed to the prospects for Elko discovery at the

14 TeV LHC. The factorization scale is set to be
√

ŝ, ŝ being the parton level

center-of-mass energy. We do not expect any large deviations of our partonic level

estimates by including detector effects and showering, given the optimal coverage

and detection efficiency of the LHC detectors for events with hard electrons and

muons, and large missing transverse energy. Yet, a full simulation should be per-

formed to properly evaluate those effects.

In the process of Fig. 1 the final state of interest consists of two opposite-sign

electrons or muons and missing energy associated to the Elkos production. The

main background contributions come from:7

(1) ZZ, Zγ → �+�− + ν	ν̄	;

(2) W+W− → �+�− + ν	ν̄l;

(3) W±Z → �±�∓�± + ν	 with one missing charged lepton;

(4) tt̄ → W+W−bb̄ → �+�−bb̄ + ν	ν̄	;

(5) W±j → �+�−+ν	, with the jet misidentified as a charged lepton in the detector.

We also have generated all these samples using Madgraph5.

The reducible backgrounds W+Z → l+l−l+νl and W−Z → l−l+l−ν̄l are sup-

pressed imposing only two opposite sign leptons on the final state since a third

charged lepton is rarely outside the fiducial region of the detectors. The acceptance

cuts for charged leptons are given by

pT�
> 10 GeV , |η	| < 2.5 . (17)
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Table 1. Cross-sections for signal and backgrounds

for three of the most promising channels for Elko
discovery at the 14 TeV LHC. Cuts applied to reduce

backgrounds are described in the text.

Process σ (pb)

pp → �+�− + E/T

Signal 4.69 × 10−4

Background 1.969

pp → jj + E/T (WBF)

Signal 0.001119
Background 0.75

pp → j + E/T

Signal 0.02531 × 10−5

Background 2820

Fake leptons are another source of potential background events which arise

from a jet enriched environment. In order to estimate the probability of a jet to be

misidentified as a lepton we simulated a sample using Pythia10 for jet showering

and clustering, and PGS for detector simulation, for different signal leptons on the

final state. We have found a probability of 10−4 for a jet to be misidentified as

an isolated lepton, which is consistent to the presented experimental studies.11,12

Using this result, the background W± + j can be eliminated.

In order to increase the signal to background ratio, we demand the events to

satisfy the following cut
∑

visible

|�pT | < 120 GeV , (18)

where
∑

visible |�pT | is the scalar sum of the transverse momentum vector of all

visible objects, in the case of our signal, the charged leptons. Unfortunately, even

after this cut a signal to background ratio relevant for discovery at the LHC seems

difficult. The cross-sections are described in Table 1.

Elkos in weak boson fusion

Concerning the Elko plus two jets signal, the WBF channel, we used the PGS and

Pythia on the samples to make our analysis more reliable. We have applied the

following cuts on both signal and background:

|ηj | < 2.5, pTj > 30 GeV and Mjj > 800 GeV ,

where Mjj in the jets invariant mass.

Table 1 summarizes our results. The background quoted in the table is the irre-

ducible one pp → jjν	ν̄	. Considering the large background, again we are not able to

obtain a relevant signal to background significance ratio for this channel at the LHC.
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Fig. 2. Process using the effective vertex for Higgs production.

Elkos in gluon fusion

Using a modified version of heft model on MadGraph we also obtained the cross-

section for the process in Fig. 2, where an off-shell Higgs boson is produced in gluon

fusion and decays to Elkos and an additional Higgs boson, σ = 7.183 × 10−5 pb,

for mε = 10 MeV and coupling constant between two Higgs and two Elkos set to

one. This is a too low cross-section to proceed with a detailed analysis.

Monojet channel

Now, we look for the possibility to observe Elkos in one jet plus missing energy

channel. This monojet channel has been intensely studied as a promising way for

DM detection at hadron colliders.14 On Table 1 we quote the cross-sections for

signal and background in this case. As we can see, the prospects to get a reasonable

signal to background ratio for discovering Elko through this signature are hopeless.

After analyzing the most relevant channels to Elko discovery through quartic

interactions with discouraging results, let us now investigate the scenario where the

Elko has a triple coupling to the Higgs boson.

3.2. Triple coupling scenario

The situation is very different for the coupling described by Eq. (10). Again we

simulate the pp → l+l− + E/T . The signal cross-section due the HEE coupling

is 0.103 pb, after acceptance cuts of Eq. (17), this time for 10 MeV Elkos and

αE = 1. This increase in the production cross-section is consequence of the tree-

level coupling involved in the Elkos production. The Higgs branching ratio to Elkos

is around 6% which is still comfortably allowed by the LHC data.16

After demanding the acceptance cuts of Eq. (17) and the cut of Eq. (18), we

have implemented the following additional cuts (20),

80 GeV < M		 < 120 GeV , (19)

E/T > 50 GeV . (20)
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Table 2. Cross-sections for signal and

background in pp → �+�− + E/T , � = e, μ,
after all cuts in the triple coupling scenario.

Process σ (fb) after all cuts

Signal 6.8
Background 133.6

The cut on the leptons invariant mass, M		, eliminates the events where the lepton

pair is not produced by an on-shell Z boson including the subdominant irreducible

backgrounds Zγ and W+W−. By the way, this is the reason why we chose only

the associated production of a Z boson and Elkos whereas it would be possible to

include the W plus Elkos production as well. As a leptonic W cannot be recon-

structed and the Elko events do not present a large amount of missing energy when

compared to the resonant W production, the SM background pp → W± → �±+E/T

would be overwhelming. The missing energy cut, by its turn, is essential for trigger

purposes and helps to increase the signal to background ratio.

After imposing this cut we obtained the results in Table 2. The signal acceptance

is 0.63 after applying all cuts.

Using
√

2((S + B) ln
(
1 + S

B

)
− S), S and B the number of signal and back-

grounds events, respectively, as the test statistic and considering that the number

of events is quadratic in the coupling constant, we obtain the statistical significance

in terms of the coupling constant and the integrated luminosity, Lint.

We show in Fig. 3 the required luminosity to a 3, 5 and 10σ signal as a function

of the αE coupling for a 10 MeV Elko at the 14 TeV LHC.

3
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Fig. 3. Significance as a function of αE and the integrated luminosity in fb−1.
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With 1 ab−1, HEE couplings as small as ∼ 0.4 can lead to an evidence signal

of 3σ at the LHC, and a 5σ discovery is possible for an enhanced coupling of 0.5.

If αE � 0.6, an integrated luminosity of ∼ 500 fb−1 suffices for discovery of the

Elko spinor at the 14 TeV LHC. Further detailed analysis are required, including

a complete simulation of the detectors in order to confirm the precise limits on the

coupling constant.

4. Conclusions

The Elko field can be considered a natural candidate for the main constituent of

DM1 — being a spinor of mass dimension one interacting only weakly to the SM

particles via Higgs couplings without imposing any extra symmetries. Its interac-

tions with the Higgs boson open the possibility of discovery at colliders, as the

LHC.

We have investigated, in this paper, two scenarios for Elko interactions with

Higgs bosons: the quartic coupling scenario, for which a 10 MeV Elko is shown to

give rise to the right relic abundance as measured by WMAP, and the triple cou-

pling scenario, where the Elko mass is generated trough the electroweak symmetry

breaking mechanism.

The quartic scenario is very challenging even at the 14 TeV LHC for all the

most promising channels. On the other hand, if triple couplings are present, the

Elko can be easily discovered in the pp → �+�− + E/T channel. For example, with a

HEE coupling of 0.5, a 10 MeV Elko discovery is possible after 1 ab−1. However,

couplings of order 0.6 or larger can be probed with up to 500 fb−1.

In the triple coupling scenario, the Elko search can benefit from DM searches

in mono-Z, W , monojet and monophoton channels at the 14 TeV LHC. Recent

analyzes based upon the LHC7 and LHC8 is not likely to bound the Elko coupling

however, since the signal cross-sections are too small.

Nevertheless, the 14 TeV LHC may open other possibilities as the WBF channel

and an improvement on the bound on the Higgs invisible decay branching ratio.
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3.2 Radiação Hawking com espinores Elko

O próximo trabalho pode ser considerado, para efeitos desta tese, como um interlú-

dio entre os aspectos estudados um teoria de campos e os investigados em espaços

curvos. O trabalho sai da linha investigativa central que queremos enfatizar nesta

tese, isto é, o da investigação de aspectos formais (algébricos e físicos) e posterior

busca por sinais fenomenológicos. Entretanto constitui parte recorrente do traba-

lho com espinores escuros, a saber: revisitar resultados físicos estabelecidos com

outros campos, atentando para os aspectos novos que daí podem decorrer.

Estudamos a emissão e absorção de Elkos devido à radiação Hawking de um

buraco negro. No trabalho em questão o buraco negro é simulado pela extremidade

de uma corda negra. A técnica empregada é uma aproximação tipo WKB ao

método de tunelamento previamente estabelecido para o computo da radiação

Hawking.

Mostra-se que, enquanto a temperatura Hawking é mantida (corroborando

uma vez mais seu caráter universal), a probabilidade de tunelamento de Elkos é

a mesma para partículas entrando e saindo do horizonte de eventos, não sendo

relevante qual tipo de Elko (qual estado de helicidade, ou qual autovalor, +1 ou

−1, com relação ao operador de conjugação de carga). Cabe ressaltar que o mesmo

método quando empregado para férmions de Dirac releva uma distinção de tais

probabilidades dependendo do tipo de campo espinorial que é levado em conta.
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Abstract – We apply the tunnelling method for the emission and absorption of Elko particles
in the event horizon of a black-string solution. We show that Elko particles are emitted at
the expected Hawking temperature from black strings, but with a quite different signature with
respect to the Dirac particles. We employ the Hamilton-Jacobi technique to black-hole tunnelling,
by applying the WKB approximation to the coupled system of Dirac-like equations governing the
Elko particle dynamics. As a typical signature, different Elko particles are shown to produce
the same standard Hawking temperature for black strings. However, we prove that they present
the same probability irrespectively of outgoing or ingoing the black-hole horizon. This provides a
typical signature for mass-dimension-one fermions, that is different from the mass-dimension-three
halves fermions inherent to Dirac particles, as different Dirac spinor fields have distinct inward
and outward probability of tunnelling.

Copyright c© EPLA, 2014

Black-hole tunnelling procedures have been placed as
prominent methods for calculating black-holes tempera-
ture [1–14]. The tunnelling method imparts a dynamical
model describing the black-hole radiation, and has been
applied to a plenty of black holes, both for the tunnelling
of scalar particles [1,2] and Dirac particles as well [12–18].
The first black-hole tunnelling method [3] came after
from the seminal paper by Kraus and Wilczek [1,2].
An alternative technique to black-hole tunnelling is the
Hamilton-Jacobi one [4], regarding an emitted particle,
by picking a suitable ansatz for the action. This method
was further extended, by applying the WKB approxima-
tion to the Dirac equation [14–18]. The black-hole tun-
nelling method has some advantages with respect to other
techniques for calculating the temperature, and can be
successfully further applied to black holes of type Kerr
and Kerr-Newman [8,9,15], the 3-dimensional BTZ [12],
the Vaidya [19] black hole, and other dynamical black
holes [11] as well. The tunnelling method is pivotal, as
it provides an intuitive scenario for the black-hole radi-
ation, where a particle follows a trajectory from the in-
side of the black hole to the outside, which is classically
a banned process. By energy conservation, the radius of
the black hole shrinks as a function of the energy of the

outgoing particle, hence the particle produces its own tun-
nelling barrier [15,16]. This also provides a dynamical
model of black-hole radiation, as the mass of the black
hole decreases.

A quantum WKB approach was used to compute the
corrections to the Hawking temperature and Bekenstein-
Hawking entropy for the Schwarzschild black hole, mod-
ifying the Schwarzschild metric which takes into account
effects of quantum corrections [20–23]. Furthermore, the
black-hole area was shown to have a lower bound [24] in
tunnelling formalism. The chirality condition was like-
wise introduced to unify the anomaly and the tunnelling
formalisms for deriving the Hawking effect [25], and the
Hawking radiation from the black hole, both in Hořava-
Lifshitz and Einstein-Gauss-Bonnet gravities, was dis-
cussed in [26,27]. Important achievements have been also
accomplished in, e.g., [28] in a non-commutative frame-
work.

The tunnelling method has been employed to provide
the Hawking radiation due to photon and gravitino tun-
nelling [29]. Moreover, this method was extended to model
the emission of spin-(1/2) fermions, and the Hawking ra-
diation was deeply analyzed in [30] as tunnelling of a Dirac
particle throughout an event horizon, where quantum

50001-p1
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corrections in the single-particle action are proportional to
the usual semiclassical contribution and the modifications
to the Hawking temperature and Bekenstein-Hawking en-
tropy were derived for the Schwarzschild black hole. For
spin-(1/2) particles, the question of how the spin affects
the black hole plays a prominent role [12–18]. Due to
the fact that statistically there are particles with the spin
in any direction, the effect of the spin of each type of
fermion cancels out. Hence, to the lowest WKB order
of approximation, the rotation of the black hole does not
change. Since a black hole has a well-defined temperature,
it should radiate all types of particles with all types of pos-
sible spins: as gravity couples democratically to all species
of particles, thus the probability that a particle is emitted,
compatibly with energy conservation, does not depend on
the particle. Of course, this is well known to be only ap-
proximately correct owing to the grey-body factors. The
authors in [7] argued that the probability of emission of a
particle approaches zero when its energy becomes of the
order of the mass of the emitting black hole. According
to what one would expect from energy conservation, the
tunnelling barrier is set by the shrinking of the black-hole
horizon with a change in the radius, established by the
energy of the emitted particle itself [7], as black holes de-
crease in mass as energy is emitted. Consequently, the
radius of the event horizon decreases [7,11,15], and the
usual approximations used in the literature [1–18] remain
to be adopted here.

Elko (dark) spinor fields (dual-helicity eigenspinors
of the charge conjugation operator [31]) are spin-(1/2)
fermions of mass dimension one, with novel features that
make them capable to incorporate both the Very Spe-
cial Relativity (VSR) paradigm [32,33] and the dark mat-
ter description as well [31,33,34]. Moreover, an Elko
spinor mass generation mechanism has been introduced
in [35], by a natural coupling to the kink solution of a
λφ4 field theory. It provides exotic couplings between
scalar field topological solutions and Elko spinor fields [35].
Some attempts to detect Elko at the LHC have been pro-
posed [36,37], as well as promising applications in cosmol-
ogy have been widely investigated [38–43]. Not merely
in quantum field theory, and supersymmetry [44], but
additionally the Einstein-Hilbert, the Einstein-Palatini,
and the Holst actions were shown to be derived from the
quadratic spinor Lagrangian, when Elko spinor fields are
considered [45,46].

The tunnelling method is used in this paper to model
Elko particles emission and absorption from black strings.
We show that Elko particles are emitted at the expected
Hawking temperature from black holes and black strings,
providing further evidence for the universality of black-
hole radiation [11,15,16], however with a specific signature
that is different from Dirac particles. In fact, we shall
prove that Elko particles behave contrastively from Dirac
particles, that present different inward and outward proba-
bility of tunnelling —depending on a relationship between
the spinor components [17,18]. In fact, we shall show that

the four distinct Elko particles, being eigenspinors of the
charge conjugation operator with dual helicity, manifest
the property of presenting the same equations for tun-
nelling, and consequently the same inward and outward
probability of tunnelling. Moreover, the standard Hawk-
ing temperature for black strings is obtained in this con-
text. The results presented in this paper for Elko particles
differ from Dirac particles, as naturally Elko particles are
fields presenting mass dimension one [31,34,39].

String theory has solutions describing extra-dimensional
extended objects surrounded by event horizons, namely
black strings. These solutions can have unusual causal
structure, and provide some insight into the properties
of singularities in string theory. Black strings have been
studied in the context of supergravity theories, topological
defects and low-energy string theories [47–49] and from the
pure gravitational context in [50,51], as well as in some
realistic generalizations [52–54].

The solution of Einstein equations with a negative cos-
mological constant in the form of cylindrically symmetric
spacetime is provided by [55–57]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dθ2 + α2r2dz2, (1)

where Λ = −3α2 denotes the cosmological constant, M is
associated to the ADM mass density of the black string,
and f(r) =

(
α2r2 − M

r

)
. The event horizon of the black

hole is clearly provided by

r0 =

(
M

α2

)1/3

.

Also, this solution was discussed in [58] in the context of
Einstein-Maxwell gravity.

In order to analyze the tunnelling of fermions through-
out the black-string horizon, we depart from the usual
mass-dimension-3/2 fermions, and shall investigate the
role that Elko particles play in this context. To accom-
plish it, the basic features of Elko particles are briefly
revisited [31,34,59]. Elko spinor fields λ(pµ) are eigen-
spinors of the charge conjugation operator C, namely,
Cλ(pµ) = ±λ(pµ) (here the momentum space is used
just to fix the notation). The Weyl representation of
γµ is used hereupon. The plus (minus) sign regards self-
conjugate, (anti–self-conjugate) spinor fields, denoted by
λS(pµ) (λA(pµ)). Explicitly, once the rest spinors λ(kµ)
are obtained, for an arbitrary pµ it yields

λ(pµ) = eiκ·ϕλ(kµ), (2)

where kµ =
(
m, limp→0

p
p

)
, for p = |p|. The boost opera-

tor in (2) is provided by [59]

eiκ·ϕ =

√
E + m

2m
diag

(
I +

σ · p

E + m
, I − σ · p

E + m

)
.

The φL(kµ) are defined to be eigenspinors of the helicity
operator σ · p̂:

σ · p̂ φ±
L (kµ) = ±φ±

L (kµ),
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where p̂ = (sin θ cos φ, sin θ sin φ, cos θ), and the phases are
employed [31,34,59] such that

φ+
L(kµ) =

√
m

(
cos(θ/2)e−iφ/2

sin(θ/2)e+iφ/2

)
, (3)

φ−
L (kµ) =

√
m

(
− sin(θ/2)e−iφ/2

cos(θ/2)e+iφ/2

)
. (4)

Elko spinor fields λ(kµ) are defined by

λS
±(kµ) =

(
iΘ

[
φ±

L (kµ)
]∗

φ±
L (kµ)

)
, (5)

λA
±(kµ) = ±

(
−iΘ

[
φ∓

L (kµ)
]∗

φ∓
L (kµ)

)
, (6)

where the Θ denotes the Wigner time-reversal operator
for spin one-half. The expression

σ · p̂
(
Θ[φ±

L (kµ)]∗
)

= ∓
(
Θ[φ±

L (kµ)]∗
)

evinces the helicity of Θ[φL(kµ)]∗ to be opposite to that
of φL(kµ), and therefore

λS
±(pµ) =

√
E + m

2m

(
1 ∓ p

E + m

)
λS

±(kµ), (7)

λA
±(pµ) =

√
E + m

2m

(
1 ± p

E + m

)
λA

±(kµ) (8)

are the expansion coefficients of a mass-dimension-one
quantum field. In fact, the Dirac operator (γµpµ ± mI4)
does not annihilate the λ(pµ) and the following results
hold [31,34,59]:

γµpµλS
+(pµ) = imλS

−(pµ), (9)

γµpµλS
−(pµ) = −imλS

+(pµ), (10)

γµpµλA
−(pµ) = imλA

+(pµ), (11)

γµpµλA
+(pµ) = −imλA

−(pµ). (12)

Nevertheless, it still implies annihilation of Elko by the
Klein-Gordon operator.

Hawking radiation from black holes comprises different
types of charged and uncharged particles. We investigate
tunnelling of Elko particles from the event horizon of a
black-string solution via tunnelling formalism. By taking

∇µ = ∂µ + Ωµ, Ωµ =
1

2
iΓαβ

µ Σαβ ,

where Σαβ = 1
4 i

[
γα, γβ

]
is the spin density tensor and

the γµ are the usual gamma matrices satisfying the Dirac-
Clifford relation for Minkowski spacetime, the matrices

γt =
1√
f

γ0, γr =
√

f γ3, γθ =
1

r
γ1, γz =

1

αr
γ2, (13)

are chosen as usually [17], where f = f(r). In order to
find the solution of eqs. (9)–(12) in the background of the

black string, we employ the standard form for the Elko
particle, through the similar notation φ+

L(kµ) =
(
α
β

)
, with

α and β defined as in eq. (3):

λS
+ (t, r, θ, z) =




−iβ∗

iα∗

α

β


 exp

(
i

!
Ĩ

)
, (14)

λS
− (t, r, θ, z) =




−iα

−iβ

−β∗

α∗


 exp

(
i

!
Ĩ

)
, (15)

λA
+ (t, r, θ, z) =




iα

iβ

−β∗

α∗


 exp

(
i

!
Ĩ

)
, (16)

λA
− (t, r, θ, z) =




−iβ∗

iα∗

−α

−β


 exp

(
i

!
Ĩ

)
. (17)

Here Ĩ = Ĩ(t, r, θ, z) represents the classical action. We use
the above forms for the Elko particles in each one of
eqs. (9)–(12), and solve this coupled system of equa-
tions. Thus, by applying the WKB approximation, where
i
! Ĩ = i

!I+I0+O(!), and considering terms solely up to the
leading order in !, by denoting Ir = ∂I/∂r, It = ∂I/∂t,
Iθ = ∂I/∂θ, and Iz = ∂I/∂z, this procedure yields

iα∗It√
f

+ β
√

f Ir = mβ∗ +

(
i

αz
Iz − 1

r
Iθ

)
α∗ , (18)

iβIt√
f

− α∗√f Ir = mα∗ −
(

i

αz
Iz +

1

r
Iθ

)
β∗. (19)

By taking into account the Killing vectors of the back-
ground spacetime we can employ the usual ansatz in
refs. [15–18]

I(t, r, θ, z) = −Et + W (r) + lθ + Jz, (20)

where E is the energy of the emitted particles and W is
the part of the action Ĩ that contributes to the tunnelling
probability. Using this ansatz in eqs. (18), (19), and by
taking into account that the contribution of J and l to
the imaginary part of the action is canceled, as shown
in [15–18], the terms in (18), (19) encompassing J and l
are dismissed. The same solution for J is obtained for
both the outgoing and incoming cases.

As it is comprehensively exposed in [15–18], near the
black-string horizon massive particles behave like mass-
less particles (we further analyze it after eq. (31)). Phe-
nomenologically, considering the well-established Elko
production by Higgs interactions [36], we proceed as
refs. [15–18] and consider the parameter m " 0, without
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loss of generality, as near the horizon massive particles
behave as massless ones. Thus, the function W (r) can be
computed merely from eqs. (19) and (20) as

−iα∗E + βf(r)W ′(r) = 0,

−iβE + α∗f(r)W ′(r) = 0. (21)

In this case for
α = iβ∗ (22)

we have
W ′

+(r) = E/f(r), (23)

whilst for the choice

α = −iβ∗ (24)

we get the opposite sign

W ′
−(r) = −E/f(r). (25)

W+ (W−) corresponds to outward (inward) solutions (see
refs. [15–18]). Equations (23) and (25) imply that

W±(r) = ±
∫

(E/f(r))dr, (26)

which has a simple pole at r = r0. By integrating around
the pole, it yields

W±(r) =
±πiE

2α2r0 + M
r2
0

. (27)

The probabilities of crossing the horizon in each direction
can be given by [4]

P± ∝ exp

(
−2

!
ImW±(r)

)
, (28)

where P+ (P−) denotes the probability of emission (ab-
sorption) by the horizon. While computing the imaginary
part of the action, we note that it is the same for both the
incoming and outgoing solutions. Now, using eqs. (28),
the probability of particles tunnelling from inside to out-
side the horizon is given by

Γ ∝ P+

P−
= exp

(
−4

!
ImW+(r)

)
, (29)

where in the last equality we employed eq. (27), implying
that

Γ = exp

(
−4πE

2α2r0 + M
r2
0

)
. (30)

The tunnelling probability is given by Γ = exp (−βE),
where β = T−1

H , yielding the Hawking temperature for-
mula

TH =
1

4π

(
2α2r0 +

M

r2
0

)
, (31)

which is the correct Hawking temperature for black
strings [60]. For the massive case, near the horizon the
massive particles behave like massless ones. Since the
extra contributions vanish at the horizon, the result of

integrating around the pole for W± in the massive case is
the same as in the massless case and the Hawking tem-
perature is recovered for the fermionic vacuum. Further-
more, as in the Dirac tunnelling, for both the massive
and massless cases the Hawking temperature is obtained,
implying that the Elko particles λS

+, λA
−, λS

−, λA
+ defined in

eqs. (5)–(8) —with explicit components in (14)–(17)— are
emitted at the same rate. This endows Elko particles with
a different signature with respect to the Dirac particles
(see, e.g., refs. [15–18]), which we shall emphasize below.

In the tunnelling formalism the probability of particles
crossing the black-hole horizon on either sides is calcu-
lated using complex path integrals. The particles cover
geodesics which are now allowed classically. Nevertheless,
the probability for absorption of particles should actually
be equal to one, as this is a path which is permitted clas-
sically [3], providing an efficient way for computing the
Hawking temperature as well. Solving Elko coupled equa-
tions (9)–(12) in the background of black strings and by
applying the WKB approximation, we have provided the
tunnelling probability of Elko particles and the Hawking
temperature associated to it.

Moreover, the tunnelling of Elko particles has a different
feature when compared to Dirac particles. The method
developed in [15,16] for Dirac particles was further used
in [17] in the context of black strings for the very special
case where the spinor field is given by

Ψ↑(t, r, θ, z) =




A(t, r, θ, z)

0

B(t, r, θ, z)

0


 exp

(
i

!
Ĩ

)
, (32)

where the author shows that there is a constraint between
A and B, similarly to (22) and (24). The inward and
outward probability of tunnelling depends on the relation
between A and B. For each constraint, Dirac particles
present just one behavior: either ingoing or outgoing par-
ticles. Notwithstanding, Elko particles are eigenspinors of
the charge conjugation operator, and all the eigenspinor
fields (λS

+, λA
−, λS

−, λA
+) present the same probability either

outgoing or ingoing for tunnelling. Notice that Elko spinor
field λS

+ in (14) differs from λA
− in (17) just by the sign in

the left-hand component, whereas the Elko spinor field
λS

− in (15) is different from λA
+ in (16) by the sign in the

right-hand component, although they are quite different
quantum fields [59]. Moreover, all the four Elko particles
present the same inward and outward probability of tun-
nelling and the standard Hawking temperature for black
strings is obtained.
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Capítulo 4

Cosmologia com Espinores Elko

Uma vez que queremos viabilizar o campo Elko como um candidato a matéria

escura, o estudo de sistemas cosmológicos com tal espinor perfaz terreno apro-

priado. O acoplamento de espinores Elko com o campo gravitacional é rico em

aplicações não só pelo fato de suas características não usuais serem passíveis

de exploração, mas também pela caracterísitica primeva do campo. Enquanto

campo espinorial, seu acoplamento com campos de torção, por exemplo, pode ser

investigado, abrindo boa perspectiva de trabalho.

Neste capítulo abordaremos primeiramente uma releitura de parte da literatura

corrente sobre o Elko em sistemas cosmológicos. Tais trabalhos visavam menos

uma aplicação direta do espinor na resolução de algum problema estritamente

ligado à matéria escura. Com efeito, a ideia central foi entender aspectos básicos

associados à dinâmica espinorial em espaços curvos, em um background do tipo

Friedmann-Lamaitre-Robertson-Walker (FLRW) em particular. A revisitação à

literatura passa por dois aspectos aos quais nos remeteremos nas seções à seguir,

mas cuja menção é relevante que façamos aqui: a investigação de uma fatoração
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recorrente na literatura, separando a parte temporal do espinor e trabalhando

com um campo depedente do tempo de forma efetiva, e o estudo do Elko como

campo responsável também por efeitos de energia escura (além, é claro, de matéria

escura) no universo.

Na última seção apresentamos um trabalho que, embora tenha consequências

de cunho cosmológico (razão pela qual é aqui catalogado), tem forte apelo de

construções típicas em teoria de campos, já que visa a formulação de um mo-

delo sigma não linear para campos fermiônicos de dimensão de massa um, com

particularização feita postariormente para os Elkos.

4.1 Aspectos Cosmológicos

Como se sabe, sendo os campos fermiônicos representações irredutíveis do grupo

de Poincarè, é natural se tratar espinores no espaço plano. As representações

fermiônicas são, por assim dizer, naturalmente acomodadas em tal caso. Para

o estudo de sistemas gravitacionais envolvendo espinores, portanto, é necessária

a adequação apropriada, seja por meio de tetradas ou (equivalentemente) por

redefinições das matrizes gamma de Dirac, de modo a satisfazerem a relação

constitutiva da álgebra de Clifford no espaço curvo em questão. Relembramos

tal ponto nesse início de seção apenas para enfatizar uma característica que se

sobressai no tratamento de férmions em espaços curvos, a dificuldade.

As abordagens iniciais do trato de espinores Elko em cosmologia logo corro-

boraram essa característica (a da dificuldade). Ademais, por suas características

próprias, existem contribuições diferentes (quando comparadas às obtidas através

dos espinores de Dirac) advindas do Elko para densidade e pressão escuras. As
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complicações adicionais levaram a certas estratégias de tratamento das equações,

algumas já utilizadas no caso de campos espinoriais usuais, mas que no caso em

questão careciam de ulterior análise. Nossa inserção nessa área seguiu essa linha,

ou seja, estudar com certa cautela algumas abordagens anteriormente realizadas.

Nos próximos dois trabalhos subsequentes, descreveremos nossa contribuição

no estudo dos Elkos em cosmologia na linha de abordagem citada anteriormente. O

primeiro de tais trabalhos visa, antes de tudo, o entendimento de uma fatoração

amplamente utilizada, a saber: considerar-se o espinor como tendo um fator

multiplicativo (e dependente do tempo) comum às suas quatro componentes, de

modo a ser fatorado. Com a adicional consideração da parte espinorial restante ser

constante, as equações de Friedmann ganham certa simplificação que permite, em

alguns casos, um melhor tratamento. O primeiro ponto abordado foi exatamente o

estudo da possibilidade de soluções do campos espinorial Elko em um background

FLRW com diferentes fatores de escala. O resultado obtido, embora não constitua

prova formal, foi positivo, no sentido que apresenta a mesma forma funcional

de fatoração. Dito de outro modo, encontramos soluções das equações acopladas

(sem prévia fatoração) que ficam exatamente na forma fatorada. Ainda nesse

trabalho, especulamos sobre a possibilidade do Elko atuar como fonte de energia

escura.

No segundo trabalho, estudamos certo arranjo mais abrangente das equações

cosmológicas sem particularizar o potencial do campo Elko. A análise feita se

vale da teoria de sistemas dinâmicos autônomos, e também revisita (desta vez

corrigindo) certos resultados da literatura. O ponto importante a ser destacado

é que, via sistemas dinâmicos, é possível se encontrar um atrator das equações

acopladas gerais em que um termo de decaimento de energia escura para matéria
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é introduzido. Assim sendo, o estudo qualitativo das equações dinâmicas mostra

ser possível que o Elko atue como energia escura decaindo, na fase de presente

aceleração do universo, em matéria. Um tal comportamento é claro ser amplamente

desejado para um espinor com o propósito adotado ao Elko. Construído com base

na teoria de campos, o Elko visa ser um candidato de primeiros princípios à

matéria escura. A possibilidade de que sua atuação cosmológica seja também

vinculada aos efeitos de energia escura (com posterior decaimento) é certamente

um bônus a toda formulação realizada.
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1 Introduction

Exact solutions to the Dirac equation in curved spacetime is of considerable interest in cos-
mology and astrophysics, where gravity is believed to play a dominant role in determining the
behavior of spin-1/2 particles. A general discussion on the interaction of massless neutrinos
and spherically symmetric gravitational fields was performed by Brill and Wheeler [1] in 1957.
In the 1970s the phenomenon of particle production in curved spacetime was investigated
by Parker [2–6] and in 1974 Hawking discovered the effect of black hole evaporation [7–9],
an appropriate example regarding the importance of strong gravitational fields in quantum
mechanical processes. Also, the study of the hydrogen atom energy spectrum in curved space-
time was presented by Audretsch and Schäfer [10] and was also studied by Parker in 1980 [11].

Finding exact and analytic solutions of the Dirac equation in curved backgrounds is
always a hard task. Some exact solutions have been reported in the middles of 1980 [12–14].
In 1987 Barut and Duru [15] provided an exact solution for the Dirac equation for a spa-
tially flat Friedmann-Robertson-Walker spacetime in three meaningful models of expanding
universes, based on the spin connection point of view. Exact solutions of the Dirac equa-
tion in open and closed Friedmann-Robertson-Walker spaces were presented in subsequent
years for both massive and massless case [16–21]. Solutions for Kasner spacetime was ob-
tained by Srivastava [22] and for an anisotropic Bianchi type VI background was presented
by Portugal [23].

In this work we aim to investigate exact solutions for Elko spinors whose dynamics is
taken in curved spacetime. More precisely, we study the solutions for the aforementioned
spinor field in spatially flat Friedmann-Robertson-Walker spacetimes. Elko spinor fields were
introduced in [24, 25] as a possible generalization of Majorana spinor fields. The main prop-
erty defining Elko spinors is that they are eigenspinors of the charge conjugator operator,
making them neutral under electromagnetic interactions by construction. Since the introduc-
tion of the Elko spinors, modifications and improvements have been accomplished. The final
form for the spinor and its corresponding quantum theory may be found in [26]. There are sev-
eral works considering Elko spinor fields in the context of curved spacetimes and cosmology.
The study of Elko spinors with a possible coupling with torsion fields is presented in [27, 28],
as well as its impact on Cosmic Microwave Background anisotropies [29] and its relation to the
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cosmological principle [30]. Following this reasoning, important consequences of dark spinor
models to inflation are studied in [31, 32] and interesting solutions where the dark spinor
field leads to slow roll and fast roll de Sitter solutions are presented in [33]. Scalar and tensor
cosmological perturbations are discussed in [34, 35] and dark spinor models as a candidate
of dark energy are investigated in [36, 37], as well as the cosmological coincidence problem.

As remarked, the endeavour on finding exact solutions of spinor fields in curved space-
times is important in several contexts. The possibility, raised in the Elko formalism, of
understanding this spinor field as a candidate to dark matter (for instance, along with the
fact that Elko has a peculiar dynamics) certainly highlights the relevance of studying exact
solutions for the Elko dynamics in physically important spacetimes. Furthermore, it is also
a robust starting point to investigate Elko particle production in curved backgrounds [38].

This paper is organized as follows: in the next section we give a tutorial and short
review about the main aspects of Elko spinor fields. In section III we study exact solutions
of Elko dynamics in three different cosmological expanding spacetimes, namely: the de Sitter
one, a linear expansion and the radiation dominated universe. Section IV is reserved to
the investigation of the obtained solutions in cosmology. In the final section we conclude,
comparing the obtained solutions with the usual case of Dirac spinors.

2 Elko spinor fields

In this section we shall review some important aspects concerning Elko spinor fields and its
dynamics [24, 26]. As mentioned in the Introduction, the very relation defining Elko spinor
fields is given by

Cλ = ±λ, (2.1)

where C stands for the charge conjugator operator. Hence, λ is an eigenspinor of C. By
solving eq. (2.1), it is possible to recast the spinors as self-conjugate (+ sign in (2.1)) λS{+,−},

λS{−,+}, and anti-self-conjugate (− sign in (2.1)) λA{+,−}, λ
A
{−,+}. They are given explicitly by

λS{+,−}(~0) =

(
+σ2[φ

−
L (~0)]∗

φ−L (~0)

)
,

λS{−,+}(~0) =

(
+σ2[φ

+
L (~0)]∗

φ+L (~0)

)
,

λA{+,−}(~0) =

(
−σ2[φ−L (~0)]∗

φ−L (~0)

)
,

λA{−,+}(~0) = −
(
−σ2[φ+L (~0)]∗

φ+L (~0)

)
, (2.2)

with phases adopted such that

φ+L (~0) =
√
m

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
(2.3)

and

φ−L (~0) =
√
m

(
− sin(θ/2)e−iφ/2

cos(θ/2)eiφ/2

)
. (2.4)
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The equations above are valid in the rest frame (~k = ~0), therefore the expressions for
arbitrary momenta are obtained by a simple boost. The parameter m denotes the spinor
field mass, σ2 is the usual Pauli matrix, and the momentum parametrization is given by
k̂ = (sin θ cosφ, sin θ sinφ, cos θ). It is remarkable that −iσ2[φ±L (~0)]∗ and φ±L (~0) have opposite

helicities. It means that Elko spinor fields belong to the
(
1
2 , 0
)
⊕
(

0, 12

)
representation space.

The dual spinor associated to λS/A can be obtained in a very judicious way, by demand-

ing that the product
¬
λ λ, being

¬
λ the dual, remains invariant under Lorentz transforma-

tions [39]. The result reads

¬
λ
S/A

{∓,±} (~k) = ±i
[
λ
S/A
{±,∓}(

~0)
]†
γ0. (2.5)

With the aid of eq. (2.5) it is possible to write down the spin sums

∑

κ

λSκ
¬
λ
S

κ= +m[I + G(φ)],

∑

κ

λAκ
¬
λ
A

κ= −m[I− G(φ)], (2.6)

where G(φ) is given by [39]

G(φ) = γ5(γ1 sinφ− γ2 cosφ). (2.7)

In order to unveil the Elko quantum dynamics we need an approach different from
the usual textbook ones, inasmuch as we do not know a priori what Lagrangian must be
associated to the Elko spinor. The first hint towards its dynamics comes from the following
algebraic relation

(γµk
µδβα ± imIεβα)λ

S/A
β (~k) = 0, (2.8)

which can be obtained by applying γµk
µ to λ

S/A
β (~k). From eq. (2.8) it is straightforward to

see that the application of γνkν from the left leads to

(γνγµkµkν −m2)λ
S/A
{∓,±} = 0, (2.9)

which, by means of {γµ, γν} = 2ηµν , leads to the Klein-Gordon equation in the momentum.
In the following we shall derive the Klein-Gordon equation of the Elko spinor field by a more
precise argument.

(2.8) is a Dirac-like equation. It is obviously different from the Dirac equation, but
they share the covariant structure. Hence, denoting a spinorial transformation as λ′ = Sλ
(assuming that λ belongs to a linear representation of, at least, a subgroup of the Lorentz
group), and studying the transformation of the expression (2.8) we arrive at the same covari-
ance condition of the standard Dirac equation SγνS−1Λµν = γµ. Therefore, as in the Dirac
case, the field λ is not unitarily transformed and cannot be associated to a quantum state.
Thus, quantization is necessary.

By keeping some recurrence with the usual spinorial case, we may associate a quantum
field by

η(x) =

∫
d3k

(2π)3
1√

2mE(~k)

∑

α

[cα(~k)λSα(~k)e−ikµx
µ

+ c†α(~k)λAα (~k)e+ikµx
µ
], (2.10)
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where c†α(~k) and cα(~k) are the creation and annihilation operators, respectively, satisfying the
usual fermionic anti-commutation relations. The quantum dual may be obtained in a rather
similar fashion. With the quantum fields at hands we may evaluate the Feynman-Dyson
propagator, given by

SFD(x′ − x) = i〈|T
(
η(x′)

¬
η (x)

)
|〉, (2.11)

where T is the time ordering operator. The calculation is a little tricky due to the subtle
aspects of the field. The final result reads [24–26]

SFD(x′ − x) = −
∫

d4k

(2π)4
e−ik

µ(x′µ−xµ)
[

1

kµkµ −m2

]
, (2.12)

hence the Elko spinor field must respect (only) the Klein-Gordon Lagrangian, i.e., it has
mass dimension one. If we keep ourselves on power counting arguments, then the only
perturbatively renormalizable possible terms are the mass one, the self (quartic) interaction

(
¬
λ λ)2 and the coupling with a scalar field.

In the following we shall investigate the exact solutions for the Elko spinor field in the
context of physically relevant expanding spacetimes.

3 The Elko spinor equation in expanding spacetimes

By the reasons exposed in the previous section, the Elko spinor action in the curved spacetime
is given by:

S =
1

2

∫ √−g
(

1

2
gµν
(
∇µ

¬
λ ∇νλ+∇ν

¬
λ ∇µλ

)
− V (

¬
λ λ)

)
d4x , (3.1)

where V (
¬
λ λ) is the potential and g ≡ detgµν . The covariant derivatives acting on the Elko

spinors are ∇µ
¬
λ= ∂µ

¬
λ +

¬
λ Γµ and ∇µλ = ∂µλ− Γµλ, where Γµ are the spin connections.

The metric in a spatially flat, homogeneous and isotropic Friedmann-Robertson-Walker
expanding universe is given by

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) , (3.2)

thus
gµν = diag(1,−a2,−a2,−a2) , gµν = diag(1,−1/a2,−1/a2,−1/a2) , (3.3)

with gµαgαν = δµν and
√−g = a3. In order to satisfy the defining equations γµγν + γνγµ =

2gµν with respect to the metric (3.3), the Dirac matrices γµ(x) are

γ0(t) = γ0 , γi(t) = − 1

a(t)
γi , i = 1, 2, 3 , (3.4)

where γµ (lower index) denotes the standard Dirac matrices in the Minkowiski space. The
spin connections Γµ can be determined as Γ0 = 0 and Γi = ȧ

2γ0γi, where a dot denotes a
time derivative.

Taking the potential of the form V = 1
2m

2
¬
λ λ, the Elko Lagrangian density can be

written as

L =
1

2

√−g
[
gµν(∇µ

¬
λ ∇νλ)−m2

¬
λ λ

]
. (3.5)
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The equations of motion follow from a principle of least action. For the spinor λ, for instance,
we have

∂α

[√−ggαν(∂νλ− Γνλ)

]
+
√−g

[
gµν(ΓµΓνλ− Γµ∂νλ) +m2λ

]
= 0 , (3.6)

and the corresponding equation of motion taking into account the metric (3.3) is

λ̈+ 3

(
ȧ

a

)
λ̇− 1

a2
∂2i λ−

3

4

(
ȧ

a

)2

λ+m2λ+
ȧ

a2
γ0γi(∂iλ) = 0 , (3.7)

where we have used ΓiΓi = ȧ2

4 I. The corresponding equation for
¬
λ is

¬̈
λ+ 3

(
ȧ

a

)
¬̇
λ− 1

a2
∂2i
¬
λ −3

4

(
ȧ

a

)2 ¬
λ +m2

¬
λ − ȧ

a2
(∂i
¬
λ)γ0γi = 0 . (3.8)

These equations are the generalization of the corresponding equations of motion obtained
in [31, 33] for the scalar part of the Elko field, including the non-homogeneous terms of the
type ∂iλ.

Since a is a function of t only, we can set

λ(~x, t) = N
ei
~k·~x

a(t)3/2

(
ΦI(~k, t)

ΦII(~k, t)

)
, (3.9)

where N is a normalization constant. It is a fairly simple exercise to constraint the ΦI,II

components of (3.9) by means of the eigenspinor equation (2.1) in the rest frame, in order
to ensure the spinor in question as an Elko spinor field indeed. To fix ideas, let us call
ΦT
I = (φ1(t)α, φ2(t)β), ΦT

II = (φ3(t)γ, φ4(t)δ), being α, β, γ, δ constants, and work with the
positive sign of (2.1). The result is

ΦI(~k, t) =

(
φ1(t)α(~k)

iφ∗3(t)γ
∗(~k)

)
, ΦII(~k, t) =

(
φ3(t)γ(~k)

−iφ∗1(t)α∗(~k)

)
. (3.10)

The functions ΦI and ΦII will satisfy the following equation,

Φ̈I,II +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
ΦI,II ± i

ȧ

a2
~k · ~σΦI,II = 0 , (3.11)

where the plus and minus signal stands for ΦI and ΦII , respectively. It is interesting to note
from this equation that the corresponding equations for ΦI and ΦII are decoupled, but due
to the last term the equations for φ1(t) and φ∗3(t) are coupled, and the same happens for
φ3(t) and φ∗1(t).

To solve this system of coupled equations we make the decomposition φ1(t) = φ1R(t) +
iφ1I(t) and φ3(t) = φ3R(t) + iφ3I(t), where φ1R, φ3R stands for the real part of φ1 and φ3,
respectively, and φ1I , φ3I for the imaginary part. Substituting in (3.11) we have the four
coupled differential equations:

φ̈1(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ1(t) + i

ȧ

a2

(
k3φ1(t) +

iγ∗

α
k−φ∗3(t)

)
= 0 , (3.12)
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φ̈∗3(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ∗3(t) + i

ȧ

a2

(
α

iγ∗
k+φ1(t)− k3φ∗3(t)

)
= 0 , (3.13)

φ̈3(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ3(t)− i

ȧ

a2

(
k3φ3(t)−

iα∗

γ
k−φ∗1(t)

)
= 0 , (3.14)

φ̈∗1(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ∗1(t)− i

ȧ

a2

(
γ

−iα∗k+φ3(t)− k3φ
∗
1(t)

)
= 0 , (3.15)

with k± = k1 ± ik2.
For the anti-self-conjugate spinor

¬
λ we use the definition (2.5). The±i factor is irrelevant

to equation (3.8), thus we set:

¬
λ (~x, t) = N

e−i~k·~x

a(t)3/2

{
¬
ΦI (~k, t) ,

¬
ΦII (~k, t)

}
(3.16)

where

¬
ΦI (~k, t) =

{
φ∗3(t)γ

∗(~k) , iφ1(t)α(~k)

}
, (3.17)

¬
ΦII (~k, t) =

{
φ∗1(t)α

∗(~k) , −iφ3(t)γ(~k)

}
. (3.18)

The full set of coupled equations for this case is

φ̈∗3(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ∗3(t)− i

ȧ

a2

(
α

iγ∗
k+φ1(t)− k3φ∗3(t)

)
= 0 , (3.19)

φ̈1(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ1(t)− i

ȧ

a2

(
k3φ1(t) +

iγ∗

α
k−φ∗3(t)

)
= 0 , (3.20)

φ̈∗1(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ∗1(t) + i

ȧ

a2

(
γ

−iα∗k+φ3(t)− k3φ
∗
1(t)

)
= 0 , (3.21)

φ̈3(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ3(t) + i

ȧ

a2

(
k3φ3(t)−

iα∗

γ
k−φ∗1(t)

)
= 0 . (3.22)

3.1 Case a(t) = a0 e
Ht

For the case a(t) = a0 eHt, which represents an inflationary universe or a de Sitter evolution,
the coupled equations (3.12)–(3.15) have the following solutions in terms of the Whittaker
Mµ,ν(z) and Wµ,ν(z) functions [40]:

φ1(t) =
2e

1
2
Ht

αγk+ + α∗γ∗k−

[ (
c5α
∗γ∗k− + ic1|γ|2(k3 + k)

)
M+1/2,ν(z)

+
(
c7α
∗γ∗k− + ic3|γ|2(k3 + k)

)
W+1/2,ν(z)

+
(
c6α
∗γ∗k− + ic2|γ|2(k3 − k)

)
M−1/2,ν(z)

+
(
c8α
∗γ∗k− + ic4|γ|2(k3 − k)

)
W−1/2,ν(z)

]
, (3.23)
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φ3(t) =
2e

1
2
Ht

αγk+ + α∗γ∗k−

[ (
c1α
∗γ∗k− − ic5|α|2(k3 − k)

)
M+1/2,ν(z)

+
(
c3α
∗γ∗k− − ic7|α|2(k3 − k)

)
W+1/2,ν(z)

+
(
c2α
∗γ∗k− − ic6|α|2(k3 + k)

)
M−1/2,ν(z)

+
(
c4α
∗γ∗k− − ic8|α|2(k3 + k)

)
W−1/2,ν(z)

]
, (3.24)

where ci (i = 1, 2, . . . , 8) are integration constants, k ≡ |~k|, ν =
√

3−m2/H2 and z =
2ik/(Ha0e

Ht).
Finally, we can write the four independent solutions as:

λ1(~x, t) =
2ei

~k·~x

a
3/2
0 eHt

M+1/2,ν(z)

[αγk+ + α∗γ∗k−]




c5|α|2γ∗k− + ic1|γ|2α(k3 + k)
−c5|α|2γ∗(k3 − k) + ic1|γ|2αk+
c1|γ|2α∗k− − ic5|α|2γ(k3 − k)
−c1|γ|2α∗(k3 + k)− ic5|α|2γk+


 , (3.25)

λ2(~x, t) =
2ei

~k·~x

a
3/2
0 eHt

W+1/2,ν(z)

[αγk+ + α∗γ∗k−]




c7|α|2γ∗k− + ic3|γ|2α(k3 + k)
−c7|α|2γ∗(k3 − k) + ic3|γ|2αk+
c3|γ|2α∗k− − ic7|α|2γ(k3 − k)
−c3|γ|2α∗(k3 + k)− ic7|α|2γk+


 , (3.26)

λ3(~x, t) =
2ei

~k·~x

a
3/2
0 eHt

M−1/2,ν(z)

[αγk+ + α∗γ∗k−]




c6|α|2γ∗k− + ic2|γ|2α(k3 − k)
−c6|α|2γ∗(k3 + k) + ic2|γ|2αk+
c2|γ|2α∗k− − ic6|α|2γ(k3 + k)
−c2|γ|2α∗(k3 − k)− ic6|α|2γk+


 , (3.27)

λ4(~x, t) =
2ei

~k·~x

a
3/2
0 eHt

W−1/2,ν(z)

[αγk+ + α∗γ∗k−]




c8|α|2γ∗k− + ic4|γ|2α(k3 − k)
−c8|α|2γ∗(k3 + k) + ic4|γ|2αk+
c4|γ|2α∗k− − ic8|α|2γ(k3 + k)
−c4|γ|2α∗(k3 − k)− ic8|α|2γk+


 . (3.28)

For the anti-self-conjugate spinor
¬
λ we have:

¬
λ1 (~x, t) =

2e−i~k·~x

a
3/2
0 eHt

M+1/2,ν(z)

[αγk+ + α∗γ∗k−]

{
c5|α|2γ∗k− + ic1|γ|2α(k3 − k) ,

− c5|α|2γ∗(k3 + k) + ic1|γ|2αk+ ,
c1|γ|2α∗k− − ic5|α|2γ(k3 + k) ,

− c1|γ|2α∗(k3 − k)− ic5|α|2γk+
}
, (3.29)

¬
λ2 (~x, t) =

2e−i~k·~x

a
3/2
0 eHt

W+1/2,ν(z)

[αγk+ + α∗γ∗k−]

{
c7|α|2γ∗k− + ic3|γ|2α(k3 − k) ,

− c7|α|2γ∗(k3 + k) + ic3|γ|2αk+ ,
c3|γ|2α∗k− − ic7|α|2γ(k3 + k) ,

− c3|γ|2α∗(k3 − k)− ic7|α|2γk+
}
, (3.30)
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¬
λ3 (~x, t) =

2e−i~k·~x

a
3/2
0 eHt

M−1/2,ν(z)

[αγk+ + α∗γ∗k−]

{
c6|α|2γ∗k− + ic2|γ|2α(k3 + k) ,

− c6|α|2γ∗(k3 − k) + ic2|γ|2αk+ ,
c2|γ|2α∗k− − ic6|α|2γ(k3 − k) ,

− c2|γ|2α∗(k3 + k)− ic6|α|2γk+
}
, (3.31)

¬
λ4 (~x, t) =

2e−i~k·~x

a
3/2
0 eHt

W−1/2,ν(z)

[αγk+ + α∗γ∗k−]

{
c8|α|2γ∗k− + ic4|γ|2α(k3 + k) ,

− c8|α|2γ∗(k3 − k) + ic4|γ|2αk+ ,
c4|γ|2α∗k− − ic8|α|2γ(k3 − k) ,

− c4|γ|2α∗(k3 + k)− ic8|α|2γk+
}
. (3.32)

3.2 Case a(t) = a0t

For the case a(t) = a0t, which represents the limit between the decelerated to the accelerated
universe, equations (3.12)–(3.15) have the following linearly independent solutions in terms
of the Bessel Jν(z) and Yν(z) functions [40]:

φ1(t) =
2
√
t

αγk+ + α∗γ∗k−

[ (
c5α
∗γ∗k− + ic1|γ|2(k3 + k)

)
Jν−(z)

+
(
c7α
∗γ∗k− + ic3|γ|2(k3 + k)

)
Yν−(z)

+
(
c6α
∗γ∗k− + ic2|γ|2(k3 − k)

)
Jν+(z)

+
(
c8α
∗γ∗k− + ic4|γ|2(k3 − k)

)
Yν+(z)

]
, (3.33)

φ3(t) =
2
√
t

αγk+ + α∗γ∗k−

[ (
c1α
∗γ∗k− − ic5|α|2(k3 − k)

)
Jν−(z)

+
(
c3α
∗γ∗k− − ic7|α|2(k3 − k)

)
Yν−(z)

+
(
c2α
∗γ∗k− − ic6|γ|2(k3 + k)

)
Jν+(z)

+
(
c4α
∗γ∗k− − ic8|γ|2(k3 + k)

)
Yν+(z)

]
, (3.34)

where ν± = (1/2)
√

7− 4k2/a20 ± 4ik/a0 and z = mt.
The four independent solutions are:

λ1(~x, t) =
2ei

~k·~x

a
3/2
0 t

Jν−(z)

[αγk+ + α∗γ∗k−]




c5|α|2γ∗k− + ic1|γ|2α(k3 + k)
−c5|α|2γ∗(k3 − k) + ic1|γ|2αk+
c1|γ|2α∗k− − ic5|α|2γ(k3 − k)
−c1|γ|2α∗(k3 + k)− ic5|α|2γk+


 , (3.35)

λ2(~x, t) =
2ei

~k·~x

a
3/2
0 t

Yν−(z)

[αγk+ + α∗γ∗k−]




c7|α|2γ∗k− + ic3|γ|2α(k3 + k)
−c7|α|2γ∗(k3 − k) + ic3|γ|2αk+
c3|γ|2α∗k− − ic7|α|2γ(k3 − k)
−c3|γ|2α∗(k3 + k)− ic7|α|2γk+


 , (3.36)
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λ3(~x, t) =
2ei

~k·~x

a
3/2
0 t

Jν+(z)

[αγk+ + α∗γ∗k−]




c6|α|2γ∗k− + ic2|γ|2α(k3 − k)
−c6|α|2γ∗(k3 + k) + ic2|γ|2αk+
c2|γ|2α∗k− − ic6|α|2γ(k3 + k)
−c2|γ|2α∗(k3 − k)− ic6|α|2γk+


 , (3.37)

λ4(~x, t) =
2ei

~k·~x

a
3/2
0 t

Yν+(z)

[αγk+ + α∗γ∗k−]




c8|α|2γ∗k− + ic4|γ|2α(k3 − k)
−c8|α|2γ∗(k3 + k) + ic4|γ|2αk+
c4|γ|2α∗k− − ic8|α|2γ(k3 + k)
−c4|γ|2α∗(k3 − k)− ic8|α|2γk+


 . (3.38)

For the anti-self-conjugate spinor
¬
λ we have:

¬
λ1 (~x, t) =

2e−i~k·~x

a
3/2
0 t

Jν−(z)

[αγk+ + α∗γ∗k−]

{
c5|α|2γ∗k− + ic1|γ|2α(k3 − k) ,

− c5|α|2γ∗(k3 + k) + ic1|γ|2αk+ ,
c1|γ|2α∗k− − ic5|α|2γ(k3 + k) ,

− c1|γ|2α∗(k3 − k)− ic5|α|2γk+
}
, (3.39)

¬
λ2 (~x, t) =

2e−i~k·~x

a
3/2
0 t

Yν−(z)

[αγk+ + α∗γ∗k−]

{
c7|α|2γ∗k− + ic3|γ|2α(k3 − k) ,

− c7|α|2γ∗(k3 + k) + ic3|γ|2αk+ ,
c3|γ|2α∗k− − ic7|α|2γ(k3 + k) ,

− c3|γ|2α∗(k3 − k)− ic7|α|2γk+
}
, (3.40)

¬
λ3 (~x, t) =

2e−i~k·~x

a
3/2
0 t

Jν+(z)

[αγk+ + α∗γ∗k−]

{
c6|α|2γ∗k− + ic2|γ|2α(k3 + k) ,

− c6|α|2γ∗(k3 − k) + ic2|γ|2αk+ ,
c2|γ|2α∗k− − ic6|α|2γ(k3 − k) ,

− c2|γ|2α∗(k3 + k)− ic6|α|2γk+
}
, (3.41)

¬
λ4 (~x, t) =

2e−i~k·~x

a
3/2
0 t

Yν+(z)

[αγk+ + α∗γ∗k−]

{
c8|α|2γ∗k− + ic4|γ|2α(k3 + k) ,

− c8|α|2γ∗(k3 − k) + ic4|γ|2αk+ ,
c4|γ|2α∗k− − ic8|α|2γ(k3 − k) ,

− c4|γ|2α∗(k3 + k)− ic8|α|2γk+
}
. (3.42)
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3.3 Case a(t) = a0
√
t

For the case a(t) = a0
√
t, which represents a radiation dominated universe, the equa-

tions (3.12)–(3.15) has the following linearly independent solutions1 in terms of the Heun
B functions, denoted here by Ba,b,µ,ν(z), that are solutions of the Heun biconfluent equa-
tion [41, 42]:

φ1(t) =
2teimt

αγk+ + α∗γ∗k−

[ (
c3α
∗γ∗k− + ic1|γ|2(k3 + k)

)
B2,0,µ,ν−(z)

+
(
c4α
∗γ∗k− + ic2|γ|2(k3 − k)

)
B2,0,µ,ν+(z)

]
, (3.43)

φ3(t) =
2teimt

αγk+ + α∗γ∗k−

[ (
c1α
∗γ∗k− − ic3|α|2(k3 − k)

)
B2,0,µ,ν−(z)

+
(
c2α
∗γ∗k− − ic4|α|2(k3 + k)

)
B2,0,µ,ν+(z)

]
, (3.44)

where µ = 2ik2/a20m, ν± = ±(2− 2i)k/a0
√
m and z = (−1 + i)

√
mt.

The two independent solutions are:

λ1(~x, t) =
2ei

~k·~xt1/4

a
3/2
0

B2,0,µ,ν−(z)

[αγk+ + α∗γ∗k−]




eimt[c3|α|2γ∗k− + ic1|γ|2α(k3 + k)]
e−imt[−c3|α|2γ∗(k3 − k) + ic1|γ|2αk+]

eimt[c1|γ|2α∗k− − ic3|α|2γ(k3 − k)]
e−imt[−c1|γ|2α∗(k3 + k)− ic3|α|2γk+]


 ,(3.45)

λ2(~x, t) =
2ei

~k·~xt1/4

a
3/2
0

B2,0,µ,ν+(z)

[αγk+ + α∗γ∗k−]




eimt[c4|α|2γ∗k− + ic2|γ|2α(k3 − k)]
e−imt[−c4|α|2γ∗(k3 + k) + ic2|γ|2αk+]

eimt[c2|γ|2α∗k− − ic4|α|2γ(k3 + k)]
e−imt[−c2|γ|2α∗(k3 − k)− ic4|α|2γk+]


 .(3.46)

For the anti-self-conjugate spinor
¬
λ we have:

¬
λ1 (~x, t) =

2e−i~k·~xt1/4

a
3/2
0

B2,0,µ,ν−(z)

[αγk+ + α∗γ∗k−]

{
eimt[c3|α|2γ∗k− + ic1|γ|2α(k3 − k)] ,

e−imt[−c3|α|2γ∗(k3 + k) + ic1|γ|2αk+] ,

eimt[c1|γ|2α∗k− − ic3|α|2γ(k3 + k) , ]

e−imt[−c1|γ|2α∗(k3 − k)− ic3|α|2γk+]
}
,

¬
λ2 (~x, t) =

2e−i~k·~xt1/4

a
3/2
0

B2,0,µ,ν+(z)

[αγk+ + α∗γ∗k−]

{
eimt[c4|α|2γ∗k− + ic2|γ|2α(k3 + k)] ,

e−imt[−c4|α|2γ∗(k3 − k) + ic2|γ|2αk+] ,

eimt[c2|γ|2α∗k− − ic4|α|2γ(k3 − k)] ,

e−imt[−c2|γ|2α∗(k3 + k)− ic4|α|2γk+]
}
.

1There are other independent solutions written in terms of integral equations, but we are omitting these
solutions here (see ref. [41, 42] for more details).
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4 Elko spinor in cosmology

Some peculiar features of the Elko field have been used in order to extract physical informa-
tion about cosmological scenarios. For instance, a quite interesting mass upper bound may
be found in trying to use Elko fields as dark matter driving inflation [27]. In this section we
shall consider a simple model of dark energy, instead, driven by the Elko spinor.

As has been done in recent works [31–33, 36, 37], usually the spinor field is factored out
to a real homogeneous scalar field, λ ≡ ϕ(t)ξ, with the temporal dependence only in ϕ(t), the
same for all components and ξ representing a constant and normalized Elko spinor. Due to
the homogeneity of the field (∂iλ = 0), the equation (3.7) for ϕ(t) is substantially simplified,

ϕ̈+ 3Hϕ̇− 3

4
H2ϕ+m2ϕ = 0 , (4.1)

where H = ȧ/a. We shall comment on this simplification at the end of this section. The
pressure and energy density are given by [33]

pϕ =
1

2
ϕ̇2 − 1

2
m2ϕ2 − 3

8
H2ϕ2 − 1

4
Ḣϕ2 − 1

2
Hϕϕ̇ , (4.2)

ρϕ =
1

2
ϕ̇2 +

1

2
m2ϕ2 +

3

8
H2ϕ2 . (4.3)

The Friedmann equations for H(t) can be written as

H2 =
8πG

3
ρ Ḣ = −4πG(ρ+ p) , (4.4)

from which follows the conservation equation

ρ̇+ 3H(ρ+ p) = 0 , (4.5)

where ρ and p stands for the total energy density and total pressure of all the matter fields
present in the model.

In this simplified model we will consider that all the material content of the universe
is the Elko spinor satisfying a dark energy equation of state p = −ρ, thus the Friedmann
equations reduces to

H =
ȧ

a
= ±

(
8πG

3
ρϕ

)1/2

, Ḣ = 0 , (4.6)

furthermore we have ρ̇ϕ = 0, so that ρϕ is a constant, implying a de Sitter evolution a(t) =
a0e

Ht, thus we can use the solutions obtained in section 3.1.

Before we proceed, let us examine the restriction imposed by the dark energy equation
of state pϕ = −ρϕ. By using (4.2) and (4.3) we find

ϕ̇2 − 1

2
Hϕϕ̇ = 0 , (4.7)

whose solutions are of two types, namely static or dynamic,

ϕ(t) = ϕ̄ (static) , ϕ(t) = ϕ0e
Ht/2 (dynamic) . (4.8)
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As it can be read from eqs. (3.25)–(3.28), the obtained solutions are already in the time
factored form.2 Therefore, to be able to use the above equations we shall only to apply some
limit in order to get the homogeneous solution. This limit can be achieved by taking into
account that the inhomogeneity comes from spatial derivatives, giving rise to momentum
dependent terms. Hence, the homogeneous limit is obtained by taken k1,2,3 to zero carefully.
For the argument, it is always possible to restrict the momentum to one direction and then
take this momentum to vanish. Once this limit is performed, two things happen: 1) the
spinorial part of the solution becomes homogeneous and the normalization can be imputed
to the integration constants; 2) the Whittaker k → 0 (or, correspondingly z → 0) limits are
in order. As the Whittaker limit Mσ,ν(z → 0) depends on the σ and ν index, we must explore
all the possibilities.

Let us start investigating the solution (3.25) in the homogeneous limit. It is easy to see
that in this case we have

λ1(t) =
2

a
3/2
0

M+1/2,ν(z → 0)e−Htξ, (4.9)

where ξ stands for the constant homogeneous spinorial part of λ1 (which is completely irrele-
vant to this application). The unique z → 0 limit allowed for this specific Whittaker function
occurs when 2ν 6= −1,−2, . . .. Supposing this is the case we have M+1/2,ν → zν+1/2. Hence,

writing the solution as λ1(t) = ϕ(t)ξ, bearing in mind that z = 2ik/a0He
Ht and absorbing

the constant part in ϕ0 one gets

ϕ = ϕ0e
−(ν+3/2)t. (4.10)

Comparing the solution (4.10) with the static solution (4.8) we see that it entails 2ν = −3
contradicting the hypothesis for this limit validity. Thus this solution cannot describe the
static situation. To fulfil the dynamic solution of (4.8) we must have ν = −2, but as ν > 0
by definition (ν =

√
3−m2/H2), we shall disregard this solution.

The solution given by (3.27), λ3, is more interesting. In fact, the time dependent part
in this case can be recast as

ϕ(t) = ϕ0e
(ν−3/2)Ht. (4.11)

By comparing eq. (4.11) with (4.8) we see that the dynamical solution requires ν = 2, which
is mathematically acceptable, but it leads to m2 < 0, a physically unacceptable condition.
It is interesting, however, that massive ghosts solutions to an Einstein-Cartan-Dirac system
present the very same behavior [45]. The static case, on the other hand, can be reached if

ν = 3/2, leading to an Elko mass given by m =
√
3
2 H, providing a physically acceptable

solution. In fact, a static solution for the field ϕ can be directly obtained from (4.1) if the
above condition on the mass is set. By analyzing the energy density (4.3) with a static field ϕ
we see that in this case it reproduces exactly a cosmological constant term in the Friedmann
equation (4.4).

It can be straightforwardly verified that the remain cases (λ2 and λ4) do not contain

any novelty, leading to nonphysical solutions or reproducing the static case for m =
√
3
2 H.

We would like to conclude this section by tracing some comments on the homogeneity
simplification in the spinor solutions. In fact, when this is the case, we have arrived at

2Indeed, for all the three cases analysed here, the solutions given by eqs. (3.25)–(3.28), (3.35)–(3.38)
and (3.45)–(3.46) are already in the time factored form, which justifies the use of the decomposition λ = ϕ(t)ξ
in recent works [31–33, 36, 37].
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a relationship between the spinor mass and H so that the solution can be applied to this
cosmological scenario (also simplified). The net effect of considering the non-homogeneous
case is, probably, the obtention of a more general vinculum, this time regarding the mass,
the Hubble parameter and the momentum. This dispersion relation-like constraint may,
eventually, lead to new possible cosmological applications, but there is no guarantee that it
is in fact physically appealing.

5 Concluding remarks

In the present work we have studied the evolution of Elko spinors in a flat Friedmann-
Robertson-Walker background finding exact solutions for three different models of expansion,
namely a de Sitter, linear and radiation. A very interesting aspect of the solutions we have
found is that, contrary to the solutions of the Dirac equation in a spatially flat Friedmann-
Robertson-Walker spacetimes [15] where the first two components are coupled to the last
two, the equations for the first two components of the Elko spinors are independent of the
third and fourth, as can be seen in eq. (3.11).

Still comparing with the Dirac case, we see that the solution for the temporal part of
the spinor is totally different in the three cases examined here. For the de Sitter evolution,
the Dirac case gives solutions in terms of the Bessel functions, while here we obtain solutions
in terms of the Whittaker functions. For both linear and radiation expansion the solutions
in the Dirac case are given by means of Whittaker functions, while here we obtain the Bessel
functions for the linear evolution and the complicated Heun biconfluent functions as solutions
for the radiation. These behaviors illustrate some of the differences between the Dirac and
the Elko spinors.

We have investigated a cosmological setting where an homogeneous Elko spinor acts as
dark energy in a de Sitter background. It is shown that there are two solutions for this case.
A dynamic one, where a constraint in the mass parameter indicates a non-physical scenario
and a static solution, in which the spinor field works as an effective cosmological constant.
It is important to emphasize that the results of such an application are mainly due to the
maintenance of the state equation p = −ρ leading to a de Sitter expansion. Other types of
equation of state, giving different expansion rates are not excluded in principle, but dealing
with the resulting coupled differential equations system is certainly a difficult endeavour.

We shall finish remembering that here our analysis was restricted to the flat Friedmann-
Robertson-Walker geometry. Generalizations involving the parabolic and hyperbolic curved
backgrounds may be achieved. Some applications involving particle creation in more general
spacetimes are under investigation.
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1 Introduction

The relatively recent discovery of the accelerated expansion of the universe has been one of
the most active research in cosmology [1–4]. The search for a candidate that can explain
the observational data is a challenge that has drawn the attention of many researchers. In
general such mysterious component is named Dark Energy (DE) (see [5–9] for a review). The
simplest candidate of DE is the cosmological constant Λ, which might explain most of the
current astronomical observations. Another open question in cosmology concerns the Dark
Matter (DM) problem (see [10, 11] for a review), which is responsible for the great structures
in the universe. The so called ΛCDM model, where CDM stands for Cold Dark Matter, is
the best model for the present cosmology. Recent results from the Planck satellite [12] fit
quite well with this model. However, from the theoretical point of view such model is plagued
with some fundamental problems, thereby stimulating the search for alternative dark energy
models [13–23]. Among such alternative models, scalar dynamical fields has been proposed
recently as possible candidates [24–36].

Another interesting models deal with the possibility of the coupling between DE and
DM. The interaction between these completely different fluids has some important conse-
quences, as addressing the coincidence problem, for instance. The coincidence problem could
be alleviated on these models by assuming that the DE decays into DM, thus diminishing
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the difference between the densities of the two components through the evolution of the Uni-
verse. In a series of recent papers the possibility of a coupling between DM and DE has been
considered [37–56].

Even more recently, a special kind of non standard spinor field has also been studied
both as a DM candidate (from the point of view of quantum field theory) as well as DE
(in cosmological applications). This spinor field is the so-called ELKO [57–59], which has
some interesting and unusual properties. To begin with, this spinor field is formed by a
complete set of eigenspinors of the charge conjugator operator, rendering it neutral under
U(1) interactions. Moreover, the field obeys only the Klein-Gordon equation. In other words
it has mass dimension one. The conjugation of these characteristics made the field quite
attractive from many perspectives within the cosmological setup [60–73].

The possible interaction between the matter in the universe with the ELKO field have
been studied from the point of view of dynamical systems [71–73], and stable points of the
system have been analysed from different aspects, depending on the choice of the dynamical
variables. In [71] and [72] the stability analysis for some specific potentials and interactions
leads to attractor points just for critical points where, or the universe is totally ELKO dom-
inated or is totally DM dominated, thus these stable points are not scaling solutions, which
means they do not allow the coexistence of DM and ELKO field, which could alleviate the
cosmic coincidence problem. In [73] a new choice of variables independent of the potential
leads to a new set of stable points, but yet not scaling solutions. It is important to empha-
sise, however, that the dynamical system analysis performed in [73] starts from dynamical
equations containing a subtle (but crucial) mistake. The authors of [73] analyse two different
cases, and both are plagued with some misleading,1 which motivated us to the present work.
In fact, starting from the proper equations we were able to show that there is not a stable
fixed point for the underling dynamical system in the Case II of [73] while the Case I is very
strict or even ill-defined. In order to circumvent this situation, we make use of an additional
supposition, introducing a constant parameter related to the potential and the constraint it
imposes, extracting physically relevant information about the system.

This paper is organised as follows: section 2 is somewhat a short review about the use
of the ELKO field in cosmology, making contact with ref. [73]. In order to make explicit our
claim about the crucial difference concerning the dynamical equations and their implications,
we present in the appendix the right (slightly modified in comparing with [73]) dynamical
equations. Two different stability analysis are performed in the sections 3 and 4, where the
last one can alleviate the coincidence problem. In the final section we conclude.

2 The ELKO field in cosmology: dynamical equations

The ELKO spinor action in the curved spacetime is given by

S =
1

2

∫ √−g

(
1

2
gµν
(
∇µ

¬
λE ∇νλE + ∇ν

¬
λE ∇µλE

)
− V

( ¬
λE λE

))
d4x , (2.1)

where V (
¬
λE λE) is the potential and g ≡ det gµν . The covariant derivatives acting on the

ELKO spinors are ∇µ

¬
λE= ∂µ

¬
λE +

¬
λE Γµ and ∇µλE = ∂µλE − ΓµλE , where Γµ are

1See the last two paragraphs of the next section.
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the spin connections. The metric in a spatially flat, homogeneous and isotropic Friedmann-
Robertson-Walker in a expanding universe is given by

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) . (2.2)

The ELKO Lagrangian density can be writing as

L =
√−g

[
1

2
gµν
(
∇µ

¬
λE ∇νλE

)
− V

( ¬
λE λE

)]
, (2.3)

and the equations of motion follows from a principle of least action for L.

As has been done in recent works [64–66, 69, 71], we restrict the ELKO spinor field

to the form λE ≡ φ(t)ξ and
¬
λE≡ φ(t)

¬
ξ, where ξ and

¬
ξ are constant spinors. In [70] it has

been presented exact solutions to ELKO spinor in spatially flat Friedmann-Robertson-Walker
expanding space times, and it has been shown that such factorisation of the time component
of the ELKO field is possible for some types of scale factors.

Due to the homogeneity of the field (∂iφ = 0), the equation of motion that follows
from (2.3) is substantially simplified to,

φ̈ + 3Hφ̇ − 3

4
H2φ + V,φ = 0 , (2.4)

where H = ȧ/a and V,φ ≡ dV/dφ. The pressure and energy density of spinor dark energy
are, according to [66], respectively given by

pφ =
1

2
φ̇2 − V (φ) − 3

8
H2φ2 − 1

4
Ḣφ2 − 1

2
Hφφ̇ , (2.5)

ρφ =
1

2
φ̇2 + V (φ) +

3

8
H2φ2. (2.6)

It is supposed that the universe is filled with only two components, namely a matter
energy density ρm representing the DM a and a ELKO energy density ρφ, which could
represent the DE for the late time acceleration or the inflaton field for the inflationary epoch.
The Friedmann equations in a flat background, the ELKO pressure and energy density can
be recast in the form2

H2 =
κ2

3
(ρm + ρφ) , (2.7)

Ḣ = −κ2

2
(ρm + pm + ρφ + pφ) , (2.8)

pφ = X − Ṽ , ρφ = X + Ṽ , (2.9)

where κ2 ≡ 8πG and

X =
1

2
φ̇2 − 1

8
Ḣφ2 − 1

4
Hφφ̇ , (2.10)

Ṽ = V (φ) +
1

8
Ḣφ2 +

1

4
Hφφ̇ +

3

8
H2φ2. (2.11)

2Such a decomposition on the pressure and energy density was introduced by Basak et al. [73].
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Despite both new variables do not contain pure kinetic and potential elements we shall call,
for simplicity, X and Ṽ as the kinetic and potential energy of the field φ, respectively. The
continuity equations for matter and scalar field are, respectively

ρ̇m + 3H(ρm + pm) = Q , (2.12)

ρ̇φ + 3H(ρφ + pφ) = −Q , (2.13)

where Q stands for a possible interaction term between the DM and the ELKO field. If Q = 0
there is no interaction and the two components evolve separately. If Q > 0 there is the decay
of ELKO field into DM, an interesting scenery at the inflation, and if Q < 0 we have DM
decaying into ELKO field (or DE), an interesting approach to late time acceleration. The
matter part is described by a perfect fluid with equation of state pm = (γ − 1)ρm.

Following [73], it is defined the new variables

x =
κ
√

X√
3H

, y =
κ
√

Ṽ√
3H

, v =
κ
√

ρm√
3H

, (2.14)

the Friedmann equation (2.7) can be written as a constraint equation

x2 + y2 + v2 = 1 , (2.15)

or in terms of the densities parameters, Ωφ + Ωm = 1, where

Ωφ =
κ2ρφ
3H2

= x2 + y2, Ωm =
κ2ρm
3H2

= v2. (2.16)

In order to satisfy observational data for a FRW flat universe, it will be imposed the additional
condition 0 ≤ v2 ≤ 1 and 0 ≤ x2 + y2 ≤ 1.

The equations (2.8), (2.12) and (2.13) can be written as a dynamical system of the form
(see the appendix for a brief deduction):

x′ = (ǫ − 3)x − λ

2H

y2

x
− Q1

x
, (2.17)

v′ =

(
ǫ − 3

2
γ

)
v +

Q1

v
, (2.18)

y′ =

(
ǫ +

λ

2H

)
y , (2.19)

where

ǫ ≡ − Ḣ

H2
= 3x2 +

3

2
γv2, (2.20)

and ′ stands for the derivative with respect to N ≡ ln a, such that f ′ = ḟ/H for any function
f . We reinforce the appearance of a 1/2 factor in the second term of the right-hand side of

eq. (2.17). The following parameters are defined: λ =
˙̃V
Ṽ

and Q1 = κ2Q
6H3 . ǫ is related to the

decelerated parameter q according to

q ≡ − ä

aH2
= ǫ − 1 , (2.21)

so that the expansion is accelerated for q < 0 (or ǫ < 1) and decelerated for q > 0 (or
ǫ > 1). Specifically, it is important to note that recent observational results from the Planck
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satellite measurements of the CMB temperature and lensing-potential power spectra [12]
gives q0 ≃ −0.527 for the present deceleration parameter, with Ωm ≃ 0.315 and ΩΛ ≃ 0.685
(31.5% of dust matter in the universe and 68.5% of dark energy, or cosmological constant,
responsible for the present accelerated expansion). Another interesting scenery concerns
the inflation, which must have q → −1 (or ǫ → 0), so that the expansion could be nearly
exponential or a de Sitter evolution.

The above three dynamical equations (2.17), (2.18) and (2.19) are exactly the same as
obtained by Basak et al. [73], except by the factor 2 in the denominator of the second term
in the right-hand side term of eq. (2.17). Such missing factor, as we will show later in next
section, took the authors of [73] to a misplaced result about stability in this system.

It is important to notice that, indeed, the above system is not yet in a true dynamical
system form, since that it contains the term λ/2H, which is clearly dependent on the dynam-

ical variables by the term λ, which is defined as ˙̃V/Ṽ and Ṽ is explicitly y dependent. There
are two ways to solve this problem. First we can suppose that such term is a function of the
other dynamical variables, namely λ/2H = f(x, v, y), so we have a well-defined dynamical
system. Another possibility is to setting λ/2H as a constant, so that the dynamical system
is also well-defined. According to the definition of the λ parameter, such constant is related
to the potential V (φ) of the ELKO field.

In order to study the stability of the above system, a trivial way to satisfy y′ = 0 is take
y = 0 (which corresponds to Case I of [73]). However this condition is very restrictive, since
it implies Ṽ = 0, which represents a very particular choice for the potential. The case y 6= 0
is much more general, which justifies our new stability analysis.

3 Stability analysis with λ
2H

= −ǫ

In order to turn the above system of equation in a true dynamical system and study its
stability for different types of interaction term Q, we impose the condition3 ǫ = − λ

2H . It is

easy to see that λ
2H is defined as a dynamical quantity by means of the parameter ǫ. This

automatically satisfies y′ = 0, and the system (2.17) and (2.18) turns to:

x′ = −3xv2 +
3

2
γ

v2

x
(1 − v2) − Q1

x
, (3.1)

v′ = 3vx2 − 3

2
γv(1 − v2) +

Q1

v
. (3.2)

The associated linearised matrix, ensured by the topological equivalence settled by the
Hartmann-Grobman theorem [75], is given by

(
δx′

δv′

)
= M

(
δx
δv

)
, (3.3)

where

M =

(
−3v2 − 3

2γ v2

x2 (1 − v2) + Q1

x2 − 1
x
∂Q1

∂x −6vx + 3γv
x (1 − 2v2) − 1

x
∂Q1

∂v

6xv + 1
v
∂Q1

∂x 3x2 − 3
2γ(1 − 3v2) − Q1

v2
+ 1

v
∂Q1

∂v

)
. (3.4)

δx and δy are the infinitesimal displacements about the fixed points.

3This condition corresponds to the Case II analysed by Basak et al. [73]. But, again, in [73] there is an
important missing factor.
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The stability of the system at a fixed point can be obtained from the standard analysis
of the determinant (∆) and the trace (τ) of the matrix M . According to the usual dynamical
system theory, if ∆ < 0 the eigenvalues are real and have opposite signs, hence the corre-
sponding fixed point is a saddle point. On the other hand, if ∆ > 0 and τ < 0 the fixed
point is stable, whilst if ∆ > 0 and τ > 0 the fixed point is unstable [75]. The fixed points
(x̄, v̄) for which the above system satisfies x′ = 0 and v′ = 0 depends on the choice of the
interaction term Q, and several possibilities will be treated in the sequel. Here we consider
only the case where the matter part is pressureless, thus we take γ = 1 from now on.

3.1 Q1 = 0

Here we have Q = 0, and consequently, there is no interaction between the standard matter
and the ELKO field. Such interaction was treated by Wei [71] with choice of the variables
other than (2.14), and no stable point was found. The fixed points of the system (3.1)–(3.2)

are given by [x̄ = x, v̄ = 0] and
[
x̄ = ±

√
1
2(1 − v̄2), v̄ = v

]
. For the first fixed point we have

∆ = 0, so we do not have any information about the stability of the system. Furthermore,
v̄ = 0 infers that Ωm = 0 and Ωφ = 1 (from (2.15) and (2.16)) a fully Dark Spinor dominated
universe. The second fixed point also has ∆ = 0.

3.2 Q1 = β

In this case β is constant. If we redefine β = 3
2β′, we have Q = 6βκ2H3 = 3β′H(ρφ + ρm),

an interaction term also treated by Wei [71]. The fixed points are
[
x̄ = ±

√
1
2(1 − v̄2) − β

3v̄2
,

v̄ = v
]

and it is easy to show that ∆ = 0.

3.3 Q1 = βv2

In this case we have Q = 2βHρm. The fixed points are [x̄ = x, v̄ = 0] and
[
x̄ = x,

v̄ = ±
√

(1−2x̄2) − 2
3β
]

and nothing can be said about the stability of the fixed points, since

∆ = 0 in both cases.

3.4 Q1 = βx2

At this time we have an interaction of the form Q = βH(ρφ + pφ). The fixed points are[
x̄ = ±

√
3
2

(1−v̄2)
(3v̄2+β)

v̄, v̄ = v
]
, and again ∆ = 0.

3.5 Q1 = βvx2

For this kind of interaction Q = 1√
3
βκ

√
ρm(ρφ+pφ). The fixed points are

[
x̄ = ±

√
3
2 v̄ (1−v̄2)

(3v̄+β) ,

v̄ = v
]
, and it can be easily obtained that ∆ = 0.

3.6 Q1 = βxv2

In this case we have Q =
√

2
3βκρm

√
ρφ + pφ. The fixed points are [x̄ = x, v̄ = 0] and

[
x̄ = x,

v̄ = ±
√

1 − 2x̄2 − 2
3βx̄

]
and ∆ = 0 in both cases.
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3.7 Q1 = βx2v2

Here we have Q = 1
3βκ2ρm(ρφ + pφ). The fixed points are [x̄ = x, v̄ = 0] and

[
x̄ = x,

v̄ = ±
√

1 − 2x̄2 − 2
3βx̄2

]
and, as the other cases, we have ∆ = 0.

Having analysed all the previous cases where the determinant is always zero, we have
used an algebraic manipulation software to test different functions. The functions analysed
were of the types: xnf(v) and vnf(x), with n = 1, 2, 3, 4, and for all of them the determinant
is always zero. This leads us to the conclusion that the new choice of variables keeps the
same results studied by Wei [71], where no point of stability has been found for different
types of interaction.

4 Stability analysis with λ
2H

= −δ

The above study show us that the dynamical system characterised by the equations (2.17)–
(2.18) with the Friedmann constraint (2.15) does not presents an isolated fixed point, since
a null determinant means that at least one eigenvalue is zero, and there is either a whole
line of fixed points on x or v axis. In order to circumvent this situation we shall investigate
the subsequent dynamical system for the case in which another (physical) constraint can be
used to select attractor points with physical meaning. We suppose that the potential V (φ)
is such that λ satisfies λ

2H = −δ, where δ is a constant.

The δ parameter just reflects our ignorance about the potential, since it is related to
potential but the specific form of the potential is not required in this analysis. Physically, the
conditions of stability satisfied by the parameter δ will show the ranges of possibilities for the
potential in order to have a stable system. In other words, what are the restrictions on the
potential. Besides the δ parameter, all the interactions Q under analysis are characterised
by a coupling constant β. According to (2.12) and (2.13), positive values of β correspond to
positive values of Q, which means an increase to DM energy density and a decrease of the
ELKO energy density, in other words, decay of ELKO into DM particles. On the other side,
negative β values leads to decay of DM into ELKO field.

The cosmic coincidence problem can be alleviated if DM and DE (here represented by
the ELKO field) could coexist for the present time of the evolution of the universe. This
implies ρm 6= 0 (which is related to v̄2) simultaneously with ρφ 6= 0 (which is related to
x̄2 + ȳ2). For this reason, in which follows, we will be interested in fixed points satisfying
such conditions.

The corresponding dynamical system obtained from (2.17)–(2.19) is:

x′ = 3x

(
x2 − 1 +

γ

2
v2

)
+

δ

x
(1 − x2 − v2) − Q1

x
, (4.1)

v′ = 3vx2 − 3

2
γv(1 − v2) +

Q1

v
, (4.2)

and the fixed points are chosen such that ǭ = δ, thus the equation for y at the fixed point is
y′ = 0 even for ȳ 6= 0.

4.1 Q1 = 0

For this case it is possible to find two types of fixed points, however there is only one relevant
for present purpose. The first fixed point is x̄ = ±1, which represents ȳ = 0 and v̄ = 0. This
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case could represent only the inflationary period and is not a scaling solution. According to
our previous discussion we are interested only in the case ȳ 6= 0. The other fixed point is

given by
[
x̄ =

√
3

3

√
δ, ȳ =

√
1 − 1

3δ, v̄ = 0
]
, and the conditions to guarantee stability (∆ > 0

and τ < 0) is simply δ < 3
2 . As we have v̄ = 0 such fixed point is not a scaling solution too.

4.2 Q1 = β

By taking a constant interaction between ELKO and standard matter we find two fixed
points that solve the dynamical system. But, as in the last case, there is a restriction in one

of them since ȳ = 0, which lead us to consider only
[
x̄ =

√
2δ2−3δ+3β

6δ−9 , ȳ =
√

−2δ2+9δ+3β−9
6δ−9 ,

v̄ =
√

2β
3−2δ

]
. The conditions to ensure stability are β ≥ −3

8 and δ < 9
4 − 1

4

√
9 + 24β.

However, in order to have real fixed points, namely v̄2 ≥ 0, x̄2 ≥ 0 and ȳ2 ≥ 0, the condition
turns 3

4 − 1
4

√
9 − 24β < δ < 3

4 + 1
4

√
9 − 24β for 0 < β < 3

8 . For β → 0, we have 0 < δ < 3
2 ,

and if β → 3
8 we have δ → 3

4 . This shows that such type of interaction can alleviate the
coincidence problem if the above conditions are satisfied.

4.3 Q1 = βx2

This case is similar to the last one and we have again two fixed points, being one of

them also meaningless because ȳ = 0. The remaining fixed point is
[
x̄ =

√
3δ−2δ2

9−6δ+3β ,

ȳ =
√

9+3β−6δ−2βδ+2δ2

9−6δ+3β , v̄ =
√

2βδ
9−6δ+3β

]
, where it is necessary β ≤ −3

2 and δ < 3 + β

or β > −3
2 and δ < 3

2 for such fixed point satisfy the stability condition. However, in order
to have real fixed points, these conditions reduce simply to β > 0 and 0 < δ < 3

2 . For the

present time, where v̄2 = Ωm = 0.315, we have δ = 3
2

Ωm(3+β)
β+3Ωm

. Thus, in order to satisfy

all the conditions we must have 3
2Ωm < δ < 3

2 if 0 < β < ∞, hence scalling solutions for
the present time can be obtained only if ELKO field decays into matter (β > 0) and the δ
parameter is limited to the above range. Under these conditions the interaction βx2 could
alleviate the coincidence problem.

4.4 Q1 = βv2

The present case has a fixed available point as being
[
x̄ =

√
3

3

√
δ, ȳ =

√
1 − 1

3δ, v̄ = 0
]
. It

is easy to see from eq. (4.2) that v̄ = 0 turns the parameter Q1 identically equal to zero and
trivially satisfies such equation. The conditions for stability for the present fixed point are:
(i) β ≥ −3

2 if δ < 3
2 − β; and (ii) β < −3

2 if δ < 3. Although it has stable points it is not a
scaling solution.

The another solution with v̄ 6= 0 leads to ȳ = 0.

4.5 Q1 = βv2x2

In this interaction we have three types of fixed points. One of them with ȳ = 0 and two

with ȳ 6= 0. For these last two cases we have
[
x̄ =

√
3

3

√
δ, ȳ =

√
1 − 1

3δ, v̄ = 0
]
, under the

conditions β < 9−6δ
2δ if 0 < δ < 3 and β > 9−6δ

2δ if δ < 0 for stability. Although it is a stable
point it is not a scaling solution. The last point is much more interesting, since that v̄ 6= 0.

It is given by
[
x̄ =

√
(3−2δ)

2β , ȳ =
√

(3−2δ)(3+2β)
6β , v̄ =

√
6δ+2δβ−9

3β

]
. The stability conditions
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leads to the following conditions: (i) δ < 9
2(3+β) if β < −3; (ii)

9(β+6−
√

−β2−3β)

2β2+15β+36
< δ < 3

2 or

9
2(3+β) < δ <

9(β+6+
√

−β2−3β)

2β2+15β+36
if −3

2 < β < 0; and (iii) 9
2(3+β) < δ < 3

2 if β > 0.

The above three conditions ensures the stability of the system. However, in order to
also satisfy the condition of reality of the fixed points, namely v̄2 ≥ 0, x̄2 ≥ 0 and ȳ2 ≥ 0,
the only possible condition is the last one, 9

2(3+β) < δ < 3
2 for β > 0. Thus it is only possible

to alleviate the cosmic coincidence problem if β is positive, which means the ELKO field
decaying into DM. For a small β coupling (β → 0), we must have δ → 3

2 , while for β → ∞
we must have 0 < δ < 3

2 in order to maintain the stability of the system.

For the present time for instance, where v̄2 = Ωm = 0.315, we must have δ = 3
2

Ωmβ+3
β+3

from the fixed point v̄. For β → 0 we have δ → 3
2 while for β → ∞ we have δ → 3

2Ωm.
Curiously, such condition is the same as the one obtained in case of the interaction βx2 above.

We have also analysed the interactions given by Q1 = βvx2 and Q1 = βv2x. For the
first one it was found two stable fixed points satisfying ȳ 6= 0. For the second case there
is one stable fixed point. The conditions for stability are very cumbersome, so they are
omitted here.

5 Concluding remarks

In this work it has been analysed the dynamical system concerning the study of an interacting
Dark Matter model with ELKO fields. Due to an incorrect factor in the evolution equations
present in the ref. [73], one of the two cases there analysed leads to an inconsistent result. In
their analysis it is possible to find out stable points for some interaction terms between DM
and the ELKO field. However, with the correct factor in the evolution equations, we have
shown that for several interaction terms there are no attractor points.

Contrary to recent works where the potential is taken as general or assume specific forms
but the systems does not present stable points or not represent scaling solutions between the
ELKO field and matter, here it is assumed that the potential satisfies a differential equation
characterized by a constant parameter δ, and stable solutions are found. Certainly, the study
of possible interaction terms between ELKO and matter fields within the scope of Friedmann-
Robertson-Walker backgrounds is far from trivial. The associated dynamical system is quite
involved, and extracting relevant physical information is a rather difficult task. Interestingly
enough, we have found some conditions on the β and δ parameters under which the system
presents stability. Specifically, for the interactions B, C and E of the section 4 were found
fixed stable points in order to alleviate the cosmic coincidence problem. For the interactions C
and E it was found that the range of δ is related to the matter density parameter Ωm according
to 3

2Ωm < δ < 3
2 . Such constrain on the δ parameter, when satisfied by the potential, opens

the possibility to apply the ELKO field as a candidate to dark energy in the universe, and
so explain the present phase of acceleration of the universe through the decay of the ELKO
field into matter.
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A Dynamical system equations

Here we briefly present the deduction of the dynamical system equations, namely eqs. (2.17)–
(2.19). The main goal is to clarify the appearance of the missing factor 2 in equation of x′

from Basak et al. [73].
By taking eqs. (2.9), the derivative ρ̇φ = ρ′

φH and ρ′
φ = X ′ + Ṽ ′ into (2.13) we arrive at

X ′ + 6X + Ṽ ′ = − Q

H
. (A.1)

Taking the derivative ′ of x2 from (2.14) we have

X ′ = 6xx′ H
2

κ2
+ 6x2 H ′H

κ2
. (A.2)

Using H′
H = Ḣ

H2 = −ǫ into (A.2) and then substituting into (A.1) it is possible, after rear-
ranging terms, to get

x′ = (ǫ − 3)x − λ

2H

y2

x
− Q1

x
, (A.3)

where λ =
˙̃V
Ṽ

and Q1 = κ2Q
6H3 .

The expression for v′ can be derived in a similar manner. By using (2.12) we have

ρ′
m + 3γρm =

Q

H
. (A.4)

Taking the derivative ′ of v2 from (2.14) we have

ρ′
m = 6vv′ H

2

κ2
+ 2ρm

H ′

H
. (A.5)

As before, we write H ′ in terms of ǫ and then substitute the result into (A.4). Doing some
simple manipulations it is possible find that

v′ =

(
ǫ − 3

2
γ

)
v +

Q1

v
. (A.6)

Finally, the expression for y′ can be obtained by taking the derivative ′ of y2 from (2.14)

and using the above definitions for λ and ǫ, and also that ˙̃V = Ṽ ′H. After rearrange the
terms we have

y′ =

(
ǫ +

λ

2H

)
y . (A.7)
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4.2 Modelo Sigma não-linear para Espinores Es-

curos

No início da década de noventa, houve certo esforço para se definir o que poderia

ser uma formulação de modelo sigma não linear para férmions, culminando em

um esforço eminentemente geométrico no tratamento da álgebra de Clifford e seus

vínculos. Aparte todo o contexto aplicativo de modelos sigma (usuais) em teoria

de cordas, há um apelo estético inegável quando se relaciona uma formulação de

modelo sigma em um target space arbitrário com uma teoria de Utiyama-Yang-

Mills. Essa relação mostra, dentre outras coisas, como noções típicas de geometria

diferencial são traduzidas para as teorias não-abelianas e vice-versa.

Como brevemente mencionado, as tentativas anteriores de construção de mo-

delos sigma para férmions levaram a cenários que tratavam eminentemente de

geometrizações compatíveis com a álgebra de Clifford. A razão para um tal desvio

da formulação de modelos sigma usuais é a equação de movimento para espino-

res de Dirac ser de primeira ordem. Obviamente, para espinores de massa um a

construção mais parecida com a usual pode ser realizada. Entretanto, o caráter

anticomutante dos objetos fermiônicos em questão sugere a introdução de termos

de torção no target space. Uma separação da geometria de tal espaço em parte

simétrica e anti-simétrica nos habilita o início da construção que culmina na

introdução formal de produtos tensoriais e exteriores isomorfos aos usuais, mas

cuja atuação é mais eficaz no caso em questão. Ao final da formalização termos

de torção contribuem para a densidade lagrangiana total.

Como uma aplicação do formalismo desenvolvido, estudamos implicações cos-

mológicas advindas da construção do modelo sigma, em geral, atentando para
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os aspectos referentes à presença da torsão em particular. É mostrado como o

modelo sigma pode engendrar o aparecimento de uma constante cosmológica

efetiva (e variável) cujo sinal pode variar com o tempo, levando de um universo

desacelerado para um acelerado. Aqui, embora o foco central do trabalho seja a

formalização do modelo sigma para tais férmions, é relevante ter-se encontrado

um comportamento rico também do ponto de vista cosmológico.
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Abstract – In this paper a mass-dimension-one fermionic sigma model, realized by the eigen-
spinors of the charge conjugation operator with dual helicity (Elko spinors), is developed. Such
spinors are chosen as a specific realization of mass-dimension-one spinors, wherein the non-
commutative fermionic feature is ruled by torsion. Moreover, we analyse Elko spinors as a source
of matter in a background in expansion and we have found that such kind of mass-dimension-one
fermions can serve not only as dark matter but they also induce an effective cosmological constant.
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Introduction. – The concept of non-linear sigma mod-
els has been extensively studied in the scientific literature
in a broader context. The usefulness of such framework is
widely evinced from the symmetries and interconnections
among different areas that it allows. Usually, apart from
outstanding applications in string theory (see [1] and ref-
erences therein), non-linear sigma models have served to
evidence the interplay between target spaces and Utiyama-
Yang-Mills theories [2].

A more subtle issue concerning sigma models is the
underlying framework to relativistic fermions. The first-
order Dirac equation is certainly an additional element of
difficulty. The description of the physical reality based
upon matter (fermionic fields) and its interactions medi-
ated by Abelian and non-Abelian gauge theories, how-
ever, has motivated the study of possible sigma models
in the broader context of spinor theory [3]. In ref. [3],
by exploring the so-called bispinor geometry associated
to the bispinor algebra, it was shown that for a partic-
ular class of spinors —whose density and pseudo-scalar
density are non-null— the geometry of the physical ob-
servables space is given by a three-dimensional hyperbolic
Robertson-Walker space.

Nearly ten years ago, the systematic study of Majo-
rana spinors has been leading to the appreciation of mass-
dimension-one spinor fields [4,5], called Elko1. This field
satisfies the Klein-Gordon, but not the Dirac equation. As

1Eigenspinors of the charge conjugation operator with dual
helicity [4].

a crucial property, these spinors are neutral, under local
gauge interactions, by means of the requirement that they
are eigenspinors of the charge conjugation operator. In
fact, Elko interactions, with matter and gauge fields of
the standard model, are suppressed by at least one order
of magnitude regarding the unification scale, providing an
ab initio origin of “darkness” of dark matter. In other
words, interactions of Elko spinor fields are constrained
to the Higgs field and gravitons, supplying a prominent
direction towards physics beyond the Standard Model.

The theoretical formulation of completeness for these
spinors is encoded in the (sub)groups (of the Lorentz
group) which retain the underlying relativistic struc-
ture [6]. Starting from the usual concept of Dirac spinors
as elements that carry the representation (1/2, 0)⊕(0, 1/2)
of the Lorentz group, one can relate the different sectors of
the representation space by means of the parity operator
P . In the context of the full Lorentz group, P is a dis-
crete symmetry and its implementation in a given spinorial
formulation culminates in the standard Dirac dynamical
equation [7]. Nevertheless, the two parts of the repre-
sentation space can be also related through the so-called
“Pauli matrices magic” [8] without reference to any dis-
crete symmetry. In this context, the resulting dynamics
is not provided by the Dirac equation, but rather by the
Klein-Gordon equation only. Working out the particular-
ities of such spinor field in the second quantisation pro-
gram, a violation of the full Lorentz symmetry appears in
the spin sums. Interestingly enough, it is possible to show
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that the spin sums, and therefore the whole formulation,
is invariant under SIM(2) group transformations [6]: pre-
cisely the subgroups of the Lorentz group obtained by re-
moving the discrete symmetries [9]. Additionally, Elko can
be experimentally produced by Higgs interactions [10,11].

In the standard model of particle physics, all regarded
spinors are Dirac, Weyl or Majorana ones. Such spinors
obey a first-order derivative field equation. This char-
acteristic implies a quantum propagator that, for large
momentum, is proportional to p−1. This asymptotic
behaviour of the associated propagator results, among
other things, in the fact that mass dimension must be
3/2. Now, the unique kinematic operator that is satisfied
by Elko is the Klein-Gordon equation, a second-order
derivative field equation. For this case, for a large
momentum, the quantum propagator is proportional to
1/p2, contradicting the previous case. The Klein-Gordon
operator is the proper kinetic operator for Elko fields. We
are, therefore, led to conclude that the mass dimension
of the Elko field is one, rather than 3/2, as it would be
usually expected for a fermionic field.

All the above-mentioned physical aspects of these fields
(mass dimension one, neutrality, spin 1/2) enable Elko
spinors to be dark-matter candidates, constructed from
the very first principles. Hence the systematic investiga-
tion of these dark-matter candidates, slightly and safely
departing from the usual quantum description has led us
to the analysis of the mass-dimension-one fermionic sigma
model presented here.

In this paper we construct and investigate a non-linear
sigma model associated to mass-dimension-one spinor
fields. Recent formal results point to the fact that there
are many kinds of such spinors [12]. However, to fix
ideas, we shall report on Elko spinors, which are proto-
types of mass-dimension-one fermionic fields. By sigma
model we mean the mapping of the Minkowski space into
a complete target space, performed by spinor fields, and
its relationship with Utiyama-Yang-Mills theory. In this
vein, bearing in mind the Grassmannian character of the
spinor variable, we further endow the target space with
torsion. We organise this paper as follows: in the next sec-
tion we depict the general set up of the non-linear sigma
model and its relation to non-Abelian gauge theories,
also endowed to torsion in order to encompass the non-
commutative fermionic aspect. Moving forward, in the
third section we construct a representative sigma model
for mass-dimension-one fermions. In the final section we
conclude. Whenever it is possible, we provide some start-
ing points to the application of the general formulation in
cosmology.

The general setup with torsion. – This section shall
present a straightforward generalisation, regarding the in-
terplay between non-linear sigma models and non-Abelian
theories [13], encoding torsion terms. As remarked in the
Introduction, we envision further applications to a specific,
although essentially fermionic, case.

We start by depicting the general aspects, not partic-
ularising to mass-dimension-one fermionic fields immedi-
ately. Let {ξi} be the canonical basis of a natural inertial
frame in the target space Σ, and {dξi} its dual basis. It
is possible to split the target space geometry by defining
an effective metric g ∈ sec(TpΣ)∗ × sec(TpΣ)∗, where, as
usual, p is an arbitrary point belonging to Σ, and secTpΣ
is a section of the tangent bundle of Σ at p, such that
given φ = ϕiξi, it yields

g(ϕ, ϕ) = [gmndξm ⊗ dξn + γmndξm ∧ dξn](ϕiξi, ϕ
jξj),

(1)

being ⊗ and ∧ the tensor and the exterior product, re-
spectively. The geometrical splitting is, indeed, fulfilled
by eq. (1). A direct computation of (1), taking into ac-
count the anti-symmetry relation between the two prod-
ucts, leads to

g(ϕ, ϕ) = gijϕ
iϕj +

1

2
γ̃ijϕ

iϕj , (2)

where γ̃ij = γij − γji. By writing a given product as its
commuting and anti-commuting counterparts, i.e. ϕiϕj =
1
2 [ϕi, ϕj ] + 1

2{ϕi, ϕj}, it yields

g(ϕ, ϕ) =
1

2
gij{ϕi, ϕj} +

1

4
γ̃ij [ϕ

i, ϕj ]. (3)

It is worth mentioning that a thorough classification
of spinors based upon bilinear covariants in a space-
time wherein the metric has both symmetric and anti-
symmetric parts has been accomplished in [14].

A complete sigma model, in the sense of eq. (3), can be
thus studied, by means of the free Lagrangian

L=
1

2
g(∂µϕ, ∂µϕ)=

1

4
gij{∂µϕi, ∂µϕj} +

1

8
γ̃ij [∂µϕi, ∂µϕj ],

(4)
where Greek indexes stand for space-time coordinates.
Obviously, in the usual commutative case, it yields
[∂µϕi, ∂µϕj ] = 0, hence we are simply left with L =
1
2gij∂µϕi∂µϕj . In this last case, the connection with
Utiyama-Yang-Mills theories is determined by the require-
ment δL

δϕi
= 0 (under space-time volume integration).

In this vein, the Christoffel symbols Γi
jk(ϕ) are auto-

matically generated, in terms of which the connection
A i

µk(ϕ) = Γi
jk(ϕ)∂µϕj is identified. The equation of mo-

tion, then, reads

D i
µ j(∂

µϕj) = 0, (5)

where the covariant derivative is given by D i
µ j = ∂µδi

j +

A i
µj . Besides, the contraction of the Riemann curvature

tensor Ri
jkl with ∂µϕk∂νϕl leads to the non-Abelian field

strength

Ri
jkl(∂µϕk)(∂νϕl) = ∂µA i

νj − ∂νA i
µj + ([Aµ, Aν ])i

j . (6)
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Returning to the complete case, including the non-
commutative sector, the functional variation of the
Lagrangian leads to

∂µ∂µϕm + Γ̃m
ij (ϕ)∂µϕi∂µϕj = 0, (7)

with

Γ̃m
ij (ϕ) = Γm

ij (ϕ) + Λm
ij (ϕ), (8)

where Λm
ij (ϕ) is defined as

Λm
ij (ϕ) ≡ 1

2
gmk

(
∂igjk − ∂jgik − 1

2
∂kγ̃ij

)
, (9)

and we have the explicit contribution of the torsion terms.
Moreover, the general target space curvature tensor is
given by

R̃i
jkl = Ri

jkl + ∂[kΛi
jl] + (Γi

m[k + Λi
m[k)Λm

jl] + Λi
m[kΓm

jl].

(10)

Notice that if γ̃ij = 0, and requiring
[
∂µϕi, ∂µϕj

]
= 0,

(culminating with Λm
ij (ϕ) = 0), eqs. (7) and (10) reduce

to the usual case, as expected. Besides, as a matter of fact,
it is not trivial (and, perhaps, not even insightful) to find
the Yang-Mills counterpart of the geometric quantities as
in (6), for the case at hand. The important aspect to be
stressed here is that, when commutativity is lifted in the
target space, torsion terms are generated.

In order to envisage the implementation of an appli-
cation, we depict some cosmological implications of the
sigma model. We shall briefly present the main equations
that must be considered, given a specific form for the tar-
get space fields. In a curved background the action con-
taining the corresponding contribution of the sigma model
Lagrangian (4) reads

S =

∫ √−ḡd4x

[
− R

2κ
+

1

2
hij∂µϕi∂νϕj ḡµν−W (ϕ)

]
, (11)

where R is the Ricci scalar, κ = 8πG and hij = gij + 1
2 γ̃ij

can be obtained from the symmetric and anti-symmetric
property of (3). The space-time metric is represented here
by ḡµν and W (ϕ) stands for a self-interacting potential.

The variation of action (11), with respect to the metric
ḡµν , leads to the Einstein equations

Rµν − 1

2
ḡµνR = 2κTµν , (12)

where Rµν is the Ricci tensor, and Tµν is the canoni-
cal energy-momentum tensor corresponding to the matter
content:

Tµν = hij∂µϕi∂νϕj − ḡµν

[
1

2
hij∂αϕi∂βϕj ḡαβ − W (ϕ)

]
.

(13)

Variation with respect to ϕk leads to the equation of
motion for the fields,

1√−ḡ
∂µ(

√−ḡ∂µϕm) + Γ̃m
ij (∂µϕi∂µϕj) + (∂kW )gkm = 0,

(14)
with Γ̃m

ij given by (8).

It is straightforward to check that (14) reduces to (7),
when the space-time metric ḡµν is the Minkowski flat met-
ric and the potential is null. By specifying the fields ϕi,
and the potential W (ϕ), we can obtain the Friedmann
equations from (12). An emergent universe, supported
by a non-linear sigma model without torsion, was studied
in [15]. In the context approached here, by taking ad-
vantage of the fact that hij encodes torsion terms, it is
quite plausible that the dynamics of the evolution will be
changed.

Building up the sigma model. – Part of the struc-
ture of Elko spinors, λ, is built upon the requirement
Cλ = ±λ, being C the charge conjugation operator.
There exists the self-conjugated spinors λS

α (CλS
α = +λS

α)
and the anti–self-conjugated spinors λA

α (CλA
α = −λA

α ).
Moreover, a quite judicious analysis shows that the right

dual to λ (from the relativistic point of view) reads
¬
λα=

±i[λβ]†γ0 [16], where the labels α and β denote differ-
ent types of spinors and, clearly, the dual relation stands
for both self- and anti–self-conjugated spinors. As a last
necessary remark, we remember that there are four differ-
ent Elko spinors: two of them corresponding to different
states for the self-conjugated case, and similarly to the
anti–self-conjugated case [4].

It is possible to provide a particular basis adapted to
eigenspinors of the charge conjugation operator, related
to the Majorana representation. Alternatively, we can use
the chiral representation, paradigmatically explored in all
the literature of Elko. Whatever the basis is chosen, it is
worth to mention that our approach is basis independent.
It is useful for our purposes to construct all the possible
spinors as follows: let ci and dj be c-numbers and write

λ = ciλi and
¬
λ= dj

¬
λ

j

. Now let us decompose λ (and
¬
λ) in

terms of the usual canonical basis (and its corresponding
dual basis) as

λi =

⎛
⎜⎜⎜⎝

λ1
i

λ2
i

λ3
i

λ4
i

⎞
⎟⎟⎟⎠ = λ1

i

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠ + · · · + λ4

i

⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠ , (15)

¬
λ

j

=

(
¬
λ

j

1,
¬
λ

j

2,
¬
λ

j

3,
¬
λ

j

4

)
=

¬
λ

j

1 (1, 0, 0, 0) + · · ·

+
¬
λ

j

4 (0, 0, 0, 1). (16)

Hence, by denoting the element basis by {ξa} (and the

corresponding dual by {
¬
ξ

b

}), we have λ = ciλa
i ξa and
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¬
λ= dj

¬
λ

j

b

¬
ξ

b

, with
¬
ξ

b

(ξa) = δb
a. In order to properly imple-

ment the sigma model to the case at hand, it is necessary
to modify the tensor and exterior products, encompassing
the fermionic character of the fields.

We start by defining the product ⊗̃ in the following way:
let S be the complex vector space generated by all the fi-
nite linear combinations of the usual Cartesian products

(vi,
¬
v

i
), where vi and

¬
v

i
are spanned by the respective

canonical basis. Besides, take I as the subspace of S gen-
erated by

(vi + ui,
¬
w

i
) − (vi,

¬
v

i
) − (ui,

¬
v

i
), (17)

(vi,
¬
w

i
+

¬
u

i
) − (vi,

¬
u

i
), (18)

(kvi, l
¬
w

i
) − kl(vi,

¬
w

i
), (19)

being k, l c-numbers and vi, ui, and so on, spanned by
means of the canonical basis (similarly for the dual case).
The product ⊗̃ is defined by conjugating elements in the
space S/I, and, therefore, eqs. (17)–(19) ensure bilinearity.
Hereupon, we shall pinpoint some important remarks in
order to clarify the relevant properties of ⊗̃. Obviously, a

basis of S/I is given by {ξi⊗̃
¬
ξ

i

}. We define the action of
⊗̃ as

(v⊗̃ ¬
w)(

¬
u, x) = (viξi⊗̃

¬
wj

¬
ξ

j

)(
¬
uk

¬
ξ

k

, xlξl) = vi ¬
wj

¬
ui xj ,

(20)

where
¬
wj and

¬
uj are just coefficients and, more im-

portantly, we have defined the action on the basis as

(ξi⊗̃
¬
ξ

j

)(
¬
ξ

k

, ξl) =
¬
ξ

k

(ξi)
¬
ξ

j

(ξl) = δk
i δj

l . It is important to
stress that the product ⊗̃ is unique, up to isomorphisms2.

Finally, let {ξi}∪ {ξi⊗̃
¬
ξ

j

} over the field C be the basis of

T̃ and Ĩ the bilateral ideal generated by ξi⊗̃
¬
ξ

i

. The prod-
uct ∧̃ acting on T̃/Ĩ related to ⊗̃ is, as expected, given by

ξm∧̃
¬
ξ

n

= 1
2 (ξm⊗̃

¬
ξ

n

− ξn⊗̃
¬
ξ

m

).
We are now in the position to implement the splitting

of eq. (1), although this time endowed with the tilde prod-
ucts. Hence it yields

L =
1

2
gm

n ξm⊗̃
¬
ξ

n

(∂µ
¬
λ, ∂µλ)+

1

2
γm

n ξm∧̃
¬
ξ

n

(∂µ
¬
λ, ∂µλ).

(21)
According to our previous construction, the fermionic de-
composition along with the bilinearity of tilde products
can be used in a fairly direct fashion. It is necessary,
however, to call attention to the fact that the Fermi-Dirac
statistics is a key feature of the Elko formulation [4], which
one cannot preclude. Therefore, in the adopted decompo-

sition λ = ciλa
i ξa and

¬
λ= dj

¬
λ

j

b

¬
ξ

b

the terms λa
i and

¬
λ

j

b are
understood as Grassmannian variables3. Taking advantage

2From a complementary point of view, the defined product ⊗̃ is
just an isomorphism of the usual tensor product ⊗.

3Roughly speaking this is the attempt to reproduce quantum fea-
tures of the field by absorbing the creation/annihilation operators
into the expansion coefficients.

of these remarks, the Lagrangian (21) yields

L =
1

2
gi

jdacb∂µ
¬
λ

a

i ∂µλj
b +

1

4
γ̃i

jdacb∂µ
¬
λ

a

i ∂µλj
b. (22)

It is important to stress that the formal structure of the
Elko spinors is constructed taking advantage of the spinor
rest frame [4]. Therefore, it is quite conceivable to add a
mass term in the above Lagrangian. Therefore, it reads

L =
1

2
gi

jdacb∂µ
¬
λ

a

i ∂µλj
b +

1

4
γ̃i

jdacb∂µ
¬
λ

a

i ∂µλj
b

+ m2djc
i

¬
λ

j

a λa
i . (23)

It serves as the starting point for the formulation of
a mass-dimension-one fermionic sigma model. Generally
speaking, the target space is undertaken as a coset space
of the isometry by the isotropy group. In relevant cases
torsion can be added to such coset spaces [17]. The
Lagrangian (23) can be adjusted to encompass these situa-

tions, {ξa} and {
¬
ξ

b

} being the bases in the fiber bundle for-
mulation, accordingly. From the Lagrangian density (23),
it is interesting to note that the torsion terms do affect the
spin current density. In fact, the appearance of γ̃i

j terms
in the expression below makes this point explicit:

Sµ
αβ = −1

2
dacb

(
gi

j +
1

2
γ̃i

j

) [
∂µ

¬
λ

a

i

δλj
b

δωαβ
+

δ
¬
λ

a

i

δωαβ
∂µλj

b

]
.

(24)

We shall finalize by considering the Elko Lagrangian
(23) as the source of matter, in a curved expanding back-
ground. Some care is necessary, in order to correctly write
the corresponding action in such a case. First, we de-

fine the fields
¬
φi= da

¬
λ

a

i , φj = cbλj
b, and introduce the

covariant derivatives, by ∇µ

¬
φi = ∂µ

¬
φi +

¬
φi Γµ, and

∇µφj = ∂µφj − Γµφj , where Γµ stands for the spin con-
nections coupling Elko spinors to the background metric.
The action in a curved background reads

S =

∫ √−ḡd4x

[
− R

2κ
+

1

2
hi

j∇µ

¬
φi ∇νφj ḡµν − W (

¬
φ, φ)

]
,

(25)
where hi

j = gi
j+

1
2 γ̃i

j . The equations of motion for the fields

follow directly, by taking the variation with respect to
¬
φi

and φj . Equation (25) may serve as the starting point to
apply the formulation presented here in the cosmological
context. In particular, the quartic interaction appearing
due to the (spin connection) torsion contribution (as in
the usual fermionic case) is generated.

In order to show an explicit contribution coming from
the symmetric and anti-symmetric part of the sigma-
model target space into the cosmological equations, let us
take for simplicity a set of constant Elko spinor fields, such

that ∂µ

¬
λ= 0 = ∂µλ, and the potential as the quadratic
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one in the form W = 1
2m2

¬
λ λ. We can choose to write hi

j

in the following simple form:

hi
j =

⎛
⎜⎜⎜⎝

g γ γ γ

−γ g γ γ

−γ −γ g γ

−γ −γ −γ g

⎞
⎟⎟⎟⎠ , (26)

with g and γ representing the symmetric and anti-
symmetric components of hi

j. It may sound as an
oversimplification; however (as we shall see), this partic-
ularization leads to a relevant physical consequence. In
a flat, homogeneous and isotropic FRW metric, ḡµν =
diag[1, −a(t)2, −a(t)2, −a(t)2], the spin connections Γµ

can be determined as Γ0 = 0 and Γk = − ȧ
2γ0γk, where

γµ are the standard Dirac matrices and the dot indicates
the time derivative. Notice that, even for constant spinor
fields, the spin connection term couples to the metric

through the term
¬
φi ΓµΓµφj , with ΓµΓµ = − 3

4
ȧ2

a2 I and,
therefore, contributes with a time-dependent term. The
action (25) can be written as

S =

∫ √−ḡd4x

[
− R

2κ
+ ΛS(t) + ΛA(t) − Λm

]
. (27)

The Λm term comes from the potential part, namely

Λm = 1
2m2

¬
λ λ, and represents a cosmological con-

stant term, with a dependence on the mass of the Elko
spinor field. The terms ΛS(t) and ΛA(t) stand for
the symmetric and anti-symmetric contributions coming
from the sigma model, respectively, and can be writ-

ten as ΛS(t) = 3
8gC(da, cb,

¬
λ

a

i , λi
b)H(t)2 and ΛA(t) =

3
16γC(da, cb,

¬
λ

a

i , λi
b)H(t)2, where C(da, cb,

¬
λ

a

i , λi
b) is a con-

stant and H(t) = ȧ/a is the Hubble parameter. They
act as an effective time-varying cosmological constant,
Λeff (t) = ΛS(t)+ΛA(t)−Λm. At early times of the cosmo-
logical evolution, when ΛS(t) + ΛA(t) > Λm, the positive
contribution from Λeff acts as an attractive gravitational
field in the geometric side of the Einstein equation, leading
to a decelerating universe. As the universe expands, H(t)
decreases. When the condition ΛS(t) + ΛA(t) < Λm is
reached the universe turns to be dominated by a negative
Λeff, which implies a repulsive gravitational force, driven
by a constant cosmological term Λm, in perfect agreement
with the ΛCDM model. It is straightforward to see that
the constant parameters could be adjusted, in order to
reproduce the transition from a decelerated to an accel-
erated expansion of the universe. A much richer scenery
concerns the study of Elko spinor fields dynamic coupled
to the gravitational field [18].

Concluding remarks. – We analyzed and studied a
mass-dimension-one fermionic sigma model, realized by
Elko spinors. A non-commutative fermionic feature was
introduced by the prominent role of torsion. The effective

connection (8) that rules the Euler-Lagrange equations (7)
is defined with respect to the anti-symmetric part of
the metric in the target space. Thereat, Elko spinors
play the role of a source of matter in an expanding
background.

By the very nature of mass-dimension-one fermions, the
study of the action (25) concerning the sigma model for
Elko spinors can provide further insights into the dark-
matter problem. However, it is also interesting to pursue
questions concerning the sigma model itself. For instance,
the study of the non-minimal coupling between the Rie-
mann tensor and four Elkos, as in the standard realization
of supersymmetric sigma models. Moreover, the usual
N = 1 (D = 4) supersymmetric sigma-model case also
imposes the necessity of a Kaehlerian target space. Hence
the investigation of what type of geometric condition may
arise from the extension of the present work to the su-
persymmetric case is also in order. We shall delve these
questions in the future.
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Capítulo 5

Considerações Finais

Ao longo de nossa exposição, percorremos três áreas de atuação que dimensio-

nam, em certo sentido, o trabalho que realizamos em teoria espinorial. A ideia foi

seguir um molde expositivo que abarcasse nosso intento de estudar desde o em-

basamento algébrico formal até consequências físicas, inclusive algumas passíveis

de observação.

Antes porém de realizarmos um desfecho aos temas aqui tratados, gostaríamos

de reservar parte das considerações finais para uma crítica ao trabalho. Vamos à

ela. A ramificação do trabalho exposto, contemplando três subareas de atuação,

explicita as diversas possibilidades de atuação nessa área de pesquisa. Entretanto,

é necessário que se diga, a polivalência também traz em seu bojo aspectos não

tão salutares. Assim, por vezes deixamos de lado uma exploração continuada de

certos tópicos passíveis de análise ulterior. Para efeitos de argumento, vejamos

alguns exemplos concretos em casa subarea abordada.

No que concerne à teoria algébrica de espinores, há ainda espaço para formali-

zações adicionais no espaço de configurações fermiônicos. Ainda, notemos que boa
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parte dos resultados obtidos nessa temática se valeram da classificação algébrica

baseada nos bilineares covariantes. Seria bastante relevante se tentar uma genera-

lização consistente dessa classificação, mas levando em conta segunda quantização.

Um tal programa apontaria de modo taxativo para possíveis desdobramentos em

teoria quântica de campos.

Um viés de trabalho formal em teoria de campos contemplando espinores de

dimensão canônica de massa um é a adequação, ou generalização, do princípio

de Cluster (desenvolvido por Weinberg) para os Elkos. A extensão apresenta-se

factível, mas não foi levada a termo. Esse programa certamente colocaria a linha

de pesquisa em um quadro de trabalho rígido, beneficiando a própria área em si.

Ainda no que concerne a aspectos voltados à teoria de campos, desta vez com

relação à busca por sinais em aceleradores, já há disponível na base do LHC um

programa que testa modelos de partículas passíveis de descoberta no acelerador.

Esse programa ajudaria a colocar um limite nos parâmetros de interação do Elko,

mas sua implementação é sutil e demanda certo trabalho. No entanto é mais uma

característica que merece atenção.

No escopo da cosmologia, várias aplicações do Elko poderiam ter sido estudadas

para sua viabilização (ou o descarte) como candidato a matéria escura. Para

sermos específicos, notemos que nem mesmo a tentativa de reprodução de curvas

de rotação anômalas de certas galáxias espirais foram estudadas tendo o Elko

como fonte. Desse modo, embora parte da literatura evolua para esse fim, ainda

há muito o que se fazer no sentido de se viabilizar completamente o Elko como

candidato principal a matéria escura.

Essa espécie de listagem de possíveis trabalhos a serem realizados dos parágra-

fos anteriores, muito embora possa ser utilizada como perspectiva na área, entra
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aqui como crítica ao trabalho que estamos desenvolvendo. Em cada uma dessas

subareas existem trabalhos importantes que precisam ser abordados, levando-nos

à conclusão de que a concentração de esforços em uma dessas áreas urge ser

realizada. É nesse sentido que acreditamos ser a polivalência danosa ao nosso

próprio trabalho.

Feita e embasada a crítica, faz-se igualmente importante nesse capítulo final a

observação de um ponto, de cunho mais pessoal, que pretende imprimir à tese um

tom de desfecho. Espinores escuros ou, antes, a proposta teórica dos mesmos traz

a necessidade de revisitação de inúmeros conceitos, diversas teorias, e variadas

aplicações para seu estudo. Essa abordagem (a revisitação) permite que olhemos

os conceitos já bem estabelecidos de um modo mais crítico, atentando para o que

é, e o que não é, essencial. Nesse contexto, todo o escopo teórico/fenomenológico

abordado nessa tese pode ser abarcado entendendo-se os espinores escuros como

ferramenta para uma melhor compreensão dos conceitos já bem estabelecidos. Essa

característica pode, por alguns, ser interpretada como algo menor, de importância

reduzida, ou ainda colocada como parte de um programa pouco ambicioso. Mas

ainda que essa última interpretação possa ser pertinente, eis um questionamento

igualmente pertinente: quantos programas de trabalho com o qual nos envolvemos

nos permite, em um cotidiano acadêmico azafamado como o que vivemos, o ensejo

de se ter contato (reiterado) com muitos dos pilares da física moderna e parte de

sua fundamentação matemática?
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