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Dynamics and stability of solitons in two-dimensional �2D� Bose-Einstein condensates �BEC�, with one-
dimensional �1D� conservative plus dissipative nonlinear optical lattices, are investigated. In the case of
focusing media �with attractive atomic systems�, the collapse of the wave packet is arrested by the dissipative
periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-
wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media
with 1D periodic nonlinearity. In the defocusing media �repulsive BEC case� with harmonic trap in one
direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach
simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.
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I. INTRODUCTION

The dynamics of optical and matter-wave solitons with
different type of management of system parameters has been
under intensive investigations in the past years �1,2�. Two
types of modulations have been considered: Dispersion and
nonlinearity management, which can both occur in time and
space. Temporal strong and rapid modulations of the disper-
sion are more interesting in optical fibers due to many ad-
vantages of dispersion managed solitons for optical commu-
nications and for storage of information �3–5�. Temporal
modulations of the nonlinearity are promising in fiber ring
lasers and Bose-Einstein condensates �BEC� �6–8�. In the
latter case, several recent works have been done discussing
the suppression of collapse, leading to the existence of stable
multidimensional solitons in attractive BEC, and with the
generation of periodic patterns of matter waves �9–17�. In
optics, nonlinearity managed solitons have also been ob-
served, as described in Refs. �18–21�.

In view of the actual experimental possibilities, recent
attention has also been devoted to periodic spatial manage-
ment in nonlinear optics and Bose-Einstein condensates. In
optical media, the nonlinear Kerr coefficient can be periodi-
cally modulated in space, leading to the problem of an opti-
cal beam in a two-dimensional �2D� medium with nonlinear-
ity management. In BEC, the spatial variation of scattering
length is possible �22–28�, for example, by using optically
induced Feshbach resonance �29,30�. In the 2D case, the situ-
ation is less clear. The study of a one-dimensional �1D� non-
linear periodic potential in a 2D nonlinear Schrödinger equa-
tion �NLSE� shows that broad solitons are unstable. As
verified in Ref. �31�, narrow solitons centered on the maxi-
mum of the lattice potential can be stable, but the stability
region is so narrow that they are physically unstable. Stable
gap solitons can exist in BEC under combination of linear
and nonlinear periodic potentials �32–34�. However, in gen-
eral the models considered till now are strongly idealized. In
particular, using the optically induced Feshbach resonances

we can generate a mixture of conservative and dissipative
nonlinear optical lattices. In view of that, around the Fesh-
bach resonance one can observe nonvanishing contributions
of the imaginary part of the scattering length.

In the present work, after an analysis of a conservative
system with nonlinear optical lattice, we consider the influ-
ence of nonlinear dissipation on the dynamics and the stabil-
ity of solitons. In particular, we note that the role of such
kind of dissipation can be crucial for the existence of solitons
in multidimensional nonlinear optical lattices. Such hope is
supported by the well-known fact that homogeneous nonlin-
ear dissipations can arrest collapse in the cubic focusing mul-
tidimensional NLSE �35�. The possibility of existence of dis-
sipative solitons is investigated considering compression
effects and atom feeding. For the stability analysis of the
solutions we consider the Vakhitov-Kolokolov �VK� criterion
�36�, which has been discussed in Refs. �37,38�, comple-
mented by numerical simulations.

The organization of the paper is as follows. The model is
described in the next section. In Sec. III, we investigate the
properties of localized states in the cases of attractive and
repulsive 2D condensates in 1D nonlinear optical lattice,
with or without harmonic trap in one of the dimensions. In
Sec. IV, we perform an analysis of the evolution of a 2D
soliton under 1D periodic nonlinearity and dissipation, using
the variational approach and by direct numerical simulation
of the GP equation.

II. MODEL

Recently, the generation of nonlinear optical lattices in
BEC by two counterpropagating laser beams near the optical
induced Feshbach resonance has been suggested �25,26�. The
spatial variation of the optical intensity leads to a spatial
periodic variation of the atomic scattering length. Such struc-
ture can support new types of localized nonlinear states.
Considering the minimum requirements of having spatial pe-
riodic variation in the nonlinear cubic term of a 2D GP equa-
tion, for the wave function ����x1 ,x2 , t� we can have the
following expression:*Corresponding author: tomio@ift.unesp.br
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�x1
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�x2
2 � − g�x1,x2����2� , �1�

with

g�x1,x2� �
g0

2
+ �g1 + ig2��cos2�kx1� + �0 cos2�kx2�� . �2�

In the above equations �=0 �1� for the 1D �2D� case with �0

parametrizing the anisotropy of the nonlinear optical lattice
in the 2D space ��0=0, if the optical lattice is given only in
the x1 direction, and =1 when the lattice geometry is the
same in both directions�. g0 is related to the s-wave two-body
scattering length as, g0��4��2 /m�as, with g0�0 �g0�0�
for attractive �repulsive� condensates; g1 ��0� is related to
the optical intensity; and g2 parametrizes dissipative effects.

The optically induced scattering length and the inelastic
collision rate coefficient Kinel �imaginary part of as� are de-
scribed by �29�

Re�as� = as0 +
1

2ki
	 �stim�x�	

	2 + ��spon/2�2
 , �3�

Kinel � Im�as� =
2��

m

1

ki
	 �stim�x��spon

	2 + ��spon/2�2
 , �4�

where as0 is the background two-body scattering length, 	 is
the detuning from the photoassociated resonance, and �ki is
the relative momentum of the collision. �stim is the resonant
transition rate between the continuum and the molecular
state �proportional to the laser intensity I�x��, with �spon be-
ing the spontaneous decay rate from the excited molecular
state. Far from the resonance, the imaginary part of the scat-
tering length is small, such that Im�a��Re�a�. In Ref. �30�,
it was shown that in the experiment with 87Rb one can obtain
optically induced large variations of the scattering length.
The laser intensity was 460 W/cm2 and the variations as
occurred from 10a0 to 190a0 �with as0=100a0, a0 being the
Bohr radius�.

By considering the following variable changes and defi-
nitions in Eq. �1�,


x = 2kx1, 
y = 2kx2, � =
4wRt


2 , �5�

wR =
ER

�
, ER =

�2k2

2m
, �i=0,1,2 =

gi

2�g0�
, �6�

we obtain the dimensionless equation

i
�u

��
+

�2u

�x2 + �
�2u

�y2 + ��x,y��u�2u = 0, �7�

where

��x,y� � �0 + ��1 + i�2��1 + �0 + cos�
x� + �0cos�
y�� ,

�8�

and the wave function was redefined such that

u � u�x,y,�� =�
2�g0�
4ER

� . �9�

From Eq. �6� to Eq. �9�, we should note that �0 is fixed to
−1/2 for attractive condensates; and +1/2 for repulsive con-
densates. Different cases can be considered: Full 1D geom-
etry is realized when �=�0=0. The anisotropic 2D case is
realized for �=1 and �0=0. And the 2D isotropic case can be
achieved with �=�0=1. Next, we consider more explicitly in
our study the anisotropic 2D case, with �=1 and �0=0. As
the soliton is completely free in the y direction, we also
examine the possibility of having a harmonic trap m
2

2x2
2 /2.

Following the transformations �5�, a dimensionless fre-
quency 
 is also defined, such that


 � 
2 
2

8wR
,

m

2

2

2x2
2 = �4ER


2 �
2y2. �10�

In order to extend our study of the stability conditions to a
few realistic cases, the effect of a compression is also veri-
fied, which can be achieved by a time variation of the back-
ground value of the scattering length �22�, leading to a time-
dependent �0. To achieve this purpose, we use the following
time-dependent expression for �0:

�0 → �0��� = �0 exp�2��� − �c���� − �c�� , �11�

where � is the Heaviside function ���x�=0�1� for x�0 �x
�0�� controlling the initial time when the compression is
switched on. Compression effect, achieved by a feeding pro-
cess, can be described by an additional linear term i� fu in
the GP equation �39�. If the modulation of nonlinearity in
time is induced by increasing the transverse frequency of the
trap, then we should multiply the full nonlinear term by
exp�2���. With these considerations, Eq. �7� can be written
as

i
�u

��
= −

�2u

�x2 −
�2u

�y2 − ��x,���u�2u + 
2y2u + i� fu , �12�

where

��x,�� � �0��� + ��1 + i�2��1 + cos�
x�� . �13�

In the above, one should take � f =0 when ��0 in Eq. �11�,
as such parameters have a similar role in the formalism.

III. CONSERVATIVE SYSTEM

It is useful to describe shortly the solitons and their sta-
bility in the conservative case ��2=0�. The one-dimensional
conservative case has been considered by using a variational
approach �VA� in �26�. Using an exact approach, the 2D case
with 1D nonlinear optical lattice was studied in �31�, where
the authors have considered the case with attractive back-
ground nonlinearity ��1�0�. Looking for perspective appli-
cations to BEC, we will consider here the 2D problem with a
1D nonlinear optical lattice. Following Ref. �26�, we start
our analysis using the VA formalism.

With u�x ,y ,���v�x ,y�exp�−i��� in Eq. �12�, and taking
� f, �, and �2 equal to zero, we obtain
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�v = −
�2v
�x2 −

�2v
�y2 − ��̃0 + �1 cos�
x��v3 + 
2y2v , �14�

where we are redefining �0 to �̃0��0+�1. In view of our
definitions in Eq. �5�, this implies that for attractive con-
densed systems we have �̃0=�1+1/2 and, for repulsive ones,
�̃0=�1−1/2. The sign of �̃0 gives the sign of the background
field. But, we should note that we can have situations where
the same �̃0�0 can refer to attractive or repulsive conden-
sates. For example: �̃0=1 with �1=1/2 and �0=1/2 �attrac-
tive�; �̃0=1 with �1=3/2 and �0=−1/2 �repulsive�.

These two situations differ in Eq. �14�, because the
strength of the oscillatory term is different. However, as the
results are similar, we prefer to analyze separately the cases
of repulsive condensates with negative background field,
which occur when 0��1�1/2 �0��̃0�−1/2�.

The corresponding averaged Lagrangian L is obtained
from the density L as

L = �
−�

�

dx�
−�

�

dy L , �15�

2L = �v2 − 
 �v
�x

2

− 
 �v
�y

2

+
�̃0 + �1 cos�
x�

2
v4 − 
2y2v2.

�16�

Here, it is interesting to observe that a scaling given by 
 is
applied to the observables obtained from the above equations
as the root-mean-square radius in x and y directions, chemi-
cal potentials, frequencies, and energies. In order to see that,
we can redefine all the observables using the variable trans-
formation, x̄�
x and ȳ�
y, such that we have no 
 depen-
dence in a new set of observables �represented with a “bar”�
that are being calculated. This scaling essentially implies
considering 
�1 in all the equations. At the end, the physi-
cal observables will be given by the relations �5� �with 

=1�. For example, in the case of mean-square radius we will
have

�x1
2� =

�x2�
4k2 , �x2

2� =
�y2�
4k2 . �17�

Next, in our VA we consider the Gaussian ansatz

v�x,y� = A exp�−
x2

2a1
2 −

y2

2a2
2� , �18�

where A is the amplitude and ai �i=1,2� the corresponding
widths in the x and y directions, respectively. N=�a1a2A2 is
the normalization of Eq. �18�, with the corresponding aver-
aged Lagrangian given by

L = �
−�

�

dx�
−�

�

dy L =
N

2
	� − � 1

2a1
2 +

1

2a2
2� −


2a2
2

2

+
N

4�a1a2
��̃0 + �1e−
2a1

2/8�
 . �19�

From the Euler-Lagrange equations for the parameters,
�L /�N=0 and �L /�ai=1,2=0, we obtain

2� =
1

a1
2 +

1

a2
2 −

N

�a1a2
��̃0 + �1e−
2a1

2/8� + 
2a2
2, �20�

N =
4�a2

a1��̃0 + �1e−
2a1
2/8�1 +


2a1
2

4 �� , �21�


2a2
4 +

a2
2

a1
2

��̃0 + �1e−
2a1
2/8�

��̃0 + �1e−
2a1
2/8�1 +


2a1
2

4 �� − 1 = 0. �22�

In the case that 
=0, this set of equations, for �, N, and a2,
can be expressed in terms of a1, as

�0 = −
1

a1
2� �̃0 + �1e−
2a1

2/8�1 −

2a1

2

8 �
�̃0 + �1e−
2a1

2/8�1 +

2a1

2

4 �� , �23�

a2,0 � a1� �̃0 + �1e−
2a1
2/8�1 +


2a1
2

4 �
�̃0 + �1e−
2a1

2/8
, �24�

N0 =
4�

���̃0 + �1e−
2a1
2/8�1 +


2a1
2

4 ����̃0 + �1e−
2a1
2/8�

. �25�

For the case that 
�0, the relation for a2 in terms of a1 can
be obtained from Eqs. �22� and �24�:

a2 =
1


a2,0

�	�1

4
+ 
2a2,0

4 −
1

2

 . �26�

Equations �26�, �20�, and �21� form the set of equations for

�0.

Next, we consider separately the cases of attractive sys-
tems, with �̃0=�1+ 1

2 �0, and repulsive ones, with �̃0=�1

− 1
2 �0.

A. Attractive condensate „�̃0=�1+1/2…

This case, which corresponds to �0=1/2 and �1�0, has
been investigated recently in �31�. With 
=0, it is applied to
the set of Eqs. �23�, �25�, and �24�. In the general case with

�0, we should consider Eqs. �20�, �21�, and �26�.

Let us first verify the analytic limiting cases of the VA
expressions for 
=0,

a2,0 → a1 for a1 � 1 and a1 � 1,

�0 → − 1/a1
2 for a1 � 1 and a1 � 1,

N0 →
4�

�̃0 + �1

=
4�

2�1 + 1/2
for a1 = 0,

N0 →
4�

�̃0

=
4�

�1 + 1/2
for a1 → � ,

and the limiting cases of the VA expressions for 
�0,

a2 → �a1 for a1 � 1,

1/�
 for a1 � 1,
�
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� → �− 1/a1
2 for a1 � 1,


 for a1 � 1,
�

N →
4�

�̃0 + �1

for a1 = 0,

N →
4�a2

�̃0a1

→ 0 for a1 → � .

In Fig. 1, we plot the corresponding results for the chemical
potential � as a function of N �upper frame� and N as a
function of a1 �lower frame�. Numerical solutions to PDE
results were done with the algorithm presented in scheme C
of Ref. �40�. Considering the Vakhitov-Kolokolov �VK� cri-
terion �36� expressing the necessary condition for the soliton
stability �given by d� /dN�0�, we observe that the results
given in the upper frame of Fig. 1 provide evidence that the
solitons are not stable. The soliton is orbitally stable if the
orbit near the ground state remains close to this state for all
times. In view of some limitations on the applicability of this
criterion, as discussed in Sec. V of Ref. �38�, the actual con-
clusions on the stability were also verified by numerical
simulations. These results are in agreement with the predic-
tion of Ref. �31�.

We note, from the VA results, that in the limit of large a1
the system has a tendency to stabilize, indicating that with
just a small trapping potential we can produce a stable re-
gion. This behavior is shown by the VA results given in Fig.
2. The variational approach, besides an expected small quan-
titative shift, provides a good qualitative picture of the re-
sults when compared with full numerical predictions. If one
is first concerned with the stability of the system �instead of
the quantitative results of the observables�, the VA provides a
nice and reliable picture.

In our VA, when we keep 
 fixed �zero or nonzero� and
increase the value of �1, we observe that the general picture
in respect to stability of the system does not change. This
leads us to conclude that we cannot improve the stability of
the system by increasing the strength of the lattice periodic-
ity for attractive condensates. In the following, we are going
to analyze the cases with �̃0�0.

B. Repulsive condensate with �̃0�0„�̃0=�1−1/2…

We should recall that by repulsive condensate we mean an
atomic system where the particles have originally positive

7 9 11 13N
−0.3

−0.2

−0.1

0.0

µ

variational
exact

0 2 4 6 8 10 12
a1

7

8

9

10

11

12

13

N

variational
exact

(a)

(b)

FIG. 1. Attractive case, with �̃0=1 and �1=0.5. Results for the
chemical potential �, as a function of N �upper frame� and N vs a1

�lower frame�, obtained using variational approach �VA� and full
numerical calculations. The variational parameter for the width, a1,
and the root-mean-square radius, ��x2�, are related by a1=�2�x2�
�Actually, the physical observables depend on k as given by Eqs. �5�
and �17��.

5 7 9 11 13
N

−0.08

−0.04

0.00

0.04

µ

ω=0
ω=0.01
ω=0.045

0 2 4 6 8 10
a1

5
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13

N

ω=0
ω=0.01
ω=0.045

(a)

(b)

FIG. 2. Attractive case, with �̃0=1 and �1=0.5. VA results for
the chemical potential �, as a function of N �upper frames� and N vs
a1 �lower frame�. The results are given for � near zero, considering
three values of the frequency: 
=0 �solid line�, 0.01 �dashed line�,
and 0.045 �dotted line�.
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two-body scattering length, such that in Eq. �2� we have g0
�0 or �0=−1/2. So, given �1 �parameter of the spatial pe-
riodic variation of the atomic scattering length�, �̃0=�1
−1/2. And, if we also consider a negative background, such
that �̃0�0, �1 will be restricted to the interval 0��1�1/2.

Some other limitations are applied in the parameters, con-
sidering that the widths and N must be real positive quanti-
ties. The relation between the widths a2 and a1, Eq. �24� for

=0, implies a limitation to the values of a1:

e−
2a1
2/8 �

1

2�1
− 1, → a1,max

2 =
8


2 ln� �1
1
2 − �1

� . �27�

This limit, a1,max, is necessary in order to have a2 and N real
and positive quantities for any value of 
. It will also restrict
the actual values of the parameter �1 to 1/4��1�1/2. The
cases with �1�1/2 are also allowed, in principle, without
upper limit for a1. However, such cases will correspond to a
positive background field, �̃0�0, that has already been con-
sidered in the preceding subsection. In view of the above, let
us also verify for this case the analytic VA limits.

For 
=0

a2,0 → �a1 for a1 � 1,

� for a1 = a1,max,
�

�0 → �− 1/a1
2 for a1 � 1,

1/�2a1
2� for a1 = a1,max,

�
N0 → �8�/�4�1 − 1� for a1 = 0,

� for a1 = a1,max
�

and for 
�0

a2 → �a1 for a1 � 1,

1/�
 for a1 = a1,max,
�

� → �− 1/a1
2 for a1 � 1,

1/�2a1
2� + 
 for a1 = a1,max,

�
N → �8�/�4�1 − 1� for a1 = 0,

32�/��1 − 2�1��

2a1,max
3 � for a1 = a1,max.

�
In Fig. 3, we plot N vs a1 and the chemical potential � vs N,
for �̃0=−0.1 and �1=0.4, considering VA and four values of

 �0, 0.07, 0.1, 0.3�. In the case of 
=0, we also include
results obtained from exact PDE calculations. Following the
VK criterion for stability, d� /dN�0, we notice that stable
regions start to appear with 
�0.1. With 
�0.3
2 the un-
stable regions almost disappear. However, as one can ob-
serve in the lower frame, the width a1 is quite limited due to
the condition �27�. The observables � and ai depend on the
wave parameter k of to the spatial periodic variation of the
atomic scattering length through the scaling relations �5� and
�6� with 
=1. However, contrary to some discussions and
conclusions of Ref. �31�, specific values of the parameter k
cannot affect the conclusions on stability. In such cases of
conservative systems, the stability results from combined ef-
fects given by the parameters �̃0, �1, and 
. Our main con-

clusion is that, without the trapping potential �included in the
y direction�, taking 
=0, the optical lattice cannot stabilize
the solutions, neither for repulsive nor for attractive conden-
sates.

In order to further check the role of the optical lattice, for
the repulsive case we also investigate the case with constant

 and different values of �1. From the results shown in Fig.
3, for �1=0.4, we found appropriate to consider 
=0.07,
which has a marginal stability near ��0.05. The results are
shown in Fig. 4, where we first observe that a larger �1 can
help to allow the width a1 to increase, within the limiting
condition �27�. However, the marginal stability remains for
corresponding different values of the chemical potential. In

20 30 40 50 60
N

−0.5

−0.3

−0.1

0.1

0.3

µ

ω=0
ω=0.07
ω=0.1
ω=0.3
ω=0 (exact)
ω=0.3 (exact)

0 1 2 3
a1

20

30

40

50

60

70

N

ω=0
ω=0.07
ω=0.1
ω=0.3

(a)

(b)

FIG. 3. Repulsive case, with �̃0=−0.1 and �1=0.4, for � vs N
�upper frame�, and N vs a1 �lower frame�. In both frames, we show
the results using the variational approach, for 
=0, 0.07, 0.1, and
0.3. In the upper frame, the exact PDE results are also shown in two
cases: 
=0 �for which the system is unstable� and 
=0.3 �for
which the system is stable�. In this last case, near the region where
the VA presents a small unstable branch �22�N�25�, our exact
numerical results are shown only for N�24. As observed, the VA is
giving a general picture of the exact solutions.

DISSIPATIVE DYNAMICS OF MATTER-WAVE SOLITONS… PHYSICAL REVIEW A 76, 043611 �2007�

043611-5



order to keep the plots of Fig. 4 for different values of �1 in
the same frames, we have normalized the number N such that
it is equal to one when a1 is zero.

The plots of the profiles are presented in Fig. 5 for 
=0
and 0.3. Stability is verified by the numerical evolution con-
firming the VK prediction. The profiles at t=50 are practi-
cally undistinguishable from the initial form, in good agree-
ment with the VA.

IV. EVOLUTION OF 2D SOLITON UNDER 1D PERIODIC
NONLINEARITY AND DISSIPATION

In this section, we will consider the case �2�0 we have
in Eq. �12�. To study the dynamics of a 2D soliton with 1D
periodic nonlinearity and dissipation, we also apply a varia-
tional approach and full numerical calculations. In the
Gaussian ansatz �18�, we should also include parameters re-
lated to dissipative effects and initial conditions. As dissipa-
tive solitons are known to be chirped for a bright soliton
�41�, the ansatz can be taken in the following form:

u = A exp	−
�x − x0�2

2a1
2 −

y2

2a2
2
exp�ib1�x − x0�2 + ib2y2

+ i����� . �28�

In this case, we include the chirp parameters bi �i=1,2�, a
coordinate parameter in x direction given by x0, and a phase
� of the wave packet.

The Lagrangian density for Eq. �12� is

L�x,�� =
i

2
�u�u

� − u�
�u� − �ux�2 − �uy�2 +

��x�
2

�u�4, �29�

where ��x� is given by Eq. �13�. Next, from the ansatz �28�,
we obtain the corresponding averaged Lagrangian:

L = �
−�

�

dx�
−�

�

dy L = −
�

2
A2a1a2	a1

2�b1� + 4b1
2� +

1

a1
2

+ a2
2�b2� + 4b2

2� +
1

a2
2 + 2�� −

A2

2
��̃0

+ �1 cos�
x0�e−
2a1
2/8�
 . �30�

The equations for the soliton parameters �i= �A ,a ,b ,�� in
the VA are derived from �see for example �42��

�L

��i
−

d

d�

�L

��i,�
= �

−�

�

dx�
−�

�

dy	R
�u�

��i
+ c.c.
 , �31�

where the perturbation term R is

R = − i�2�1 + cos�
x���u�2u + i� fu . �32�

Here we are taking into account a linear amplification term
�� f� describing the atoms feeding. Finally, from the above,
we obtain the following system of five coupled ordinary dif-
ferential equations �ODE� to be solved for the parameters of
our variational approach �VA�:

1.0 1.1 1.2
N(4γ1−1)/(8π)

−0.2

−0.1

0.0

0.1

µ

γ1=0.50
γ1=0.45
γ1=0.40
γ1=0.35

ω=0.07

0 1 2 3 4
a1

1.0

1.1

1.2

1.3

1.4

N
(4

γ 1−
1)

/(8
π)

γ1=0.5
γ1=0.45
γ1=0.40
γ1=0.35

ω=0.07

(a)

(b)

FIG. 4. VA results for the repulsive case, with �̃0=−0.1 and 

fixed to 0.07, considering �1=0.35, 0.4, 0.45, and 0.5. In the upper
frame we have � vs N /N�a1=0� and, in the lower frame, N /N�a1

=0� vs a1.

−4 −3 −2 −1 0 1 2 3 4
x,y

0

0.1

0.2

0.3

0.4

0.5

|ψ
|2 /N

x−direction (y=0)
y−direction (x=0)

FIG. 5. The soliton profile in the stable region predicted by the
VK criterion for 
=0.3, �̃0=−0.1, �1=0.4, �=0.1, and N�33 at
the time t=50. Solid line is x direction; dashed line is y direction.
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�A2a1a2�� = − �2A4a1a2e−
2a2/8 cos�
x0� − �2A4a1a2

+ 2� fA
2a1a2, �33�

�A2a1
3a2�� = 8A2a1

3a2b1 −
�2

2
A4a1

3a2	1 +
1

4
cos�
x0��4

− 
2a1
2�e−
2a1

2/8
 + 2� fA
2a1

3a2, �34�

�A2a1a2
3�� = 8A2a1a2

3b2 −
�2

2
A4a2

3a1�1 + e−
2a1
2/8 cos�
x0��

+ 2� fA
2a1a2

3, �35�

b1� =
1

a1
4 − 4b1

2 −
�̃0A2

4a1
2 −

�1A2

4a1
2 cos�
x0�e−
2a1

2/8�1 +

2a1

2

4
� ,

�36�

b2� =
1

a2
4 − 4b2

2 −
�̃0A2

4a2
2 −

�1A2

4a2
2 cos�
x0�e−
2a1

2/8. �37�

By taking into account that the norm N=�A2a1a2, with i , j
=1,2 �i� j�, we have

N� = −
�2N2

�a1a2
�1 + e−
2a1

2/8 cos�
x0�� + 2� fN , �38�

�ai
2�� = 8ai

2bi +
�2Nai

2�aj
	1 + e−
2a1

2/8 cos�
x0��1 + �i,1

2a1

2

4
�
 ,

�39�

bi,� =
1

ai
4 − 4bi

2 −
N

4�ai
3aj
��0 + �1	1 + e−
2a1

2/8 cos�
x0�

��1 + �i,1

2a1

2

4
�
� . �40�

Next, we present some of our results, when considering pe-
riodic nonlinearity with dissipative effects. Considering the
scaling of observables with 
, discussed for the conservative
systems in Sec. III, which can also be verified in the present
case, we have the corresponding transformation bi→bi /
2.

In Fig. 6, we have results for the full numerical simula-
tions �PDE� for the evolution of the matter-wave packet un-
der combination of the conservative and dissipative nonlin-
ear optical lattice in the case of the attractive condensate
�0=1/2. As we can see the collapse is arrested by the dissi-
pative nonlinear optical lattice. The results are compared
with the prediction of the VA approach �ODE�. We observe a
good agreement of the VA with full numerical calculations.

We also have investigated the role of a deviation � of the
given norm from the critical norm, in the initial wave packet:
A→A�1+��. The results of the full numerical simulations
are presented in Fig. 7. Increasing the deviation � from the
critical norm, multiple peaks are observed, corresponding to
revivals of the wave packet during the collapse. The number
of peaks grows as � varies from 0.02 to 0.5. The focusing-

defocusing cycles connect the action of the periodically
varying in the space with the inelastic three-body interac-
tions. In a linear conservative optical lattice, with inelastic
three-body interactions, the focusing-defocusing oscillations
have been studied in Ref. �43�. Such oscillations have been
studied in Ref. �44�, using a harmonic trap with inelastic
three-body interactions.

After the collapse is arrested, as observed in Fig. 6, the
spreading out of the pulse can be compensated by an adia-
batic variation of the background scattering length, consider-
ing the time variation of �0. When we consider a time de-
pendent �0, as given in Eq. �11�, the feeding term parameter
� f should be zero, because one can show �with a redefinition
of the wave function� that it has a similar effect. In Fig. 8, we
show our full numerical results confirming the stabilization
of the condensate after the collapse was arrested. The mecha-
nism of this stabilization was given by an appropriate tuning
of the parameters � and �c of Eq. �11�.

About the dissipative dynamics presented in this section,
we should also add that effects of the lattice can also be
observed in uniform systems. The variational approach can
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A
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PDE γ2=0.002
ODE γ2=0
ODE γ2=0.002

FIG. 6. Results for the amplitude �A� as a function of �, using
variational approach �VA� and full numerical calculations, for the
attractive case with �0=�1=0.5. The VA and the full numerical
calculations have the value of �=1 fixed to the same value for �
=0, implying a small shift of A�0�, as shown by the results.

0 1 2 3τ
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FIG. 7. Results for the amplitude as a function of �, showing the
collapsing behavior for 
=4�. As in Fig. 6, �0=�1=0.5. The dis-
sipation is fixed to �2=0.0025 and � is increasing from 0.02 to 0.5.
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describe dissipative dynamics between narrow and broad
solitons relative to the lattice spacing 2� /
. In the limit of a
narrow soliton, we have a cubic dissipative term. In the op-
posite limit of a broad soliton, the averaged GPE contains an
effective quintic imaginary term, providing a different dissi-
pative dynamics. This effect appears with the replacement of
i�2 cos�
x��u�2u by i�3�ū�4ū, with �3=3�2

2 / �2
2� and ū a
field averaged over rapid modulations. Thus renormalization
of the parameter corresponding to effective three-body
losses, �3, can be controlled by the values of the period
2� /
 and amplitude �2 of the nonlinear modulations. The
number of cycles reduces as �3 grows and for large values of
the damping, with the soliton decaying monotonically. These
observations are also confirmed by the existence of focusing-
defocusing cycles �44� in 3D BEC in a harmonic trap with
two- and three-body inelastic processes.

V. CONCLUSION

Dynamics and stability of matter-wave solitons in the
mixture of conservative and dissipative nonlinear optical lat-

tices are investigated, considering 2D BEC, with 1D conser-
vative plus dissipative nonlinear optical lattices.

In the first part of this work, we analyzed conservative
systems, with nonlinear optical lattices, for attractive and
repulsive condensates. The role of the scales when calculat-
ing the observables as the chemical potential and the widths
was clarified. Our conclusion is that, in a 2D system, a non-
linear periodic lattice in one direction by itself cannot give
stable solutions, satisfying the VK criterion �36�. Such a pe-
riodic lattice in the x direction cannot compensate for the
collapsing effect which results from the other dimension. We
verify that stable solutions can be obtained by controlling the
soliton with a harmonic trap in the y direction. For repulsive
condensates, the 2D stable soliton can exist in the geometry
with 1D nonlinear optical lattices in one direction and har-
monic trap in the other direction.

In the second part of the work we analyze the dynamics of
the above 2D system, with periodic nonlinearity in the x
direction and without trap in the y direction, when we add
nonconservative nonlinear optical lattice terms. We show
that the collapse of the condensate can be arrested by a dis-
sipative periodic nonlinearity. To study the evolution of the
2D wave packet we apply the time-dependent variational ap-
proach. To compensate the wave packet broadening, the
adiabatic time variation of scattering length is used. It is
shown that the metastable dissipative soliton can exist in a
2D condensate with 1D periodic nonlinearity. Analytical pre-
dictions are confirmed by the numerical simulations of a full
2D GP equation.
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