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Nonlocal Description of the Nucleus-Nucleus Interaction
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A parameter-free nonlocal double-folding-inspired interaction is proposed for the nucleus-nucleus
systems. Excellent reproductions of elastic scattering differential cross section data were obtained for
several systems over a wide range of bombarding energies. Our results should be of value in the
description of the scattering of other many-body systems. [S0031-9007(97)05269-1]
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The mean field interaction between complex quantunBefore we set the stage for the analysis of elastic
many-body systems (nucleus-nucleus, cluster-cluster, etcsgpattering data, we first describe our theoretical model.
is still an open question in current physics research. The When dealing with nonlocal interactions, one is re-
study of this matter is a fundamental step in the undergquired to solve the integro-differential equation
standing of many-body dynamics. In the nucleus-nucleus 52 _, . S -
case, significant progress has been achieved concerning_ﬁV W(R) + [ UR,RW(R')dR" = E¥(R),
this question during the last decade [1], as a consequence 1)
of the measurement of accurate and extensive elastic sc
tering data at intermediate energies. Nuclear rainbow sc
tering, first observed i systems [2—4] and later in light - . . )
heav%/ ions [5—7], probes i/he nucl[eus—r]mcleus potent?al n(;Pr U(R, R') the following form motivated by the physics
only at the surface region but also at smaller distance&rOblem ?tband . .
and ambiguities in the real part of the potentials have U(R.R) = V(R,R') + i8(R — R)W(R.E)
peen remov_ed: _ The resulting phenomenological interac- + 8(R — R)Vc(R). 2)
tions have significant dependence upon the bombarding en-

?/\tlhere, on physical grounds [13], the kernel function is
afélken to be symmetricU(R,R’) = U(R',R). We take

In our analysis, the Coulomb interactioW¢(R), was

account for this energy dependence through realistic megy),
field potentials. Nowadays, the most successful model
seem to be those based on the DDMS3Y interaction [8—S

10] which is an improvement of the originally energy- Guided bv the microscopic treatment of neutron-
independent double-folding potential [11]. But, in ordernucleus sca%/tering [15], we phave assumed for the real

to fit the data, the density- and.energy—depe_ndent DDMSmuclear interaction the Perey-Buck or Frahn-Lemmer
potential needs a renormalization factor which besides beénsatz [16,17]

ing system dependent [1,12] is still slightly energy depen-

ded potential [14] and the local energy-dependent
aginary potentialW (R, E), was taken to have a Woods-
axon form with three adjustable parameters.

!
dent [1]. . - V(R,R') = Vi RTR 1
In this Letter we show, by an extensive description of 2 w323
elastic scattering data using an optical integro-differential S o \2
equation, that the dependence on the bombarding energy X exp— IR = K 3
of the real bare potential is mostly due to the intrinsically b ’

nonlocal nature of the effective one-body interaction.whereb is the range of the Pauli nonlocality of the ion-ion
The real bare potential (by bare we mean the averagénteraction. Therefore, the nonlocality introduced in this
mean field, interaction with no coupled channels effectsway is a correction to the local model and in the— 0

is constructed using the folding model. It contains nolimit Eq. (1) reduces to the usual Schrédinger differential
adjustable parameters and is energy independent. Thguation. We should mention, at this point, that the use
absorptive part is taken to be a three parameters Woodsf the simple Gaussian shape to represent nonlocality in
Saxon interaction. We also supply a simple approaclhe nucleus-nucleus interaction has been justified, within
to obtain the local-equivalent energy-dependent potentiathe single-folding model, by Jackson and Johnson [18].
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In a recent publication [19], we have shown thattems, the data are available at a wide energy range
the values ofb can be obtained for light heavy-ion (I = Eju/Apoj = 200 MeV/nucleon), whereas the last
systems from the energy dependence of phenomenologiclo systems represent typical cases of refractive scattering
potentials extracted from elastic scattering data analysethat have been studied in details in the early 1970s [2—4].
These b values were found to be in accord with the In the present analyses, we have used realistic microscopic
Jackson and Johnson [18] theoretical predictidbn=  nuclear densities as reported in the literature [11,12,20].
bomo/ ., Where by is the nucleon-nucleus nonlocality The only parameters that were allowed to vary were those
parameterm, is the nucleon mass, and is the reduced of the absorptive Woods-Saxon imaginary potential. In
mass of the system. The valdg = 0.85 fm was well  Figs. 1 and 2 we show the angular distributions for the sys-
established by an extensive nucleon-nucleus elastic datams above at the following bombarding energi€g;, =
analysis [16]. We have used the above system-dependehs, 112, 300, 1016, 1449, and2400 MeV ('’C + '2C),

expression fob in the interaction Eq. (3). Eip = 420, 1449, and2400 MeV ('>C + 2%Pb), and
We propose thay, (:55 R is of the following folding-  Eis = 139 MeV (a + !2C,%Ni). The agreement be-
inspired form: tween the theoretical calculations (solid lines) and the

experimental data (from Refs. [4,5,21—-26]) is impressive.
Vne(€) = Viou(R =€), (4) Thg quality of the 1Sits are at Ie[ast as goo]d) as thF;t of any
> . . . other analyses using realistic potentials.
Veola(R) = f pi(r)v(R = 71 + 72)pa(ra) diy dis, The resulting reaction cross section values are very simi-
(5) lartothe already reported ones (Refs. [1,4,5,21-26]). The
geometry of the imaginary potenti@f (R) and the corre-
sponding volume integraly (E) behave as a function &
quite smoothly. More specifically for tHéC + '>C sys-
tem, the behavior afy (E) as a function of the bombarding
energy is just like the one shown in Fig. (6.8) of Ref. [1].
To our knowledge, the results reported here correspond
to a first attempt to reproduce light- and heavy-ion elas-
_ |: e _ e > :| tic angular distributions for such a variety of systems and
v(r) = (7999 2134 . )
4r 2.5r such a wide energy range with completely parameter-free
. real interaction. Furthermore, the usual renormalization
~ 2626(r) MeV. (6) factor of the DDM3Y interaction is absent in our analy-
The pseudopotential,—2625(7) MeV, describes the ses. Thus, one reaches the conclusion that the widely used
knock-on exchange collision at 10 M¢Rucleon [12].
The two other Yukawa terms are responsible for the direct o , . R
component of the interaction. We stress thdR, R') is Elol, 16 MeV Ey = 1076 MeV
a nonlocal exchange potential, since we have considered 0°
the exchange as the main source of the nonlocality. In
our approach, we have not considered the intrinsic energy
dependence in the effective nucleon-nucleon interaction  %©°
since we associate all the observed energy dependence
of the local equivalent potential to the parameter As
has been discussed earlier within a microscopic treatment *s 10"k
[15], such a hypothesis should be valid at energies up toU .
200 MeV/nucleon. Therefore, the present data analysis Gl
is a further test to check our recent findings [19], which = 'L
associate most of the observed energy dependence of
the phenomenological local real potential to finite range
exchange effects. o
We turn next to the data analyses. After projecting o
over partial waves, we have solved numerically Eq. (1)
by an iterative method. In order to test how general is Oep. (deg)
our model, we have analyzed elastic scattering angular o
distributions for the!?C + 2C,28pb anda + '2C, 38Ni FIG. 1. Elastic scattering angular distributions for tR€ +
systems. These systems correspond to quite different noHLC system at several bombarding energies as indicated.

. he data are from Refs. [5,21-24]. The solid lines corre-
- 12 208
locality range parameters: = 0.075 fm (*°C + “°Pb), spond to nonlocal optical model calculations using an energy-

b =0.14fm (>C+ 2C), b =1023fm (a + *Ni), independent and parameter-free real potential (see text). Note
and b = 028 fm (a + '2C). For the first two Sys- the change in the scattering angle scale.

where p(r;) and p,(r,) are the nuclear densities of
the colliding partners and(r) is the effective nucleon-
nucleon interaction. We point out thet, 4 (R) is assumed
to have the local standard form of the double-folding
potential [11]. We have used the well-known nucleon-
nucleon M3Y interaction

¢

10° F
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o E|;b=?20h/[e\} T T ELfT e l(b) 10 A be'tter approximation, vqlld over a greater energy

10° | comnen i range, is obtained by neglecting the imaginary part of the
potential and expanding the left hand side of Eq. (7) to

o - lowest order iny. The resulting quadratic equation may

be solved to obtain
VLE(R;E)
_ 1= T = 4yVia®) exp—y[E — Vc(R)]

2y
9)

We point out that in the limith — 0 we find for both
Egs. (8) and (9)VLe(R,E) = Viua(R), which contains
the exchange effects in the zero-range approximation
as should be the case. We have calculated the local
Oc.m(deg) equivalent potential using Eq. (9) for the syst&i@ +

FIG. 2. The same as Fig. 1 for the syste& + 2%®Pb and 2C at _thre_e bombar_ding energies. The. results are Shown
a + 2C®Ni. The data are from Refs. [4,24—26]. Note the @ Solid lines in Fig. 3. For comparison, the folding
changes in the scales of both axes. potential, Vioq(R), is also shown (dashed line). We
can observe that the LEP have slightly different shapes

energy-dependent potential hides to some extent the unddpan that ofVioa(R). At h',gh energies, we opserve that
lying nonlocal interaction. We should mention, however,VL_E(R’E) becomes fact_orlzed aé e (R)f (E) with f(E)
that there is room to have some density dependence in ofifind roughly exponential.

model if a more optimized fit is undertaken. From the re- W& have also calculated the real part of the exact

sult we obtain, it is clear that this dependence is bound t!pcal. equivalent potential through Eq. (1). The results
be weak. convinced us that, as expected [16], thdependence of

Because of the high values of orbital angular momeni€ LEP is very weak. The potential values arising from
tum involved in the calculations, the numerical solutionthe €xact calculation agree with those from Eq. (9) within
of the integro-differential equation (1) is a very hard 2Pout 3%. We have also calculated elastic scattering
task for heavy-ion systems. Thus, it is desirable to degngular _d|str|but|9ns by solving the chal Schrodinger
velop a method to obtain the local equivalent potentiafj'fferennal equation using 'the approximate LEP from
(LEP) in order to calculate cross sections solving the usugf9- (9). The results are quite S|m|Ia.r to tho_se gene_rated
Schrédinger equation. In the early 1960s, Perey and Buck®™ thg sglutlon of the full |rjtegro—d|fferent|al equation
[16] showed that the LEP is only weakfydependent and (L)- It iS important to mention that the parameters of
supplied an approximate relation to obtain that potentiaf® imaginary Woods-Saxon potentia¥(R, £), used in

for neutron-nucleus systems. We have generalized [1§ e exact calculations are somewhat different from those
that expression to the nucleus-nucleus case, namely,

VLE(R: E) ex{ —yVLE(R: E)] of T T T T
~ Viola(R) exp{—y[E — Vc(R) — iW(R,E)]},

(7)
with y = wb?/2h*. The above equation can be solved
for VLe(R; E) by the iterative method. Since for heavy-
ion systems the value of is very small (for'?C + 2C,

y = 0.0014 MeV~!) we can appropriately expand (7) to
obtain

=V, ¢(MeV)

VLE(R;E) = Via(R)[1 — yE]

E1ap
= Vfold(R)(l - B A—a> (8)
proj
where B = mob3/2h? is a system-independent constant R(fm)
_1 . . .
eq?alt.t(l) 0?}??2 MeV™". hThIE linear t_befra\lllorbOf thed .FIG. 3. The local equivalent potential (solid lines) for the
potenual with the energy has been particularly ODServea Iiec | 12¢ gystem at three different bombarding energies.

a nucleus scattering [18] and the experimentally extractedhe dashed line corresponds to the double-folding energy-
slope is in agreement with the theoretigalvalue. independent potential.
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