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Abstract We establish dynamical localization for random Dirac operators on the
d-dimensional lattice, with d ∈ {1, 2, 3}, in the three usual regimes: large disorder, band
edge and 1D. These operators are discrete versions of the continuous Dirac operators and
consist in the sum of a discrete free Dirac operator with a random potential. The potential is
a diagonal matrix formed by different scalar potentials, which are sequences of independent
and identically distributed random variables according to an absolutely continuous probabil-
ity measure with bounded density and of compact support.We prove the exponential decay of
fractional moments of the Green function for such models in each of the above regimes, i.e.,
(j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary
disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder.
Dynamical localization in theses regimes follows from the fractional moments method. The
result in the one-dimensional regime contrast with one that was previously obtained for 1D
Dirac model with Bernoulli potential.
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1 Introduction

The study of localization properties for random operators, in special the phenomenon of
dynamical localization, has become an important field of research. Several models of random
operators have been considered in the literature, such as the Anderson Schrödinger model,
Anderson-type random hamiltonians, the unitary Anderson model, random block operators,
among others (see references [1–4,8,10–12,14,17,19,20,26–28]). The prototypical model
in the study of localization properties of quantum states of single electrons in disordered
solids is the Anderson Schrödinger model, for which the property of dynamical localization
is known to hold in each of the following regimes (see [27] and references therein): (j) in any
spacial dimension and for all energies in the spectrum at larger disorder, (jj) near band edges
of the spectrum in any spacial dimension and for arbitrary disorder, and (jjj) for all energies
in the spectrum and arbitrary disorder, in dimension one.

In this paper we study dynamical localization in regimes (j)–(jjj) above for a class of
random Dirac operators, which we call discrete Anderson Dirac (DAD) model, defined by

Hω(m, c) := H0(m, c) + Vω, (1)

acting on the Hilbert space l2(Zd ,Cν) with ν =
{
2 if d ∈ {1, 2}
4 if d = 3

, where ω ∈ � = R
Z
d
,

m ≥ 0 is the mass of a particle in the lattice Zd and c > 0 represents the speed of light. The
free Dirac operator H0(m, c) and the random potential Vω are defined as follows:

(i) H0(m, c) := cDd + mc2Bd with

D1 =
(

0 d∗
1

d1 0

)
, D2 =

(
0 d∗

1 − id∗
2

d1 + id2 0

)
, D3 =

(
O2 σ · D∗

σ · D O2

)
,

B1 = B2 = σ3, B3 =
(

I2 O2

O2 −I2

)
, (2)

where I2 is the 2× 2 identity matrix, O2 is the 2× 2 null matrix, σ = (σ1, σ2, σ3) is the
triple of usual Pauli matrices given by

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3)

D = (d1, d2, d3) is the triple of finite difference operators d j = τ j − I d , j ∈ {1, 2, 3},
each acting on l2(Zd ,C), where τ j is the right shift only in the coordinate j , and D∗ =
(d∗

1 , d∗
2 , d∗

3 ) is the triple of adjoints of d1, d2 and d3, respectively. We have

σ · D =
3∑
j=1

σ j d j =
(

d3 d1 − id2
d1 + id2 −d3

)
,

σ · D∗ =
3∑
j=1

σ j d
∗
j =

(
d∗
3 d∗

1 − id∗
2

d∗
1 + id∗

2 −d∗
3

)
.

The operator H0(m, c) is bounded and self-adjoint on l2(Zd ,Cν).
(ii) Vω is a diagonal matrix formed by different random potentials V (α)

ω : Zd → R given by
V (α)

ω ( j) = ω jα with j ∈ Z
d and α ∈ A = {1, . . . , ν} (ν = 2 or ν = 4). We write

Vω = diag
(
V (1)

ω , . . . , V (ν)
ω

)
. (4)
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262 R. A. Prado et al.

We assume that ω = {ω jα} j∈Zd ,α∈A is a 2-parameter family of independent, identically
distributed (i.i.d.) random variables with common Borel probability measure μ which is
absolutely continuous with bounded density ρ ∈ L∞(R) and of compact support. We denote
by

supp μ := {x ∈ R : μ(x − ε, x + ε) > 0, ∀ε > 0} = [ωmin, ωmax]

the support of μ, where ωmin = inf(supp μ) and ωmax = sup(supp μ) . Let P be the product
measure generated by the pre-measure induced by μ on the Borel cylinder sets in � = R

Z
d
.

Under the above assumptions, the potential matrix Vω is a bounded multiplication operator
and therefore each Hω(m, c), defined in (1), is a bounded self-adjoint operator on l2(Zd ,Cν).
These operators Hω(m, c) are discrete versions of the continuous Dirac operators in quantum
mechanics [29]. Dynamical and spectral properties of the model (1) in dimension d = 1 have
already been studied by the authors with other potentials [7,10,23]; the explicitly versions
of this model in d = 2 and d = 3 are being considered here for the first time (to the best of
our knowledge).

In [10], two of the present authors have studied dynamical localization (uniform bound-
edness in time of each moment of the position operator, i.e., relation (6) in Sect. 3) for the
model (1) in dimension d = 1 with potentials Vω(n), n ∈ Z, being i.i.d. Bernoulli random
variables taking values ±V with V > 0. It was shown in [10] that the massive case (when
m > 0) has dynamical localization and the zero mass case presents dynamical delocalization
for specific values of the energy. The method that was used to obtain dynamical localiza-
tion was the multiscale analysis, a technique initially developed by Fröhlich and Spencer in
1983 [13].

In the present work, we establish dynamical localization in the strong exponential sense of
Definition 3.1 (see Sect. 3), for the DAD model (1) in the regimes (j)–(jj) mentioned above,
for dimensions d ∈ {1, 2, 3}, and for dimension d = 1 in the regime (jjj). This concept of
dynamical localization implies that Hω(m, c) has pure point spectrum for almost everyω (see
Sect. 3) and is awayof asserting that solutions of theDirac equation Hω(m, c)
(t) = i∂t
(t)
keep strongly localized in space, uniformly in time, so that all moments of the position
operator are bounded in time (see relation (6) in Sect. 3, which is interpreted as absence of
quantum transport). The method used here to obtain dynamical localization is the fractional
momentsmethod (FMM), described in Theorem 3.1, whichwas introduced byAizenman and
Molchanov in 1993 [2]; it was further developed in [3,16] and recently it was extended for
random operators acting in spaces l2 on general graphs [4] (see also the review paper [27]).
This method gives dynamical localization under the condition that the fractional moments of
the Green function decay exponentially. Although it requires that the distribution of potential
values is absolutely continuous with bounded density and of compact support, the FMM is
technically simpler than the multiscale analysis, and in general it also gives stronger results
on dynamical localization. The applications of the FMM to DAD model are described in
Theorems 3.2, 3.3 and 3.4 (see Sect. 3.2 for details), which shows the exponential decay of
fractional moments of the Green function in the three usual regimes: large disorder, band
edge and 1D; these are the main results of this paper.

The main motivation for studying dynamical localization for DAD using FMM comes
from the d-dimensional discrete Anderson Schrödinger model. Although we have gotten
final statements similar to the Schrödinger case, the application of the method to the Dirac
setting is not immediate, and each step needs to be verified. Now we mention some points of
contrast or connection with respect to the Schrödinger case:
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Dynamical Localization for Discrete Anderson Dirac Operators 263

(i) In contrast to the Schrödinger case, model (1) have different actions depending on the
spatial dimension d ∈ {1, 2, 3}; hence, we have some specific calculations and details
in each dimension, as in the proof of Theorem 3.2.

(ii) In model (1), the potential Vω is a diagonal matrix (4) formed by different potentials
V (α)

ω ( j) = ω jα which are i.i.d. random variables with the same probability measure.
In addition, we assume the independence of the variables ω jα and ωkβ not only with
respect to positions j, k, but also with respect to the components α, β (two distinct
sequences are independent). These facts are essential in the proofs of Proposition 4.1
and Theorems 3.2, 3.3 and 3.4; we underline that the analysis here does not cover
the case of potential which does not depend on the component variables. In the one-
dimensional Schrödinger case the potentials are sequences of scalars, but since the
potential here is assumed to depend on the component variables, our model really can
be reformulated as a Schrödinger model on a product graph (e.g., Zd ×{1, 2, 3, 4}); so,
from some perspective, this is an interesting case of random Schrödinger models with
particular potential physical relevance.

(iii) The definition of Green function is different from the Schrödinger case because the
matrix elements Gαβ

ω ( j, k; z) depend not only on the positions j, k ∈ Z
d , but also on

components α, β. Thus, we obtain recursive relations (30)–(40) between the fractional
moments of the components of Green function, in dimensions d ∈ {1, 2, 3} (see proof
of Theorem 3.2), which implies, by using Proposition 4.1, in exponential decay of those
moments in each component.

(iv) The spectrum of the free Dirac operator H0(m, c) consists of two disjoint intervals
(except for m = 0) with the famous negative energies (see Theorem 2.1), whereas just
one interval for the Schrödinger model on Z

d ; this implies in four extremes energy
intervals I±

δ (m, c) (form > 0 and 0 < ωmax < 2mc2) for which Hω(m, c)|H± exhibits
dynamical localization (see Theorem 3.3).

(v) In contrast with the 1D Bernoulli potentials mentioned above, for DAD with null mass,
i.e.,m = 0, it is concluded in Theorem 3.4 that dynamical localization holds true for all
energies in the spectrum (under arbitrary disorder), in the case where the distribution
of the potential is absolutely continuous with bounded density of compact support.
There is, therefore, a drastic difference in dynamical behavior of the DAD between a
continuous and a extremely singular distribution (i.e., Bernoulli).

(vi) In the proof of our 1D localization result (Theorem 3.4), we work with the FMM in
infinite volume and with complex energies, while in the localization result obtained for
one-dimensional Anderson Schrödinger model (Theorem 4.1 in [18]), the authors have
established the exponential decay of fractional moments of the Green function in finite
volume and for real energies.

The results are divided into three parts. In the first one, which refers to large disorder
regime, we establish the boundedness of the fractional moments of the Green function of
the operator Hω,λ(m, c), for every λ > 0 (Proposition 4.1). Using this result together with
the decoupling Lemma 5.1, we obtain the exponential decay of fractional moments of the
Green function, for dimensions d ∈ {1, 2, 3}, for large disorder λ and for all energies in the
spectrum (see Theorem 3.2(i)). Dynamical localization for Hω,λ(m, c) at large disorder and
for all energies in the spectrum (see Theorem 3.2(ii)) then follows from fractional moments
method in the Dirac context (Theorem 3.1). In the second part, which refers to band edge
regime, we establish the exponential decay of fractional moments of the Green function
of the operator Hω(m, c) (restricted to subspaces of negative and positive energies), for
dimensions d ∈ {1, 2, 3} and m > 0, at energies near the bottom of the spectrum (see
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264 R. A. Prado et al.

Theorem 3.3(i) for precise statements). The general idea in this case is the following: we
control the expectation value of fractional moments of the infinite volume Green function in
terms of the corresponding expectation values of finite volume restrictions of the operator
(see Proposition 8.1 and the decoupling estimate (61) in Sect. 10). Dynamical localization for
Hω(m, c) at energies near the bottom of the spectrum (see Theorem 3.3(ii)) follows, again,
by Theorem 3.1. In the third part, which refers to 1D localization regime, we establish the
exponential decay of fractional moments of the Green function of Hω(m, c) at all energies
of the spectrum (see Theorem 3.4(i)), which implies dynamical localization in this regime
(Theorem 3.4(ii)). In the one-dimensional case, we use the formalism of transfer matrices
(see Sect. 12), which allows us to obtain the exponential decay in Lemma 12.1, as well as a
special representation (65) of the Green function in terms of generalized eigenfunctions.

In the case of null mass m = 0 or the massive case m > 0 with ωmax ≥ 2mc2, there is no
gap in the spectrum of Hω(m, c) (see Sect. 2) and the proof of Lemma 7.1 (initial estimate of
Lifshitz tails) does not hold; consequently, we can not guarantee dynamical localization for
Hω(m, c) in these cases (except if ωmax is sufficiently large so that the large disorder regime
is reached).

1.1 Connection with Other Works

At first glance, the results presented here may be seem as particular cases of those in [12,28],
where localization in the large disorder regime for Schrödinger operators with nonmono-
tone random potentials and for Anderson models on locally finite graphs have been studied,
respectively, or even [11,14], where weakly disordered regime for Bogoliubov-de Gennes
operators and band edge regime for random block operators have been considered, respec-
tively. However, there are some differences that are worth mentioning.

First, by (ii) above, differently from [11] (where the potential V is defined in their rela-
tion (19)with the assumptions required for the operator be self-adjoint and with an uniformly
α-Hölder continuous distribution of i.i.d. random variables) and [12] (where the nonmono-
tone potentials sequences of i.i.d. random variables has an α-regular distribution with a finite
q-moment), the potential considered in DAD model is a monotone diagonal matrix (4) with
i.i.d. random variables in each entry, which distribute according to an absolutely continuous
probability measure with bounded density and of compact support, with each entry com-
pletely independent of the others; this is a fundamental technical assumption in our proofs.
In [11], localization is proven in the weak disorder regime for the spectrum in the central
gap, with quite different techniques from this paper. Our strategy in this work is to use the
FMM in infinite volume (Theorem 3.1), whereas in [12] the authors base their arguments on
eigenfunction correlators in finite volumes and a Wegner estimate.

In [28], the localization in large disorder regime is studied specifically for Anderson
Schrödinger models on locally finite graphs, a class of operator different from DAD. The
work [14] uses the technique of multiscale analysis to establish dynamical localization for
random block operators in a neighborhood of the internal band edges and, once again, their
model does not include DAD as a particular case.

Finally, the Dirac model (1) can be seen as a particular case of models studied in [2], but
our localization results (Theorems 3.2 and 3.3) are technically different from the obtained
in [2] (in particular, they depend on some specific constructions of DAD; see comments in
Sect. 3.2).
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Dynamical Localization for Discrete Anderson Dirac Operators 265

1.2 Some Physical Remarks

The introduction of the discrete Dirac model in 1D [9,10] was motivated by the desire
to present a corresponding version of the usual tight-binding Schrödinger case, with the
possibility of a zero mass m parameter, where its transfer matrices are quite similar to the
dimerized Schrödinger transfer matrices (which results in specific physical properties in
case of m = 0, as delocalization for some Bernoulli potentials). We have then considered
this model with sparse potentials [7,23] and obtained some dynamical bounds for specific
models [22]. The 1D Dirac model has also been used in related but different contexts [5,15,
21,24,25,30].

It is natural to consider the discrete Dirac model in two and three dimensions, particularly
in the context of Anderson potentials and localization, both spectral and dynamical. This is
the subject of this work, which discuss the three usual regimes of dynamical localization for
the DAD model, using the FMM in infinite volume.

1.3 Organization

The organization of the paper is as follows. In Sect. 2 we describe explicitly the spectrum
of the Dirac operators (1). Sect. 3 is divided into two Sects. 3.1 and 3.2: in the first, we
present the FMM adapted to the DAD model (Theorem 3.1); in the second, we present our
results on dynamical localization for DAD in the regimes: large disorder (Theorem 3.2), band
edge (Theorem 3.3) and 1D (Theorem 3.4). In Sect. 4 we prove the boundedness of fractional
moments. Section 5 is dedicated to the proof of Theorem3.2. In Sect. 6we definefinite volume
restrictions of Hω(m, c)with Neumann and simple boundary conditions. Section 7 is devoted
to establishing probabilistic estimates on the eigenvalues of finite volume restrictions next to
bottom of spectrum of Hω(m, c). In Sect. 8 we obtain the exponential decay of the fractional
moments of the Green function of finite volume operators given by Proposition 8.1, which
is a fundamental result for the proof of Theorem 3.3. The geometric resolvent equation is
described in Sect. 9. In Sect. 10 we establish relations of decoupling of fractional moments
that allow us to write the fractional moments of the infinite volume Green function in terms
of the corresponding finite volume Green function. Section 11 is dedicated to the proof of
Theorem 3.3. In Sect. 12 we present properties of the 1D Dirac model. Finally, Sect. 13 is
dedicated to the proof of Theorem 3.4.

2 Spectrum of the Anderson Dirac Operators

The goal of this section is to characterize explicitly the spectrum of the Dirac operators
Hω(m, c), defined by (1). We denote it by σ(Hω(m, c)). First, we find the spectrum of the
free operator H0(m, c), which in the 1D case has already been established in Proposition 2.8
in [7] through the behavior of the m-function. Here we obtain the spectrum, for dimensions
d ∈ {1, 2, 3}, via Fourier transform.

Theorem 2.1 The spectrum of H0(m, c) is given by

σ(H0(m, c)) =
[
−
√
m2c4 + adc2,−mc2

]
∪
[
mc2,

√
m2c4 + adc2

]

with the constant
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ad =

⎧⎪⎨
⎪⎩
4 if d = 1,
6 + 4

√
2 ≈ 11.66 if d = 2,

max
x∈[0,2π ]3

f+(x) ≈ 17.23 if d = 3,

where

f+(x) = 2
3∑
j=1

(1 − cos(x j )) +
√

8
∑

(u,v)∈C
(1 − cos u)(1 − cos v)(1 − cos(u − v)),

for x = (x1, x2, x3) ∈ [0, 2π ]3 and C = {(x1, x2), (x1, x3), (x2, x3)}. Furthermore, the
spectrum of H0(m, c) is purely absolutely continuous.

Proof As usual, wewill show that the freeDirac operator H0(m, c) is unitarily equivalent, via
Fourier transform, to a diagonal matrix operator formed by multiplication operators. In fact,
consider the Fourier transform F : L2([0, 2π ]d ,Cν) −→ l2(Zd ,Cν) and its inverse F−1, in
dimensions d ∈ {1, 2, 3}, given by
(Fg)( j) = 1

(2π)d/2

∫
[0,2π ]d

e−i j ·x g(x) dx and (F−1u)(x) = 1

(2π)d/2

∑
j∈Zd

u( j)ei j ·x ,

where j · x = ∑d
n=1 jnxn . A calculation shows that[(

F−1H0(m, c)F
)
g
]
(x) = Md g(x),

for all g ∈ L2([0, 2π]d ,Cν), x = (x1, . . . , xd) ∈ [0, 2π]d , with

Md = c
d∑

n=1

S(d)
n + mc2Bd , d ∈ {1, 2, 3},

where Bd are the diagonal matrices defined in (2) and

S(1)
1 = S(2)

1 = σ1U+(x1), S(2)
2 = σ2U+(x2), S(3)

n =
(

O2 (σnU−(xn))∗
σnU−(xn) O2

)
,

with σn, n ∈ {1, 2, 3}, being the Pauli Matrices defined in (3) and

U±(xn) =
(
e−i xn − 1 0

0 e±i xn − 1

)
.

After diagonalizing the matrices Md (for x fixed), we obtain the diagonal matrix

Dd = diag (λ1(x), λ2(x)) for d ∈ {1, 2},
where λ1(x) = −λ2(x) = √

m2c4 + c2 f+(x) and

f+(x) =
{
2(1 − cos x) if d = 1,
2(1 − cos x1)(1 − sin x2) + 2(1 − cos x2)(1 + sin x1) if d = 2.

In dimension d = 3,

Dd = diag (λ1(x), λ2(x), λ3(x), λ4(x))

where λ1(x) = −λ3(x) = √
m2c4 + c2 f+(x) , λ2(x) = −λ4(x) = √

m2c4 + c2 f−(x) and

f±(x) = 2
3∑
j=1

(1 − cos(x j )) ±
√

8
∑

(u,v)∈C
(1 − cos u)(1 − cos v)(1 − cos(u − v)),
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Dynamical Localization for Discrete Anderson Dirac Operators 267

for x = (x1, x2, x3) ∈ [0, 2π ]3 and C = {(x1, x2), (x1, x3), (x2, x3)}.
It follows that H0(m, c) is unitarily equivalent to the diagonal matrix operator Dd , which

is formed by multiplication operators Mλi (x), i ∈ A. Thus

σ(H0(m, c)) = σ(Dd) =
⋃
i∈A

σ(Mλi (x))

=
[
− max

x∈[0,2π ]d
λ1(x), − min

x∈[0,2π ]d
λ1(x)

] ⋃ [
min

x∈[0,2π ]d
λ1(x), max

x∈[0,2π ]d
λ1(x)

]

with

min
x∈[0,2π ]d

λ1(x) =
√
m2c4 + c2 min

x∈[0,2π ]d
f+(x) =

√
m2c4 + c2 · 0 = mc2

and

max
x∈[0,2π ]d

λ1(x) =
√
m2c4 + c2 max

x∈[0,2π ]d
f+(x),

where maxx∈[0,2π ]d f+(x) = ad is given in the statement of the theorem. Moreover, the
function λi : [0, 2π]d −→ R is continuous and inverse images of sets of zero Lebesgue
measure in R under the function λi are sets of zero Lebesgue measure in Rd . Therefore, the
spectrum σ(H0(m, c)) = ⋃

i∈A σ(Mλi (x)) is purely absolutely continuous. ��
The next step is to determine the spectrum of Hω(m, c). It follows, as a consequence of the

general theory of ergodic operators [19], for which the Anderson Dirac operator is a special
case, that the spectrum of Hω(m, c) is almost surely deterministic, i.e., there exists a closed
subset � of R such that

σ(Hω(m, c)) = �, P-a.s.

The following result explicitly describes the spectrum of the Dirac operators Hω(m, c). The
proof will be omitted since it is analogous the proof of Theorem 3.9 in [19] or Theorem 2
in [27].

Theorem 2.2 The spectrum of Hω(m, c) is almost surely given by

σ(Hω(m, c)) = σ(H0(m, c)) + supp μ .

By hypothesis, supp μ = [ωmin, ωmax]. Without loss of generality we will assume that
ωmin = 0, since otherwise just consider the operator Hω(m, c) − ωmin I2. Thus V

(α)
ω ( j) =

ω jα ≥ 0 for all j ∈ Z
d and α ∈ A. By Theorems 2.2 and 2.1, the spectrum of Hω(m, c) is

almost surely

σ(Hω(m, c)) = � =
[
−
√
m2c4 + adc2,−mc2 + ωmax

]
∪
[
mc2,

√
m2c4 + adc2 + ωmax

]
.

Furthermore, if one assumes that 0 < ωmax < 2mc2 for m > 0, which guarantees the
existence of the gap (−mc2 + ωmax,mc2) in the spectrum of Hω(m, c) for m > 0, then the
values

−
√
m2c4 + adc2, −mc2 + ωmax, mc2 and

√
m2c4 + adc2 + ωmax

are the band edges ofσ(Hω(m, c)). In the casem = 0, the spectrumof Hω(m, c)does not have
a gap and −√

m2c4 + adc2 and
√
m2c4 + adc2 + ωmax are the band edges of σ(Hω(m, c)).
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3 Results on Localization

In this section we discuss the concept of dynamical localization (Definition 3.1 below) and
some of its consequences.We further include two Sects. 3.1 and 3.2: in the former, we present
the criteria of the fractional moments adapted to the DAD model (Theorem 3.1), which is
used to obtain dynamical localization; in the latter, we present the main results of this work
(Theorems 3.2, 3.3 and 3.4), i.e., dynamical localization for the AndersonDirac operators (1).

Denote by
{
e jα

}
j∈Zd ,α∈A = {

e j ⊗ δα

}
j∈Zd ,α∈A the canonical orthonormal basis of

l2(Zd ,Cν), whose elements e j ⊗ δα are tensor products of elements of the canonical basis{
e j
}
j∈Zd of l2(Zd ,C) with elements of canonical basis {δα}α∈A of Cν , where A = {1, 2}

if d ∈ {1, 2} and A = {1, 2, 3, 4} if d = 3. Throughout this paper we will use the norm
| j | := | j1| + · · · + | jd | of j = ( j1, . . . , jd) ∈ Z

d .

Definition 3.1 The operator Hω(m, c) exhibits dynamical localization in an bounded set
I ⊂ R if there exist finite numbers C > 0 and η > 0 such that, for each j, k ∈ Z

d and each
α, β ∈ A,

E

(
sup
t∈R

∣∣∣〈e jα, e−i t Hω(m,c)χI (Hω(m, c))ekβ
〉∣∣∣
)

≤ Ce−η| j−k|. (5)

Here,E(X) = ∫
�
X dP denotes the expectation with respect to the probability measure P for

random variables X on� and χI (Hω(m, c)) is the spectral projection of Hω(m, c) associated
with I .

Dynamical localization in the form (5) implies that all moments of the position operator
are bounded in time (see [27]; it is similar for the Dirac model), i.e., for all p > 0 and for
any 
 ∈ l2(Zd ,Cν) of compact support,

sup
t∈R

∥∥∥|X |p e−i t Hω(m,c)χI (Hω(m, c))

∥∥∥ < ∞ P-a.s., (6)

where the “position” operator |X | is defined by (|X | �) (n) = |n| �(n). Thus, the solutions
of the time-dependent Dirac equation Hω(m, c)
(t) = i∂t
(t) stay localized in space,
uniformly for all times, which is interpreted as absence of quantum transport.

It also true that dynamical localization implies that Hω(m, c) has pure point spectrum, for
almost every ω, via the RAGE Theorem (see Proposition 5.3 of [27]; a similar result is valid
for the Dirac model). The proof that the spectrum is pure point does not imply exponential
decay of the corresponding eigenfunctions. Nonetheless, it is shown in [2,4] how this follows
directly from exponential decay of the fractional moments of the Green function (estimate (8)
of the Theorem 3.1 below) using the Simon–Wolff’s criterion.

3.1 Fractional Moments Criteria for Localization

The Green function Gω(m, c, z) of Hω(m, c) is the matrix representation of the resolvent
(Hω(m, c) − z I )−1, whose elements are given by
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Gαβ
ω ( j, k; z) := 〈

e jα, (Hω(m, c) − z I )−1 ekβ
〉
, (7)

with j, k ∈ Z
d , α, β ∈ A and z ∈ C \ R.

The following result, which is the fractional moments method adapted to DAD, is used
as a criterion to establish dynamical localization for Hω(m, c). This result is a consequence
of Theorem 7.7 in [4] (where the result is formulated in the context of general graphs)
and Definition 3.1 above; it can also be obtained from a version that was developed for the
discreteAnderson Schrödingermodel (see [2,27]). Nevertheless, there is also a version of this
method in finite volume (Theorem7.11 in [4]), which applies toDiracHamiltonians Hω(m, c)
restricted to finite subsets of Zd (see also [3,27])). In order to obtain dynamical localization,

we just need to prove that the fractional moments E
(
|Gαβ

ω ( j, k; z)|s
)
, for s ∈ (0, 1), decay

exponentially with | j − k|.

Theorem 3.1 (FMM) Let I ⊂ R be a bounded set. If there exist s ∈ (0, 1), 0 < C < ∞
and η > 0 such that, for each j, k ∈ Z

d , α, β ∈ A, all E ∈ I and ε > 0,

E
(|Gαβ

ω ( j, k; E + iε)|s) ≤ Ce−η| j−k| , (8)

then Hω(m, c) exhibits dynamical localization in the form (5) on the bounded set I .

3.2 Localization Regimes

We will show that for each of the regimes (j)–(jjj) described in the Introduction, we have the
exponential decay of fractional moments of the Green function (Theorems 3.2, 3.3 and 3.4
below). Thus dynamical localization in each of these regimes follows by Theorem 3.1. In
the proofs of our results we work with Hω(m, c) in infinite volume, that is, with DAD acting
on the space l2(Zd ,Cν) (in the especial case of Theorem 3.3, we relate Hω(m, c) with their
finite volume restrictions). However, these localization proofs can be adapted for the context
of finite volume, using ideas from [3,18].

In order to discuss the large disorder regime, we introduce a disorder parameter λ > 0 in
the DAD model and consider

Hω,λ(m, c) := H0(m, c) + λVω (9)

with H0(m, c) and Vω defined by (i)-(ii) in the Introduction. We denote by Gω,λ(m, c, z) the
Green function of Hω,λ(m, c) with matrix elements Gαβ

ω,λ( j, k; z) defined as in (7).
The first main goal is to check the fractional moment condition (8) for Hω,λ(m, c) with

large enough disorder λ. More precisely, we prove in the Sect. 5 the following result:

Theorem 3.2 ( Localization at large disorder) Consider the operator Hω,λ(m, c) defined by
(9).

(i) Let 0 < s < 1. There exists λ0 > 0 such that for λ ≥ λ0, there exist finite numbers
C = C(λ0) > 0 and η = η(λ0) > 0 such that

E

(
|Gαβ

ω,λ( j, k; z)|s
)

≤ Ce−η| j−k| ,

for all j, k ∈ Z
d , α, β ∈ A and all z ∈ C \ R.

(ii) For everyλ ≥ λ0, the operator Hω,λ(m, c) exhibits dynamical localization in the form (5)
on its spectrum.
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Theorem 3.2 can be obtained as an application of the Theorem 3.1 and Lemma 3.2 in [2],
since due to example (c) of the Sect. 4 in [2], the DADmodel can be considered as a particular
case of the operators H = T + U0(x) + λVx with diagonal disorder. However, we would
like to stress the following:

• In [2], the distribution of the potential is conditionally absolutely continuous and con-
ditionally τ -regular, with some 0 < τ ≤ 1. In DAD, the distribution of the potential is
absolutely continuous with bounded density and of compact support.

• Our proof uses Proposition 4.1 (boundedness of the fractional moments of the Green
function), which is also used in the proof of our localization results in band edge and 1D
regimes (Theorems 3.3 and 3.4 below).

• The proofs of Proposition 4.1 and Theorem 3.2 explicitly need the independence of the
potentials V (α)

ω ( j) with respect to positions j and components α.
• The proof of our result does not use the fact that Hω(m, c) has almost surely a complete set

of orthonormal eigenfunctions that decay exponentially (as in Theorem 3.1 in [2]), but so
recursive relations (30)–(40) between the fractionalmoments of the components of Green
function, which are specific of DAD. Such relations result, by using Proposition 4.1, in
exponential decay of those moments in each component.

LetH+ andH− be the subspaces of l2(Zd ,Cν) of negative and positive energies, respec-
tively. We denote by P± the orthogonal projection operators onto H± (for more details see
[29]). We can write l2(Zd ,Cν) = H+ ⊕H− and every state
 ∈ l2(Zd ,Cν) can be uniquely
written as 
 = 
+ + 
−, where 
+ = P+
 and 
− = P−
. Moreover, for nonzero
vectors, 〈
+, H0(m, c)
+〉 > 0 and 〈
−, H0(m, c)
−〉 < 0. We denote by

Hω(m, c)|H± = H0(m, c)|H± + Vω|H± (10)

the restriction of Hω(m, c) to the subspacesH±. Let GH±
ω (m, c, z) be the Green function of

Hω(m, c)|H± , with matrix elements Gαβ,H±
ω ( j, k; z) defined as in (7).

The following theorem is the main technical result of this paper on band edge localization,
which we prove in Sect. 11. This result is different from Theorem 3.2 in [2] and its proof uses
the initial estimates of Lifshitz tails given in Lemma 7.1, Proposition 8.1 and the decoupling
estimate (61).

Theorem 3.3 (Band edge localization)Consider the operators Hω(m, c)|H± defined by (10)
with m > 0 and let 0 < ωmax < 2mc2.

(i) For every s ∈ (0, 1), there exist finite numbers δ > 0, C > 0 and η > 0 such that

E

(
|Gαβ,H±

ω ( j, k; E + iε)|s
)

≤ Ce−η| j−k| , (11)

for all j, k ∈ Z
d , α, β ∈ A, E ∈ I±

δ (m, c) and ε > 0, where I+
δ (m, c) is any of the

positive energy intervals

[mc2,mc2 + δ] or
[√

m2c4 + adc2 + ωmax − δ,
√
m2c4 + adc2 + ωmax

]
, (12)

and I−
δ (m, c) is any of the negative energy intervals

[−mc2 + ωmax − δ,−mc2 + ωmax] or
[
−
√
m2c4 + adc2,−

√
m2c4 + adc2 + δ

]
.

(13)

(ii) The operator Hω(m, c)|H± exhibits dynamical localization in the form (5) in I±
δ (m, c).
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The strategy of the proof of item (i) of Theorem 3.3 is the usual in the FMM, namely, we
control the expectation value of fractional moments of the infinite volume Green function,
E
(|Gαβ,H±

ω ( j, k; E + iε)|s) for s ∈ (0, 1), in terms of the expectation value of fractional
moments of the Green function of a finite volume restriction of the operator [see Proposi-
tion 8.1 and the decoupling estimate (61)].

For the one-dimensional DAD, dynamical localization holds throughout the spectrum,
independent of the disorder strength. More precisely,

Theorem 3.4 (1D localization)Consider the operator Hω(m, c) defined by (1) on l2(Z,C2).

(i) There exists a number s0 ∈ (0, 1) such that, for each 0 < s ≤ s0, there exist finite
numbers C > 0 and η > 0 such that

E
(|Gαβ

ω ( j, k; E + iε)|s) ≤ Ce−η| j−k| , (14)

for all j, k ∈ Z, α, β ∈ {1, 2}, E ∈ σ(Hω(m, c)) and ε > 0.
(ii) The operator Hω(m, c) exhibits dynamical localization in the form (5) on its spectrum.

Theorem 3.4 is proven in Sect. 13. In the one-dimensional case, the proof of localization is
different from the established in large disorder and band edge regimes. In this case, one has the
formalism of the transfer matrices (see Sect. 12), which allows one to obtain the exponential
decay described in Lemma 12.1 and the special representation (65) of the Green function
in terms of generalized eigenfunctions. In Sect. 13, we show how this leads to exponential
decay in (14).

4 Boundedness of Fractional Moments

The proof of Theorem 3.2 follows general ideas from [2,27] used in the context of the
AndersonSchrödingermodel, butwith specific constructions ofDADas have beenmentioned
in Introduction and Sect. 3.2. The first important point in this proof, which is the goal of this
section, is to establish the boundedness of the fractional moments of the Green function (for
any parameter λ > 0); this is the content of Proposition 4.1 below (a-priori bound, adapted
from [27]). The following two lemmas, whose proofs can be found in [16,17,28], will be
used in the proof of Proposition 4.1.

Lemma 4.1 Let g : R → R be a nonnegative function with g ∈ L1(R) ∩ L∞(R) and

s ∈ (0, 1). Then, for C(s, g) = ‖g‖s∞ ‖g‖1−s
1

2ss−s

1 − s
< ∞ one has, for each θ ∈ C,

∫
supp g

1

|v + θ |s g(v)dv ≤ C(s, g) .

Lemma 4.2 For every s ∈ (0, 1) and a > 0, there exists a constant C(a, s) < ∞ such that
∫ a

−a
‖(M − uI )−1‖s du ≤ C(a, s) ,

for each matrix M ∈ M2×2(C) such that either Im M = 1

2i
(M − M∗) ≥ 0 or Im M ≤ 0.
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Proposition 4.1 For each s ∈ (0, 1), there exists a constant C1 = C1(s, ρ) < ∞ such that,
for each j, k ∈ Z

d , α, β ∈ A, z ∈ C \ R and λ > 0,

E
αβ
j,k

(
|Gαβ

ω,λ( j, k; z)|s
)

≤ C1λ
−s , (15)

where

E
αβ
j,k(· · · ) :=

∫ ∫
· · · ρ(ω jα)dω jα ρ(ωkβ)dωkβ

is the conditional expectation with (ωlγ )l∈Zd\{ j,k} or γ �=α,β fixed. Consequently,

E

(
|Gαβ

ω,λ( j, k; z)|s
)

≤ C1λ
−s . (16)

Proof Let us fix the parameters m, c and denote Hω,λ = Hω,λ(m, c). The proof of (15) is
split into two cases:

(1) ( j, α) = (k, β). In this case, for j ∈ Z
d and α ∈ A fixed, write ω = (ω̂, ω jα) where

ω̂ = (ωlγ )l∈Zd\{ j} or γ �=α . Let Pe jα := 〈
e jα, · 〉 e jα be the orthogonal projection onto

the subspace spanned by e jα . We can separate the ω jα and ω̂ dependence of Hω,λ as

Hω,λ = Hω̂,λ + λω jαPe jα .

Observe that the operators Hω,λ and Hω̂,λ are bounded self-adjoints on l2(Zd ,Cν) and
z /∈ σ(Hω,λ) ∪ σ(Hω̂,λ). Thus, by the second resolvent identity we have

(Hω,λ − z I )−1 = (Hω̂,λ − z I )−1 − λω jα(Hω̂,λ − z I )−1Pe jα (Hω,λ − z I )−1.

It follows from this relation that the corresponding diagonal elements of the Green
functions satisfy

Gαα
ω,λ( j, j; z) = Gαα

ω̂,λ
( j, j; z) − λω jαG

αα
ω̂,λ

( j, j; z)Gαα
ω,λ( j, j; z). (17)

Since the Green function satisfies
Im Gαα

ω̂,λ
( j, j; z)

Im z
> 0 for Im z �= 0, then

Gαα
ω̂,λ

( j, j; z) �= 0 and it follows from (17) that

Gαα
ω,λ( j, j; z) = 1

ξ + λω jα
with ξ = 1

Gαα
ω̂,λ

( j, j; z) . (18)

Note that ξ not depend on ω jα . Thus, writing E
α
j (· · · ) := ∫ · · · ρ(ω jα)dω jα and

using (18), we find that

E
α
j

(|Gαα
ω,λ( j, j; z)|s

) = 1

λs

∫
supp ρ

1∣∣∣ω jα + ξ
λ

∣∣∣s ρ(ω jα)dω jα ≤ 1

λs
C(s, ρ) ,

with the constant C(s, ρ) given by Lemma 4.1 (applied for θ = ξ/λ and g = ρ), which
is independent of λ and ξ , and thus independent of ω̂, z, j and α.

(2) ( j, α) �= (k, β). We prove this case replacing the rank-one perturbation argument above
by a rank-two perturbation argument. For j, k ∈ Z

d and α, β ∈ A fixed, we write
ω = (ω̂, ω jα, ωkβ) where ω̂ = (ωlγ )l∈Zd\{ j,k} or γ �=α,β . Let P = Pe jα + Pekβ and write

Hω,λ = Hω̂,λ + λω jαPe jα + λωkβ Pekβ .
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Using the second resolvent identity we obtain

P(Hω,λ − z I )−1P = P(Hω̂,λ − z I )−1

× P − λP(Hω̂,λ − z I )−1P(ω jαPe jα + ωkβ Pekβ )

× P(Hω,λ − z I )−1P. (19)

Now the operators P(Hω,λ − z I )−1P and P(Hω̂,λ − z I )−1P can be represented by the
matrices (in the spaceM2×2(C))

Q =
(
Gαα

ω,λ( j, j; z) Gαβ
ω,λ( j, k; z)

Gβα
ω,λ(k, j; z) Gββ

ω,λ(k, k; z)

)
, Q̂ =

(
Gαα

ω̂,λ
( j, j; z) Gαβ

ω̂,λ
( j, k; z)

Gβα

ω̂,λ
(k, j; z) Gββ

ω̂,λ
(k, k; z)

)
,

respectively, sinceGαβ
ω,λ( j, k; z) = 〈

e jα, P(Hω,λ − z I )−1Pekβ
〉
.Moreover, the operator

ω jαPe jα +ωkβ Pekβ is represented by the matrix diag(ω jα, ωkβ). Replacing these matrix
representations in the relation (19) and developing it, we get

Q =
[
Q̂−1 + λ

(
ω jα 0
0 ωkβ

)]−1

, (20)

which is a special case of the Krein formula (Lemma 2.2 of [2]).
Using (20) and the fact that Gαβ

ω,λ( j, k; z) is one of the matrix-elements of Q, we find

E
αβ
j,k

(
|Gαβ

ω,λ( j, k; z)|s
)

≤ 1

λs
E

αβ
j,k

(∥∥∥∥∥
[
−1

λ
Q̂−1 −

(
ω jα 0
0 ωkβ

)]−1
∥∥∥∥∥
s)

≤ ‖ρ‖2∞
λs

∫ a

−a

∫ a

−a

∥∥∥∥∥
[
−1

λ
Q̂−1−

(
ω jα 0
0 ωkβ

)]−1
∥∥∥∥∥
s

dω jαdωkβ,

with a > 0 large so that [−a, a] ⊃ supp ρ. In the double integral we use the change

of variables u± = (
ω jα ± ωkβ

)
/2, which gives a Jacobian factor

∣∣∣ ∂(ω jα,ωkβ )

∂(u+,u−)

∣∣∣ = 2. As

ω jα, ωkβ ∈ [−a, a] implies u± ∈ [−a, a], we obtain the bound

E
αβ
j,k

(
|Gαβ

ω,λ( j, k; z)|s
)

≤ 2 ‖ρ‖2∞
λs

∫ a

−a

∫ a

−a

∥∥∥∥∥
[
− 1

λ
Q̂−1 +

(−u− 0
0 u−

)
− u+ I

]−1
∥∥∥∥∥
s

du+du−

≤ 4a ‖ρ‖2∞
λs

C(a, s) = C(s, ρ)

λs
,

with the constant C(a, s) given by Lemma 4.2, which was applied to the matrix

M = −1

λ
Q̂−1 +

(−u− 0
0 u−

)

since Im M = 1
2i (M − M∗) > 0 if Im z > 0 and Im M < 0 if Im z < 0. Indeed,

Im M

Im z
= 1

λ
(Q̂−1)∗P

Im (Hω̂,λ − z I )−1

Im z
P Q̂−1 > 0 .

Thus, we have concluded the proof of estimate (15). Taking the expectation of both sides
of (15) we get (16); indeed,

E

(
|Gαβ

ω,λ( j, k; z)|s
)

= E

(
E

αβ
j,k

(
|Gαβ

ω,λ( j, k; z)|s
))

≤ E(C1λ
−s) = C1λ

−s .

��
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5 Proof of Localization at Large Disorder

This section is dedicated to the proof of Theorem 3.2. Besides Proposition 4.1, we also need
the following result (decoupling Lemma 4.2 in [27]):

Lemma 5.1 Let 0 < s < 1. For each function g ∈ L∞(R) of compact support, there exists
a constant C2 < ∞ such that, for each ξ, θ ∈ C,∫

1

|v − θ |s g(v)dv ≤ C2

∫ |v − ξ |s
|v − θ |s g(v)dv .

Proof of Theorem 3.2 (i) Let j, k ∈ Z
d , α, β ∈ A and z ∈ C\R. If j = k, the result follows

directly by Proposition 4.1. Suppose j �= k. Then, for dimension d = 1, we have

0 = 〈
e jα, ek1

〉 = 〈
e jα, (Hω,λ − z I )−1(Hω,λ − z I )ek1

〉
= 〈

e jα, (Hω,λ − z I )−1 [(mc2 + λωk1 − z
)
ek1 + c

(
e(k+1)2 − ek2

)]〉
,

which implies[
λωk1 − (

z − mc2
)]
Gα1

ω,λ( j, k; z) = c
[
Gα2

ω,λ( j, k; z) − Gα2
ω,λ( j, k + 1; z)] . (21)

Similarly for the other component in d = 1, we have[
λωk2 − (

z + mc2
)]
Gα2

ω,λ( j, k; z) = c
[
Gα1

ω,λ( j, k; z) − Gα1
ω,λ( j, k − 1; z)] . (22)

For dimension d = 2, the analogous relations to (21) and (22) are, with j = ( j1, j2), k =
(k1, k2) ∈ Z

2, respectively,[
λωk1 − (

z − mc2
)]
Gα1

ω,λ( j, k; z)
= c

[
(1 + i)Gα2

ω,λ( j, k; z) − Gα2
ω,λ( j, (k1 + 1, k2); z) − iGα2

ω,λ( j, (k1, k2 + 1); z)]
(23)

and[
λωk2 − (

z + mc2
)]
Gα2

ω,λ( j, k; z)
= c

[
(1 − i)Gα1

ω,λ( j, k; z) − Gα1
ω,λ( j, (k1 − 1, k2); z) + iGα1

ω,λ( j, (k1, k2 − 1); z)] .

(24)

For dimension d = 3, relations (21) and (22) are replaced by the following four relations
(with j = ( j1, j2, j3), k = (k1, k2, k3) ∈ Z

3):[
λωk1 − (

z − mc2
)]
Gα1

ω,λ( j, k; z) = c[Gα3
ω,λ( j, k; z) − Gα3

ω,λ( j, (k1, k2, k3 + 1); z)
+ (1 + i)Gα4

ω,λ( j, k; z)
−Gα4

ω,λ( j, (k1 + 1, k2, k3); z)
− iGα4

ω,λ( j, (k1, k2 + 1, k3); z)], (25)

[
λωk2 − (

z − mc2
)]
Gα2

ω,λ( j, k; z) = c[(1 − i)Gα3
ω,λ( j, k; z)

−Gα3
ω,λ( j, (k1 + 1, k2, k3); z)

+ iGα3
ω,λ( j, (k1, k2 + 1, k3); z)

+Gα4
ω,λ( j, (k1, k2, k3 + 1); z) − Gα4

ω,λ( j, k; z)],
(26)
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[
λωk3 − (

z + mc2
)]
Gα3

ω,λ( j, k; z) = c[Gα1
ω,λ( j, k; z) − Gα1

ω,λ( j, (k1, k2, k3 − 1); z)
+ (1 + i)Gα2

ω,λ( j, k; z)
−Gα2

ω,λ( j, (k1 − 1, k2, k3); z)
− iGα2

ω,λ( j, (k1, k2 − 1, k3); z)] (27)

and
[
λωk4 − (

z + mc2
)]
Gα4

ω,λ( j, k; z) = c[(1 − i)Gα1
ω,λ( j, k; z)

−Gα1
ω,λ( j, (k1 − 1, k2, k3); z)

+ iGα1
ω,λ( j, (k1, k2 − 1, k3); z)

+Gα2
ω,λ( j, (k1, k2, k3 − 1); z) − Gα2

ω,λ( j, k; z)].
(28)

Note that Gαβ
ω,λ( j, k; z) is the upper right entry of the matrix Q which appears on the

left-hand side of relation (20). Explicitly, by expanding the right-hand side of (20), one
obtains

Gαβ
ω,λ( j, k; z) = τ

λωkβ − ζ
(29)

with

τ = G2

G4 + λω jα(G1G4 − G2G3)
and ζ = −1 − λω jαG1

G4 + λω jα(G1G4 − G2G3)
,

where G1 = Gαα
ω̂,λ

( j, j; z), G2 = Gαβ

ω̂,λ
( j, k; z), G3 = Gβα

ω̂,λ
(k, j; z) and G4 =

Gββ

ω̂,λ
(k, k; z) are the entries of the matrix Q̂. Observe that τ and ζ are independent

of ωkβ .
Using (29), Lemma 5.1 with g = ρ and ξ = (z ∓ mc2)/λ, relations (21)–(22) and the

inequality
∣∣∣∑k

n=1 yn
∣∣∣s ≤ ∑k

n=1 |yn |s , we find for d = 1,

E
(|Gα1

ω,λ( j, k; z)|s
) = 1

λs
E

⎛
⎜⎝ |τ |s∣∣∣ωk1 − ζ

λ

∣∣∣s
⎞
⎟⎠ ≤ C2

λs
E

⎛
⎜⎝ |τ |s

∣∣∣ωk1 − z−mc2
λ

∣∣∣s∣∣∣ωk1 − ζ
λ

∣∣∣s
⎞
⎟⎠

= C2

λs
E

(∣∣λωk1 − (z − mc2)
∣∣s |Gα1

ω,λ( j, k; z)|s
)

≤ C2 cs

λs

[
E
(|Gα2

ω,λ( j, k; z)|s
) + E

(|Gα2
ω,λ( j, k + 1; z)|s)] (30)

and

E
(|Gα2

ω,λ( j, k; z)|s
) ≤ C2

λs
E

(∣∣λωk2 − (z + mc2)
∣∣s |Gα2

ω,λ( j, k; z)|s
)

≤ C2 cs

λs

[
E
(|Gα1

ω,λ( j, k; z)|s
) + E

(|Gα1
ω,λ( j, k − 1; z)|s)] . (31)

Substituting (31) into (30) and similarly (30) into (31), we obtain

E

(
|Gαβ

ω,λ( j, k; z)|s
)

≤ �
(1)
λ

[
E

(
|Gαβ

ω,λ( j, k − 1; z)|s
)

+ E

(
|Gαβ

ω,λ( j, k + 1; z)|s
)]

,
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for α, β ∈ {1, 2}, where �
(1)
λ := a2λ

1 − 2a2λ
with aλ = C2csλ−s . For given j and k one

can iterate | j − k| times, in each step picking up a factor 2�(1)
λ . This results in the bound

E

(
|Gαβ

ω,λ( j, k; z)|s
)

≤
(
2�(1)

λ

)| j−k|
sup
l∈Z

E

(
|Gαβ

ω,λ( j, l; z)|s
)

. (32)

For dimension d = 2, repeating the calculations in (30)–(31) and, in the last passage,
using relations (23)–(24) we get

E
(|Gα1

ω,λ( j, k; z)|s
) ≤ C2

λs
E

(∣∣λωk1 − (z − mc2)
∣∣s |Gα1

ω,λ( j, k; z)|s
)

≤ C2 cs(
√
2)s

λs
[ E (|Gα2

ω,λ( j, k; z)|s
)

+E
(|Gα2

ω,λ( j, (k1 + 1, k2); z)|s
) +

+ E
(|Gα2

ω,λ( j, (k1, k2 + 1); z)|s) ] (33)

and

E
(|Gα2

ω,λ( j, k; z)|s
) ≤ C2

λs
E

(∣∣λωk2 − (z + mc2)
∣∣s |Gα2

ω,λ( j, k; z)|s
)

≤ C2 cs(
√
2)s

λs
[ E (|Gα1

ω,λ( j, k; z)|s
)

+E
(|Gα1

ω,λ( j, (k1 − 1, k2); z)|s
) +

+ E
(|Gα1

ω,λ( j, (k1, k2 − 1); z)|s) ] . (34)

Substituting relation (34) into (33) and similarly (33) into (34), one finds

E

(
|Gαβ

ω,λ( j, k; z)|s
)
≤ �

(2)
λ

[
E

(
|Gαβ

ω,λ( j, (k1 − 1, k2); z)|s
)

+ E

(
|Gαβ

ω,λ( j, (k1, k2 − 1); z)|s
)

+ E

(
|Gαβ

ω,λ( j, (k1 + 1, k2); z)|s
)

+ E

(
|Gαβ

ω,λ( j, (k1 + 1, k2 − 1); z)|s
)

+ E

(
|Gαβ

ω,λ( j, (k1, k2 + 1); z)|s
)

+ E

(
|Gαβ

ω,λ( j, (k1 − 1, k2 + 1); z)|s
) ]

for α, β ∈ {1, 2}, where �
(2)
λ := b2λ

1 − 3b2λ
with bλ = C2cs(

√
2)sλ−s = (

√
2)saλ.

Analogously to the case d = 1, one can iterate | j − k| times, in each step picking up a
factor 6�(2)

λ . This results in

E

(
|Gαβ

ω,λ( j, k; z)|s
)

≤
(
6�(2)

λ

)| j−k|
sup
l∈Z2

E

(
|Gαβ

ω,λ( j, l; z)|s
)

. (35)
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For dimension d = 3, analogous calculations to (30)–(31), together with relations (25)–
(28), lead to

E
(|Gα1

ω,λ( j, k; z)|s
) ≤ C2

λs
E

(∣∣λωk1 − (z − mc2)
∣∣s |Gα1

ω,λ( j, k; z)|s
)

≤ bλ

[
E
(|Gα3

ω,λ( j, k; z)|s
) + E

(|Gα3
ω,λ( j, (k1, k2, k3 + 1); z)|s)

+ E
(|Gα4

ω,λ( j, k; z)|s
) + E

(|Gα4
ω,λ( j, (k1 + 1, k2, k3); z)|s

)
+ E

(|Gα4
ω,λ( j, (k1, k2 + 1, k3); z)|s

) ]
, (36)

E
(|Gα2

ω,λ( j, k; z)|s
) ≤ C2

λs
E

(∣∣λωk2 − (z − mc2)
∣∣s |Gα2

ω,λ( j, k; z)|s
)

≤ bλ

[
E
(|Gα3

ω,λ( j, k; z)|s
) + E

(|Gα3
ω,λ( j, (k1 + 1, k2, k3); z)|s

)
+ E

(|Gα3
ω,λ( j, (k1, k2 + 1, k3); z)|s

) + E
(|Gα4

ω,λ( j, k; z)|s
)

+ E
(|Gα4

ω,λ( j, (k1, k2, k3 + 1); z)|s) ], (37)

E
(|Gα3

ω,λ( j, k; z)|s
) ≤ C2

λs
E

(∣∣λωk3 − (z + mc2)
∣∣s |Gα3

ω,λ( j, k; z)|s
)

≤ bλ

[
E
(|Gα1

ω,λ( j, k; z)|s
) + E

(|Gα1
ω,λ( j, (k1, k2, k3 − 1); z)|s)

+ E
(|Gα2

ω,λ( j, k; z)|s
) + E

(|Gα2
ω,λ( j, (k1 − 1, k2, k3); z)|s

)
+ E

(|Gα2
ω,λ( j, (k1, k2 − 1, k3); z)|s

) ]
(38)

and

E
(|Gα4

ω,λ( j, k; z)|s
) ≤ C2

λs
E

(∣∣λωk4 − (z + mc2)
∣∣s |Gα4

ω,λ( j, k; z)|s
)

≤ bλ

[
E
(|Gα1

ω,λ( j, k; z)|s
) + E

(|Gα1
ω,λ( j, (k1 − 1, k2, k3); z)|s

)
+ E

(|Gα1
ω,λ( j, (k1, k2 − 1, k3); z)|s

) + E
(|Gα2

ω,λ( j, k; z)|s
)

+ E
(|Gα2

ω,λ( j, (k1, k2, k3 − 1); z)|s) ]. (39)

Substituting (38)–(39) into (36)–(37) and similarly (36)–(37) into (38)–(39), in each case
adding the two remaining inequalities, isolating the sum

E

(
|Gαβ1

ω,λ( j, k; z)|s
)

+ E

(
|Gαβ2

ω,λ( j, k; z)|s
)

, for (β1, β2) ∈ {(1, 2), (3, 4)},
on the left-hand side of the inequality and iterating | j − k| times, we obtain

E

(
|Gαβ1

ω,λ( j, k; z)|s
)

+ E

(
|Gαβ2

ω,λ( j, k; z)|s
)

≤
(
24�(3)

λ

)| j−k|
sup
l∈Z3

[
E

(
|Gαβ1

ω,λ( j, l; z)|s
)

+ E

(
|Gαβ2

ω,λ( j, l; z)|s
)]

, (40)

where �
(3)
λ := b2λ

1 − 7b2λ
. Now choose λ0 > 0 sufficiently large such that b2λ0 <

1

31
,

which implies

2�(1)
λ0

< 6�(2)
λ0

< 24�(3)
λ0

< 1.
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Writing η = − ln
(
24�(3)

λ0

)
> 0, it follows by the estimates (32), (35), (40) and Propo-

sition 4.1 that for d ∈ {1, 2, 3}, α, β ∈ A and λ ≥ λ0,

E

(
|Gαβ

ω,λ( j, k; z)|s
)

≤ e−η| j−k|C1λ
−s ≤ Ce−η| j−k| ,

with C = C1λ
−s
0 . This completes the proof.

(ii) It follows directly from item (i) of this theorem and Theorem 3.1. This completes the
proof of the theorem.

��

6 Finite Volume Operators and Boundary Conditions

Consider the finite subset �L = [−L , L]d ∩Z
d , with L ∈ N. In this section we define finite

volume operators H�L
ω (m, c) and (H�L

ω (m, c))N , respectively the restrictions of Hω(m, c)
to l2(�L ,Cν) with Neumann and simple boundary conditions on �L (see Definitions 6.1
and 6.2). These operators will be used in the next sections, especially in Lemma 7.1 and
Proposition 8.1, which are important preparation results for the proof of Theorem 3.3.

Let
{
e jα

}
j∈Zd ,α∈A be the canonical basis of l2(Zd ,Cν), defined in Sect. 3. The matrix

elements of an operatorO on l2(Zd ,Cν) are the entries of the ν × ν matrix defined, for each
pair j, k ∈ Z

d , by

O jk = ( 〈e jα,Oekβ〉 )
α,β∈A ,

where α varies over the rows and β over the columns of O jk . For 
 ∈ l2(Zd ,Cν), we have

(O
)( j) =
∑
k∈Zd

O jk
(k)

and the elements O jk define the operator O uniquely.

For convenience, we introduce matrices M (d)
n,± and M (d)

n := M (d)
n,+ + M (d)

n,− defined, for
d ∈ {1, 2, 3} and 1 ≤ n ≤ d with n ∈ N, by

M (1)
1,+ =

(
0 1
0 0

)
, M (1)

1,− =
(
0 0
1 0

)
,

M (2)
1,± = M (1)

1,±, M (2)
2,+ =

(
0 −i
0 0

)
, M (2)

2,− =
(
0 0
i 0

)
,

M (3)
n,+ =

(
O2 σn
O2 O2

)
, M (3)

n,− =
(
O2 O2

σn O2

)
,

where σn, n ∈ {1, 2, 3}, are the Pauli matrices as in (3) and O2 is the 2× 2 null matrix. Note

that M (1)
1 = σ1, M

(2)
2 = σ2 and M (3)

n =
(
O2 σn
σn O2

)
.

For d ∈ {1, 2, 3}, let
{
v

(d)
n : 1 ≤ n ≤ d, n ∈ N

}
be the canonical basis of Rd , formed

by the vectors v
(1)
1 = 1, v

(2)
1 = (1, 0), v

(2)
2 = (0, 1), v

(3)
1 = (1, 0, 0), v

(3)
2 = (0, 1, 0) and
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v
(3)
3 = (0, 0, 1). The matrix elements of the free Dirac operator H0(m, c) are

(H0(m, c))(d)
jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−c
d∑

n=1

M (d)
n + mc2Bd if j = k,

cM (d)
n,± if j = k ± v

(d)
n , 1 ≤ n ≤ d,

O(d) if | j − k| ≥ 2,

where Bd are the diagonal matrices defined in (2) and O(d) =
{
O2 if d ∈ {1, 2}
O4 if d = 3,

with

On being the n × n null matrix. Thus, the matrix elements of the discrete Anderson Dirac
operator Hω(m, c) are given by

(Hω(m, c))(d)
jk = (H0(m, c))(d)

jk + (Vω)
(d)
jk , with j, k ∈ Z

d ,

where the potential Vω acts as a diagonal multiplication operator.

Definition 6.1 The free Dirac operator H�L
0 (m, c) restricted to l2(�L ,Cν) with simple

boundary condition on �L , in dimensions d ∈ {1, 2, 3}, is defined by

(H�L
0 (m, c))(d)

jk = (H0(m, c))(d)
jk , with j, k ∈ �L .

We also define the Anderson Dirac operator restricted to l2(�L ,Cν) by

H�L
ω (m, c) = H�L

0 (m, c) + V�L
ω ,

where V�L
ω is the restriction of Vω to �L .

Let us define the boundary of �L as the set

∂�L =
{
( j, k) ∈ Z

d × Z
d : | j − k| = 1 and either j ∈ �L , k /∈ �L or j /∈ �L , k ∈ �L

}
.

It consists of the edges connecting points in �L with points outside �L . We also consider
the inner boundary of �L by

∂ i�L = { j ∈ Z
d : j ∈ �L , ∃ k /∈ �L with ( j, k) ∈ ∂�L } = { j ∈ Z

d : ‖ j‖∞ = L}
and the outer boundary by

∂o�L = {k ∈ Z
d : k /∈ �L , ∃ j ∈ �L with ( j, k) ∈ ∂�L} = {k ∈ Z

d : ‖k‖∞ = L + 1},
where ‖n‖∞ := max{|n1|, . . . , |nd |} denote the maximum norm on Zd .

For any subset �L ⊂ Z
d with d ∈ {1, 2, 3}, we define the boundary operator F�L by its

matrix elements:

(F�L

)(d)

jk =
{
cM (d)

n,± if j = k ± v
(d)
n , 1 ≤ n ≤ d, ( j, k) ∈ ∂�L ,

O(d) otherwise.

Thus, for the Hamiltonian Hω(m, c) = H0(m, c) + Vω we have the important relation

Hω(m, c) = H�L
ω (m, c) ⊕ H (�L )c

ω (m, c) + F�L (41)

with spacial decomposition l2(Zd ,Cν) = l2(�L ,Cν) ⊕ l2((�L )c,Cν), where (�L)c =
Z \ �L .
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Now, the operator H�L
0 (m, c) on l2(�L ,Cν) can be written as

H�L
0 (m, c) = −c

d∑
n=1

M (d)
n + mc2Bd + A�L ,

where A�L is the adjacency matrix on �L given by the matrix elements

(
A�L

)(d)

jk =
{
cM (d)

n,± if j, k ∈ �L and j = k ± v
(d)
n , 1 ≤ n ≤ d,

O(d) otherwise.

Definition 6.2 We define the Neumann free Dirac operator (H�L
0 (m, c))N on l2(�L ,Cν),

in dimensions d ∈ {1, 2, 3} and with boundary conditions on �L , by

(H�L
0 (m, c))N := N�L + mc2Bd + A�L ,

where N�L is the multiplication operator by the matrix

N�L (k) := −c
d∑

n=1

M (d)
n gL(kn)

with k = (k1, . . . , kd) ∈ �L e the function gL(kn) :=
{
1 if kn �= L

0 if kn = L
, 1 ≤ n ≤ d ,

indicates that for ψ ∈ l2(�L ,C) one has (dnψ)(k) �= 0 if kn �= L and (dnψ)(k) = 0 if
kn = L . Here we consider Neumann boundary condition in sites k ∈ ∂ i�L with kn = L and
simple boundary condition in sites k ∈ ∂ i�L with kn = −L . We also define the Neumann
Anderson Dirac operator restricted to l2(�L ,Cν) by

(H�L
ω (m, c))N := (H�L

0 (m, c))N + V�L
ω ,

where V�L
ω is the restriction of Vω to �L .

Note that the Anderson Dirac operators H�L
ω (m, c) and (H�L

ω (m, c))N defined above are
bounded and self-adjoint on l2(�L ,Cν). We denote by

H�L
ω (m, c)|H± = H�L

0 (m, c)|H± + V�L
ω |H± (42)

and

(
H�L

ω (m, c)
)N
H± =

(
H�L
0 (m, c)

)N

H±
+ V�L

ω |H± (43)

the restrictions of H�L
ω (m, c) and (H�L

ω (m, c))N to the subspaces H± of l2(Zd ,Cν) of
negative and positive energies.

Denote by |B| the number of elements of a set B ⊂ Z
d . Since |�L | = (2L + 1)d , the

operators H�L
0 (m, c)|H± act on spaces of finite dimension, i.e., they are finite matrices.

Thus, their spectra σ
(
H�L
0 (m, c)|H±

)
consist of eigenvalues E±

n

(
H�L
0 (m, c)

)
which can

be enumerate in crescent order,

· · · ≤ E−
2

(
H�L
0 (m, c)

)
≤ E−

1

(
H�L
0 (m, c)

)
≤ E+

1

(
H�L
0 (m, c)

)

≤ E+
2

(
H�L
0 (m, c)

)
≤ · · · ,
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with E+
1

(
H�L
0 (m, c)

)
= inf σ

(
H�L
0 (m, c)|H+

)
, E−

1

(
H�L
0 (m, c)

)
= sup σ

(
H�L
0

(m, c)|H−
)
and those eigenvalues are symmetric with respect to origin:

E−
n

(
H�L
0 (m, c)

)
= −E+

n

(
H�L
0 (m, c)

)
, for all n. (44)

A similar description is valid for the eigenvalues E±
n

(
(H�L

0 (m, c))N
)
of the operators

(
H�L
0 (m, c)

)N

H±
. Considering the matrix

[(
H�L
0 (m, c)

)N

H+

]2
, which corresponds to a

Schrödinger Hamiltonian with Neumann boundary conditions on the sites k ∈ ∂ i�L with

k j = ±L , and the matrix
[
H�L
0 (m, c)|H+

]2
, which corresponds to a Schrödinger Hamil-

tonian with Neumann boundary condition in the sites k ∈ ∂ i�L with k j = −L and
simple boundary condition in the sites k ∈ ∂ i�L with k j = L , one verifies that their

eigenvalues satisfy Ẽ+
n

([(
H�L
0 (m, c)

)N
]2)

≤ Ẽ+
n

([
H�L
0 (m, c)

]2)
, for all n. Since

(
H�L
0 (m, c)

)N

H+
> 0 and H�L

0 (m, c)|H+ > 0, we obtain

E+
n

(
(H�L

0 (m, c))N
)

≤ E+
n

(
H�L
0 (m, c)

)
, for all n, (45)

and therefore
(
H�L
0 (m, c)

)N

H+
≤ H�L

0 (m, c)|H+ .

7 Initial Estimate of Lifshitz Tails

The proof of Theorem 3.3 follows general ideas from [17,27], developed in the context of
the discrete Anderson Schrödinger model and for the unitary Anderson model. The first
important point in this proof is to estimate the fractional moments of the Green function in
finite volume (see Proposition 8.1). For this, Lemma 7.1 will be fundamental and its proof
will make use of the following inequality (Proposition 4.15 in [4] or Lemma 6.3 in [19]):

Proposition 7.1 (Temple’s inequality) Let H be a self-adjoint operator. Suppose that H has
an isolated nondegenerate eigenvalue E1 = inf σ(H), and let E2 = inf (σ (H) \ {E1}). If
ψ ∈ dom(H) with ‖ψ‖ = 1 satisfies 〈ψ, Hψ〉 < E2, then the following inequality holds:

E1 ≥ 〈ψ, Hψ〉 −
〈
ψ, H2ψ

〉 − 〈ψ, Hψ〉2
E2 − 〈ψ, Hψ〉 .

Lemma 7.1 Consider the operators H�L
ω (m, c)|H± given by (42) with m > 0 and let 0 <

ωmax < 2mc2. For each r ∈ (0, 1), there are finite constants η̂ > 0 and Ĉ > 0 such that the
following estimates hold true for all L ∈ N sufficiently large:

(i) P

{
ω : inf

(
σ
(
H�L

ω (m, c)|H+
)

− mc2
)

≤ L−r
}

≤ Ĉ Lde−η̂Lrd/2
,

(ii) P

{
ω :

(
−mc2 + ωmax − sup σ

(
H�L

ω (m, c)|H−
))

≤ L−r
}

≤ Ĉ Lde−η̂Lrd/2
,

(iii) P

{
ω :

(
inf σ

(
H�L

ω (m, c)|H−
)

+ √
m2c4 + adc2

)
≤ L−r

}
≤ Ĉ Lde−η̂Lrd/2

,

(iv) P

{
ω :

(√
m2c4 + adc2 + ωmax − sup σ

(
H�L

ω (m, c)|H+
))

≤ L−r
}

≤ Ĉ Lde−η̂Lrd/2
.
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Proof (i) The proof is based on ideas from [4,19] used in the context of random Schrödinger

operators. For the operators H�L
ω (m, c)|H+ and

(
H�L

ω (m, c)
)N

H+
given by (42) and (43),

due to relation (45) and supp μ = [0, ωmax], we have

inf σ
((

H�L
ω (m, c)

)N
H+

)
≤ inf σ

(
H�L

ω (m, c)|H+
)
.

Thus, it is sufficient to check the estimate in (i) for the operator
(
H�L

ω (m, c)
)N

H+
. In

order to use Proposition 7.1, consider the constant eigenfunction 
, with ‖
‖ = 1, of

the operator
(
H�L
0 (m, c)

)N

H+
in l2(�L ,Cν), defined by


(n) =
⎛
⎜⎝


1(n)
...


ν(n)

⎞
⎟⎠ with 
α(n) =

{ (
2p−1 |�L |)−1/2

if 1 ≤ α ≤ p
0 if p < α ≤ ν

,

for n ∈ �L and p = ν/2 =
{
1 if d ∈ {1, 2}
2 if d = 3

, associated with the first (smallest)

positive eigenvalue E+
1

(
(H�L

0 (m, c))N
)

= mc2. For dimensions d ∈ {1, 2, 3}, we
have

〈

,

[(
H�L

ω (m, c)
)N
H+ − mc2 I

]


〉
=

〈

,

[(
H�L
0 (m, c)

)N

H+
− mc2 I

]



〉

+ 〈

, V�L

ω |H+

〉

= 1

2p−1 |�L |
∑
n∈�L

p∑
i=1

V (i)
ω (n).

Note that these sums (p ∈ {1, 2}) are arithmetic means of i.i.d. random variables and

1

|�L |
∑
n∈�L

V (i)
ω (n) −→ E(V (i)

ω (0)) > 0 P-a.s., (46)

for i ∈ {1, 2}, as L → ∞. To apply Proposition 7.1, we need

1

2p−1 |�L |
∑
n∈�L

p∑
i=1

V (i)
ω (n) < E+

2

(
(H�L

ω (m, c))N
)

− mc2, (47)

where E+
2

(
(H�L

ω (m, c))N
)
is the second positive eigenvalue of

(
H�L

ω (m, c)
)N

H+
. How-

ever, E+
2

(
(H�L

ω (m, c))N
)

− mc2 −→ 0 as L → ∞, which contradicts relations (46)

and (47). The rate at which E+
2

(
(H�L

ω (m, c))N
)
−mc2 vanishes is given by the estimate

E+
2

(
(H�L

ω (m, c))N
)

− mc2 ≥ E+
2

(
(H�L

0 (m, c))N
)

− mc2 ≥ K (m, c)L−2, (48)

for a suitable constant K (m, c) > 0. In order to obtain relation (47), we introduce a new
potential W (L)

ω |H+ , which is a diagonal matrix formed by random potentials (in each
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site)

W (L)(α)
ω (n) = min

{
V (α)

ω (n),
1

3
K (m, c)L−2

}
, with α ∈ A, n ∈ �L .

For fixed L , the random variables W (L)(α)
ω (n) are still i.i.d.. Defining the operator

H (L)
ω (m, c) :=

(
H�L
0 (m, c)

)N

H+
+ W (L)

ω |H+

on l2(�L ,Cν), we have that E+
1

((
H�L

ω (m, c)
)N

)
≥ E+

1

(
H (L)

ω (m, c)
)
. It follows

from the definition of W (L)
ω |H+ and relation (48) that

〈

,

(
H (L)

ω (m, c) − mc2 I
)



〉
= 1

2p−1 |�L |
∑
n∈�L

p∑
i=1

W (L)(i)
ω (n)

≤ 1

3
K (m, c)L−2

< E+
2

(
(H (L)

ω (m, c))
)

− mc2.

By applying Proposition 7.1 to H (L)
ω (m, c) − mc2 I and 
, we have for d ∈ {1, 2, 3},

E+
1

((
H�L

ω (m, c)
)N) − mc2 ≥ E+

1

(
H (L)

ω (m, c)
)

− mc2

≥
〈

,

(
H (L)

ω (m, c) − mc2 I
)



〉

−

〈

,

(
H (L)

ω (m, c) − mc2 I
)2




〉

K (m, c)L−2 −
〈

,

(
H (L)

ω (m, c) − mc2 I
)



〉

≥ 1

2p−1 |�L |
∑
n∈�L

p∑
i=1

W (L)(i)
ω (n) −

1

2p−1 |�L |
∑
n∈�L

p∑
i=1

(
W (L)(i)

ω (n)
)2

(
K (m, c) − 1

3
K (m, c)

)
L−2

≥ 1

2p |�L |
∑
n∈�L

p∑
i=1

W (L)(i)
ω (n) .

The above estimate implies that

P

{
ω : E+

1

((
H�L

ω (m, c)
)N − mc2

)
≤ E

}
≤ P

⎧⎨
⎩ω : 1

|�L |
∑
n∈�L

p∑
i=1

W (L)(i)
ω (n) ≤ 2pE

⎫⎬
⎭ .

By Lemma 6.4 in [19] (see also [4,26]), for L = ⌊
δ(2pE)−1/2

⌋
(where

⌊
x
⌋
denotes the

largest integer ≤ x) with δ > 0 and E small enough,

P

⎧⎨
⎩ω : 1

|�L |
∑
n∈�L

p∑
i=1

W (L)(i)
ω (n) ≤ 2pE

⎫⎬
⎭ ≤ e−γ0|�L |
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for some γ0 > 0, where p ∈ {1, 2}. It follows by these estimates that, for d ∈ {1, 2, 3},
there exist l ∈ N large enough, b > 0 and γ̂ > 0 such that

P

{
ω : E+

1

((
H�l

ω (m, c)
)N − mc2

)
≤ bl−2

}
≤ e−γ̂ ld . (49)

Now, we build a big cube�L by grouping disjoint copies of the cube�l ; more precisely,

�L =
⋃
j∈R

�l( j) (50)

with�l( j) = [−l+ j, l+ j]d ∩Z
d . Indeed, for any odd integer n we take L = nl+ n−1

2 .
The set R indicated in (50) contains nd points. For every r ∈ (0, 1), by choosing n ≈
b−1/r l2/r−1, it follows that L ≈ b−1/r l2/r . Hence L−r ≈ bl−2 and l ≈ b1/2Lr/2.
Similarly to the Schrödinger case [4,19,26], we have

(
H�L

ω (m, c)
)N
H+ ≥

⊕
j∈R

(
H�l ( j)

ω (m, c)
)N

H+
.

Therefore, the first positive eigenvalue can be estimated by

E+
1

((
H�L

ω (m, c)
)N) ≥ min

j∈R E+
1

(
(H�l ( j)

ω (m, c))N
)

.

Thus, by applying relation (49), we obtain for d ∈ {1, 2, 3},
P
{
ω : inf σ

(
H�L

ω (m, c)|H+ − mc2
) ≤ L−r}

≤ P

{
ω : E+

1

((
H�L

ω (m, c)
)N − mc2

)
≤ L−r

}

≤ P

{
ω : E+

1

(
(H�l ( j)

ω (m, c))N − mc2
)

≤ bl−2 for some j ∈ R
}

≤ nd P

{
ω : E+

1

(
(H�l

ω (m, c))N − mc2
)

≤ bl−2
}

≤ nde−γ̂ ld ≈ (Ll−1)de−γ̂ ld ≈ b−d/2Ld(1−r/2)e−γ̂ bd/2Lrd/2

≤ Ĉ Lde−η̂Lrd/2
,

where Ĉ = b−d/2 > 0 and η̂ = γ̂ bd/2 > 0. This completes the proof of item (i).
(ii) By Theorem 2.2 and relation (44) one has, P-a.s.,

inf σ
(
H�L

ω (m, c)|H+
) = inf σ

(
H�L
0 (m, c)|H+

)
+ inf(supp μ)

= − sup σ
(
H�L
0 (m, c)|H−

)

= − sup σ
(
H�L

ω (m, c)|H−
) + ωmax .

Therefore (i i) follows from (i).
(iii) We can change the boundary condition on �L by defining a new operator N̂�L for each

dimension d ∈ {1, 2, 3}, so that the corresponding free Neumann Dirac operator

(H�L
0 (m, c))N̂ := N̂�L + mc2Bd + A�L ,

restricted to the subspace H−, has the lower extreme energy −√
m2c4 + adc2 of its

spectrum as the lowest negative eigenvalue associated with an eigenfunction � in �L

whose entries have constant absolute values. Thus, the proof of (iii) follows analogously
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the one of (i), but with the operator
(
H�L
0 (m, c)

)N

H+
and the energy mc2 replaced by

(
H�L
0 (m, c)

)N̂

H−
and −√

m2c4 + adc2, respectively.

(iv) Similarly to (ii), one shows that, P-a.s.,

inf σ
(
H�L

ω (m, c)|H−
) = − sup σ

(
H�L

ω (m, c)|H+
) + ωmax .

Therefore (iv) follows from (iii).
��

8 Estimates of Fractional Moments in Finite Volume

Let Gω,�L (m, c, z) and GH±
ω,�L

(m, c, z) be the Green functions, respectively, of H�L
ω (m, c)

and H�L
ω (m, c)|H± , whose matrix elements are given by

Gαβ
ω,�L

( j, k; z) :=
〈
e jα,

(
H�L

ω (m, c) − z I
)−1

ekβ
〉

and

Gαβ,H±
ω,�L

( j, k; z) :=
〈
e jα,

(
H�L

ω (m, c)|H± − z I
)−1

ekβ
〉

,

where j, k ∈ �L , α, β ∈ A and z ∈ C\R. The goal of this section is to estimate the fractional
moments of the Green function in finite volume, i.e., E(|Gαβ,H±

ω,�L
( j, k; z)|s) for s ∈ (0, 1)

(Proposition 8.1 below). This result will be used in Sect. 11, together with the decoupling
estimate (61), to obtain Theorem 3.3. In order to estimate E(|Gαβ,H±

ω,�L
( j, k; z)|s), we will

use Lemma 7.1, Proposition 4.1 (valid also for the Green function in finite volume) and
Lemma 8.1 below (the Combes-Thomas argument for discrete Dirac operators with bounded
potential, as DAD). Lemma 8.1 was obtained in Proposition 1 in [23] for the one-dimensional
Dirac model, with direct adaptations to d ∈ {2, 3}.
Lemma 8.1 ( Combes–Thomas) Let H(m, c) = H0(m, c) + V be a Dirac operator on
l2(Zd ,Cν) with bounded potential V . If z /∈ σ(H(m, c)), let � := dist{z, σ (H(m, c))} > 0.
Then, there exists a > 0 such that for every j, k ∈ Z

d , α, β ∈ A,

|Gαβ( j, k; z)| := ∣∣〈e jα, (H(m, c) − z I )−1 ekβ
〉∣∣ ≤ 2

�
e−a�| j−k|.

We are now ready to discuss the main result of this section, namely, the exponential decay
of the fractional moments of the Green function in finite volume.

Proposition 8.1 For every s ∈ (0, 1), there exist finite constants C̃ > 0 and η̃ > 0 such that

E(|Gαβ,H±
ω,�L

( j, k; E + iε)|s) ≤ C̃ Lde−η̃Ld/(d+2)
(51)

for L ∈ N sufficiently large, for all α, β ∈ A, j, k ∈ �L with | j − k| ≥ L/2, ε > 0 and
E ∈ I±

δL
(m, c), where I±

δL
(m, c) are the intervals of negative and positive energies described

in (12)–(13) with δL = 1
2 L

−2/(d+2).

Proof Let I+
δL

(m, c) = [mc2,mc2 + δL ] and r ∈ (0, 1). Due to Lemma 7.1(i), consider the
set

�G := {
ω : inf σ

(
H�L

ω (m, c)|H+ − mc2
)

> L−r}
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and its complement �B := � \ �G . Then, χ� = χ�G + χ�B and for every s ∈ (0, 1) we
have

E(|Gαβ,H+
ω,�L

( j, k; E + iε)|s)
= E(|Gαβ,H+

ω,�L
( j, k; E + iε)|sχ�G ) + E(|Gαβ,H+

ω,�L
( j, k; E + iε)|sχ�B ). (52)

Pick p > 1 sufficiently small such that s · p < 1 and let q > 1 be such that 1/p+1/q = 1.
By applying Hölder’s inequality in the second term on the right hand side of (52), together
with Proposition 4.1 and Lemma 7.1(i), we get

E(|Gαβ,H+
ω,�L

( j, k; E + iε)|sχ�B ) ≤
[
E(|Gαβ,H+

ω,�L
( j, k; E + iε)|sp)

]1/p
[P(�B)]1/q

≤ C0L
d/qe− η̂

q L
rd/2

, (53)

with C0 = C1/p
1 Ĉ1/q and η̂ > 0.

For ω ∈ �G , one has dist{E, σ (H�L
ω (m, c)|H+)} ≥ 1

2 L
−r . In this case, by Lemma 8.1,

E(|Gαβ,H+
ω,�L

( j, k; E + iε)|sχ�G ) ≤ 4s Lrse− a
2 sL

−r | j−k|
P(�G) ≤ 4s Lrse− a

4 sL
1−r

. (54)

Choosing r = 2
d+2 and inserting relations (53)–(54) into (52), we conclude that

E(|Gαβ,H+
ω,�L

( j, k; E + iε)|s) ≤ 4s L
2

d+2 se− a
4 sL

d/(d+2) + C0L
d/qe− η̂

q L
d/(d+2) ≤ C̃ Lde−η̃Ld/(d+2)

,

with C̃ = 2max{4s,C0} < ∞ and η̃ = min
{
a
4 s,

η̂
q

}
> 0.

Similarly, one proves estimate (51) for the other three energies intervals I±
δL

(m, c) using
the corresponding estimates obtained in Lemma 7.1(ii)–(iv). ��

9 Geometric Resolvent Equation

The idea of the proof of Theorem 3.3 is to obtain the exponential decay (11) from the
exponential decay (51) obtained in Proposition 8.1. For this, we will use the so-called
geometric decoupling method, which is well known in the context of random Schrödinger
operators [3,27].

Due to relation (41), we can write the Hamiltonian (1) in the form

Hω(m, c) = Hω,L (m, c) + F�L , (55)

where Hω,L (m, c) = H�L
ω (m, c) ⊕ H (�L )c

ω (m, c) and F�L is the boundary operator defined
in Sect. 6. Given z ∈ C \R, we write Gω = (Hω(m, c)− z I )−1 and Gω,L = (Hω,L(m, c)−
z I )−1. We perform a double decoupling, once on �L and then on �L+1. By applying the
second resolvent identity on (55) twice, we get

Gω = Gω,L − Gω,LF�L Gω

= Gω,L − Gω,LF�L Gω,L+1 + Gω,LF�L GωF�L+1Gω,L+1 . (56)

By translation invariance we have E
(
|Gαβ

ω ( j, k; z)|s
)

= E

(
|Gαβ

ω (0, k − j; z)|s
)
. Thus,

it is sufficient to prove (11) for j = 0. Taking matrix-elements in (56),

Gαβ
ω (0, k; z) =
= Gαβ

ω,L(0, k; z) − 〈
e0α,Gω,LF�L Gω,L+1ekβ

〉 + 〈
e0α,Gω,LF�L GωF�L+1Gω,L+1ekβ

〉
.
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For k ∈ Z
d with |k| ≥ L+2,we haveGαβ

ω,L (0, k; z) = 0 and
〈
e0α,Gω,LF�L Gω,L+1ekβ

〉 = 0.
Thus,

Gαβ
ω (0, k; z) = 〈

e0α,Gω,LF�L GωF�L+1Gω,L+1ekβ
〉
. (57)

For convenient notation, we introduce the sets X (d)
n,± ⊂ A × A defined, for d ∈ {1, 2, 3}

and 1 ≤ n ≤ d with n ∈ N, by

X (1)
1,+ = {(1, 2)}, X (1)

1,− = {(2, 1)},
X (2)
1,+ = X (2)

2,+ = {(1, 2)}, X (2)
1,− = X (2)

2,− = {(2, 1)},
X (3)
1,+ = X (3)

2,+ = {x+ = (1, 4), y+ = (2, 3)}, X (3)
3,+ = {z+ = (1, 3), w+ = (2, 4)},

X (3)
1,− = X (3)

2,− = {x− = (4, 1), y− = (3, 2)}, X (3)
3,− = {z− = (3, 1), w− = (4, 2)}.

Note that X (d)
n,− is obtained from X (d)

n,+ by permutation of coordinates.

Let
{
v

(d)
n : 1 ≤ n ≤ d, n ∈ N

}
be the canonical basis of Rd , defined in Sect. 6. Using

the fact that
{
e jα

}
j∈Zd ,α∈A is an orthonormal basis of l2(Zd ,Cν) and the definition of the

boundary operator F�L , we expand the right side of (57) obtaining, for |k| ≥ L + 2,

Gαβ
ω (0, k; z) =

∑
1≤n,l≤d

C (d)
n,±C

(d)
l,±

∑
(u,u′)∈�

(d)
L ,n,±

∑
(v,v′)∈�

(d)
L+1,l,±

Gαβu
ω,L(0, u; z)

Gαuβv
ω (u′, v; z)Gαvβ

ω,L+1(v
′, k; z), (58)

with

�
(d)
L ,n,± :=

{
(u, u′) ∈ ∂�L : u = u′ ± v(d)

n , (βu, αu) ∈ X (d)
n,±

}
, 1 ≤ n ≤ d,

and constants

C (1)
1,± = c, C (2)

1,± = c, C (2)
2,± = ∓ci, C (3)

1,± =
{
c if (βu, αu) = x±
c if (βu, αu) = y±

,

C (3)
2,± =

{∓ci if (βu, αu) = x±
±ci if (βu, αu) = y±

and C (3)
3,± =

{
c if (βu, αu) = z±

−c if (βu, αu) = w±.

Relation (58) is called geometric resolvent equation.

10 Decoupling of Fractional Moments

In this section we establish relations, of decoupling of fractional moments, that allow us to
write the fractional moments of the infinite volume Green function in terms of the corre-
sponding finite volume Green function.

The following result says that the fractional momentsE(|Gαβ
ω (0, k; z)|s) can be decoupled

along the boundary of �L . Recall from Sect. 6 that u ∈ ∂ i�L if and only if ‖u‖∞ = L , and
u′ ∈ ∂o�L if and only if

∥∥u′∥∥∞ = L + 1.

123



288 R. A. Prado et al.

Lemma 10.1 For every s ∈ (0, 1) and d ∈ {1, 2, 3}, there exists a constant C =
C(s, ρ, c, d) > 0 such that

E(|Gαβ
ω (0, k; z)|s) ≤ C

∑
βu ,αv∈A

∑
u∈∂ i�L

E(|Gαβu
ω,�L

(0, u; z)|s)

×
∑

v′∈∂o�L+1

E(|Gαvβ

ω,(�L+1)
c (v

′, k; z)|s)

for all z ∈ C \ R, α, β ∈ A, L ∈ N and k ∈ Z
d with |k| ≥ L + 2.

Proof Let s ∈ (0, 1). Taking fractional moments in (58) we get, for |k| ≥ L + 2 and
d ∈ {1, 2, 3},
E(|Gαβ

ω (0, k; z)|s)
≤ c2s

∑
1≤n,l≤d

∑
(u,u′)∈�

(d)
L ,n,±

∑
(v,v′)∈�

(d)
L+1,l,±

E

(
|Gαβu

ω,�L
(0, u; z)Gαuβv

ω (u′, v; z)Gαvβ

ω,(�L+1)
c (v

′, k; z)|s
)

(59)

where Gαβu
ω,L(0, u; z) was replaced by Gαβu

ω,�L
(0, u; z) since 0, u ∈ �L , and Gαvβ

ω,L+1(v
′, k; z)

was replaced byGαvβ

ω,(�L+1)
c (v

′, k; z) since v′, k ∈ (�L+1)
c. Now for (u, u′), (v, v′), (βu, αu)

and (βv, αv) fixed, consider the term

Gαβu
ω,�L

(0, u; z) Gαuβv
ω (u′, v; z) Gαvβ

ω,(�L+1)
c (v

′, k; z)
and note that the first and last of the three factors are independent of ωu′αu and ωvβv . Thus,
by considering the conditional expectation of the central term we have, by Proposition 4.1,

E
αuβv

u′,v (|Gαuβv
ω (u′, v; z)|s) ≤ C1

for all αu, βv ∈ A and for a constant C1 = C1(s, ρ). Hence,

E

(
|Gαβu

ω,�L
(0, u; z)Gαuβv

ω (u′, v; z)Gαvβ

ω,(�L+1)
c (v

′, k; z)|s
)

= E

(
|Gαβu

ω,�L
(0, u; z)|s Eαuβv

u′,v (|Gαuβv
ω (u′, v; z)|s) |Gαvβ

ω,(�L+1)
c (v

′, k; z)|s
)

≤ C1 E

(
|Gαβu

ω,�L
(0, u; z)|s

)
E

(
|Gαvβ

ω,(�L+1)
c (v

′, k; z)|s
)

(60)

where in the last step we have used the fact that the two terms are stochastically independent.
By substituting (60) into (59), it follows that there exists a constant C = C1c2sd2 > 0 such
that

E(|Gαβ
ω (0, k; z)|s) ≤ C

∑
βu ,αv∈A

∑
u∈∂ i�L

E(|Gαβu
ω,�L

(0, u; z)|s)

×
∑

v′∈∂o�L+1

E(|Gαvβ

ω,(�L+1)
c (v

′, k; z)|s)

for all z ∈ C \ R, α, β ∈ A and k ∈ Z
d with |k| ≥ L + 2. ��

We want to use the estimate in Lemma 10.1 as the first step in an iterative argument. The
next step consists of finding a bound for E(|Gαβ

ω,(�L+1)
c (v

′, k; z)|s) similar to the bound for

E(|Gαβ
ω (0, k; z)|s) given by Lemma 10.1, with v′ as the new origin. Following the idea of

Lemma 2.3 in [3] (which was also used in Lemma 7.3 of [27]), the next result relates the
Green function Gω,(�L+1)

c with the full Green function Gω.
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Lemma 10.2 For every s ∈ (0, 1) and d ∈ {1, 2, 3}, there exists a constant C̃ =
C̃(s, ρ, c, d) > 0 such that

E(|Gαβ

ω,(�L+1)
c (v

′, k; z)|s) ≤ E(|Gαβ
ω (v′, k; z)|s) + C̃

∑
u′∈∂o�L+1

∑
γ∈A

E(|Gγβ
ω (u′, k; z)|s)

for all z ∈ C \ R, α, β ∈ A, L ∈ N, v′, k ∈ Z
d with v′ ∈ ∂o�L+1 and |k| ≥ L + 2.

Proof Using the second resolvent identity on (55) gives Gω,L+1 = Gω +Gω,L+1F�L+1Gω.
Taking matrix-elements and arguing as done for the geometric resolvent equation (58), we
obtain,

Gαβ
ω,L+1(v

′, k; z) = Gαβ
ω (v′, k; z) + 〈

ev′α,Gω,L+1F�L+1Gωekβ
〉

= Gαβ
ω (v′, k; z) +

∑
1≤n,l≤d

C (d)
n,±

×
∑

(u,u′)∈�
(d)
L+1,n,±

Gαβu
ω,L+1(v

′, u; z)Gαuβ
ω (u′, k; z).

Taking fractional moments in this relation and using the following decoupling inequality
(analogous to Lemma C.1 of [3]; see also [27]),

E(|Gαβu
ω,L+1(v

′, u; z)|s |Gαuβ
ω (u′, k; z)|s) ≤ C1 E(|Gαuβ

ω (u′, k; z)|s)
with 0 < C1 = C1(s, ρ) < ∞, we get

E(|Gαβ
ω,L+1(v

′, k; z)|s) ≤ E(|Gαβ
ω (v′, k; z)|s) + C̃

∑
u′∈∂o�L+1

∑
γ∈A

E(|Gγβ
ω (u′, k; z)|s)

with the constant C̃ = C1csd > 0. ReplacingGαβ
ω,L+1(v

′, k; z) byGαβ

ω,(�L+1)
c (v

′, k; z), since
v′, k ∈ (�L+1)

c, the result follows. ��
In order to obtain the relation that will be used as the starting point of an iteration,

we insert the estimate in Lemma 10.2 into the estimate in Lemma 10.1, and use that
|∂�L+1| ≤ Cd Ld−1, together with Proposition 4.1, to obtain the existence of a constant
C̃1 = C̃1(s, ρ, c, d) > 0 such that

E(|Gαβ
ω (0, k; z)|s)

≤ C̃1L
d−1

∑
βu∈A

∑
u∈∂ i�L

E(|Gαβu
ω,�L

(0, u; z)|s)
∑

u′∈∂o�L+1

∑
γ∈A

E(|Gγβ
ω (u′, k; z)|s) (61)

for all z ∈ C \ R, α, β ∈ A, L ∈ N and k ∈ Z
d with |k| ≥ L + 2.

11 Proof of Band Edge Localization

This section is dedicated to the proof of Theorem 3.3. For this, we will use the decoupling
estimate (61) for the Green functions GH±

ω and GH±
ω,�L

restricted to subspaces H±, together
with Proposition 8.1.

Proof of Theorem 3.3 (i) Let z = E + iε with ε > 0 and E ∈ I±
δL

(m, c) for δL =
1
2 L

−2/(d+2). Considering the estimate (61) for the Green functions GH±
ω , GH±

ω,�L
and
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inserting it into the bound obtained in Proposition 8.1 for E(|Gαβu ,H±
ω,�L

(0, u; z)|s), we
obtain for L sufficiently large,

E(|Gαβ,H±
ω (0, k; z)|s)

≤ C̃1L
d−1 C̃ Lde−η̃Ld/(d+2) |A| |∂�L |

∑
u′∈∂o�L+1

∑
γ∈A

E(|Gγβ,H±
ω (u′, k; z)|s)

≤ C2L
3d−2e−η̃Ld/(d+2) ∑

u′∈∂o�L+1

∑
γ∈A

E(|Gγβ,H±
ω (u′, k; z)|s), (62)

for 0 < C2 = 4C̃1C̃Cd < ∞, for all α, β ∈ A and k ∈ Z
d with |k| ≥ L + 2. With the

constant C2 from (62), we fix L = L0 sufficiently large such that

b := 4C2L
3d−2
0 e−η̃Ld/(d+2)

0 |{u′ ∈ Z
d : ‖u′‖∞ ≤ L0 + 2}| < 1

and, by (62),

E(|Gαβ,H±
ω (0, k; z)|s) ≤ b sup

u′:‖u′‖∞≤L0+2
sup
γ∈A

E(|Gγβ,H±
ω (u′, k; z)|s) . (63)

Note that E(|Gγβ,H±
ω (u′, k; z)|s) = E(|Gγβ,H±

ω (0, k − u′; z)|s), which allows us to
iterate (63). We choose δ := δL0 = 1

2 L
−2/(d+2)
0 and let E ∈ I±

δ (m, c). The relation (63)
is the first step of the iteration; the second step is

E(|Gγβ,H±
ω (u′, k; z)|s) ≤ b sup

u2:‖u2‖∞≤2(L0+2)
sup
γ2∈A

E(|Gγ2β,H±
ω (u2, k; z)|s) ,

and thus successively. If u′, u2, u3, . . . is one chain of sites obtained in this way, with
a chain of associated components γ, γ2, γ3, . . ., then the iteration may be continued as

long as
∣∣u j − k

∣∣ ≥ L0 + 2, i.e., at least
⌊ |k|
L0+2

⌋
− 1 times. After this number of steps

we use Proposition 4.1 to bound the last fractional moment E(|Gγ jβ,H±
ω (u j , k; z)|s) in

the chain by the constant C(s, ρ) > 0. In (63) this leads to the bound

E(|Gαβ,H±
ω (0, k; z)|s) ≤ C(s, ρ) b

|k|
L0+2−1 = C(s, ρ)

b
e

log b
L0+2 |k|

.

Thus we have proven Theorem 3.3(i) with C = C(s,ρ)
b and η = − log b

L0+2 > 0.
(ii) It is direct consequence of item (i) of this theorem and Theorem 3.1 applied to the

operators Hω(m, c)|H± (see (10)). This completes the proof of the theorem.
��

12 Properties of the 1D Dirac Model

In this section we present properties of the one-dimensional DAD model that we need to
prove Theorem 3.4.

The action of Hω(m, c) on ψ =
(

ψ1

ψ2

)
∈ l2(Z,C2) is given by

[Hω(m, c)ψ] (n) =
(

(mc2 + ωn1)ψ1(n) + c (ψ2(n − 1) − ψ2(n))

c(ψ1(n + 1) − ψ1(n)) + (−mc2 + ωn2)ψ2(n)

)
. (64)

123



Dynamical Localization for Discrete Anderson Dirac Operators 291

If ψ is a solution of the equation Hω(m, c)ψ = zψ (z ∈ C), then(
ψ1(n + 1)

ψ2(n)

)
= T ω

m (n; z)
(

ψ1(n)

ψ2(n − 1)

)
,

with

T ω
m (n; z) =

⎛
⎜⎝ 1 +

(
mc2 − z + ωn1

) (
mc2 + z − ωn2

)
c2

mc2 + z − ωn2

c
mc2 − z + ωn1

c
1

⎞
⎟⎠ .

The transfer matrix from site k to site n is

�ω
m(n, k; z) =

⎧⎨
⎩
T ω
m (n; z) T ω

m (n − 1; z) · · · T ω
m (k + 1; z) if n > k ,

I d2 if n = k ,(
T ω
m (n + 1; z))−1 (

T ω
m (n; z))−1 · · · (T ω

m (k; z))−1 if n < k .

Due to the hypothesis that the measure μ is absolutely continuous with bounded density
and of compact support, we have the following result, which is a version of Lemma 5.1 in [6]
for the one-dimensional DAD (64).

Lemma 12.1 For each compact subset � ⊂ C, there exist finite γ1 = γ1(�,m) > 0,
δ = δ(�,m) > 0, C = C(�,m) > 0 such that

E

(∥∥�ω
m(n, 0; z)u∥∥−δ

)
≤ Ce−γ1|n|

for all z ∈ �, n ∈ Z and unit vector u ∈ C
2.

We omit the proof of this lemma which is similar to the one given for the 1D Anderson
Schrödinger operator in [6].

For j ∈ Zwe write, for notation convenience, [ j,∞) = { j, j + 1, . . .}. Let H [ j,∞)
ω (m, c)

be the restriction of Hω(m, c) to l2([ j,∞),C2) with Dirichlet boundary condition at the
endpoint j , and Gω,[ j,∞)(m, c, z) the corresponding Green function with matrix elements

Gω,[ j,∞)(n, k; z) =
(
G11

ω,[ j,∞)(n, k; z) G12
ω,[ j,∞)(n, k; z)

G21
ω,[ j,∞)(n, k; z) G22

ω,[ j,∞)(n, k; z)

)

where Gαβ

ω,[ j,∞)(n, k; z) :=
〈
enα, (H [ j,∞)

ω (m, c) − z I )−1ekβ
〉
for n, k ∈ [ j,∞), α, β ∈

{1, 2} and z ∈ C \ R. A important property of the one-dimensional model is that
Gω,[ j,∞)(n, k; z) can be expressed in terms of two generalized eigenfunctions u j =
u j (·, z) =

(
u1, j
u2, j

)
and u∞ = u∞(·, z) =

(
u1,∞
u2,∞

)
, where u j satisfy the boundary condition

at the endpoint j and u∞ is square-summable at +∞. More precisely, we have (see [7])

Gω,[ j,∞)(n, k; z) = 1

W (u j , u∞)

⎧⎪⎪⎨
⎪⎪⎩

(
u1, j (n)u1,∞(k) u1, j (n)u2,∞(k)
u2, j (n)u1,∞(k) u2, j (n)u2,∞(k)

)
if n ≤ k ,(

u1, j (k)u1,∞(n) u2, j (k)u1,∞(n)

u1, j (k)u2,∞(n) u2, j (k)u2,∞(n)

)
if n > k ,

(65)

where u j and u∞ are the solutions of the equation
(
H [ j,∞)

ω (m, c)u
)
(n) = zu(n) with

u1, j ( j) = 1, u2, j ( j − 1) = 0, and u∞ is the unique solution (up to a scalar) which is
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square-summable at +∞ (in particular, there exists a constant 0 < M < ∞ such that∣∣ui,∞(k)
∣∣ ≤ M for i ∈ {1, 2} and for all k ≥ j). The (constant) Wronskian of u j and u∞ is

given by

W (u j , u∞)(n) = u1, j (n + 1)u2,∞(n) − u2, j (n)u1,∞(n + 1).

13 Proof of 1D Localization

This section is dedicated to the proof of Theorem 3.4. The proof of item (i) follows general
ideas of [18] used in the context of the one-dimensional Anderson Schrödinger model; here
we work in infinite volume and with complex energies.

Proof of Theorem 3.4. (i) If j = k, then relation (14) holds by Proposition 4.1. We assume
that j < k; if j > k use that |Gαβ

ω ( j, k; E + iε)| = |Gαβ
ω (k, j; E − iε)|. Let z = E + iε

with E ∈ σ(Hω(m, c)) and ε > 0. By the second resolvent identity we have

(Hω(m, c) − z I )−1 = (H [ j,∞)
ω (m, c) − z I )−1 +

+ (Hω(m, c) − z I )−1
(
H [ j,∞)

ω (m, c) − Hω(m, c)
)

(H [ j,∞)
ω (m, c) − z I )−1.

Taking matrix-elements in the relation above, we obtain that

Gαβ
ω ( j, k; z) = Gαβ

ω,[ j,∞)( j, k; z) + c Gα2
ω ( j, j − 1; z) G1β

ω,[ j,∞)( j, k; z). (66)

It suffices to prove the exponential decay

E

(
|Gαβ

ω,[ j,∞)( j, k; z)|s
)

≤ C0 e
−η0| j−k| (67)

for s ≤ s1 ∈ (0, 1), 0 < C0 < ∞, η0 > 0 and for all j, k ∈ Z, α, β ∈ {1, 2},
E ∈ σ(H [ j,∞)

ω (m, c)) and ε > 0. To see this, we take fractional powers of (66) and use
Hölder’s inequality to obtain

E
(|Gαβ

ω ( j, k; z)|s) ≤ E

(
|Gαβ

ω,[ j,∞)( j, k; z)|s
)

+ cs

[
E
(|Gα2

ω ( j, j − 1; z)|2s)]1/2 [E (
|G1β

ω,[ j,∞)( j, k; z)|2s
)]1/2

.

It follows by (67) and Proposition 4.1 that

E
(|Gαβ

ω ( j, k; z)|s) ≤ C0 e
−η0| j−k| + csC1/2

1 C1/2
0 e− η0

2 | j−k| ≤ Ce−η| j−k|

for s ≤ s1/2 = s0 ∈ (0, 1), C = 2max
{
C0, csC

1/2
1 C1/2

0

}
> 0 and η = η0/2 > 0,

which proves the exponential decay in (14). We will then prove (67).
By relation (65) with n = j < k, we have

Gω,[ j,∞)( j, k; z) = 1

W (u j , u∞)( j)

(
u1,∞(k) u2,∞(k)

u2, j ( j)u1,∞(k) u2, j ( j)u2,∞(k)

)

where

W (u j , u∞)( j) = u1, j ( j + 1)u2,∞( j) − u2, j ( j)u1,∞( j + 1).
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Using that u j is a solution of
(
H [ j,∞)

ω (m, c)u
)
(n) = zu(n) with u1, j ( j) = 1, u2, j ( j −

1) = 0, we obtain that

u2, j ( j) = −(z − mc2 − ω j1)

c
(68)

and

u1, j ( j + 1) = −(z + mc2 − ω j2)(z − mc2 − ω j1)

c2
+ 1. (69)

Observe that u2, j ( j) �= 0, u1, j ( j + 1) �= 0 and by hypothesis ω j1 and ω j2 are indepen-
dent.

Let E2
j (· · · ) :=

∫
supp(ρ)

· · · ρ(ω j2)dω j2 be the expectation with respect to the random

variables (ωlγ )l∈Zd\{ j} or γ �=2 , where ‖ρ‖∞ < ∞ and supp(ρ) ⊂ [ωmin, ωmax]. For
s ∈ (0, 1) the expectation of the s-moment of G11

ω,[ j,∞)( j, k; z) is given by

E

(
|G11

ω,[ j,∞)( j, k; z)|s
)

= E

[
E
2
j

( |u1,∞(k)|s
|u1, j ( j + 1)u2,∞( j) − u2, j ( j)u1,∞( j + 1)|s

)]

= E

[∫ ωmax

ωmin

|u1,∞(k)|s
|u1, j ( j + 1)u2,∞( j) − u2, j ( j)u1,∞( j + 1)|s ρ(ω j2)dω j2

]

where u2, j ( j) and u1, j ( j + 1) are given by (68) and (69).
For the number δ > 0 obtained in Lemma 12.1, choose s1 ∈ (0, 1) such that δ/s1 > 1.
Using Lemma 13.1 below, the boundedness

∣∣u1,∞(k)
∣∣ ≤ M , ∀k ≥ j , Hölder’s inequality

and Lemma 12.1, we obtain that for all s ≤ s1,

E

(
|G11

ω,[ j,∞)( j, k; z)|s
)

≤ Ms1C E

(∥∥∥∥
(
u1,∞( j + 1)
u2,∞( j)

)∥∥∥∥
−s1

)

≤ Ms1C

[
E

(∥∥∥∥�ω
m( j, k; z)

(
u1,∞(k + 1)
u2,∞(k)

)∥∥∥∥
−δ

)]s1/δ

≤ C0 e
−η0| j−k|

for a constant C0 = C0(m, c, s1, ρ) > 0, η0 = γ1s1
δ

> 0, for all j, k ∈ Z and z =
E + iε with E ∈ σ(H [ j,∞)

ω (m, c)) and ε > 0. Similarly, one proves the exponential

decay of E
(
|Gαβ

ω,[ j,∞)( j, k; z)|s
)
with (α, β) ∈ {(1, 2), (2, 1), (2, 2)}. We have thus

established (67), which completes the proof.
(ii) It follows directly from item (i) of this theorem and Theorem 3.1. This completes the

proof of the theorem.
��

In the above proof we have used the following result:

Lemma 13.1 For z = E + iε with E ∈ σ(H [ j,∞)
ω (m, c)) and ε > 0, and for s ∈ (0, 1)

there exists 0 < C = C(m, c, s, ρ) < ∞ such that∫ ωmax

ωmin

1

|u1, j ( j + 1)u2,∞( j) − u2, j ( j)u1,∞( j + 1)|s ρ(ω j2)dω j2

≤ C

∥∥∥∥
(
u1,∞( j + 1)
u2,∞( j)

)∥∥∥∥
−s

where u2, j ( j) and u1, j ( j + 1) are given by (68) and (69), respectively.
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Proof Consider the set

A =
{∣∣∣z ± mc2 − ω

∣∣∣ : ω ∈ [ωmin, ωmax], z = E + iε, E ∈ σ(H [ j,∞)
ω (m, c)) and ε > 0 fixed

}
.

Let K1 = sup(A) < ∞ and K2 = inf(A) > 0. Note that u2,∞( j), u1,∞( j + 1) and u2, j ( j)
are independent of ω j2. The proof is divided into two cases.
Case 1: u2,∞( j) = 0. In this case, we have

1

|u1, j ( j + 1)u2,∞( j) − u2, j ( j)u1,∞( j + 1)|s ≤
(

c

K2

)s ∥∥∥∥
(
u1,∞( j + 1)
u2,∞( j)

)∥∥∥∥
−s

,

which implies∫ ωmax

ωmin

1

|u1, j ( j + 1)u2,∞( j) − u2, j ( j)u1,∞( j + 1)|s ρ(ω j2)dω j2

≤ C

∥∥∥∥
(
u1,∞( j + 1)
u2,∞( j)

)∥∥∥∥
−s

,

with C =
(

c

K2

)s

‖ρ‖∞ (ωmax − ωmin) .

Case 2: u2,∞( j) �= 0. In this case, we write∫ ωmax

ωmin

1

|u1, j ( j + 1)u2,∞( j) − u2, j ( j)u1,∞( j + 1)|s ρ(ω j2)dω j2

= 1∣∣u2,∞( j)
∣∣s ∣∣u2, j ( j)∣∣s

∫ ωmax

ωmin

1∣∣∣ u1,∞( j+1)
u2,∞( j) − u1, j ( j+1)

u2, j ( j)

∣∣∣s ρ(ω j2)dω j2 .

Note that ∣∣∣∣u1, j ( j + 1)

u2, j ( j)

∣∣∣∣ =
∣∣∣∣ z + mc2 − ω j2

c
− c

z − mc2 − ω j1

∣∣∣∣ ≤ K

with K = K1
c + c

K2
. Now we separate into two subcases:

(i) if

∣∣∣∣u1,∞( j + 1)

u2,∞( j)

∣∣∣∣ > 2K , it follows that

∣∣∣∣u1,∞( j + 1)

u2,∞( j)
− u1, j ( j + 1)

u2, j ( j)

∣∣∣∣ ≥ 1

2

∣∣∣∣u1,∞( j + 1)

u2,∞( j)

∣∣∣∣ .
On the other hand

1

|u1,∞( j + 1)|s ≤
(
1 + 1

4K 2

)s/2 ∥∥∥∥
(
u1,∞( j + 1)
u2,∞( j)

)∥∥∥∥
−s

.

Using these estimates we conclude that∫ ωmax

ωmin

1

|u1, j ( j + 1)u2,∞( j) − u2, j ( j)u1,∞( j + 1)|s ρ(ω j2)dω j2 ≤

≤
(

c

K2

)s 1∣∣u2,∞( j)
∣∣s

∫ ωmax

ωmin

1( 1
2

)s ∣∣∣ u1,∞( j+1)
u2,∞( j)

∣∣∣s ρ(ω j2)dω j2

≤ C

∥∥∥∥
(
u1,∞( j + 1)
u2,∞( j)

)∥∥∥∥
−s

,
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with C =
(

c

K2

)s

2s ‖ρ‖∞ (ωmax − ωmin)

(
1 + 1

4K 2

)s/2

.

(ii) if

∣∣∣∣u1,∞( j + 1)

u2,∞( j)

∣∣∣∣ ≤ 2K , then

1

|u2,∞( j)|s ≤ (
1 + 4K 2)s/2 ∥∥∥∥

(
u1,∞( j + 1)
u2,∞( j)

)∥∥∥∥
−s

.

Using these estimate together with Lemma 4.1, we get∫ ωmax

ωmin

1

|u1, j ( j + 1)u2,∞( j) − u2, j ( j)u1,∞( j + 1)|s ρ(ω j2)dω j2

≤
(

c

K2

)s 1∣∣u2,∞( j)
∣∣s

∫ ωmax

ωmin

1∣∣∣ u1,∞( j+1)
u2,∞( j) + z+mc2−ω j2

c − c
z−mc2−ω j1

∣∣∣s ρ(ω j2)dω j2

≤ C

∥∥∥∥
(
u1,∞( j + 1)
u2,∞( j)

)∥∥∥∥
−s

,

withC =
(

c2
K2

)s
C1(s, ρ)

(
1 + 4K 2

)s/2
, where in the last step we have used Lemma 4.1

with g = ρ and θ = −c
(
u1,∞( j+1)
u2,∞( j) − c

z−mc2−ω j1

)
− (z + mc2), since u1,∞( j + 1),

u2,∞( j) and ω j1 are independent of ω j2.
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