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ABSTRACT

The mass production companies need to seek high efficiency in the use of equipment and human re-
sources, as well as in the consumption of their inputs. One of the key methods to address these chal-
lenges is the adoption of Overall Equipment Effectiveness, derived from Total Productive Maintenance.
This work aims to propose a new efficiency indicator, called Overall Machinery Effectiveness, to be
applied in an automotive company in Brazil that adopted Overall Equipment Effectiveness indicator. The
studied company made available production data from ten months, associated to two Press machines,
generating twenty Decision Making Units for Data Envelopment Analysis and Bi-Objective Multiple
Criteria Data Envelopment Analysis models application. As results, Press #2 was identified as being the
most critical because, among the first ten DMUs in the efficiency ranking, seven are associated to Press
#1. The targets values recommended by the new indicator were considered feasible to be implemented
by the company, thus validating in practice the new proposed procedure for the management of ma-
chines effectiveness. Moreover, the identification of the relevant variables (input and output) for the

Press #1, and Press #2, allowed the decision maker to act in the best way to increase their efficiency.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

According to Eswaramurthi and Mohanram (2013), mass pro-
duction companies must have high efficiency in equipment use,
human resources, and inputs in general. Aktin and Gergin (2011)
commented that companies operating in today's challenging mar-
ket conditions require an effective procurement process to gain
competitive advantage. For Schoggl et al. (2017), in automotive
industries, sustainable development is of particular importance,
and they need to comply with environmental standards and meet
societal requirements, but also maintain a competitive edge in a

Abbreviations: TPM, Total Productive Maintenance; OEE, Overall Equipment
Effectiveness; DEA, Data Envelopment Analysis; DMUs, Decision Making Units;
DEA-CCR, DEA model proposed by Charnes, Cooper and Rhodes; DEA-BCC, DEA
model proposed by Banker, Charnes, and Cooper; MCDEA, Multiple Criteria DEA;
BiO-MCDEA, Bi-Objective MCDEA; OME, Overall Machinery Effectiveness; SMED,
Single-Minute Exchange of Die; WF, Workforce; MSA, Measurement Systems
Analysis; VBA, Visual Basic for Application.
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rapidly-changing business (Maxwell and van der Vorst, 2003; Zhu
et al., 2007).

For Maclean and Lave (2003); Mayyas et al. (2012) and Jasinski
et al. (2015), examples of strategies used by automotive company
to mitigate social and environmental effects include investment in
clean technologies, design for sustainability and creating value for
local and global communities.

One of the main tools to be used in order to face these challenges
is the Total Productive Maintenance System (TPM), that aims at
adding business value to an organization by maintaining and
improving the integrity of production and quality systems
involving collaborators, processes, and machines (Eswaramurthi
and Mohanram, 2013). The objective of TPM is to improve the
Overall Equipment Effectiveness (OEE) of plant machine, which is
considered the broadest set of performance measures to analyze
the efficiency of a single manufacturing machine or an integrated
system (Ferko and Znidarsic, 2007). For Nallusamy (2016), OEE of a
machine plays a significant role in the present scenario, where right
quality and right delivery at the right time are the major factors
influencing a customer.
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According to the definition of Nakajima (1989), OEE is measured
based on the six large losses, considering machine availability,
performance and quality rates (Ahire and Relkar, 2012). It does not
identify a specific reason why the machine is not as efficient as it
should be, but it assists in categorizing areas in order to identify
those that are in need of equipment improvement most
(Eswaramurthi and Mohanram, 2013).

On the other hand, mathematical models have been developed
to quantify performance, quality and flexibility and to justify in-
vestments in production systems (Liu, 2008); and in order to
manage operational performance, different approaches can be used
(Ferko and Znidarsic, 2007).

As pointed by Chen and Jia (2017) and Haghighi et al. (2016),
there are two main methods on efficiency evaluation; the first one
is stochastic frontier analysis method, which is a parametric
approach, and other that is a nonparametric method, known as
Data Envelopment Analysis (DEA). In practice, DEA has been
regarded as an alternative multiple criteria tool for manufacturing
technology assessment (Liu, 2008), and for evaluating performance
and decision-making processes (Dotoli et al., 2015).

The DEA CCR model (Charnes et al., 1978), with constant return
of scale, and DEA BCC model (Banker et al., 1984), with variable
return of scale, can be used to evaluate relative efficiency of a set of
homogeneous Decision Making Units (DMUs); moreover, these DEA
models do not require a specific form of the production function
and they are especially suitable for multi-input and multi-output
scenarios (Cook et al., 2014; Ohsato and Takahashi, 2015).

It should be observed that, according to Banker et al. (1989), DEA
(CCR and BCC) models may present problems to discriminate the
efficient DMUs adequately if specific conditions are not met, named
as DEA Golden Rules, with respect to a minimum amount of
involved DMUs. In this sense, in order to avoid such a problem new
multiple criteria DEA models have been proposed, such as the
MCDEA — Multiple Criteria DEA (Li and Reeves, 1999), and the BiO-
MCDEA - Bi-Objective Multiple Criteria DEA (Ghasemi et al., 2014).

A citation report (see Table 1) was done with data from an
important database (Web of Science) to characterize the up to date
importance of the problem investigated here, as well as to identify
the existing gaps (questions) in the theory, and whose solutions
(answers) could be of great interest in everyday of companies.

Fig. 1 shows the results of publications and citations obtained by
searching the Web of Science by using the keyword “Data Envel-
opment Analysis”, it is noticed that, in the period of 1998—2017,
there was more than 9900 publications, and more than 121,900
citations. These results demonstrate that such tool have been
widely adopted in solving several problems in different contexts.

Fig. 2 shows the results of publications and citations obtained by
searching the Web of Science by using the keywords “Overall
Equipment Effectiveness and OEE". It is noticed that, in the period
from 1998 to 2017, more than 160 publications, and more than 550
citations, that is, OEE is a technique widely used.

Figs. 1 and 2 show that the OEE and the DEA have been widely
applied, but individually. In fact, combining the keywords “Overall
Equipment Effectiveness, OEE, and Data Envelopment Analysis”

Table 1

Citation Report from Web of Science database for Period 1998—2017.
Keywords Combinations Number of Publications Citations
“Data Envelopment Analysis” 9965 121,947
“Overall Equipment Effectiveness and OEE” 164 599
“Data Envelopment Analysis and Overall Equipment Effectiveness” 4 48
“Overall Equipment Effectiveness and Automotive Industry” 6 48
“Multiple Criteria Data Envelopment Analysis and MCDEA”. 10 254
“Total Productive Maintenance and Overall Equipment Effectiveness” 64 321
“Total Productive Maintenance and Data Envelopment Analysis” 3 23
“Overall Equipment Effectiveness; Improving efficiency of machine and Efficiency of productive process” 4 0
“Improving efficiency of machine; Data Envelopment Analysis and machine and Efficiency of productive process” 0 0
“Multiple Criteria Data Envelopment Analysis and Overall Equipment Effectiveness” 0 0
“Bi-Objective Multiple Criteria Data Envelopment Analysis and Overall Equipment Effectiveness” 0 0

Source: Web of Science.

Published Items in Each Year

Citations in Each Year

1100 22,000
1000 20,000
900 18,000

800
700

16,000
14,000

2017F

ONO = NMFNODLOND N M N
NNOOOOOOO OO O vt v vt vl vd vt vt
N OO0OO0OO0OO0OO0OOO0OOO0OOO0OOOO0O
et NN NN NN NN NN NN NN NN
The latest 20 years are displayed.

600 12,000
500 10,000
400 8,000
300 6,000
200 4,000
100 _lll_l.ll 2,000

Fig. 1. Publications and citations by searching the keyword “Data Envelopment Analysis”. Source: Web of Science.
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Fig. 2. Publications and citations by searching the keywords “Overall Equipment Effectiveness and OEE”. Source: Web of Science.

found that, in the period 1998—2017, there were only four pub-
lished works in the database consulted, and the number of citations
(forty-eight) is not expressive, as shown in Fig. 3. Moreover, note
that there are no publications since 2012, but there is an increasing
number of citations, which indicates there is an interest in the joint
application of both techniques.

As a final result, in Table 1 is the complete Citations Report, for
the period 1998—2017, with the combinations of several key words
correlated to the theme of this article.

As the complete Citation Report in Table 1 pointed out, there is
much interest in improving the performance of machines and
production processes, in particular with the use of innovative
procedures, and there are some research gaps that have led to the
development of this article. As an example, no publication was
found that addresses the joint use of MCDEA and BiO-MCDEA with
OEE, which identifies the existence of a research gap, which char-
acterizes one of the contributions of this work.

In this context of interest in measuring the efficiency of ma-
chines, or productive processes, taking into consideration the cost
of investments for such, one can express the research questions
that motivated this work as being:
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- How to identify where to make the modifications to improve the
performance of machines, or processes, so that the investments
are properly directed and have effectiveness in their results?

- How to identify at what level (target values) the modifications
must be made to improve the performance of machines, or
processes?

Looking for answers to the research questions that guided this
article, the overall aim of this work was to propose a new indicator
called as OME - Overall Machinery Effectiveness to rank machines
(DMUs) in terms of their efficiency, in addition to identifying targets
to make them more efficient, and to identify alternative production
plans for improving global performance in the studied industry
herein. For developing this new indicator, we decided to test two
possibilities: to combine OEE with DEA model and to combine OEE
with BiO-MCDEA model. Both proposed indicators were tested in a
real industrial problem related to how to evaluate the efficiency of
heavy mechanical presses (DMUs — Decision Making Units for DEA
modelling) from an automotive industry in Brazil.

The research classification used in this study can be classified as
being an Applied and Quantitative Research, with Normative and
Empirical goals, because it is primarily interested in developing
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Fig. 3. Publications and citations by searching the keywords “Data Envelopment Analysis and Overall Equipment Effectiveness”. Source: Web of Science.
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policies, strategies and actions to improve a current situation. The
adopted research method was modelling and simulation (Bertrand
and Fransoo, 2002).

This article was organized into four other sections, beyond this
introduction. Section 2 presents problem and research phases de-
scriptions; in Section 3 are main OEE concepts, and formulation of
DEA and MCDEA models; Section 4 gives optimization and results
analysis; and finally, Section 5 presents conclusions, and recom-
mendations for further research, followed by the bibliographic
references.

2. Problem and research phases descriptions

In Fig. 4 there is a flow chart illustrating the steps developed in
this research, which are explained in the sequence.

This study was conducted in an automotive industry that
manufactures structural components for cars and trucks in Paraiba
Valley — Sao Paulo State, Brazil. It was focused on two mechanical
presses with the capacity of 3000 t, machine setup time of 1 h and

CProblem deﬂnition)

Data Collection

Modelling: DEA-CCR and BiO-MCDEA
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DEA- CCR
Model Optimization

BiO-MCDEA
Model Optimization
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For both models perform:
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v
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- It has positive correlation with OEE indicator

l

OME indicator proposal:
Combine BiO- MCDEA model and OEE indicator

!
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- Select relevant variables
- Calculate target values

A4

End

Fig. 4. Research phases.

external setup time of 4 h. In order to formulate the problem to be
treated in this research, we have contacted decisions makers of the
chosen company, and we verified that among the objectives of it
were the interest in identifying how to properly measure the effi-
ciency of the presses, how to identify which parameters and pro-
duction characteristics would be likely to be modified to improve
the performance of these machines, and what would be the refer-
ence values to make such changes, looking for making good use of
the resources available in the company for this purpose.

Table 2 shows the database provided by the company on two
mechanical presses for the period from January to October 2015, as
well as associated OEE values calculated by the company.

For DEA modelling, we considered twenty Decision Making
Units (DMUs) associated to the monthly production of two me-
chanical presses from January to October 2015. Thus, the ten first
DMUSs correspond to Press #1, in the period of January to October
2015, while the following ten DMUs correspond to Press #2 within
the same period of 10 months. Moreover, after consulting decision
maker of the studied company, we considered:

Relevant inputs

- Total available time - represents the time, in hours, available for
parts production.

Setup downtime - represents the time, in hours, spent on setup.
Other downtimes - represent the time, in hours, spent on other
downtimes, as the operators' lunch break.

Personnel staff - represents the amount of workforce (WF)
required to operate the presses line.

Scrap generated along the process (undesirable output) - rep-
resents the amount of scrap generated during the presses
operation.

Relevant output

Production volume - represents the volume produced during
the considered period.

Modeling and optimization of DEA-CCR (see expressions
(9)—(13)) and BiO-MCDEA see expressions (22)—(28)) models were
performed via VBA and Excel® programming (see files Supple-
mentary Data DEA-CCR — Appendix A, and Supplementary Data
BiO-MCDEA - Appendix B) by using the Simplex algorithm (Hillier
and Lieberman, 2010). In these quantitative method applications,
an intel core i7, GHZ processor 2.8 with 16 GB RAM and operational
system i0S computer has been used, and computational times for
the optimization of the models was about ten seconds.

The optimization results for both DEA-CCR and BiO-MCDEA
models were compared with respect to their discrimination po-
wer. Additionally, it was analyzed the existing non-parametric
correlations between the OEE values adopted by the company
and efficiency values obtained by DEA-CCR and BiO-MCDEA
models. From these statistical tests, it was verified that the BiO-
MCDEA model was better than DEA-CCR model, and the OME in-
dicator was proposed (see Section 4), a new ranking for DMUs was
created, relevant variables were identified, and targets were
established for non-efficient DMUs.

3. Background on OEE, DEA and MCDEA

In this section are presented concepts of OEE, and DEA, MCDEA
and BiO-MCDEA models.

3.1. OEE concepts

Gupta and Vardhan (2016) investigated how the use of TPM led
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Table 2

Database of the analyzed company related to the performance of two mechanical presses — Period from January to October 2015.

PRESS DMU Original Input Values

Original Output Value OEE values calculated

x1 (Total hours) [h] x, (Other downtimes) [h] x5 (Setup hours) [h]

Xa (WF) [unit] x5 (Scrap) [unit] s (Volume) [unit] Y the company [%]

#1 1 3348 1754 513
2 256.1 103.6 50.1
3 359.1 138.1 64
4 3183 139.1 60.7
5 348.9 131.2 64.3
6 296.2 146.5 474
7 273.6 1284 43
8 3249 159.3 53.5
9 315.7 145.5 55.6
10 318.1 165.3 55.5

#2 11 3388 1384 48.9
12 2348 123.6 339
13 3955 170.5 57.9
14 136.9 58.7 26.2
15 182.8 97.7 25.5
16 2184 154.9 275
17 154.8 113.6 18.6
18 1973 122.7 213
19 229 168.6 17.7
20 1473 95.8 17.6

36 44 10,498 39.40
24 36 10,466 46.30
36 69 16,843 48.90
30 156 13,918 40.70
30 211 17,365 52.50
24 163 9808 47.20
24 100 10,752 50.50
27 154 12,239 44.00
27 75 11,366 47.10
27 58 9907 40.50
36 66 15,669 49.30
24 27 7829 39.00
36 73 17,773 44.20
26 84 7448 44.30
16 79 6497 54.00
16 72 4311 37.70
16 21 2284 41.30
16 73 5803 47.90
16 30 4449 43.00
16 18 2842 35.30

to an increase in sales volume, improved machine OEE results, plant
productivity, and total cost of production. OEE is a quantitative
metric that has been used in production systems to control and
monitor the equipment productivity, which also serves as a process
and performance improvement indicator (Tsarouhas, 2013). In this
way, an OEE of 85% is considered as worldwide performance
standard (Blanchard, 1997).

The OEE can be calculated by using three indicators, Availability,
Performance and Quality (Nakajima, 1989; Wudhikarn, 2012):

- Availability means the machine operating time, given that
downtime comprises the time during which there are equip-
ment failure, setups and adjustment requirements, which can be
calculated by (1),

Availability = (Scheduled time — Downtime)/(Scheduled time)
(1)

- Performance compares the quantity produced with what was
supposed to be produced as a function of equipment operating
time, which can be calculated by (2),

Performance = (Quantity produced — Cycle time)/Operating time

(2)

- Quality means the number of good products that are produced
as a function of the total number of items, which can be calcu-
lated by (3),

3.2. Data Envelopment Analysis and multiple criteria Data
Envelopment Analysis

Charnes et al. (1978) developed the DEA model, given by
(4)—(8), with DMUs (DMUj; j = {1, 2, ..., n}), which use resources or

inputs (x;; i = {1, 2, ..., m}) and generate products or outputs (yr;
r={1,2,...,s}):
N m
Max wo = > Yo / > vixio (4)
r=1 i=1
subject to:

S m
ZurYrO/ZVixiO =1 (5)
P i-1

S m
ZurYrj_ ZV,‘XU‘SO, J:lv 27“-7 n (6)
r=1 i=1
u>0,r=1,2,...,8 (7)
y>0, i=1,2,...m (8)

where w, is the efficiency value under analysis (DMUyp), ¥;o and xjo
are the values of the r-th output and i-th input for DMUjy, respec-
tively, yy; is the value of the r-th output for the j-th DMU, x;; is the
value of the i-th input for the j-th DMU, u; is the decision variable
(weight) associated with the r-th output, and v; is the decision
variable (weight) associated with the i-th input.

Quality = (Production volume — Defective quantity)/Production volume (3)

Although OEE appears to be a fairly clear indicator of perfor-
mance measurement, it does require scope expansion or modifi-
cation to fit the needs of different industries.

DEA models can be input-oriented — with the purpose of reducing
the amount of used resources and keeping the obtained results con-
stant, or output-oriented — seeking to increase the obtained results
values and keeping the amount of used resources constant.
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In (9)—(14), it is formulated an input-oriented primal model,
also known as the multiplier model or the DEA-CCR model, with
constant return to scale:

N
Maxwo = > uryro 9)
r=1
subject to:
m
> vixip =1 (10)
i=1
S m
Doy - vxg <0, j=1,2,....n (11)
r=1 i=1
u->0, r=1,2,...,s (12)
v; >0, i=1,2,....m (13)

From the DEA-CCR model, Banker et al. (1984) proposed the
DEA-BCC model, with variable return to scale, with the addition of a
free variable cp to the objective function (9) and to the constraint
(11).

In fact, there are two problems that can arise from using the
DEA, according to Li and Reeves (1999): weak discriminating power
which occurs when many DMUs are identified as efficient and
unrealistic weight distribution that refers to a situation in which
DMUs can be efficient, but present high values of weights for a
single output, or low values of weights for a single input.

In order to avoid such problems, Li and Reeves (1999) have
proposed the Multiple Criteria DEA (MCDEA) model, in which each
efficiency criterion is an independent objective function, and it is
formulated by (14)—(21):

N
Min dg (ormaxhg = Zuryr0> (14)
r=1
n
Min > " d; (15)
j=1
Min M (16)
subject to:
m
Zl},'xio =1 (17)
i=1
S m
Zuryrj_zvixij+dj: 07 j:1>2a---7n (18)
r=1 i=1
M—-d; >0, j=1,...,n (19)
ur, v; >0, r=1,...,855i=1,....m (20)
d; >0, j=1,..,n (21)

where do measures efficiency of analyzed DMUy, d; is the in-
efficiency of DMU j, and M is the highest inefficiency value for all
DMUs.

In the MCDEA model (14)—(21), the three objectives are
analyzed individually, with no order of preference. Efficiency gains

are defined according to minimum and maximum criteria, which
are more constrained than those defined by the classic DEA, and
these generally identify fewer efficient DMUs (Ramoén and
Cristobal, 2011). Thus, the MCDEA model does not aim at obtain-
ing a great solution, but to find Pareto-optimal solutions, in which
the final decision is made by the analyst.

On the other hand, Ghasemi et al. (2014) proposed the Bi-
Objective Weighted DEA model (BiO-MCDEA) which seeks to
meet two objectives simultaneously by considering a given
weighting, according to (22)—(28):

n
Minh = (sz + ws Zdj) (22)

j=1

subject to:
m
> vixip =1 (23)
i=1
N m
dwy— Y x4+ dj=0, j=1,2, ..., n (24)
r=1 i=1
M—-d >0, j=1,2,...,n (25)
u >e, r=1,2,...,5s (26)
vp > e i=1,2,....,m (27)
d>0,j=1,2,..,n (28)

The next section presents results of models optimization, as well
as statistical tests conducted, OME proposition, a new ranking of
the DMUs according to the OME and an identification of targets for
inefficient DMUs.

4. Optimization and results analysis

Two optimizations were performed with DEA-CCR (input-ori-
ented), and BiO— MCDEA CCR models, in order to find out DMUs
efficiency ranking. It is worth mentioning that we took into account
the value of ¢ = 0 in (26)—(27). Table 3 shows these optimization
results.

Table 3
Results of Efficiency Analysis by DEA-CCR and BiO-MCDEA models, for each DMU.

DMU DEA CCR Model [%] BIO-MCDEA CCR Model [%]
1 86.46 65.82
2 100.00 7831
3 100.00 93.04
4 88.94 84.83
5 100.00 100.00
6 74.03 69.00
7 85.68 84.10
8 81.96 79.11
9 83.12 7413
10 74.02 64.53
11 100.00 100.00
12 100.00 72.75
13 100.00 100.00
14 100.00 55.71
15 82.82 76.08
16 52.70 4478
17 43.03 32.14
18 85.02 66.11
19 78.44 4312
20 60.26 4052
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Table 4
Efficiency ranking by OME indicator, for all DMUs.

DMU OME (BiO-MCDEA & OEE) [%]
5 72.46
11 70.21
3 67.45
13 66.48
7 65.17
15 64.10
2 60.21
9 59.09
8 59.00
4 58.76
6 57.07
18 56.27
12 5327
10 51.12
1 50.92
14 4968
19 43.06
16 41.09
20 37.82
17 36.43

- While the DEA-CCR model renders an amount of seven efficient
DMUs, the BiO-MCDEA model only considers three efficient
DMUs.

- The three DMUs that were considered efficient by the BiO-
MCDEA model are also efficient through the DEA-CCR model.

- Finally, by making an overall comparison, the values found by
the BiO-MCDEA model are lower than those obtained by the
DEA-CCR model, i.e. there is greater discrimination.

In order to identify whether there was some correlation be-
tween the results (Table 3) of the DEA-CCR and the BiO-MCDEA
models with the OEE results (Table 2) of the presses during the
10 studied months, Spearman's rank correlation coefficient test was
used. For such a purpose, Spearman's Correlation Coefficient values
(r5) were calculated for the OEE & DEA-CCR and OEE & BiO-MCDEA
combinations.

Spearman's coefficient is a statistical non-parametric correla-
tion test that can take values in the range of (-1, 1), which either
means there is a strong positive (rs close to +1) or negative (r; close

AE da Silva et al. / Journal of Cleaner Production 157 (2017) 278—288

to —1) correlation. Data in Table 3 and expression (29) were used
for the calculations:

6347

rs=1- (n3 —n)

(29)

where n is the number of DMUs and, in this case, A; are the values of
differences between the efficiencies of each DMU resulting from
each model (DEA CCR — column 2 and BiO-MCDEA — column 3,
Table 3) and the respective OEE value (column 4, Table 2).

Once Spearman's correlation coefficient values were calculated,
it was found that:

- For the OEE & DEA-CCR combination,
value = 0.085)

- For the OEE & BiO-MCDEA combination, r¢ = 0.605 (p-
value = 0.005)

rs = 0395 (p-

It can be observed that, at a statistical significance of 5%, there is
no correlation between the OEE values with the values resulting
from using DEA-CCR model; however, the results generated by the
BiO-MCDEA model are positively and statistically correlated with
the OEE values.

Based on these results, a new Overall Machinery Effectiveness
(OME) was additionally proposed to the company, which combines,
by geometric mean, the BiO-MCDEA model efficiency values and
the OEE values, as depicted in Table 4.

As the BiO-MCDEA model allows greater discrimination be-
tween the DMUE, it affects the OME and allows better prioritization
of DMUs because identical values were not found, which could
arouse doubts about choosing the DMU to be the investment focus
so as to improve its efficiency.

In Table 4, one can verify that Press #2 is the most critical
because, among the first ten DMUs (highlighted in bold letters in
Table 4) in the efficiency ranking, seven are associated to Press #1.
Thereby, it should be the object of further studies and possible
investments.

Moving forward with the results analysis, targets were set out for
reducing input and increasing output in order to make inefficient
DMU's efficient based respectively on multiplying input values and
dividing output values in Table 2 by the associated OME value.

Table 5
Weights for decision variables v; and u;.
DMU Weights
v1 (Total hours) v (other downtimes) v3 (Setup hours) v4 (WF) vs (Scrap) u;y (Volume)

1 0.0009 - 0.0089 0.0066 - 0.0001
2 0.0011 — 0.0106 0.0079 - 0.0001
3 0.0008 — 0.0078 0.0058 - 0.0001
4 0.0009 - 0.0086 0.0064 - 0.0001
5 0.0015 — 0.0037 0.0052 0.0004 0.0001
6 0.0021 — 0.0025 0.0059 0.0007 0.0001
7 0.0024 - 0.0027 0.0066 0.0007 0.0001
8 0.0020 — 0.0023 0.0055 0.0006 0.0001
9 0.0010 — 0.0092 0.0069 — 0.0001
10 0.0010 — 0.0092 0.0069 — 0.0001
11 0.0017 — 0.0041 0.0058 0.0004 0.0001
12 0.0014 — 0.0132 0.0098 — 0.0001
13 0.0015 — 0.0037 0.0051 0.0004 0.0001
14 - — — 0.0344 0.0013 0.0001
15 0.0036 — 0.0041 0.0099 0.0011 0.0001
16 0.0032 — 0.0036 0.0088 0.0010 0.0001
17 0.0037 - 0.0019 0.0219 0.0017 0.0001
18 0.0035 — 0.0040 0.0096 0.0011 0.0001
19 0.0040 — - 0.0043 0.0008 0.0001
20 0.0034 - - 0.0287 0.0020 0.0001
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Table 6
Target values calculated by OME indicator.

DMU Target Values - OME Indicator
X1 X2 X3 X4 X5 Y1

1 170.49 - 26.12 18.33 - 20,615.13
2 154.21 - 30.17 14.45 - 17,381.54
3 242.22 — 43.17 24.28 — 24,970.78
4 187.03 - 35.67 17.63 - 23,687.06
5 252.80 - 46.59 21.74 152.88 23,965.98
6 169.03 — 27.05 13.70 93.02 17,186.89
7 178.30 - 28.02 15.64 65.17 16,498.64
8 191.69 - 31.56 15.93 90.86 20,744.32
9 186.55 - 32.85 15.95 — 19,235.04
10 162.62 — 28.37 13.80 — 19,379.40
11 237.88 - 34.33 25.28 46.34 22,316.08
12 125.07 - 18.06 12.78 - 14,697.49
13 262.94 — 38.49 23.93 48.53 26,733.12
14 - - - 12.92 41.73 14,991.74
15 117.17 - 16.34 10.26 50.64 10,136.45
16 89.74 — 11.30 6.57 29.58 10,491.82
17 56.40 — 6.78 5.83 7.65 6268.72
18 111.03 - 11.99 9.00 41.08 10,311.92
19 98.61 - - 6.89 12.92 10,331.82
20 55.71 — — 6.05 6.81 7514.64

It should be noted that these targets were only estimated for
relevant variables for each DMU, i.e. in cases where the decision
variables (u; and v;) weights had non-null values, thus generating
Table 5 with the values found for input and output targets of each
case in Table 6.

It should be noted that the BiO-MCDEA model indicated that for
all DMUs, variable v, was not relevant, that is, the decision maker
does not have to worry about setting goals for this variable.

Table 6 shows the targets for reducing inputs and increasing
outputs, e.g. by comparing the data from the third row in Table 2
(original values) to those in the second row of Table 6 (targets). In
order for DMU 1 to become efficient, the total hours should be
reduced from 50.92% (170.49/334.8).100%, installation hours should
be reduced from (26.12/51.3).100% hours of labor should be reduced
from 50.92% = (18.33/36).100%, and the increase in production
volume should be 196.37% = (20,615.13/10.498).100%.

It should be highlighted that, according to an expert's opinion of
the planning area of chassis and presses of the company under
study, in the future, the OME indicator can be adopted by the
company, since combining the results of the BiO-MCDEA model
with the OEE has a strong positive correlation.

400
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However, under the company's current conditions, due to the
targets of the DEA-CCR model being less aggressive and depending
on a lower level of investments, these become more easily viable
than those indicated by the OME.

Nevertheless, according to the consulted expert, setup hours are
the most critical and the company under study is focused on
reducing them in order to increase the machines availability and,
consequently, increase the OEE. Therefore, the estimation of targets
by the OME becomes rather useful at the moment, i.e. once targets
are determined, one can manage the investment of resources more
effectively, find the causes of inefficiencies to be dealt with and
speed up the improvement process.

Figs. 5—9 illustrate a comparison of original value (Table 2) and
recommended target value (Table 6), only for relevant inputs and
output associated to all DMUs. For instance, in the sequence there
are comments on the results illustrated in these figures for specific
DMUSs, noting that for the other DMUSs it is possible to obtain similar
suggestions.

Thus, analyzing Fig. 5, it is possible to recommend that DMU 2
should reduce the input x; (Total hours) from 256.1 h (see Table 2)
to approximately 154.21 h (see Table 6). The company managers
commented, in interviews, that these alterations can be easily
implemented with the adequacy of the production line in product
families that share similar machine configurations.

Observing Fig. 6, it is possible to recommend that DMU 2 should
reduce the input x3 (Setup hours) from 50.1 h (see Table 2) to
approximately 30.17 h (see Table 6). One way to reduce Setup time
is by Single-Minute Exchange of Die (SMED), which is a known
methodology for reducing setup times in machines (Womack and
Jones, 1994; Méndez and Rodriguez, 2016).

Observe that to use SMED methodology it is necessary an inno-
vation effort, but in general the company is able to attend in a fast and
effective way the occurrence of demand fluctuations, as well as it
helps to eliminate waste and reduce lot sizes. SMED provides good
solutions to the problem associated to how to prepare machines that
are running a current product to run the next product.

Continuing to exemplify, by Fig. 7, it is recommended that DMU
2 should reduce input x4 (WF) from 24 units (see Table 2) to
approximately 14 units (see Table 6). This reduction can be done
through training of the company's employees in the techniques of
management of Lean Manufacturing and TPM (Womack and Jones,
1994; Ferko and Znidarsic, 2007).

Fig. 8 shows that the DMU 2 must maintain the input x5 (Scrap)
in 36 units (see Table 2), and the same applies to DMUS 1, 3, 4, 9, 10,

Variable
—@— xl-original
— m- x1- target

14 16 18 20

Fig. 5. Target values recommended by OME for reducing input x; for each DMU. Source: Minitab 17.



286 AE da Silva et al. / Journal of Cleaner Production 157 (2017) 278—288

70

Variable
—@— x3-original
\/ — B x3-target
60 -|
— T
50 T~
E [ /\ \
40 I\ N
g‘ / \ /
/ \ =N 7 I\ /
301 N
# L L — A \ |/
\ [/
20
10<
0-
2 4 6 8 10 12
DMUs

Fig. 6. Target values recommended by OME for reducing input x; for each DMU. Source: Minitab 17.
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Fig. 7. Target values recommended by OME for reducing input x4 for each DMU. Source: Minitab 17.
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Fig. 8. Target values recommended by OME for reducing input xs for each DMU. Source: Minitab 17.
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Fig. 9. Target values recommended by OME for increasing output y, for each DMU. Source: Minitab 17.

and 12; The DMU 5 should reduce x5 from 211units (see Table 2) to
approximately 153 units (see Table 6). Note that Scrap reduction
can be done by means of a study using Measurement Systems
Analysis (MSA) (Asplund and Lin, 2016).

Finally, Fig. 9 shows that the DMU 2 should increase the output
y1 (Volume) from 10.46 units (see Table 2) to approximately 17.38
units (see Table 6). One of the ways to increase produced volume
would be by expanding the customer base, and also by using
advanced demand forecasting techniques (Meeran et al., 2017) in
order to get more accurate values. It is worth mentioning that
improving previous inputs will also lead to an improvement or
increase in this output.

Continuing the analysis of the results obtained with the new
OME indicator, in Fig. 10 are presented for each DMU, the per-
centage values of targets, established by OME indicator (Table 4), in
relation to the original values of inputs and output (Table 2).

To exemplify how these values can be computed, in Table 7 are
these calculations for DMU 1.

Observing Fig. 10, it is possible to see that DMU 17, which has the
smallest OME value among all DMUs (see Table 4), presents the
largest percentage values (comparing original and recommended
target values) for reducing inputs, and for increasing output, which
means it is more difficult to improve its performance or efficiency
than of other DMUs. On the other hand, again from Fig. 9, DMU 5,
that has the highest OME value among all DMUs (Table 4), presents
the lowest percentage values (comparing original and recom-
mended target values) for all input and output, meaning that to
improve its performance or efficiency is easier.

5. Conclusions and future research recommendations

Based on the conducted analyses, it was possible to observe a
contribution of the BiO-MCDEA model at calculating the efficiency
of studied machines because, once combined with the OEE, which
has been widely used in industries, has led to creation of a new and
interesting indicator, the OME.

-100% -50% 0% 50% 100% 150% 200%
———————————————
19 e
—_—
17 ——
—_——
15 - —— |
1
13 —
—————
11 —
—
9 S——
—
7 —
——
5 —
—
3 —
S—
1 ———

® yl-volume [unit]
x4 - WF [unit]

m x5 - Scrap [unit]
m x3 - Setup hours [h]

Fig. 10. Percentage values of targets, established by OME indicator, for each DMU.
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Table 7
Calculation of the percentage values of reduction of the original inputs and increase for the original output, recommended by the OME indicator, for the DMU 1.
DMU 1
Inputs Output
X1 X2 X3 X4 X5 y1
(A) Target values 170.49 — 26.12 18.33 - 20,615.13
(Row 2, Table 4)
(B) Original inputs and output values 334.8 175.4 51.3 36 44 10,498
(Row 2, Table 2)
(C) = (A/B - 1)*100% —49.08 - —49.08 —49.08 —49.08 96.37

With the OME, it was possible to draw up new rankings of DMUs
efficiency that assists in the company's decision-making process
regarding investments focused at increased efficiency by identi-
fying the most critical DMUs.

The selection of the relevant variables (input and output) by the
OME indicator (See Table 5) shows to the decision maker which
variables should be analyzed to increase the efficiency of the
analyzed machines. It should be noted that the targets values
suggested by the OME indicator (See Table 6) can be implemented
by the company studied, thus showing the practical importance of
this research.

In addition, the total time to optimize the models was approx-
imately ten seconds, showing their feasibility for industrial prob-
lems requiring real-time solutions. The VBA modelling and the
complete optimization results of the DEA-CCR and BiO-MCDEA
models are, respectively, in the files Supplementary Data DEA-
CCR and Supplementary Data BiO-MCDEA (see appendix A and
appendix B).

As recommendations for further research, studies on the Fuzzy
logic by analyzing data in an uncertainty context should be con-
ducted, since factual information is fairly imprecise. In addition, it is
proposed to conduct analyses with DEA models assuming variable
return to scale (DEA-BCC model).

Lastly, it is worth mentioning that the results should not be
generalized to all automotive industries yet, due to requiring
further tests involving other areas, sectors and products, besides
increasing the number of DMUs, inputs and outputs.
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