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Quadratic gravity theories in 2¿1 dimensions and the topological Chern-Simons term
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The addition of a topological Chern-Simons term to three-dimensional higher-derivative gravity is not a
good therapy to cure the nonunitarity of the aforementioned theory. Moreover,R1R2 gravity in ~211!D,
which is unitary at the tree level, becomes tree-level nonunitary when it is augmented by the abovementioned
topological term. Therefore, unlike what is claimed in the literature, topological higher-derivative gravity in
~211!D is not tree-level unitary and neither is topological three-dimensionalR1R2 gravity.
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I. INTRODUCTION

It is astonishing that a locally trivial and globally non
trivial Einstein-type gravitational theory can be built only b
lowering the dimension of our space-time—which is su
posed to be four dimensional—by one unit. In fact, thre
dimensional general relativity is dynamically trivial: outsid
sources, spacetime is flat—all effects of the localized sou
are on the global geometry, which is fixed by the singula
ties of the worldlines of the particles@1#. The quantum me-
chanical analogue of this triviality emerges when the Hilbe
Einstein action related to this theory is quantized. It is e
to establish that the theory does not possess any propag
degrees of freedom. In other words, there are no gravito
The preceding considerations lead us to raise the follow
important question: Is it possible to build a nontrivial gen
ally covariant three-dimensional gravity theory havi
propagating degrees of freedom? The answer is affirma
Actually, this can be done at least in two different ways:

~i! Adding a topological nontrivial term to general relati
ity in ~211!D @2#. Ordinary Einstein gravity which is trivia
acquires now a propagating, massive, spin-2 mode. T
theory is ghost-free and causal, although of the thi
derivative order.

~ii ! Including the four-derivatives terms*R2Agd3x and
*Rmn

2 Agd3x into three-dimensional Einstein action@3–5#. In
this case we have a class of effectively multimass model
gravity of fourth-derivative order. In addition to the massle
excitations of the field which, incidentally, are nonpropag
ing such as in three-dimensional gravity, there are now—
the general amount of the two new terms—massive sp
and massive scalar excitations. We review in Sec. II the m
properties of this theory.

On the other hand, unlike topological gravity in~211!D,
three-dimensional higher-derivative gravity~3DHDG! is
nonunitary at the tree level. How can we remedy this sit
tion? It seems, at first sight, that we should add a topolog
Chern-Simons term to 3DHDG, since Einstein gravity au
mented by a topological term is unitary at the tree level@6#.
But, as we shall show in Sec. III, this artifice does not cu
the tree level nonunitarity of 3DHDG. Consequently, unli
what is claimed in the literature@7#, 3DHDG augmented by a
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Chern-Simons term is nonunitary at the tree level.
We conclude in Sec. IV by proving that topologicalR

1R2 gravity in ~211!D is also nonunitary at the tre
level—an interesting and at the same time curious fact, si
R1R2 gravity in ~211!D is tree-level unitary. This amazing
result does not simply oppose the claim in the literature@7#;
it is against what, in a sense, one should intuitively expe
We employ natural units in whichc5\51. Our conventions
are to use a metric with signature (122) and define the
Riemann and Ricci tensors asRlmn

r 52]nGlm
r 1]mGln

r

2Glm
s Gsn

r 1Gln
s Gsm

r andRmn5Rmnr
r .

II. THREE-DIMENSIONAL HIGHER-DERIVATIVE
GRAVITY

3DHDG is defined by the action@3–5#

S5E d3xAgF2R

k2
1

a

2
R21

b

2
Rmn

2 2LMG ,

whereLM is the Lagrangian density for matter anda andb
are constants with dimensionL. Herek2;L is not necessar-
ily related to the Einstein constant in~311!D. In the linear
approximation, i.e. gmn5hmn1khmn , and in a three-
dimensional version of the Teyssandier gauge@8,9#, the
original field equations, namely,

~2/k2! Gmn1 1
2 a @2 1

2 gmnR212RRmn12¹m¹nR

22gmnhR#1 1
2 b @2 1

2 gmnRrs
2 1¹m¹nR12RmrlnRrl

2 1
2 gmnhR2hRmn#1 1

2 Tmn50,

reduce to

~12 1
4 bk2h !@2 1

2 hhmn1 1
4 hmnR̄#1 1

2 ~Gm,n1Gn,m!

5 1
4 k ~Tmn2 hmnT/2!,

05Gm[~12 1
4 bk2h !gml

,l 2~a1 1
2 b! 1

2 k2R,m ,
©2003 The American Physical Society02-1
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whereR̄[ 1
2 hh2g ,mn

mn andgmn[hmn2 1
2 hmnh. The solution

of the preceding system of equations is given byhmn5hmn
(E)

1cmn2Fhmn , wherehmn
(E) , cmn and F satisfy the follow-

ing equations:

hhmn
(E)5 1

2 k @Thmn2Tmn#, gmn
(E),n50,

gmn
(E)5hmn

(E)2 1
2 hmnh(E);

~h1m1
2!cmn5 1

2 k @Tmn2 hmnT/2#, cmn
,mn2hc50;

~h1 m0
2/2!F5 kT/4 .

Here m0
2[ 1/k2( 3

4 b12a) and m1
2[2 4/bk2. Using the

equations above we find that the metric for an isolated st
particle source of massm located atr50 is

h005
km

8p
@k0~m1r !2k0~m0r !#,

h115h225
km

8p
@2 ln r 1k0~m1r !1k0~m0r !#,

wherek0 is the modified Bessel function of the order of ze
andm0

2 andm1
2 are assumed thereafter to be real in order

avoid the presence of tachyonic particles in the dynam
field. This metric greatly resembles,mutatis mutantis, the
four-dimension metric of a straightU(1) gauge cosmic
string in the context of linearized gravity found by Linet an
Teyssandier@10#. In addition, asm0 andm1→` it tends to
the solution of the linearized version of three-dimensio
Einstein equation in the de Donder gauge found by De
@11#.

The nonrelativistic potential is of course given by

V~r !52Ḡm@k0~m1r !2k0~m0r !#,

where Ḡ[k2/32p. Note that V(r ) behaves as
2Ḡm ln(m0 /m1) at the origin and as

2ḠmFA p

2m1r
e2m1r2A p

m0r
e2m0r G

asymptotically.
Three comments are in order here:
~i! Unlike the Newtonian potential in~211!D, VN

52Ḡm ln(r0 /r), which has a logarithmic singularity at th
origin and is unbounded at infinity, the potential concern
3DHDG is extremely well behaved: it is finite at the orig
and zero at infinity.

~ii ! V(r )→0 asm0 and m1→`, confirming in this way
the well known fact that the standard correspondence
three-dimensional Einstein theory with Newton theo
breaks down@12#.

~iii ! The nonrelativistic potential can also be computed
without appealing to the solution of the field equations
using an algorithm developed in Ref.@5#.
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We discuss now, in passing, two interesting effects of
metric related to an isolated static point particle of massm:
the existence of a gravitational force on a slowly moving t
particle and the gravitational deflection of light rays.

Gravitational acceleration. The gravitational acceleration
of a slowly moving test particle of massm in the gravita-
tional field in hand is

gk522Ḡm ~xk/r ! @m0k1~m0r !2m1k1~m1r !#. ~1!

Therefore, the gravitational force related to~1! is everywhere
attractive if m0,m1, is repulsive if m0.m1 ~antigravity!
and vanishes ifm05m1 ~gravitational shielding!. Note that
this force does not exist in general relativity in~211!D. It is
peculiar to 3DHDG.

Light bending. For a light ray in thex-y plane, coming
from infinity with an impact parameterb, the deflection
angle is given by

u54pmḠ@12e2m1 /b#. ~2!

It is interesting to note that the harmless massive scalar m
does not contribute anything to the light deflection. This c
be easily explained if we take into account thatR1R2 grav-
ity in ~211!D is conformally related to three-dimension
Einstein gravity.

Despite these nice properties, 3DHDG is nonunitary at
tree level; nevertheless, it is tree-level causal.

III. TREE-LEVEL NONUNITARITY OF TOPOLOGICAL
THREE-DIMENSIONAL HIGHER-DERIVATIVE

GRAVITY

In the hope of curing the tree-level nonunitarity
3DHDG we add a Chern-Simons term to this theory. T
resulting Lagrangian can be written as

L52
2RAg

k2
1S a

2
R21

b

2
Rmn

2 DAg1LC.S.,

where

LC.S.5 ~1/2m! «mnl~R bmn
a G al

b 2 2
3 G bm

a G gn
b G al

g !

5 ~«lmn/m! G sl
r ~]mG rn

s 1 2
3 G vm

s G nr
v ! ~3!

andm is a dimensionless parameter.
In order to probe the tree-level unitarity of the aforeme

tioned theory we couple the propagator,O, to external con-
served currents,Tmn, compatible with its symmetries, i.e. w
cast the amplitude in the form

A5g2TmnOmn,rsTrs, ~4!

whereg is the effective coupling constant of the theory, a
afterward we examine the current-current amplitude at
poles@13#. To accomplish this we have to find the propag
tor, which involves much algebra. However, the calculatio
can be greatly simplified if we make use of a class of ope
tors made up by the usual three-dimensional Barnes-Ri
operators, namely@14#,
2-2
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Pmn,rs
1 5 1

2 ~umrvns1umsvnr1unrvms1unsvmr!,

Pmn,rs
2 5 1

2 ~umruns1umsunr2umnurs!,

Pmn,rs
0 5 1

2 umnurs , P̄mn,rs
0 5vmnvrs ,

P̄̄mn,rs
0 5umnvrs1vmnurs ,

whereumn andvmn are the usual transverse and longitudin
vector projector operatorsumn5hmn2 kmkn/k2 , vmn

5kmkn/k2 , wherekm is the momentum of the graviton ex
changed, and the operator

Pmn,rs[
h]l

4
@«mlruns1«mlsunr1«nlrums1«nlsumr#,

~5!

which has its origin in the linearization of Eq.~3!, i.e.,

LC.S.lin
5

1

2

1

M
hmnPmn,rshrs,

whereM[m/k2.
LinearizingL and adding to it the gauge-fixing Lagran

ian

Lg.f.52l1An
22

b

4
@l2~A ,m

m !21l3Fmn
2 #,

where l1 , l2 and l3 are gauge parameters,Am[h ,n
mn ,

Fmn5Am,n2An,m and b[bk2/2, which corresponds to th
Julve-Tonin gauge@15#, we obtain a LagrangianL̄ which can
be written asL̄5hmnŌmn,rshrs. Expanding now the opera

tor Ō in the basis$P1,P2,P0,P̄0, P̄̄0,P% we get

Ō5~2l1k22l3
1
2 b k4!P11~k4 1

2 b 2k2!P21~k31 3
2 bk4

14k4bc!P01~2k4 1
2 b l222l1k2!P̄01 P/M ,

wherec[a/b.
The propagator is then given by

O5
22

k2@2l11bl3k2#
P11F 2

1

k2
1

1

11
bM2

2

2

1

k22M2
2

1
1

11
bM1

2

2

1

k22M1
2GP21F 1

k2
2

1

k22m2GP0

2
1

k2F2l11l2

b

2
k2G P̄02F 4

b2M ~M1
22M2

2!
S 1

k22M1
2

2
1

k22M2
2D 1

k4GP, ~6!
12750
l

where

M1
2[S 2

b2M2D @11bM21A112bM2#,

M2
2[S 2

b2M2D @11bM22A112bM2#,

m2[
21

b~ 3
2 14c!

.

If we do not want tachyons in the dynamical field, we m

choose, for instance,b.0 and (32 14c),0. In this case the
theory is causal at the tree level. We assume that this is
case from now on.

Let us then expand the sources in a suitable basis. The
of independent vectors in momentum space,

km[~k0,k!, k̃m[~k0,2k!, «m[~0,eW !,

whereeW is a unit vector orthogonal tok, serves our purpose
As a consequence the symmetric current tensorTmn(k) can
be written as

Tmn5akmkn1bk̃mk̃n1c«m«n1dk(mk̃n)1ek(m«n)1 f k̃(m«n).
~7!

The current conservation,kmTmn50, gives the following
constraints for the coefficientsa, b, d, e and f:

ak21~k0
21k2!d/250, ~8!

b~k0
21k2!1d k2/250, ~9!

ek21 f ~k0
21k2!50. ~10!

If we saturate the indices ofTmn with km , we obtain the
equationkmknTmn50, which yields a consistency relatio
for the coefficientsa, b andd

ak41b~k0
21k2!21dk2~k0

21k2!50. ~11!

Therefore, all we have to do now is to compute the re
due ofA at each first-order pole of the propagator and ver
its sign. From Eqs.~4! and ~6! we obtain at once

A5g2F 2

b2

bM2
222

~M2
22M1

2!M2
2

TmnTmn2 1
2 T2

k22M2
2

1
2

b2

22bM1
2

~M2
22M1

2!M1
2

TmnTmn2 1
2 T2

k22M1
2

2

1
2 T2

k22m2

1
4

b2M1
2M2

2

T22TmnTmn

k2 G .

Thus, ResAuk25M
1
2.0, ResAuk25M

2
2.0, ResAuk25m2

,0 and ResAuk25050. The theory is causal and has on
2-3
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physical massless spin-2 particle, two physical spin-2 p
ticles of masses equal toM1 andM2, respectively, and one
spin-0 ghost of massm. The massless excitation, like th
massless excitation of Einstein gravity in~211!D, is not a
dynamical degree of freedom, i.e., it is nonpropagating. C
sequently, topological 3DHDG is nonunitary at the tree lev

IV. FINAL REMARKS

We have shown that the addition of a nontrivial topolo
cal term to 3DHDG is not a good therapy to cure the no
unitarity of the latter. However, one can show that the the
possesses a well-behaved effective nonrelativistic poten

To conclude we prove that the addition of a topologic
term to three-dimensionalR1R2 gravity—which is tree-
level unitary—spoils the unitarity of the aforemention
theory. Topological three-dimensionalR1R2 gravity is de-
fined by the Lagrangian

L52
2RAg

k2
1

a

2
R2Ag1LC.S.,

whereLC.S. is given by Eq.~3!.
Proceeding exactly as we have done in Sec. III, we

that the propagator in the Julve-Tonin gauge@15# as well as
the current-current amplitude for the above can be written

O 215
21

l1k2
P11F2

1

k2
1

1

k22M2GP21F 1

k2
2

1

k22m2GP0

2
1

2l1k2
P̄01F M

k22M2

1

k4GP,

A5g2F TmnTmn2
1

2
T2

k22M2
2

1

2
T2

k22m2
1

T22TmnTmn

k2
G ,
v.

12750
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wherem2[21/2ak2.
Assuming thenceforth that2a.0, which implies that

there are no tachyons in the dynamical field, we promp
obtain that ResAuk25M2.0, ResAuk25m2,0 and
ResAuk25050. The theory is causal and has one norm
particle of spin-2 and mass M, one spin-0 ghost of masm
and one normal massless spin-2 particle. The massless
tation is nonpropagating. Accordingly, topological thre
dimensionalR1R2 gravity is tree-level nonunitary.

Although being tree-level nonunitary, topological thre
dimensionalR1R2 gravity has a well-behaved nonrelativis
tic potential. In fact, using a procedure similar to that dev
oped in Ref.@5#, we find that the potential can be express
as

V~r !52m̄Ḡ@k0~rm!2k0~rM !#,

which behaves as 2m̄Ḡ ln(M/m) at the origin and as

2Ḡm̄ FA p

2mr
e2mr2A p

2Mr
e2Mr G

asymptotically, wherem̄ is the mass of the source that ge
erates the gravitational field.

To conclude we call attention to the fact that the topolo
cal Chern-Simons term is not a panacea for 3DHDG’s u
tarity problem. Furthermore, the above is responsible
breaking down the tree-level unitarity ofR1R2 gravity in
~211!D. In other words, the coexistence between the to
logical Chern-Simons term and quadratic gravity theories
~211!D is conflicting.
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