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Quadratic gravity theories in 2+1 dimensions and the topological Chern-Simons term
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The addition of a topological Chern-Simons term to three-dimensional higher-derivative gravity is not a
good therapy to cure the nonunitarity of the aforementioned theory. MoreBveR? gravity in (2+1)D,
which is unitary at the tree level, becomes tree-level nonunitary when it is augmented by the abovementioned
topological term. Therefore, unlike what is claimed in the literature, topological higher-derivative gravity in
(2+1)D is not tree-level unitary and neither is topological three-dimensiBiaR? gravity.
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[. INTRODUCTION Chern-Simons term is nonunitary at the tree level.
We conclude in Sec. IV by proving that topologidal
It is astonishing that a locally trivial and globally non- +R? gravity in (2+1)D is also nonunitary at the tree
trivial Einstein-type gravitational theory can be built only by level—an interesting and at the same time curious fact, since
lowering the dimension of our space-time—which is sup-R+ R? gravity in (2+1)D is tree-level unitary. This amazing
posed to be four dimensional—by one unit. In fact, three+esult does not simply oppose the claim in the literafafe
dimensional general relativity is dynamically trivial: outside it is against what, in a sense, one should intuitively expect.
sources, spacetime is flat—all effects of the localized sourced/e employ natural units in whicbk=7%=1. Our conventions
are on the global geometry, which is fixed by the singulari-are to use a metric with signature-(~—) and define the

ties of the worldlines of the particldd]. The quantum me- Riemann and Ricci tensors aggw— 9,18, +a,T%,
chanical analogue of this triviality emerges when the Hilbert-— ryre +ryre, andr,,=R?, .
Einstein action related to this theory is quantized. It is easy
to establish that the theory does not possess any propagating
degrees of freedom. In other words, there are no gravitons. Il. THREE-DIMENSIONAL HIGHER-DERIVATIVE
The preceding considerations lead us to raise the following GRAVITY
important questlon. Is |t. poss@le to bund_ a nontrivial gener-  aoLinG s defined by the actiof8—5]
ally covariant three-dimensional gravity theory having
propagating degrees of freedom? The answer is affirmative.
Actually, this can be done at least in two different ways: B
(i) Adding a topological nontrivial term to general relativ- f d?’X\/— —+ R2+ > Ri,,—EM ,
ity in (2+1)D [2]. Ordinary Einstein gravity which is trivial

acquires now a propagating, massive, spin-2 mode. This
theory is ghost-free and causal, although of the thirdwherer,, is the Lagrangian density for matter andand 3
derivative order. are constants with dimensidn Herex?>~L is not necessar-

(i) Including the four-derivatives termgR?\/gd®x and ily related to the Einstein constant {8+1)D. In the linear
IR%,Jgd® into three-dimensional Einstein actif®-5]. In  approximation, i.e.g,,=7,,+«h,,, and in a three-
this case we have a class of effectively multimass models afimensional version of the Teyssandier gay@e9], the
gravity of fourth-derivative order. In addition to the masslessoriginal field equations, namely,
excitations of the field which, incidentally, are nonpropagat-
ing such as in three-dimensional gravity, there are now—for ) . L 5
the general amount of the two new terms—massive spin-2 (2/«%) G,,+ [~ 79,,R°+2RR,,+2V,V,R
and massive scalar excitations. We review in Sec. Il the main N . 5
properties of this theory. —29,,0R]+ 38[~ 3 9uR; + V.VR+ 2R, ), R?

On the other hand, unlike topological gravity (2+1)D,
three-dimensional higher-derivative gravi8DHDG) is
nonunitary at the tree level. How can we remedy this situa-
tion? It seems, at first sight, that we should add a topologicgleguce to
Chern-Simons term to 3DHDG, since Einstein gravity aug-
mented by a topological term is unitary at the tree ldégl
But, as we shall show in Sec. lll, this artifice does not cure (1— B«?0)[— 3 Uh,,+ 7 1;MVR]vL (Lot
the tree level nonunitarity of 3DHDG. Consequently, unlike
what is claimed in the literatuie’], SDHDG augmented by a =1k (Tuw= 14, T12),

- %gMVDR—DRW]-i- %TW=O,
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whereR=3;0h—9%" andy,,=h,,—37,,h. The solution
of the preceding system of equations is giventhy =h(7)
+4,,~®n,,, whereh() ¢, and® satisfy the follow-
ing equations:

OhE=3k[T7,,~ Tl  +5*=0,
Y5 =hl)— % 7,,h®;
(O+m) g, =5x[T,— 7,721, ,,*"—0¢=0;

(O+ m3/2)d= «kT/4.

Here mi= 1/«k?(2B+2a) and mi=— 4/B«>?. Using the
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We discuss now, in passing, two interesting effects of the
metric related to an isolated static point particle of miass
the existence of a gravitational force on a slowly moving test
particle and the gravitational deflection of light rays.

Gravitational accelerationThe gravitational acceleration
of a slowly moving test particle of mass in the gravita-
tional field in hand is

1)

Therefore, the gravitational force related(10 is everywhere
attractive if my<<m,, is repulsive ifmy>m; (antigravity
and vanishes ifnp=m; (gravitational shielding Note that
this force does not exist in general relativity(@+1)D. It is
peculiar to 3DHDG.

y=—2Gm (x¥/r) [Mok1(Mgr) —myxy(myr)].

equations above we find that the metric for an isolated static Light bending For a light ray in thex-y plane, coming

particle source of mas® located atr=0 is

KM
hoo= 8_7T[Ko(m1r) — Ko(Mgr) ],

KM
hyi= h22=§[2 Inr+ ko(mMyr) + xo(Mer)],

from infinity with an impact parameteb, the deflection
angle is given by

6=4m7mG[1—e ™ /0]. 2

It is interesting to note that the harmless massive scalar mode
does not contribute anything to the light deflection. This can
be easily explained if we take into account tRat R? grav-

ity in (2+1)D is conformally related to three-dimensional

wherex, is the modified Bessel function of the order of zero Einstein gravity.
and m% and mf are assumed thereafter to be real in order to Despite these nice properties, 3DHDG is nonunitary at the
avoid the presence of tachyonic particles in the dynamicalree level; nevertheless, it is tree-level causal.

field. This metric greatly resemblesutatis mutantis the
four-dimension metric of a straight)(1) gauge cosmic

string in the context of linearized gravity found by Linet and

Teyssandief10]. In addition, asm, andm;— it tends to

the solution of the linearized version of three-dimensional
Einstein equation in the de Donder gauge found by Dese\r:,,D

[11].
The nonrelativistic potential is of course given by

V(r)=2Gm[ ko(myr) — ko(Mor)],

where G=«?32w. Note that V(r)
2GmIn(my/my) at the origin and as

aa o
N e~ Ml _ / e~ Mor
2mqr Mgt
asymptotically.

Three comments are in order here:
(i) Unlike the Newtonian potential in2+1)D, Vy

=2§m|n(ro/r), which has a logarithmic singularity at the

behaves as

2Gm

origin and is unbounded at infinity, the potential concerning

3DHDG is extremely well behaved: it is finite at the origin
and zero at infinity.
(i) V(r)—0 asmy andm;—<c, confirming in this way

IIl. TREE-LEVEL NONUNITARITY OF TOPOLOGICAL
THREE-DIMENSIONAL HIGHER-DERIVATIVE
GRAVITY

In the hope of curing the tree-level nonunitarity of
HDG we add a Chern-Simons term to this theory. The
resulting Lagrangian can be written as

2R\g

K2

(%
Yrey Pre

L= 2 2 kv \/§+ ‘CC.S.!

+

where

Les= (1/2p) ™ (R, TP\ — 5T, TP T7 )

= (eM" ) [P (3,7, + %F"MMF“’VP) 3)
and u is a dimensionless parameter.

In order to probe the tree-level unitarity of the aforemen-
tioned theory we couple the propagatér, to external con-
served currents[#”, compatible with its symmetries, i.e. we
cast the amplitude in the form

A=g* T 0, o TP, ()

whereg is the effective coupling constant of the theory, and

wv,po

the well known fact that the standard correspondence oéfterward we examine the current-current amplitude at the
three-dimensional Einstein theory with Newton theorypoles[13]. To accomplish this we have to find the propaga-

breaks dowri12].

tor, which involves much algebra. However, the calculations

(iii ) The nonrelativistic potential can also be computed—can be greatly simplified if we make use of a class of opera-
without appealing to the solution of the field equations—tors made up by the usual three-dimensional Barnes-Rivers

using an algorithm developed in Ré¢g].

operators, namelj14],
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1

P,uypo' 2(0,u,p V0'+9 +9Vp ,u,o'—’_avow,u,p
P2 o= 3 (0,,0,5+0,,0,,— 0,0

uv,po 2( upYvoe pnoVvp nv po’)!

0 _1 po —

pv.po 2 6/“/6!"7’ P,U«VvPU_ B uv@pg

=

P;va(r 9 v@p +w/1,1/0p()"

whereg,, andw,,
vector projector operators@,,= 7,,— K,k JKZ, ®,,
=kMkV/k2, wherek,, is the momentum of the grawton ex-

changed, and the operator

Ll
P;Lv,paz T[Sﬂ)\peVﬂ+sﬂ)\06Vp+SV)\pa,ulT—l_gV)\(Ta,up]'
(5
which has its origin in the linearization of E¢B), i.e.,
11 v po
‘CC.S"n: = —h’u P,lLV po’h y

whereM = u/ k.

Linearizing £ and adding to it the gauge-fixing Lagrang-
ian

2 b moN\2 2
Eg.f.: _)\lAv_ Z[)\Z(A ,,u) +)\3F,uv]a

where \;, N\, and A3 are gauge parameterg/=h*"
Fuo=A.,—A,, andb= BK?I2, which Corresponds to the
Julve-Tonin gaugélS] we obtain a Lagrangia which can
be written asC= h“”(’)w pon?7. Expandlng now the opera-

tor O in the basis{P*,P2,P° P%, P P} we get
O=(—N k2= A3 ib K PL+(k* ib —k?) P2+ (k3+ £ bk*
+4k*bc) PO+ (—k*$bn,— 21 K3 PO+ PIM ,

wherec= a/p.
The propagator is then given by

- = o 1 1 1
K2[2)\,+ bAsK?] k2 bM3 K2
2

L1 N O S S

1+bM§ k2—M2 k2 K2

2
1 - 4 1
k2[2>\1+)\zgk2} b*M(Mi-M32)
1 \1

“ewfiel” ©

, are the usual transverse and Iongltudlnal
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where

M2= sz2 [1+bM2+ 1+ 2bM?],
_ 2_
M2= sz2 [1+bM2— 1+ 2bM?],
mzz—_1 :
b( +4c)

If we do not want tachyons in the dynamical field, we may

choose, for instancdy>0 and ¢ +4c¢)<0. In this case the
theory is causal at the tree level. We assume that this is the
case from now on.

Let us then expand the sources in a suitable basis. The set
of independent vectors in momentum space,

k=(K0k), k#=(k%—K), &"=(0),

wheree is a unit vector orthogonal th, serves our purpose.
As a consequence the symmetric current tefigdi(k) can
be written as

THY=akrk’ + bKAK”+ cete "+ dk(Hk) + e ke ) + fklug ¥,
(7)

The current conservatiok, T#”=0, gives the following
constraints for the coefficients b, d, e andf:

ak®+ (k3+k?)d/2=0, (8
b(k3+k?)+dk?/2=0, 9)
elkl+f(k3+k?)=0 (10)

If we saturate the indices af“" with k,,, we obtain the
equationk,k,T#”=0, which yields a consistency relation
for the coefficientsa, b andd

ak*+b(k3+k?)?+dk?(k3+k?) =0. (11)

Therefore, all we have to do now is to compute the resi-
due of A at each first-order pole of the propagator and verify
its sign. From Eqs(4) and (6) we obtain at once

Amg? 2 bM3-2 T, TH-3T?
b% (M5—M%M3  k2—M3
L2 2-bM{ T, TM-3T® 5T
b? (M3—M2)M?  k®—M? k2—m?
4 TE-T, T
+ .
b?M3M3 k?

Thus, Res4|kz=Mi>O, ResA|kz=M§>O, ResA|2— m2
<0 and Resd|2_(=0. The theory is causal and has one
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physical massless spin-2 particle, two physical spin-2 parwherem?= —1/2a«?.
ticles of masses equal td, andM,, respectively, and one Assuming thenceforth that >0, which implies that
spin-0 ghost of massn. The massless excitation, like the there are no tachyons in the dynamical field, we promptly
massless excitation of Einstein gravity (@8+1)D, is not a obtain that Resl|,2_y2>0, ResA|e-2<0 and
dynamical degree of freedom, i.e., it is nonpropagating. ConResA|,2_,=0. The theory is causal and has one normal
sequently, topological 3DHDG is nonunitary at the tree levelparticle of spin-2 and mass M, one spin-0 ghost of nrass
and one normal massless spin-2 particle. The massless exci-
IV. FINAL REMARKS tation is nonpropagating. Accordingly, topological three-
. o _ dimensionalR+ R? gravity is tree-level nonunitary.

We have shown that the addition of a nontrivial topologi- Although being tree-level nonunitary, topological three-
cal term to 3DHDG is not a good therapy to cure the nonimensionalR+ R? gravity has a well-behaved nonrelativis-
unitarity of the latter. However, one can show that the theory; potential. In fact, using a procedure similar to that devel-

possesses a well-behaved effective no_melativistic potentialoped in Ref[5], we find that the potential can be expressed
To conclude we prove that the addition of a topological ;4

term to three-dimensionaR+R? gravity—which is tree-
level unitary—spoils the unitarity of the aforementioned
theory. Topological three-dimensionBH+ R? gravity is de-
fined by the Lagrangian

2R\g
K2

V(r)=2mG[ ko(rm)— ko(rM)],

which behaves asr@G In(M/m) at the origin and as

- / ™ e—mr_ , / ™ e—Mr
2mr 2Mr
where L 5 is given by Eq.(3).

Proceeding exactly as we have done in Sec. Ill, we gehsymptotically, wheren is the mass of the source that gen-
that the propagator in the Julve-Tonin gal@é] as well as  grates the gravitational field.

the current-current amplitude for the above can be written as 14 conclude we call attention to the fact that the topologi-
cal Chern-Simons term is not a panacea for 3DHDG’s uni-

o
L=— +§R2\/§+£c.s.a

2Gm

071___1 1 _i+ 1 P24 i_ 1 0 tarity problem. Furthermore, the above is responsible for
\qk2 k? Kk2—M? k? k%2—m? breaking down the tree-level unitarity &+ R? gravity in
(2+1)D. In other words, the coexistence between the topo-
1 - M 1 logical Chern-Simons term and quadratic gravity theories in
- P”+ —|P ; .
21 k2 K2—M2 K4 (2+1)D is conflicting.
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