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We consider an effective model for graphene with interface-induced spin-orbit coupling and calculate the
quantum Hall effect in the low-energy limit. We perform a systematic analysis of the contribution of the different
terms of the effective Hamiltonian to the quantum Hall effect (QHE). By analysing the spin-splitting of the
quantum Hall states as a function of magnetic field and gate-voltage, we obtain different scaling laws that can
be used to characterise the spin-orbit coupling in experiments. Furthermore, we employ a real-space quantum
transport approach to calculate the quantum Hall conductivity and investigate the robustness of the QHE to
disorder introduced by hydrogen impurities. For that purpose, we combine first-principles calculations and a
genetic algorithm strategy to obtain a graphene-only Hamiltonian that models the impurity.

I. INTRODUCTION

The interaction between a graphene sheet and different sub-
strates has attracted great attention in recent years due to
the appearance of interesting effects in the graphene layer2–6.
This is particularly relevant in context of van der Walls
heterostructures7, a vertical stack of bidimensional materials
that promise to lead to novel electronics devices and applica-
tions. One possibility in this direction is the use of graphene-
based van der Walls heterostructures for spintronics.

Graphene is a non-magnetic material with very weak spin-
orbit coupling (SOC)8–10, due to lightness of carbon atoms.
Since its discovery, there were several proposals to introduce
and control spin-dependent properties in graphene by induc-
ing spin-orbit coupling11–16. Recently, there has been a signif-
icant progress in engineering those properties by proximity ef-
fect, which allows introducing spin-dependent features while
preserving graphene’s high electronic mobility. Graphene has
been proximity-coupled with a magnetic thin layer of YIG for
transport17 and spin-pumping18 measurements. SOC was also
induced by proximity effect in graphene on top of different
transition metal Dichalcogenites (TMDC)19–22 and graphene
decorated with Gold23. More recently, spins were optically
injected in graphene/TMDC systems24,25, also indicating the
presence of SOC in the graphene layer. However none of these
measurements give clear indications of the type of underlying
spin-orbit coupling mechanism that generates the observed
phenomena.

In this article, we exploit the possibility of using quantum
Hall measurements to extract the characteristics of the spin-
orbit coupling in graphene. For that purpose, we employ the
effective model for graphene with interface-induced spin-orbit
coupling from Ref. 1. We then use Landau operators to cal-
culate the quantum Hall effect in the low-energy limit. By
performing a systematic analysis of the spin-splitting of the
Landau levels (LL) in the quantum Hall regime as a function
of magnetic field and gate-voltage, we obtain characteristic
scaling laws for the splittings produced each type of spin-orbit
coupling. The same type of analysis can be used to charac-

terise and estimate the SOC in transport experiments. Fur-
thermore, we employ a real-space quantum transport approach
based on a Chebyshev polynomial expansion of disordered
Green functions to calculate the quantum Hall conductivity40.
We use this numerical approach to investigate the robustness
of the QHE to disorder introduced by hydrogen impurities.
The impurities are modelled by an ab initio-derived tight-
binding model. For the extraction of the tight-binding param-
eters, it is necessary to perform a multiparametric fit. Deter-
ministic approaches for the fit can be quite difficult, because
of the occurrence of large number of extrema. Therefore, here
we proposed the use of an heuristic algorithm to perform this
task efficiently.

The article is organised as follows: in section II, we intro-
duce the tight-binding and low-energy models for graphene
with interface-induced SOC. We also present the Hamilto-
nian of the system under an external magnetic field, written
in terms of Landau operators. In section III, we discuss our
analytical results for the energy spectra and Hall conductivity
and introduce the scaling laws that can be used to discrimi-
nate the different SOC. In section IV we present the heuristic
algorithm that was used to extract the tight-binding parame-
ters from density functional theory spectra and our numerical
approach for the conductivity calculations. We then discuss
the results for the effect of hydrogenation on the QHE for
graphene with interface-induced SOC. Finally, we present our
conclusions in section V.

II. THEORY

With a combination of density functional theory (DFT) and
group theory analysis, Kochan et al. proposed a tight-binding
Hamiltonian and its corresponding low-energy approxima-
tion for graphene stacked on transition metal dichalcogenides
(TMDC) 1. Here, we consider their Hamiltonian with the two
most relevant spin-orbit terms for the electronic properties of
graphene in the vicinity of the Dirac point:
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∑
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∑
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where c†is =
(
a†is, b

†
is

)
and cis = (ais, bis) are the creation

and annihilation operators for an electron on a lattice site i and
spin s belonging to sublattice A or B, respectively. The first
term represents the hopping with amplitude t between π or-
bitals in a honeycomb lattice and the second term is an energy
offset ∆ between sub-lattices A (ηai = 1) and B (ηbi = −1)
due to the super-lattice effect originated by the incommensu-
rability of the two lattices. The third contribution is the typical
Rashba SOC with strength λR26,27. It arises because the inver-
sion symmetry is broken when graphene is placed on top of
a TMDC.The fourth contribution is a sublattice-dependent in-
trisic SOC with coupling intensities λa and λb. Hξ, the valley-
dependent low-energy limit of the Hamiltonian of Eq. 1, has
four terms1,

Hξ = ~vf (ξσxkx + σyky) + ∆σz + λR(ξσxsy − σysx)

+
1

2
ξ(λa(σz + σ0) + λb(σz − σ0))sz. (2)

The first two terms are the spinless contributions where vF
is Fermi velocity given by vF = 3ta

2~ with lattice constant a,
σ is a pseudospin Pauli matrix related to sublattices A and B
and kx and ky are the components of the electronic moment
relative to the Dirac points. ξ is related with the valley degree
of freedom, ξ = + for valleyK and ξ = − for valleyK ′. The
third and fourth terms are the Rashba and sublattice resolved
intrinsic spin-orbit couplings respectively. The fourth term
contains the well known Kane-mele term28,29 with strength
λI = (λa + λb)/2, and a valley-Zeeman SOC with strength
λVZ = (λa − λb)/2 that couples spin and valley degrees of
freedom.

In Figure 1 we show the energy spectrum of the Hamilto-
nian of Eq. 2 for different combinations of λa, λb and λR
to better understand the characteristics of the novel intrin-
sic spin-orbit coupling. Differently from the usual case of
λa = λb, if only the valley-Zeeman contribution λa = −λb
(i. e. λVZ = λa) is present, the spectrum is gapless and the
spin degeneracy is broken (see Figure 1(a)). If only Rashba
SOC is present, the spectrum is also gapless27. However, any
combination λR 6= 0 and λVZ 6= 0 opens a gap in the energy
spectrum as shown in Figure 1, panels b and c. For compari-
son, Figure 1 (d) presents the energy spectrum for λa = λb (i.
e. λI = λa) and λR 6= 0. It is important to note that valley-
Zeeman combined with Rashba coupling preserves particle-
hole symmetry ( Figures1(b) and 1(c)), while, when Kane-
Mele and Rashba are both present, the particle-hole symmetry
is broken (Figure1(d)).

If a uniform perpendicular magnetic field is applied, ~p →
~π = ~p + e ~A, where ~A is the vector potential in the Landau
gauge ~A = B(−y, 0, 0), andB is the intensity of the magnetic
field. The low-energy Hamiltonian can be written as
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Figure 1. Energy spectrum of the effective Hamiltonian of Eq. 2 for
∆ = 0: (a) λR = 0 and λVZ 6= 0, (b) λVZ � λR, (c) λVZ � λR

and (d) λI � λR.

Hξ = ~ω(σξaξ + σ−ξa
†
ξ)− 2iξλR(σ−ξs+ − σξs−),

+
1

2
ξ(λa(σz + σ0) + λb(σz − σ0))sz + ∆σz, (3)

where σ± = (1/2)(σx ± iσy), s± = (1/2)(sx ± isy), the
cyclotron frequency is given by ω =

√
2vF /lB , the magnetic

length is lB =
√

~/eB. Landau operators aξ are creation and
annihilation operators on valley K and K ′ for ξ = ± :

aξ =
1√
2
ξ
( lB
~
px −

1

lB
y +

lB
i~
py

)
ξ
, (4)

a†ξ =
1√
2
ξ
( lB
~
px −

1

lB
y − lB

i~
py

)
ξ
. (5)

The Hamiltonians Hξ=± are block diagonal with each block
indexed by an occupation number n. The two lowest blocks
are 1 × 1 and 3 × 3 matrices and higher blocks are 4 × 4

matrices for both valleys. The energies Eξn,i and eigenvectors
|ψξn,i〉 are indexed by the valley ξ, the occupation number n
and i, that labels the eigenvalues and eigenvectors of a given
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block n. For more details, see Appendix A. The transverse Hall conductivity σxy can be calculated in the framework of
the Kubo formula30

σxy =
ie3Bv2F

2π

∑
ξ=±

∑
n,n′

∑
i,i′

(
f(Eξn,i)− f(Eξn′,i′)

) 〈
ψξn,i

∣∣∣σx∣∣∣ψξn′,i′

〉〈
ψξn′,i′

∣∣∣σy∣∣∣ψξn,i〉
(Eξn,i − E

ξ
n′,i′)(E

ξ
n,i − E

ξ
n′,i′ + i0+)

(6)

where f(E) is the Fermi-Dirac distribution function. We will
not consider thermal effects here and the Fermi-Dirac distri-
bution has a Heaviside function profile, f(E) = Θ(Ef − E).
Expressions for the eigenvectors are computed in appendix A.

III. ANALYTICAL RESULTS

A. Weak spin-orbit coupling

Here, we show and discuss our results on the quantum Hall
effect in under the effect of Rashba and valley-Zeeman SOCs,
that are present in graphene-TMDC heterostructures. Exper-
iments and first-principle calculations point out to values of
the coupling constants in the range of 0.1 − 10 meV21,22.
We express our results in terms of a gate voltage which con-
trols the Fermi energy. This voltage is related to the elec-
trons’ Fermi momentum in graphene by kf = Ef/~vf =√
απVg

31, where α depends on the substrate. Here, we use
α = 7.2 × 1010V −1cm−2, which is an appropriate value for
either silicon oxide or TMDC substrates.

To be compatible with the analysis of experimental results,
instead of showing our energy spectra, we present fan dia-
grams of the density of states as a function of gate voltage VG
and magnetic field B. We begin by presenting the well known
spin-splitting generated by λR. In this case, the n = 0 Lan-
dau level is spin-degenerate, while all other levels are spin-
split, as illustrated in Fig. 2. It is also clear, from the Landau
level splittings of Fig2(a) and the quantum Hall conductivity
of Fig.2(b) that, as expected, the splitting increases with the
level number n.

We proceed to analyse the spin-splitting generated by λVZ:
similarly to the previous case, the n = 0 Landau is spin-
degenerate while all other levels are spin-split, as illustrated
in Fig.3. Again, the Landau level splittings of Fig. 3(a) and
the Quantum Hall conductivity of Fig. 3(b) show the increase
of the splitting with the level number n and it is considerably
larger than the spin-splitting produced by Rashba, even for
weak couplings and small n.

To compare the spin-splitting produced by Rashba with the
one by the valley-Zeeman SOC, we select the difference in
energy of the n = 3 levels ∆VG as a function of the spin-
orbit strength for various values of the external magnetic field
. From Fig.4, we see a very different dependence of ∆VG as
a function of λR (panel (a)) and λVZ (panel (b)). ∆VG varies
linearly with λVZ and quadratically with λR. For the case of
valley-Zeeman SOC, ∆VG is 1-5 V even for very weak cou-
plings of the order of λVZ = 1 − 5 meV and can be resolved

Figure 2. (a) Landau Fan diagram and (b) Hall conductivity as
function of gate voltage for λR = 10 meV, λVZ = 0.

Figure 3. (a) Landau Fan diagram and (b) Hall conductivity as
function of gate voltage for λR = 0, λVZ = 3 meV.

experimentally.
The combined effect of Rashba and valley-Zeeman in the

weak coupling regime can be seen in Figures 5 and 6. In Fig-
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Figure 4. (a) Splitting (∆VG) of n=3 Landau level as function of λR

with λVZ = 0.4 meV fixed and different magnetic fields. (b) Voltage
splitting (∆VG) of n=3 Landau level as function of λVZ with λR = 1
meV fixed, and different magnetic fields.

ure 5, we consider the case where λVZ > λR while in Figure 6
we consider the case where λVZ < λR. Because of the differ-
ent functional laws presented in Fig.4, if both couplings have
similar strengths the splitting is dominated by λVZ. However,
as can be seen in these figures, it is difficult to extract informa-
tion on the nature and strength of the spin-orbit coupling in a
graphene heterostructure from fan diagrams and quantum Hall
measurements. The spin-splitting of the Landau Levels and
the quantum Hall plateaus for graphene with valley-Zeeman
SOC are very similar to the ones for graphene with Rashba
SOC.

To address this issue, we found two different scaling laws
for the spin-split states that can be used to distinguish between
systems with valley-Zeeman SOC and ones with Rashba SOC.
For the case of valley-Zeeman SOC, the scaled quantity is
∆VG, the voltage difference between spin-split states with
same quantum number n. If we consider ∆VG/n as a func-
tion of the magnetic field, all curves for different values of n
collapse perfectly into a single one, as can be seen in Figure
7(a). If λR 6= 0, the scaling starts to fail whenever the main
contribution for the spin-splitting is λR (see Figure 7(b)-(c)),
indicating that this scaling law is a characteristic of valley-
Zeeman SOC.

On the other hand, if we consider λR 6= 0 and λVZ = 0, we
need to use a different scaling law to collapse all curves. In
this case, we use the quantity 4(V 2

G,s− V 2
G,s′)/n

2 where VG,s
and VG,s′ are the voltage of the two spin-split states (repre-
sented by s and s′) for a given n. This simple analysis, that
can be used in transport measurements, is able to determinate
what is the main SOC in graphene and the deviations from

Figure 5. (a) Landau Fan diagram and (b) Hall conductivity as func-
tion of gate voltage for λR = 1 meV, λVZ = 5 meV.

Figure 6. (a) Landau Fan diagram (b) Hall conductivity as function
of gate voltage for λR = 6 meV, λVZ = 3 meV.

the scaling laws can also estimate the relative contributions of
valley-Zeeman and Rashba SOC.

B. Strong Spin-Orbit coupling Regime

Let us now discuss the case where the spin-orbit cou-
pling is of the order of tens of meV, as estimated via weak
anti-weak localisation measurements on graphene-TMDC
heterostructures21. Rashba combined with valley-Zeeman
SOCs produce particle-hole symmetric Landau levels spectra
in both strong and weak coupling regimes. This is a conse-
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Figure 7. 2∆V 2
G/n as a function of the magnetic field B for the

Landau levels n = 2, 3, 4, 5 with λVZ = 3 meV (a) λR = 0, (b)
λR = 3 meV and (c) λR = 6 meV.

Figure 8. 4(V 2
G,s − V 2

G,s′)/n
2 as a function of the magnetic field

B for the Landau levels n = 2, 3, 4, 5, 6 with λR = 10 meV and (a)
λVZ = 0 , (b) λVZ = 2 meV and (c) λVZ = 4 meV.

Figure 9. Landau Fan diagrams for (a) λR = 20 meV, λVZ = 30
meV and (b) λR = 40 meV, λVZ = 20 meV.

quence of particle-hole symmetric spectra in absence of mag-

netic field (see Figure 1 (b) and (c) ). However, as we can
seen in Figure 9, the structure of spin-splittings and plateaus
is more complex in the strong coupling regime, due to the
presence of several level crossings, that make it difficult to
perform quantitative analysis and estimations based solely on
spectra and conductivity profiles. On the other hand, Rashba
imprints a clear signature in the fan diagram: for strong λR,
the fan diagram acquires two extra lateral fans and the separa-
tion between the main fan and the satellite ones is proportional
to λR. Furthermore, if both λR and λVZ are strong, there is a
splitting of the n = 0 level that does not occur in the case of
pure Rashba SOC.

C. Possible applications to other systems

Figure 10. Landau Fan diagram for for (a) λR = 20 meV, λI = 30
meV and (b) λR = 40 meV, λI = 20 meV.

Instead of considering the interplay between Rashba and
valley-Zeeman SOCs, we can look at the structure of the Lan-
dau fan diagram of graphene with interface-induced Rashba
and intrinsic SOCs (λR and λI,) as in the case of graphene
intercalated with gold. An example of this intercalated struc-
ture is a recent experiment on van der Waals heterostructures
of graphene-gold-hBN23. We show in figure 7, the spectra for
(a) λI > λR and (b) λI < λR. In both cases, the particle-hole
symmetry is broken, a characteristic of the interplay between
Kane-Mele SOC and Rashba SOC. For λI > λR, it presents a
topological gap at V = 0 while the gap is closed if λI < λR.

IV. NUMERICAL RESULTS

A. Graphene-only Hamiltonian for hydrogen on graphene.

Hydrogen adsorption is one of the main sources of contam-
ination when manufacturing graphene. Hydrogen hybridizes
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with pz orbitals in graphene, modifying the local symme-
try from sp2 to sp3, and create midgap-states32,33. To anal-
yse the effect of hydrogenation in the quantum Hall effect,
we employ a real-space quantum transport approach40. For
an optimized use of computational resources, that allow us
to study large systems, we need to find a single-orbit tight-
binding Hamiltonian for hydrogen on graphene that repro-
duces a band-structure obtained by density functional theory
(DFT).

We propose the following graphene-only Hamiltonian for
hydrogen adatoms incorporated in a graphene layer

Hh = εIc
†
IcI + tI

∑
〈I,j〉

c†Icj + h.c+
∑
〈〈I,j〉〉

t
(2)
I c†Icj (7)

where c†I and cI are the creation and annihilation operators
for an electron on the adsorption site I , and 〈I, j〉 and 〈〈I, j〉〉
represent the sum over nearest and next-nearest neighbours of
the adsorption site respectively. tI and t(2)I are parameters that
have to be adjusted to properly fit the DFT band-structure.

In Fig. 12.a we show the band-structure of a 5×5 graphene
supercell with one hydrogen adatom. The first-principles
calculations are based on DFT34,35. as implemented in the
SIESTA code36, using GGA functional approximation follow-
ing the PBE approach37. The pseudopotential were obtained
through Troullier-Martins scheme38 and a double-ζ polarised
basis set was used to described the electronic orbitals. The
self-consistent cycle was performed using 16 × 16 × 1 k-
sampling of the Brillouin zone. The structural relaxation was
performed using conjugate gradient minimization until the
forces were smaller than 0.01 eV/Å. The gap in the band struc-
ture artificially originates from the broken sub-lattice symme-
try due to the arbitrary choice of an adsorbtion site, which in
this case belongs to the sub-latticeA, and disappears when the
adatoms are placed randomly, because in average the symme-
try will be restored.

Multiparametric fits such as the present one are usually dif-
ficult to be performed by deterministic approaches due to the
occurrence of large number of extremas. Therefore, we pro-
pose the use of an heuristic algorithm to efficiently perform
this task. A simple algorithm that is inspired in the natural
evolutions to find an optimal solution for a given problem is
called genetic Algorithm, the scheme is outlined in Fig. 11
and follows the logic

1. Primordial Generation: A population Nt individual
with random genome vector xp is generated, within a
hypercube of allowed genomes.

2. Breeding: 2Np < Nt pairs of individuals are choicen
randomly and is combined to give raise to No < Np
ofsprings.

3. Ranking: All individuals parents are offspings are
avaliated and ranked through the fittness function.

4. Reinsetion: The least fitned No individuals are termi-
nated while keeping the best Nt individuals.

5. Mutation: An stochastic alteration of the i-th genome
vector occurs with probability pM . Then the breeding
phase occurs again

For the primordial generation phase we consider each com-
ponent of the genome vector to lie within a range of x ∈
[−x0, x0], with x0=1eV. The selection of pairs is performed
by following stochastic universal sampling with Np = Nt/2,
and it is combined using an intermediated recombination

xoff = pxp1 + (1− p)xp2 (8)

with p = −0.25, producing a set of No = Nt/4 offspings, the
fitness function is

f =
∣∣Y DFT − Y TB

∣∣ (9)

where Y is the band structure shown in Fig. 12(a)

Figure 11. Schematics of a genetic algorithm.

In Fig. 12, we show a comparison between (a) the band
structure and (b) density of states of our fitted tight-binding
Hamiltonian and the first-principle results. In the inset of Fig.
12 we also compare our results with a fit that considers an in-
dependent orbital for hydrogen39. The fit obtained with a ge-
netic algorithm for a graphene-only Hamiltonian is compara-
ble with the one with independent orbitals and has the advan-
tage (if compared with other multiparametric approaches) of
being a semi-automatic procedure and using a reduced Hilbert
space.

B. Effects of hydrogenation in the quantum Hall effect.

The transport coefficients were computed using a real-space
O(N) method based on the Chebyshev expansion of a variant
of the Kubo formula, the Kubo-Bastin formula40

σαβ(µ, T ) =
i~
Ω

∫ ∞
−∞

dεf(T, µ, ε) (10)

× Tr
〈
jαδ(ε−H)jβ

dG+(H, ε)

dε
− jα

dG−(H, ε)

dε
jβδ(ε−H)

〉
,
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Figure 12. (a) Band structure showing the conduction (blue), va-
lence (red) and midgap (black) bands and their corresponding (b)
Density of states obtained through DFT (dashed line) and the fit-
ted TB hamiltonian (thick line) for a hydrogen adatom on a 5× 5
graphene’s supercell. Inset: comparison between are graphene-only
model, the DFT result and the model of ref. 39 (yellow line) for
the midgap band. The parameters of the fit are t = −2.56 eV
, t2 = 0.010580 eV, εI = −1.5694 eV, tI = 2.6538 eV and
t
(2)
I = 0.29617 eV

where δ(ε−H) the δ-function operator, jα the α-component
of the current operators defined as jα ≡ (1/i~)[xα, H],
G+(H, ε) and G−(H, ε) the advanced and retarded Green’s
functions and f(T, µ, ε) the Fermi-Dirac distribution. In this
method, the Green’s functions and the δ-functions are numer-
ically calculated using the kernel polynomial method15,40–43.
The magnetic field was incorporated by following Peierls’s
substitution Hi,j = Hi,j(B = 0)eiφi,j , with φi,j =∫Rj

Ri
A(r) · dr the Peierl’s phase and A the vector potential,

which was chosen using the Landau Gauge A = (B0y, 0, 0)

We proceed to analise the effect of disorder in the QHE in
graphene with SOC. Figure 13(a) shows de density of states
for λR = 20 meV, λVZ = 30 meV - which are the same val-
ues of the SOC of Figure 9(a)- for B = 13T and different
concentrations of hydrogen. The spin-split LL states are still
visible with 0.1% of hydrogen, that is the concentration that
can be expected from contamination of the samples in exper-
iments. Still, for 1% of hydrogen, the gap at E = 0 is closed
and the LL spectrum is destroyed. 13(b) presents longitudinal
and transverse conductivities for 0.1% of hydrogen. Although
not all quantum Hall plateaus are visible in the presence of
disorder, the Laudau levels, including the spin-split states, are
still visible in the longitudinal conductivity. This indicates
that our analysis, based on the scaling of spin-split states from
longitudinal conductivity data, should be effective even in the
presence of hydrogenation that produces both intra-valley and
inter-valley scattering.
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Figure 13. (a) Density of states for graphene under the action of an
external magnetic field of strength B = 13 T, with a proximity-
induced SOC defined by the parameters λR = 20 meV, λa =
−λb = 30 meV, for different concentration of hydrogen adatoms:
xp=0 (dashed blue), 0.001 (solid black) and 0.01 (dotted green).
In all cases, there is also a small Anderson disorder with width
W = 5meV. (b) Dissipative conductivity (circle Black) and Hall
conductivity (thick red) for graphene under the action of an external
magnetic field of strength B = 13 T, with a proximity-induced SOC
defined by the parameters λR = 20 meV, λVZ = 30 meV with 0.1%
hydrogenated impurities

V. CONCLUSIONS

Inferring the type and strength of spin-orbit coupling in
a graphene heterostructure is a difficult experimental task.
Quantum Hall measurements provide a useful tool to under-
stand the physics that govern the charge carriers in 2D ma-
terials. The Landau spectrum offers hints about the low en-
ergy physics of electrons (or holes) and the possible SOCs.
Each Landau level in pristine graphene is eightfold degener-
ate due to spin, pseudospin and isospin quantum numbers.
In the presence of SOC, this degenerescence is lifted in a
specific way depending on the type of coupling induced in
graphene. Motivated by experimental results on magneto-
transport in graphene heterostructures, we studied QHE on
graphene with different SOCs and provided a simple way to
characterize SOCs induced by proximity effect by analyzing
the spin-splitting of the Landau Levels. By using two dif-
ferent scaling laws, we were able to determinate what was
the dominant contribution to the SOC in a graphene layer.
Additionally, we used an efficient genetic algorithm strategy
together with ab-initio calculations to obtain a realistic all-
graphene tight-binding Hamiltonian that models hydrogena-
tion in graphene. With this novel Hamiltonian and a quantum
transport approach, we analysed the effect of hydrogenation
on the QHE in graphene with interface-induced SOC. The nu-
merical results indicate that the scaling laws can in principle
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be applied even with 0.1% of hydrogenation.
All results presented here are based on a free parti-

cle approximation. This approximation is appropriate in
most situations but with evolution of the manufacturing of
graphene, cleaner samples have been obtained and the effects
of Coulomb interactions may become important. Due to the
Dirac-Weyl nature of electrons on graphene, the role of in-
teractions are different from typical materials, and still under
intensive discussion44. The signature of Coulomb interaction
for the quantum Hall physics of graphene is the appearance
of extra four-fold splittings in the energy spectra, implying in-
termediate plateaus in the Hall conductivity. For low Landau
levels, this splitting has already been observed experimentally
with high magnetic fields45,46. The importance of Coulomb
interaction increases exponentially with magnetic field47 and
the symmetry breaking is more pronounced for lower Landau
levels, high magnetic fields and high mobility48. The quality
of sample is a important factor to observe Coulomb splitting
as disorder decreases the mobility of electrons. Approaches
based on a free particle picture cannot capture the physics of
Coulomb interactions, what limits our calculations for sam-
ples with moderate electron mobilities and moderate magnetic
fields (typically smaller than 15 Tesla). The study of effect of
Coulomb interaction on the Landau spectra is beyond scope
of present work. However, it is important to mention that for
experimental transport measurements, the analysis presented
here shows that a two-fold splitting of LLs can be associated to
the presence of spin-orbit coupling while a four-fold splitting
is a signature of Coulomb interaction.
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Appendix A: Eigenvalues and Eigenstates

The hamiltonians Hξ is block diagonal with each block
indexed by valley occupation number nξ (eigenvalue of the
number operator N̂ξ = a†ξaξ). The two lowest blocks are
1× 1 and 3× 3 matrices and higher blocks are 4× 4 matrices
for both valleys. The eigenvectors of first blocks are

∣∣ψ+
0,0

〉
=
∣∣0, B,−〉 (A1)∣∣ψ−0,0〉 =
∣∣0, A,−〉 (A2)

with energies

E+
0,0 = λb −∆ (A3)

E−0,0 = λa + ∆. (A4)

The first excited block of each valley is given by

H±1 =

 ε±α 0 ~ω
0 ε±β ∓2iλR
~ω ±2iλR ε±γ

 . (A5)

in the basis of |1, B(A),−〉, |0, B(A),+〉 and |0, A(B),−〉
for ξ = +(−), where ε±α = λb(a) ∓∆, ε±β = −λb(a) ∓∆ and
ε±γ = −λa(b) ±∆. The eigenvectors, indexed by i = 1, 2, 3,
are given by∣∣ψ±1,i〉 = α±1,i

∣∣1, B(A),−
〉

+ β±1,i
∣∣0, B(A),+

〉
+γ±1,i

∣∣0, A(B),−
〉

(A6)
(A7)

with coefficients

α±1,i =
(
(2λR)2 − (ε±β − E

±
1,i)(ε

±
γ − E±1,i)

)
/
√
D±,(A8)

β±1,i = ±i(2λR)(~ω)/
√
D±, (A9)

γ±1,i = (~ω)(ε±β − E
±
1,i)/

√
D±, (A10)

whereD± = (~ω)2(ε±β −E
±
1,i)

2+((2λR)2−(ε±β −E
±
1,i)(ε

±
γ −

E±1,i))
2 + (~ω)2(2λR)2.

Finally, for nξ > 2 the the blocks, written in the basis |n±−
2, A(B),+〉, |n±, B(A),−〉, |n± − 1, B(A),+〉 and |n± −
1, A(B),−〉, are given by

H±n =


E±a 0 ~ω

√
n± − 1 0

0 E±b 0 ~ω√n±
~ω
√
n± − 1 0 E±c ∓2iλR
0 ~ω√n± ±2iλR E±d


where E±a = λa(b)±∆, E±b = λb(a)∓∆, E±c = −λb(a)∓∆

and E±d = −λa(b) ±∆. The eigenstates are given by

∣∣ψ±n,i〉 = a±n,i
∣∣n± − 2, A(B),+

〉
+ b±n,i

∣∣n±, B(A),−
〉

+c±n,i
∣∣n± − 1, B(A),+

〉
+ d±n,i

∣∣n± − 1, A(B),−
〉

(A11)

and their coefficients can be written in terms of four eigenval-
ues of each block E±n,i :
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b±n,i =

(
1 +

(
E±b − E

±
n,i

)2
n±
(
~ω
)2 + n±

(
~ω
2λR

)2(
1 +

(~ω)2(n± − 1)

(E±a − E±n,i)2

)(
1−

(
E±b − E

±
n,i

)(
E±d − E

±
n,i

)(
~ω
)2
n±

)2)−1/2
, (A12)

a±n,i = −
i
(
~ω
)2√

n±
(
n± − 1

)
(±2λR)(E±a − E±n,i)

(
1−

(
E±b − E

±
n,i

)(
E±d − E

±
n,i

)(
~ω
)2
n±

)
b±n,i, (A13)

c±n,i =
i~ω√n±
(±2λR)

(
1−

(
E±b − E

±
n,i

)(
E±d − E

±
n,i

)(
~ω
)2
n±

)
b±n,i, (A14)

d±n,i = −
(E±b − E

±
n,i)

~ω√n±
b±n,i. (A15)
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2 M. Venkata Kamalakar, André Dankert, Johan Bergsten, Tommy
Ive, and Saroj P. Dash, Appl. Phys. Lett. 105, 212405 (2014)
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