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ABSTRACT 

 

The use of atmospheric pressure plasmas for different purposes has increased in recent years. 

With the development of atmospheric pressure plasma jets, some precise treatments such as in 

the biomedical field or specific surface processing became more often. However, the delivery 

of plasma to irregular shaped objects, inside tubes or even hollow organs is limited with the use 

of conventional plasma jet configurations. Therefore, those limitations can be surpassed with 

the development of elongated or remotely generated plasma jets. In this work, two extended 

plasma jet configurations aiming at different application fields were further developed and 

characterized. Firstly, an endoscopic plasma jet (plasma endoscope) operating with a dielectric 

barrier discharge (DBD) configuration in millimeter dimensions that can be coupled to a typical 

endoscope was developed. This plasma jet can operate with helium or neon and counts with an 

external concentric shielding gas channel that provides the introduction of an electronegative 

gas curtain around the plasma plume. The shielding gas allows the preservation of the plasma 

jet shape when operated inside closed cavities. The construction difficulties arisen from the use 

of different feed and shielding gases were explored. Carbon dioxide was proven to be a good 

option for the curtain gas around the plasma plume avoiding the formation of parasitic 

discharges inside the shielding gas tube and the endoscopic housing. When operated with neon, 

the plasma jet was ignited with lower applied voltages and reached a wider range of transferred 

power. The other developed plasma jet was the remotely generated long tube plasma jet that 

consists of a DBD primary discharge connected to a 1 m long flexible plastic tube with a floating 

metal wire inside. The metal wire penetrates a few millimetres inside the discharge and allows 

the generation of a plasma plume at the end of the plastic tube. This configuration permits safer 

and better manipulation of the plasma jet. The device was characterized using two different 

excitation sources, an AC power supply with continuously provided signal and one operating 

in burst mode. The application of voltage signal in burst mode allowed a fine adjustment of 

discharge parameters reaching a wider range of power. In the case using “continuous” AC 

voltage signal, power values up to only 1.2 W were achieved. The primary discharge geometry, 

when using a parallel plates configuration device, exhibited minimal influence on the plasma 

mean power. A pin electrode configuration long plasma jet was successfully applied for 

inhibition of C. albicans in inoculated Petri dishes in which inhibition zones were observed 

after treatment. This plasma jet was also used for surface modification of polyethylene 

terephthalate (PET) samples using different tilting positions. In this case, reductions of around 



60º of water contact angle were observed after plasma exposure for 60s and tilting the plasma 

jet let to formation of bigger treated areas. 

 

KEYWORDS: Atmospheric pressure plasma. Plasma jet. Endoscopy. Transporting plasma jet. 

Decontamination. Surface treatment.  



RESUMO 

 

Nos últimos anos, tem intensificado o emprego de plasmas em pressão atmosférica para 

diferentes aplicações. Com o desenvolvimento dos jatos de plasma em pressão atmosférica, 

alguns tratamentos precisos, como no campo biomédico ou em específicos processamentos de 

superfícies, tornaram-se mais frequentes. No entanto, a aplicação de plasma à objetos 

irregulares, dentro de tubos ou mesmo dentro de órgãos ocos é limitada quando se utilizam 

configurações convencionais de jatos de plasma. Portanto, essas limitações podem ser 

superadas com o desenvolvimento de jatos de plasma alongados ou gerados remotamente. Neste 

trabalho, duas configurações de jato de plasma longo visando diferentes campos de aplicação 

foram aperfeiçoadas e caracterizadas. Inicialmente foi desenvolvido um jato de plasma 

endoscópico (plasma endoscope) operando em configuração de descarga por barreira dielétrica 

(DBD) com dimensões milimétricas, versátil ao acoplamento em endoscópios típicos. Este jato 

de plasma pode operar com hélio ou neônio e conta com um canal externo e concêntrico de gás 

que permite a introdução de uma cortina de gás eletronegativo ao redor da pluma de plasma. A 

cortina de proteção a gás preserva a forma do jato de plasma quando operado dentro de 

cavidades fechadas. As dificuldades advindas do desenvolvimento deste foram investigadas 

quando diferentes gases foram testados como cortina de proteção dele, dentre estes, o dióxido 

de carbono se mostrou uma boa opção evitando a formação de descargas parasitas dentro do 

tubo de gás de proteção e da estrutura do endoscópio. Quando operado com neônio, o jato de 

plasma pôde ser iniciado com tensões mais baixas e atinge faixas mais amplas de potência 

transferida. Outra configuração desenvolvida foi a de jato de plasma de tubo longo gerado 

remotamente que consiste em uma descarga primária DBD conectada a um tubo plástico 

flexível de 1 m de comprimento com um fio metálico flutuante em seu interior. O eletrodo 

metálico penetra alguns milímetros na descarga e permite a geração de uma pluma de plasma 

na extremidade final do tubo. Esta configuração possibilita uma manipulação mais segura e 

precisa do jato de plasma. O dispositivo foi caracterizado quando utilizadas duas fontes de 

excitação diferentes, uma com tensão AC aplicada continuamente e outra operando em modo 

“burst”. O uso de sinal de tensão em modo “pulsado” (burst) permite um ajuste mais preciso 

dos parâmetros da descarga atingindo um intervalo mais amplo de potência transferida. No caso 

do emprego da fonte de tensão AC “contínua”, a faixa de potência atingida se restringe a apenas 

1,2 W. A variação da geometria da descarga primária, quando um reator de placas paralelas foi 

utilizado, influenciou minimamente a potência média do jato de plasma. Para aplicações, um 

eletrodo de alta tensão em forma de haste foi utilizado na descarga primária. Com este reator, 



a inibição do fungo C. albicans inoculado em placas de Petri se fez possível, onde a formação 

de halos de inibição foi observada após o tratamento com plasma. Este jato também foi utilizado 

para a modificação de superfície de amostras de politereftalato de etileno (PET) com diferentes 

ângulos de aplicação. Neste caso, reduções de aproximadamente 60º de ângulo de contato com 

água foram obtidos após tratamentos por 60s e a inclinação do jato de plasma permitiu um 

aumento na área tratada.  

 

PALAVRAS-CHAVE: Plasmas em pressão atmosférica. Jatos de plasma. Endoscopia. Jatos 

de plasma de transporte. Descontaminação. Tratamento de superfícies. 
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1 INTRODUCTION 

 

Non-thermal atmospheric pressure plasmas have been studied since the 19th century, 

when dielectric barrier discharges (DBDs) were firstly employed by Siemens for ozone 

generation (KOGELSCHATZ, 2003). Since then, the use of cold atmospheric plasmas such as 

DBD and corona discharges have been also investigated for gas purification, electrostatic 

precipitation and, in the last decades, for materials surface functionalization (BRUGGEMAN; 

IZA; BRANDENBURG, 2017, VESEL; MOZETIC, 2017). Once they do not require expensive 

vacuum equipment, atmospheric pressure plasmas are cost-effective alternative for some low-

pressure plasma techniques, mainly concerning material processing (VESEL, MOZETIC, 

2017). Additionally, in the last years, non-thermal atmospheric pressure plasmas have presented 

unique applications in biomedical fields such as in the so-called plasma medicine (LAROUSSI, 

2018, METELMANN; VON WOEDTKE; WELTMANN, 2018). 

There are many ways of generating non-equilibrium plasmas at atmospheric pressure. 

Among them, the use of asymmetric electrodes (corona discharge) and insulating barrier 

between the electrodes (DBDs) are the most common. Besides, pulsed applied voltage and high 

gas flow rates can also be employed (TENDERO et al., 2006). Mostly, at atmospheric pressure, 

the discharge gaps are in the range from few mm to some cm, which limit the size of objects 

that can be directly treated (LU; LAROUSSI; PUECH, 2012). To overcome this drawback, cold 

atmospheric plasmas can be generated in open space by combining some of the above-

mentioned methods as in the case of atmospheric pressure plasma jets (APPJs). Thus, APPJs 

are plasma devices able of generating plasma plumes in open space when a gas flow is flushed 

through the reactor gap (NEHRA; KUMAR; DWIVEDI, 2008). Because of the non-confined 

discharge, APPJs have drawn much attention for the treatment of not only large and irregular 

materials, but also objects that cannot support vacuum conditions (BORGES et al., 2017).  

APPJs can be used for treatment of heat-sensitive surfaces such as polymers. In this case, 

ions, electrons, photons and reactive species are transported to the material, interacting with the 

surface and functionalizing it (PENKOV et al., 2015, ONYSHCHENKO et al., 2015b). Plasma 

treatment can activate surfaces (KOSTOV et al., 2014), can be used for cleaning (GOTOH et 

al., 2016, JIN et al., 2013), etching (LUAN et al., 2017) or improving hydrophobic or 

hydrophilic properties (KOSTOV et al., 2013, MUSA et al., 2016, VAN DEYNSE et al., 2015, 

SHAW et al., 2016). Usually, polymers have low surface energy, which leads to poor adhesion. 

Therefore, APPJs have been successfully used for the surface activation of different polymers 

improving their adhesion properties (KOSTOV et al., 2014, ONYSHCHENKO; DE GEYTER; 
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MORENT, 2017). However, plasma jet treatments usually provide a punctual and precise 

modification, which is interesting for some applications, but disadvantageous for treatment of 

big surfaces. Thus, the inner surface modification of packages and shallow plastic objects are 

also possible with APPJ, but the treatment of long tubes can be challenging. Hence, new 

alternatives need to be investigated. 

Another important and growing application of APPJs is in biomedical field such as for 

sterilization (BORGES et al., 2017, FRICKE et al., 2012a, LIN et al., 2016, MORITZ et al., 

2017), wound healing (BREATHNACH et al., 2018, CHENG et al., 2018), blood coagulation 

(LEE et al., 2012), Dentistry (BORGES et al., 2018, YAMAZAKI et al., 2011) and cancer 

treatment (KIM et al., 2010, XU et al., 2018, YAN; SHERMAN; KEIDAR, 2017). It has been 

observed that APPJs can effectively eradicate microorganisms (DAESCHLEIN et al., 2010, 

NISHIME et al., 2016) and the generated reactive oxygen and nitrogen species (RONS) are 

pointed out as the major factor responsible for apoptotic cellular retrogression (WEISS et al., 

2015). Some investigations concluded that RONS can cause DNA damage and lipid 

peroxidation (KIM et al., 2010, JOSHI et al., 2011). However, the success of APPJ treatments 

seems to derive from synergetic effect of several plasma agents, as electric field, UV radiation, 

energetic electrons and reactive species (KOSTOV et al., 2015a, YUSUPOV et al., 2017). The 

precise control of plasma treatment dose is crucial for the desired outcome. Low power plasma 

jets are able to stimulate cell proliferation and heal wounds, while higher power treatment can 

be used to induce apoptosis of cancer cells (KOSTOV et al., 2015a). As a result of their local 

effect, plasma jets can be used to precisely treat specific regions like tumors. In this case, the 

control of treatment area and depth while preserving the surrounding healthy cells can be 

achieved (RATOVITSKI et al., 2014). APPJs are widely studied for treatment of external 

tissues or surface treatment when a preliminary surgical procedure is necessary to provide 

access to the desired spot (BRULLÉ et al., 2012). Thus, one interesting and advantageous 

plasma jet specification is the development of elongated devices capable of delivering plasma 

to remote locations inside living bodies, like endoscopy, allowing minimal invasive procedures. 

Endoscopes are flexible, slender and tubular instruments used for monitoring hollow 

organs for diagnostics or surgeries. An endoscope combines fiber optics for illumination, a 

charge-coupled device for imaging and, in many cases, a working channel to provide surgical 

instruments at the distal endoscope end. Combining this functionality with a medically active 

plasma jet would enable physicians to apply plasma and investigate its effects inside the body. 

For that, the plasma jet size needs to be minimized to few mm diameter and the discharge 

temperature should not overcome 40ºC (BINENBAUM et al., 2017). Additionally, the device 
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must be long enough to reach the whole extension, or the plasma needs to be transported 

through a tube like in the case of transporting plasmas (OMRAN et al., 2017). 

There are only few studies regarding the transport of plasma through long dielectric tubes. 

Robert and coauthors (2009) developed the first transporting plasma device called “plasma 

gun”. It consists of a DBD primary reactor connected to a gas-flushed capillary in which the 

primary discharge propagates through the entire tube extension generating a plasma plume at 

its end (ROBERT et al., 2009). The plasma gun was also tested for branching capillaries where 

T connectors were used and four simultaneous plasma plumes could be achieved (ROBERT et 

al., 2013). In addition, the discharge propagation through metallic tubes was feasible and the 

transfer duration was much shorter. Other groups also developed similar long plasma jets. 

Omran and coauthors (2017) investigated the characteristics of single and multi-channel 

transporting plasmas from a DBD-like plasma jet. The group studied the discharge propagation 

mechanisms and concluded that the transporting plasma comprises of discrete ionization waves 

originated from the HV electrode and propagate by deposition of positive charges at the tube 

wall creating a high potential region (OMRAN et al., 2017). Onyshchenko and coauthors 

(2015a) investigated the plasma plume extension when long thin polymeric tubes were placed 

3 mm away from the plasma jet nozzle allowing their inner surface treatment. Kostov and 

coauthors (2015c) studied the propagation of a primary discharge through a long plastic tube 

with a floating wire inside. This metal wire is in contact with the DBD discharge, thus producing 

a strong electric field close to the tube end that helps generating a plasma plume at the tip 

without igniting plasma along the plastic tube. Another class of endoscopic plasma source 

consists of long plasma jets in which the HV electrode is localized close to the tip end. Examples 

of this plasma jets class are the RF APPJ arranged at the tip of an elongated and flexible 

capillary developed by Binenbaum and coauthors (2017) and the hollow core fiber plasma jet 

with bifilar helicoidally arranged electrodes created by Polak and coauthors (2012). 

In the present work, two different elongated plasma jets based in pre-existing devices 

were investigated. The first, called plasma endoscope, is the miniaturization and improvement 

of the above-mentioned hollow core fiber plasma jet introduced by Polak and coauthors in 2012. 

This plasma jet was developed and characterized at the Leibniz Institute for Plasma Science 

and Technology (INP) in Greifswald, Germany. It consists of a millimeter dimension plasma 

jet with helicoidal electrode arrangement that can be adapted inside commercial endoscopes. 

The use of a shielding gas around the main noble gas stream is proved to be crucial for in-body 

application. The efficiency of different feed and shielding gases are investigated, where the use 

of carbon dioxide as shielding gas helps reducing formation of parasitic discharges within the 
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tube. Once the development of this plasma source aims at its operation inside endoscopes, it 

must fulfill some requirements that are explored throughout the text. The second extended 

plasma jet studied here consists of a primary DBD reactor connected to a long dielectric tube 

with an inserted floating metal wire in its axis. It was firstly developed at the São Paulo State 

University (Unesp), Guaratinguetá, Brazil by Kostov and coauthors (2015c).This jet device 

generates a remote plasma plume that is far away (~ 1.0 m) from the HV source, in this way 

allowing safe manipulation of the plasma jet and facilitating plasma application to places of 

difficult access. In this study, different excitation systems are applied for generating the primary 

DBD discharge and the role of the primary reactor configuration is investigated. Additionally, 

applications concerning its microbial efficiency and material surface modification using tilting 

positions are also explored.  
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5 CONCLUSION 

 

The development of remote plasma jets is a recent and important step in the plasma jets 

research field. It allows a better manipulation of the plasma plume improving the sample 

targeting by plasma species and opening new possibilities in many areas of applications such 

as endoscopy, odontology and material treatment. However, developing a long plasma jet or a 

remotely generating device brings difficulties that were explored throughout this study. The 

development, improvement and characterization of two elongated cold plasma jets have been 

carried out here first. Aiming a new and promising combination of plasma and an endoscope 

device, a plasma jet configuration was successfully developed. The device was tested for 

fulfilling the specific requirements necessary for small configuration dimension, in-body 

operation and safety operation conditions. Additionally, the possibility of transferring plasma 

through long plastic tubes by using an inner floating wire was also investigated in the present 

work. Obstacles concerning the construction of a remotely generated plasma jet for safe in vivo 

treatments were surpassed, until a secure plasma jet operation with low cytotoxicity was 

obtained. 

 

The first plasma jet, plasma endoscope, was designed to operate inside commercial 

endoscopes allowing simultaneous diagnosis and treatment. Thus, this plasma jet can be applied 

for in-body treatments inside hollow organs or regions of difficult access. 

Since the plasma endoscope is a long plasma jet device designed for endoscopic 

applications, it presented specific drawbacks. In this case, the high voltage wire is winded 

around the tube until the nozzle tip. The wire winding distance is a very important parameter 

and needs to be made very narrow to avoid formation of parasitic discharges inside the tube. 

This atmospheric pressure plasma jet can produce small plasma plumes with temperature in the 

range of 30ºC and maximum discharge power of 160 mW. The working temperature and the 

discharge mean power can be directly controlled by the input voltage. To ensure its proper 

operation inside closed cavities, a second shielding gas channel coaxially aligned with the main 

stream gas tube was arranged. An electronegative gas curtain is important to confine the 

discharge electrons into the main column avoiding dispersion. Carbon dioxide appeared to be 

a suitable alternative to air, since its breakdown voltage is higher and no parasitic discharges 

were observed inside the endoscope tube. The plasma jet worked evenly with helium and neon, 

however the neon jet ignited at lower input voltages and provided a wider range of power 

operation. 
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A comparison of emission spectra obtained with and without CO2 shielding gas led to the 

conclusion that the neon jet excitation processes were less affected than helium jet when using 

the shielding curtain. When operated inside half-closed cavities, the plasma jet can switch 

between local (plasma plume) and diffuse (glow discharge) modes by controlling the shielding 

gas flow rate. It was proven by Winter and coauthors (2019) that the use of a HV generator 

operating in burst mode helps reducing the leakage current of this plasma jet. Using the new 

power supply, the neon plasma jet proved to be efficient in decontaminating the bacteria P. 

aeruginosa. Thus, the plasma endoscope operating with neon as feed gas and CO2 as shielding 

gas connected to the new HV power supply forms a promising combination for operating inside 

an endoscope and shall be further investigated for future in-body application. 

 

The second source, the long tube plasma jet, is a device capable of generating a remote 

helium plasma jet by transporting the discharge from a primary reactor to the tube far end. Since 

it transfers the discharge through a flexible plastic tube, the plasma jet can be easily and safely 

applied in fields like dermatology, dentistry and material treatment. 

When operated with a simple AC power supply, the device produces plasma plumes with 

low power (below 1.0 W) but with temperatures close to the biological upper limit of 43ºC 

when operating in grounded conditions. The power can be adjusted by changing either the gas 

flow rate or the distance between tube end and target. The temperature analysis of the floating 

plasma plume revealed a donut-shaped temperature distribution along the plasma jet. This 

singular temperature profile shape can be possibly associated to the annular electron’s 

distributions in the plasma jet. However, further investigations about the electron’s density 

distribution and optical emission analysis with improved spatial resolution should be carried 

out for better understanding of this phenomenon.  

Operating the long tube plasma jet in burst mode allowed the precise adjustment of 

parameters enabling it to work in special regions with broader range of operation. Thus, the 

plasma jet power can be better controlled which leads to a more precise management of 

treatment dose. The role of primary discharge geometry was also investigated and it has been 

demonstrated that only the penetration distance of the floating metal wire inside the discharge 

can slightly influence the discharge power. 

The long plastic tube device can be adapted to other plasma jet configurations efficiently 

transferring the discharge to the tube tip end. It was successfully adapted to a pre-existing 

plasma jet improving its manipulation and allowing a safer use regarding biological 

applications. The long tube jet was tested against C. albicans in agar plates and the area of 
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inhibition zones was used to evaluate its decontamination efficiency. The size of the inhibition 

zones depends on the treatment dose, which can be precisely controlled by increasing either the 

treatment time or the discharge power. Its maximal size is determined by the lifetime of 

generated species. Since the observed killing zones were much bigger than the tube diameter, 

it can be concluded that the long-living ROS are the most important agents for decontamination. 

By means of optical emission spectroscopy and the decontamination efficiency tests, it was 

proved that the plastic tube elongation acted as a gas channel in which the plasma is only 

transferred to the other extremity exhibiting similar characteristics to the primary discharge. 

Thus, the long tube acts as a safe extension device that can be easily bent and manipulated close 

to the target allowing treatment in regions with difficult access.  

Since this tube extension allows fine control of the plasma plume, the treatment of 

surfaces with tilting positions is made possible. Thus, the effects when the plasma jet is not 

applied in the conventional perpendicular manner was investigated. The long tube plasma jet 

has been tested for surface modification of PET with different angling positions. Tilting the 

plasma jet increased up to 30% the treated areas and more pronounced and homogeneous 

modified areas were achieved when a grounded platform was used below the target polymer. 

Additionally, the use of laminar flow conditions also cooperated with improving homogeneity. 

Thus, the small diameter, the flexibility, the tube biocompatibility and the operation safety 

(distant from the HV electrode) broadens the field of applications of this plasma jet, making 

possible a secure treatment of living tissues, in-body procedures or treatment of complex-

shaped targets. 
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