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ABSTRACT. This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy

mathematical optimization problems with uncertainties in the objective function and in the set of constraints.

The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the

membership function of fuzzy decision making using the bound search method. The second one is a meta-

heuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use

a decision criterion called satisfaction level that reaches the best solution in the uncertain environment.

Selected examples from the literature are presented to compare and to validate the efficiency of the methods

addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of

Spain.

Keywords: fuzzy numbers, cut levels, fuzzy optimization, genetic algorithms.

1 INTRODUCTION

Mathematical programming is used to solve problems that involve minimization (or maximiza-
tion) of the objective function in a function domain that can be constrained or not, as described
in (Bazaraa et al., 2006) and (Luenberger & Ye, 2008). The formulation of these problems needs
to describe clear, certain and brief mathematical definitions both regarding the objective function
and the set of constraints. This set of problems can be formalized in the following way:

min f (x)

s. to g(x) ≤ b
x ∈ �

(1)
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where � ∈ Rn , f : � → R and g : Rk × � → Rk Applications can be found in business,
industrial, military and governmental areas, among others.

However, there are ambiguous and uncertain data in real-world optimization problems. In recent
years, Theory of Fuzzy Sets (Zadeh, 1965) has shown great potential for modeling systems,
which are non-linear, complex, ill-defined and not well understood. Fuzzy Theory has found
numerous applications due to its ease of implementation, flexibility, tolerant nature to imprecise
data, and ability to model non-linear behavior of arbitrary complexity. It is based on natural
language and, therefore, is employed with great success in the conception, design, construction
and utilization of a wide range of products and systems whose functioning is directly based on
the reasoning of human beings.

The first works showing methods that solve optimization problems in fuzzy environments were
described in (Tanaka et al., 1974), (Verdegay, 1982) and (Zimmermann, 1983). The approaches
there developed solve fuzzy linear programming problems. The fuzzy set theory is applied in
a different branch of optimization problems, i.e., the fuzzy graph theory to solve the minimum
spanning tree problem, as described in (Almeida, 2006), and the shortest path problem, as de-
scribed in (Hernandes et al., 2009). Few works focus in developing methods that solve nonlinear
programming problems in fuzzy environments. We can highlight some papers that solve prob-
lems with uncertainties in the set of constraints, as described in (Lee et al, 1999), (Silva et al,
2008), (Trappey et al, 1988) and (Xu, 1989). Other methods deal with the uncertainties present
in some parameters that can be coefficients and/or decision variables, as described in (Berredo et
al., 2005), (Ekel et al., 1998), (Ekel, 2002) and (Galperin & Ekel, 2005).

In this fuzzy environment, as it happens in the case of linear programming problems, a variety
of fuzzy non-linear programming problems can be defined: non-linear programming problems
with a fuzzy objective, i.e., with fuzzy numbers defining the costs of the objective function; non-
linear programming problems with a fuzzy goal, i.e., with some fuzzy value to be attained in
the objective; non-linear programming problems with fuzzy numbers defining the coefficients of
the technological matrix and, finally, with a fuzzy constraint set, i.e., with a feasible set defined
by fuzzy constraints. Fuzzy numbers ã discussed here are defined by a triangular pertinence
function μã(x) : R → [0, 1] that associates to each x ∈ R a pertinence level. In this setting, 0
expresses complete exclusion and 1 complete inclusion. Also, ã ∈ F(R) is commonly referred
as a fuzzy set over R.

The goal of this work is proposing two methods, which are applied to solve nonlinear program-
ming problems in a fuzzy environment. The uncertainties are presented in the costs of the objec-
tive function, represented as fuzzy numbers, and in the constraint set, allowing some violation of
its bounds. The first method is an adaptation of Verdegay’s method (Verdegay, 1982), which was
developed to solve the linear case. The second is an adapted genetic algorithm that deals with
fuzzy numbers (Liu & Iwamura, 1998a, 1998b). Both methods obtain a set of satisfactory solu-
tions that represents the solution of the original fuzzy problems. Thus, the conventional nonlinear
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programming problem with fuzzy coefficients in the objective function and fuzzy constraints can
be formalized in the following form:

min f (ã; x)

s. to g(x) ≤ f b
x ∈ �

(2)

where f : F(Rn) × � → F(R) and g : Rk × � → Rk . The parameter ã ∈ R(Rn) represents a
vector of fuzzy numbers and ≤ f represents the uncertainties in the constraints.

A defuzzification method, based on the first Yager’s index, is used to obtain a real number from
the fuzzy objective value. Although the fuzzification of the problem data allows the decision
maker to handle its uncertainties, a real (crisp) answer is desirable and easier to interpret and
implement. This defuzzification process is denoted by D f (∙).

Due to the increasing interest in augmentation of fuzzy systems with learning and adaptation
capabilities we find works that join it with some soft computing techniques. In (Cordón et al.,
2004), a brief introduction to models and applications of genetic fuzzy systems are presented.
In addition, this work includes some of the key references about this topic. In (Coello, 2002),
we can find a survey of state of the art theoretical and numerical techniques, which are used in
some genetic algorithms to deal with constraint-handling optimization problems. The genetic
algorithms are also used to solve multi-objective optimization problems and a hybrid approach,
combining fuzzy logic and genetic algorithm, is proposed in (Sakawa, 2002).

This work is divided as follows. Section 2 introduces the adaptations of an iterative method
that uses two phases to solve mathematical programming problems with fuzzy parameters in the
objective function and uncertainties in the set of constraints; Section 3 introduces an adaptation of
a genetic algorithm for the proposed fuzzy problems in this work; Section 4 presents a satisfaction
level which tries to establish a tradeoff between α-cut level and the solution of the objective
function; Section 5 presents numerical simulations for selected problems and an analysis of the
obtained results. Finally, concluding remarks are found in Section 6.

2 ITERATIVE METHOD

The proposed method in this section can be used to solve non-linear programming problems with
uncertainties both in the objective function and in the set of constraints. It is an adaptation of
the so-called Two-Phase Method, developed to solve problems with uncertainties in the set of
constraints. It is described in (Silva et al., 2007), which adapts classic methods that solve classic
mathematical programming problems. Optimality conditions described in (Cantão, 2003) were
introduced into this modified method in order to solve non-linear programming problems with
fuzzy parameters in the objective function.

According to (Delgado et al., 1989), we consider that the constraints defining the non-linear
problem have a fuzzy nature, therefore allowing some violations in the accomplishment of such
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restrictions. Therefore if we denote each constraint as gi (x), the problem at hand can be ex-
pressed as

min f (ã; x)

s. to gi (x) ≤ f bi i ∈ I
x ∈ �

(3)

where the membership functions

μi : R
n → [0, 1], i ∈ I

of the fuzzy constraints should be determined by the decision maker. It is patent that each mem-
bership function will give the membership (satisfaction) degree with which any x ∈ Rn accom-
plishes the corresponding fuzzy constraint on which it is defined. This degree is equal to 1 when
the constraint is perfectly accomplished (no violation), and decreases to zero according to greater
violations. Finally, for non-admissible violations the accomplishment degree will equal to zero in
all the cases. The violation that is related in the satisfaction degree is defined by di for each con-
straint i . In the linear case (and formally also in the non-linear one), these membership functions
can be formulated as follows

μi (x) =






1 gi (x) < bi

1 −
(
gi (x) − bi

)/
di bi ≤ gi (x) ≤ bi + di

0 gi (x) > bi + di

In order to solve this problem in a two-phase method, first let us define for each fuzzy constraint,
i ∈ I

Xi =
{
x ∈ Rn|gi (x) ≤ f bi , x ∈ �

}
.

If X = ∩i∈I Xi then the former fuzzy nonlinear problem can be addressed in a compact form as

min
{

f (ã; x)|x ∈ X
}
.

Note that ∀α ∈ [0, 1], an α-cut of the fuzzy constraint set will be the classical set

X (α) =
{
x ∈ Rn|μX (x) > α

}
.

where ∀x ∈ Rn ,
μX (x) = inf [μi (x)], i ∈ I.

Hence an α-cut of the i-th constraint will be denoted by Xi (α). Therefore, if ∀α ∈ [0, 1],

S(α) =
{
x ∈ Rn| f (ã; x) = min f (ã; y), y ∈ X (α)

}

the fuzzy solution of the problem will be the fuzzy set defined by the following membership
function

S(x) =

{
sup{α : x ∈ S(α)} x ∈ ∩α S(α)

0 otherwise
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S(x) represents the biggest pertinence level (than the sup) for a given α-cut, that minimizes the
fuzzy problem.

Provided that ∀α ∈ [0, 1],

X (α) =
⋂

i∈I

{
x ∈ Rn|gi (x) ≤ ri (α), x ∈ �

}

with r(α) = bi + di (1 − α), the operative solution to the former problem can be found, α-cut by
α-cut, by means of the following auxiliary parametric nonlinear programming model

min f (ã; x)

s. to gi (x) ≤ bi + di (1 − α) i ∈ I
α ∈ [0, 1], x ∈ �

(4)

It is easy to see that Problem (4) can have two possibilities: (i) it has a new decision variable
α ∈ [0, 1], which helps to transform a fuzzy optimization problem into a classical one; or (ii) it
has a parameter because we can discretize α between 0 and 1.

It is clear that one of them is chosen the first phase of this method ends at the start of the second
one. In this case we will choose the parameter approach.

In the second phase we solve the parametric nonlinear programming problem determined in the
previous step to each one of the different α values using conventional nonlinear programming
techniques. We must find solutions of Problem (4) to each α that satisfy the Karush-Kuhn-
Tucker’s necessary and sufficient optimality conditions. One of the conventional techniques
is to write the Lagrange function that is a transformation of Problem (1) as an unconstrained
mathematical problem in the following form:

L(ã; x, η) = f (ã; x) + ηt(gi (x) − bi − di (1 − α)
)
, ∀x ∈ � (5)

where η is the Lagrange multiplier for the inequality. The obtained results, for different α val-
ues, generate a set of solutions and then we use the Representation Theorem to integrate all of
these particular α-solutions. Note that the computational complexity depends on the optimiza-
tion technique, such as Barrier and Penalty methods, chosen to solve the transformed problem.
In addition, some real problems can be harder to solve them by using classical optimization
techniques. So we decide to join the approach with a new decision variable and a genetic algo-
rithm. The genetic algorithm will be presented in the next section and then these two approaches
will be compared in the Section 5.

3 GENETIC ALGORITHM

Genetic algorithms belong to the class of evolutionary computation that simulates the process
of natural evolution using stochastic optimization methods. They use the evolution principle as
a search method in the solution of optimization problems. Several strategies to obtain a good
evolution in genetic algorithms were described in (Goldberg, 1989) and (Michalewics, 1996).

Pesquisa Operacional, Vol. 32(2), 2012



“main” — 2012/8/18 — 14:14 — page 320 — #6

320 APPLICATION OF AN ITERATIVE METHOD AND AN EVOLUTIONARY ALGORITHM IN FUZZY OPTIMIZATION

Genetic algorithms have obtained considerable success during the last decades when applied to
a wide range of problems, such as optimal control, transport, scheduling problems among oth-
ers. The implementation of the algorithm here proposed was based on (Liu & Iwamura, 1998a;
1998b), with some modifications. The adapted genetic algorithm in this work uses only basic
evolutionary strategies, namely: selection process, crossover operation and mutation operation.
Later on we will describe a pseudo-code of this algorithm.

3.1 Structure representation

The approach used to represent a solution is the floating point implementation, where each chro-
mosome has the same length as the solution vector. Here we use a vector V i =

(
xi

1, xi
2, . . . , xi

n

)
,

with i = 1, 2, . . . , popsize as a chromosome to represent a possible solution to the optimization
problem, where n is the dimension.

3.2 Initialization process

We define an integer popsize = 10 ∙ n as the number of chromosomes and initialize popsize
randomly for each chromosome. We choose an interior point to initialize the population, denoted
by V 0, and select popsize individuals randomly in a given neighborhood of this point. We define
a large positive number 0 which is a step to be taken in a randomly selected direction. This
number 0 is used not only for the initialization process but also for the mutation operation. We
randomly select a direction di ∈ Rpopsi ze and define a chromosome V i = V 0 + 0 ∙ di . This
chromosome is added to the initial population if it represents a feasible solution; otherwise, we
randomly select another 0 in the interval [0, 0] until V 0 + 0 ∙ di is feasible. We repeat this
process popsize times and produce popsize initial feasible solutions V 1, V 2, . . . , V popsi ze.

3.3 Fitness value

The fitness function evaluates the quality of each individual in the population at each iteration.
The fitness of a given individual can be evaluated in several ways. Some forms of computing
the fitness values can be found in (Goldberg, 1989) and (Michalewics, 1996). In this work, the
value of the objective function was chosen as the fitness value for each individual. Since this
value is a fuzzy number, then we apply a defuzzification method to find a classic number which
best represents the fitness distribution that is Yager’s first index. In (Klir & Folger, 1998) and
(Pedrycs & Gomide, 1998), other defuzzification methods are presented.

3.4 Evaluation function

An evaluation function, denoted by eval(V i ), is defined to assign a probability of reproduction
to each individual of the population. It is reasonable to assume the use of the order relationship
among the popsize chromosomes such that the popsize chromosomes can be rearranged from
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good to bad (best fitness values for the worse chromosomes). Let a ∈ (0, 1) be a parameter in
the genetic system. We can define the so-called rank-based evaluation function as follows:

eval(V i ) = a(1 − a)i−1, i = 1, 2, . . . , popsize .

We mention that i = 1 means the best individual, i = popsize the worst individual, and

popsize∑

i=0

eval(V i ) ≈ 1 .

3.5 Selection process

The selection process is based on spinning the roulette wheel popsize times, each time selecting
a single chromosome for an auxiliary population in the following way:

1. Calculate the cumulative probability qi for each individual V i ,

q0 = 0,

qi =
i∑

j=1

eval(V j ), i = 1, 2, . . . , popsize;

2. Generate a random real number r in
[
0, qpopsi ze

]
;

3. Select the i th individual V i , (1 ≤ i ≤ popsize) such that qi−1 < r ≤ qi ;

4. Repeat steps 2 and 3 popsize times and obtain popsize individuals.

3.6 Crossover operator

We define a parameter Pc to determine the probability of crossover. This probability gives us
the expected number Pc ∙ popsize of chromosomes which undergo the operation. We denote the
selected parents as F1, F2, . . . and divide them in pairs. At first, we generate a random number
c from the open interval (0, 1), then we produce two children C1 and C2 using the crossover
operator as follows:

C1 = c ∗ F1 + (1 − c) ∗ F2,

C2 = c ∗ F1 + (1 − c) ∗ F2.

We check the feasibility of each child. If both children are feasible, then we replace the parents
by them. If not, we keep the feasible one if it exists, and then reapply the crossover operator
by regenerating the random number c until two feasible children are obtained or a given number
of cycles is finished. In this case, we only replace the parents by the feasible children. The
individuals that were not chosen to do the crossover operator will used in the population of the
next generation.

Pesquisa Operacional, Vol. 32(2), 2012



“main” — 2012/8/18 — 14:14 — page 322 — #8

322 APPLICATION OF AN ITERATIVE METHOD AND AN EVOLUTIONARY ALGORITHM IN FUZZY OPTIMIZATION

3.7 Mutation operator

A parameter Pm is defined as the probability of mutation. This probability gives us the expected
number of Pm ∙ popsize of chromosomes which undergo the mutation operations. For each se-
lected parent, denoted by V i = (x1, . . . , xn) we choose a mutation direction di ∈ Rn randomly.
If Mi = V i + 0 ∙ di is not feasible we set 0 as a random number between 0 and 0 until it
is feasible. If the above process fails to find a feasible solution in a predetermined number of
iterations, we set 0 = 0.

3.8 Pseudo-code for the genetic algorithm

Following selection, crossover and mutation, the new population is ready and we start a new
iteration. The genetic algorithm will terminate after a given number of cyclic repetitions of the
above steps. The pseudo-code of the genetic algorithm has the following form:

Algorithm 1 – adapted genetic algorithm

Input: Parameter popsize, Pc and Pm

Output: The best individual in all generations.
Step 01: Initialize popsize individuals;
Step 02: Check feasibility of each individual;
WHILE number of generations is less than MAX GENERATION DO

Step 03: Compute the fitness of each individual;
Step 04: Order the population, compute evaluation value;
Step 05: Perform the selection process;
Step 06: Use the crossover operator and check feasibility;
Step 07: Use the mutation operator and check feasibility;
Step 08: Update the population for the next generation;

END

4 SATISFACTION LEVEL

We define a satisfaction level representing the compromise between the objective function value
and the satisfaction level of the pertinence function associated to the fuzzy inequalities. This
level determines the lower bound for the membership value of the admissible solutions.

The solution of the Problem (4) belongs to the bounded interval for α ∈ [0, 1] that generates the
upper and lower values of the form

m̃ = f (ã; x̃(0)) = minx∈X (0) f (ã; x̃)

M̃ = f (ã; x̃(1)) = minx∈X (1) f (ã; x̃),
(6)

where X (0) and X (1) are the cut levels for α equal to 0 and 1, respectively. Numbers m̃ and
M̃ are fuzzy numbers, being the result of arithmetical operations with the fuzzy coefficients
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present on the objective function (Kaufmann et al, 1991). In a fuzzy optimization problem we
can establish the fuzzy goal as follows:

μG̃(x) =
m̃

f (ã; x̃)
. (7)

As expected, this fuzzy goal shows that when f reaches its infimum m the full membership
(μG̃ = 1) is obtained; as f increases μG̃ approaches the null membership (μG̃ = 0) boundary.
Clearly, the upper and lower limits of the fuzzy goal are given by

μu
G = 1

μl
G = D f

(
m̃

M̃

)
,

(8)

where D f (∙) is Yager’s first index defuzzification method, as previously mentioned. However, if
the objective is to maximize or the lower and upper values are negative, we can invert the division
of the Equation (7), and then, the equation of the lower limit of the fuzzy goal is defined as

μl
G = D f

(
m̃

M̃

)
.

The minimum satisfaction level is determined by the quotient between the solution of the problem
with totally violated constraints and the solution with totally satisfied constraints, see (Silva et
al., 2005) and (Silva et al., 2006). This quotient is a fuzzy number that is determined by a fuzzy
relation. The chosen defuzzification method is the modal value to determine the inferior bound.

The iterative method then performs a search in the interval
[
μl

G(x), μu
G(x)

]
to find the optimal

α-level according to (Bellman & Zadeh, 1970). The genetic algorithm uses the inferior α-level
to determine when a solution is feasible or not.

5 NUMERICAL EXPERIMENTS

The problems to evaluate the developed methods are presented in Subsection 5.1. There are three
hypothetic formulations and a fuzzy optimization problem in some import-export companies in
South-east Spain. Nevertheless, they are efficient to validate the study realized.

The computational results and a comparative analysis of the classic methods and the iterative
methods responses are presented in Section 5.2.

For all examples, we use the following genetic algorithm parameters:

• Crossover probability Pc = 0.2;

• Mutation probability Pm = 0.1;

• Number of generations (iterations): 1000.

The tests were all performed on a Sun Blade 250 with two 1.28GHZ Ultra Sparc-IIIi processor,
4GB RAM running Solaris 9 operational system.
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5.1 Formulation of the problem

In this paper we present some theoretical and real-world problems found in the literature in order
to validate the proposed algorithms. We simulate four nonlinear programming problems: three
theoretical problems and one real-world problem in some import-export companies in South-east
Spain. All problemas have uncertainties on the parameters of the objective function.

5.1.1 Theoretic tests problems

The problems with inequality constraints, described in Table 1, were taken from (Schittkowski,
1987). Uncertainties were inserted into the parameters of the objective functions in the form of
a 10% variation in the modal value. The maximum violation of each constraint of the problem
is a hypothetical value and it was inserted to suppose a set of well-known constraints. The
optimal solutions to the problems without uncertainties are presented in the columns x̄ and f (x̄)

of Table 1.

Table 1 – Theoretical problems consisting only of inequality constraints.

Prob. f (ã; x̃)
Fuzzy

xini t Constraints Violation
Classic solution

spread x̄ f (x̄)

PG1
(x1 − 2̃)2+

10%
[0.5, x2

1 − x2 ≤ f 0 d1 = 0.35 [1.0,
1

(x2 − 1̃)2 0.5] x2
2 − x1 ≤ f 0 d2 = 0.35 1.0]

PG2
x2

1 + x2
2−

10%
[1.0,

x2 − x1 − 2 ≤ f 0 d1 = 1.0

[0.5536,
3.7989

4̃x1 + 4̃ 2.5]

x1 − x2 − 2 ≤ f 0 d2 = 0.5

1.3060]−x1 ≤ 0 d3 = 0.0

−x2 ≤ 0 d4 = 0.0

PG3
9̃x2

1 + x2
2+

10%

[1.0, 1 − x1x2 ≤ f 0 d1 = 0.5 [0.5774,

6
4̃x1 + 4̃

1.0, −x2 ≤ 0 d2 = 0.0 1.7320,

1.0] −x3 ≤ 0 d3 = 0.0 0.0000]

5.1.2 Real-world problem

The problem in some import-export companies in the south of Spain, described in Table 2, was
taken from of (Jiménez et al., 2006). The same parameters and uncertainties of this real-world
problem were used in here, but uncertainties were inserted in the parameters of the objective
functions. They are in the form of a 10% variation in the modal value, e.g. the number 2̃ can
vary up to 0.2 units positively or negatively. The optimal solutions to the problems without
uncertainties are presented in the columns x̄ and f (x̄) of Table 2.
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Table 2 – Problem in some import-export companies in the south of Spain.

Prob. f (ã; x̃) xini t Constraints Violation
Classic solution

x̄ f (x̄)

PCSS
2̃3.0x1 + 3̃2.0x2− [0.0,

10x1 + 6x2 ≤ f 2500 d1 = 0.0
[84.8810,

5686.9
0̃.04x1 − 0̃.03x2 0.0]

5x1 + 10x2 ≤ f 2000 d2 = 64.0
145.5800]

7x1 + 10x2 ≤ f 2050 d3 = 74.0

5.2 Results and analysis

In Tables 1 and 2, we presented the problem formulations and their classical solutions. In this
subsection we show the results obtained for the problems in sub-section 5.1 by the iterative
method presented in section 2 and by the genetic algorithm introduced in 3.

Tables 3 and 5 refer to the results obtained on the first-phase of the method from Section 2 in
two forms: (i) completely satisfied restrictions, including α = 1 and, (ii) restrictions completely
violated (α = 0). Tables 4 and 6 bring the results from second-phase, Sections 2 and 3. The
column corresponding to f (ã; x) shows a 3-vector: first and third components are the spread,
while second component is the modal value. Column μ presents the comparison between the
α-cut level and the solution of the objective function as discussed on Section 4. The closer μ

is from 1 (one), the better the compatibility among the pertinences of both the objective and the
restriction set.

Table 3 – Maximum and minimum levels of tolerance for the set of constraints.

Prob. Constraints
Optimal of f (ã; x)

Time
x f (ã; x) D f ( f̃ )

PG1
Totally satisfied [1.0005; 1.0004] [0.8066; 0.9991; 1.2115] [1.0041] 2s

Totally violated [1.2074; 1.2073] [0.5044; 0.6712; 0.8629] [0.6774] 1s

PG2
Totally satisfied [0.5530; 1.3052] [3.1761; 3.7973; 4.4185] [3.7973] 4s

Totally violated [0.5769; 1.2322] [2.9128; 3.5436; 4.1743] [3.5436] 15s

PG3
Totally satisfied [0.5780; 1.7287; 0.000] [5.6945, 5.9952, 6.2959] [5.9952] 8s

Totally violated [0.5493; 1.6369; 0.0000] [5.1237; 5.3953; 5.6669] [5.3953] 11s

By examining the results presented in Table 3, we can calculate the minimum satisfaction level
to each problem in Table 1 of fuzzy mathematical programming problems with uncertainties in
objective function and in set of constants shown in this work.

Table 4 presents the results for the problem with inequality constraints, obtained by the iterative
method and adapted genetic algorithm. For the problem PG1, the iterative method obtained better
responses in every front, i.e., lower defuzzification value and lower convergence time, while the
satisfaction level is an admissible value. The genetic algorithm was slower than the iterative
method and they were equal in PG2. Both obtained the same convergence time, but the adapted
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Table 4 – Results using iterative method and pure genetic algorithm.

Prob. Algorithm
Optimal of f (ã; x)

Time
x f (ã; x) D f ( f̃ ) μ = α

PG1
Section 2 [1.058; 1.058] [0.7091; 0.8908; 1.0974] [0.8970] 0.7575 4s

Section 3 [1.0608; 1.0454] [0.5385; 0.8842; 1.3189] [0.9071] 0.7591 12s

PG2
Section 2 [0.5547; 1.3015] [3.1607; 3.7826; 4.4045] [3.7826] 0.9361 11s

Section 3 [0.52202; 1.2306] [2.9113; 3.6988; 4.4863] [3.6988] 0.9580 11s

PG3
Section 2 [0.5764; 1.7191; 0.000] [5.6464; 5.9454; 6.2444] [5.9454] 0.9169 5s

Section 3 [0.5559; 1.7345; 0.0827] [5.2659; 5.8510; 6.4361] [5.8663] 0.9197 8s

genetic algorithm had better defuzzification value and satisfaction level. In PG3, the iterative
method was faster, but the genetic obtained better defuzzification value and satisfactions level.
We obtain satisfaction levels higher than 75% for all the problems. The good quality of the
obtained solution is confirmed by the fact that the defuzzified values of the objective function for
each problem are lower than those of the classic solution.

Table 5 depicts the optimal solutions of the real-world problem in two forms: (i) totally satis-
fied constraints; and (ii) totally violated constraints. Table 5 shows the results for Problem (4)
imposing α = 1, for case (i), and α = 0, for case (ii).

Table 5 – Maximum and minimum levels of tolerance for the set of constraints.

Prob. Constraints
Optimal of f (ã; x)

Time
x f (ã; x) D f ( f̃ )

PCSS
Totally satisfied [86.073; 144.75] [4961.8; 5686.7; 6436.5] [5694.6] 2s

Totally violated [87.925; 150.85] [5103.2; 5857.6; 6637.6] [5866.1] 1s

In Table 6, we explore the results for the real-world problem. Note that the iterative method
obtained a satisfaction level near 100%. However, the genetic algorithm presented the best fuzzy
result and defuzzification value with lower processing time.

Table 6 – Result to the problem with triangular fuzzy numbers.

Prob. Algorithm
Optimal of f (ã; x)

Time
x f (ã; x) D f ( f̃ ) μ = α

PCSS
Section 2 [84.813; 145.63] [4962.2; 5686.9; 6436.5] [5695.2] 0.9992 6s

Section 3 [82.7938; 147.231] [4965.9; 5691.2; 6441.3] [5699.4] 0.9172 2s

The main analysis is in choosing the relation between objective function value and satisfaction
level. This choice depends on the decision maker because he has a previous knowledge of the
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main objective to be reached. In this case, the genetic algorithm was faster than the iterative
method.

6 CONCLUSION

The first method described in this work transforms the fuzzy non-linear programming problem
in a parametric non-linear programming problem. The parameter is in the unit interval and we
obtain the optimal solution of each discretized value of the parameter. The evolutionary algo-
rithm described previously presents the basic steps of a standard genetic algorithm but there is
a difference regarding the objective function value of the non-linear programming problem with
fuzzy parameters. The satisfaction level was described in this work to determine a compromise
between the fuzzy goal of the objective function and the permitted violation level of each one of
the membership function of the constraints.

We developed an interactive method and a genetic algorithm to solve mathematical programming
problems with uncertainties in objective function and in set of constraints. The iterative method
uses the differentiation from the objective function that presented good responses to proposed
problems. The obtained results were better than the classic results found in the literature. The
genetic algorithm presented good responses to the same problems. However, they presented a
satisfaction level smaller than 100%, i.e., the optimum solution violates one or more constraints
of the problem.
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