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Multiple-time higher-order perturbation analysis of the regularized long-wavelength equation
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By considering the long-wavelength limit of the regularized long wéRé&W) equation, we study its
multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg—de Vries
hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case
of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be
summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and
considerations are made on tesoliton solution, as well as on the limitations of applicability of the multiple-
scale method in obtaining uniform perturbative serj&4.063-651X96)08909-X

PACS numbd(s): 03.40.Kf

[. INTRODUCTION study, usually neglected in the derivation of the KdV equa-

tion, is essential to guarantee the uniformity of the perturba-

The regularized long-wavelengtRLW) equation, tive expansion, thus rendering a real meaning to the KdVv
equation.

Ugt Uy — Uy~ BUU=0, 1) Motivated by the above considerations, in this paper we

] o are going to apply a multiple-time versi¢g] of the reduc-
also known as the Peregrifi] or Benjamin-Bona-Mahony tjve perturbation method to study long waves as governed by
[2] equation, was ori_ginally introdu_ced as an alternative foline RLW equation. As we are going to see, the KdV equation
the Korteweg—de VriesKdV) equation appears at the lowest relevant order of the perturbative
scheme. Then, by assuming a solitary wave solution for the
KdV equation, we consider higher-order approximations and
ghow that the corresponding solitary-wave-related secular-
Qroducing terms can be eliminated from every order of the
perturbative scheme. The equations of the KdV hierarchy,
which appear as a consequence of natural compatibility con-
ditions, are shown to play a crucial role in the process of
3 eliminating the secular producing terms. Once a secularity-

free perturbative series is obtained, we show that it may be

which, by the way, is the same as the dispersion relation O§ummed to give the exact solitary wave solutjon of }he RLW

the shallow water wave equati¢8]. For long wavelengths, equat.lon. We then close the paper V\."th. a discussion on the

k is small, andw(K) can be expanded according to N-soliton case, as well as on the limitations of the multiple
scale method.

Ui+ Uy + Uyyy— 6UU,=0. 2

Despite having quite different dispersion properties, thes
two equations possess an intimate relationship. For exampl
the linear dispersion relation of the RLW equation is

o= 15

o(K)=k—k3+0(k®). (4
Il. MULTIPLE-TIME FORMALISM
The first two terms of this expansion coincide exactly with o .
the complete linear dispersion relation of the KdV equation. 10 study the long-wavelength limit of the RLW equation,
Thus, for sufficiently long wavelengths, the traveling-waveWe put
solutions of Eqs(1) and(2) are expected to be quite similar.
Despite this, there is a deep difference between these two k=ex, ®)
cases, since a polynomial is definitely not equivalent to an o . ) .
infinite series. This difference, which appears when higherWith € a small parameter. In this limit, the dispersion relation
order terms of the dispersion relation expansion are consid3) can be expanded as
ered, might also show up at higher-order approximations in a
perturbation theory. o(k)=ex— K3+ €Kk~ €'k + - - (6)
As is well known, the KdV equation governs the first
relevant order of an asymptotic perturbation expansion, deAccordingly, the solution of the corresponding linear RLW
scribing weakly nonlinear dispersive waves. However, toequation can be written in the form
make sense of it as really governing such waves, the large
time behavior of the perturbative series must be analjzpd u=a expi[kx—w(k)t]}
In other words, one needs to study the evolution equations of
the higher-order terms of the perturbative expansion to check
for the existence or not of secular-producing terms. This (7)

=a exp{i[ke(x—t)+ k3t — > k5t+ e’k t+- - -]},
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wherea is a constant. As given by this solution, we now Our interest in this paper is concerned with solitary waves.

define a slow space Thus we assume, to be the solitary-wave solution of the
KdV equation(14),
§=e(x—1), tS)
Ug= —2«k?sechb;, (17
as well as an infinity of properly normalized slow time vari-
ables, where 6;= k[ é—4«k?73]. In this case, Eq(16) becomes
r= €t 1= — €, m=elt, et 9) Luo=48k°secH §tanty;. (18)
Consequently, we have In the next order, we obtain the equation
J J LU2: U073§§+ UOTS‘ (19)
5 = Eo,'—g, (10) ) ] ) ) ]
The evolution ofug in the time ;3 is given by the KdV
and equation(14), but the evolution ofu, in the time 75 is not
known up to this point. However, the multiple-time formal-
9 P P 9 9 ism introduces constraints which determine uniquely the
—=—€e—+e——€—+e'——---. (11)  evolution ofug in any higher-order timg5]. To see how this
ot (95 &7'3 (97'5 6'7'7

is possible, let us make the following considerations.
L ) ) ) First, to have a well ordered perturbative scheme, we im-
It is important to note that the introduction of slow time pose that each one of the equations describing the higher-

variables normalized according to the dispersion relation exg,qer times evolution ofi, be e independent when passing

pansion are such that they allow for an automatic eliminatiorfrom slow (k,Ug,é 7ny1) to laboratory coordinates
. . ] 1Sy n

of the solitary-wave-related secular-producing terms appeary |,  +) This will select all possible terms to appear in

ing in the evolution equations for the higher-order terms ofu For instance, the evolution af, in the time 75 is

the wave field 6]. O7an+1
q6] restricted to be of the form

2
Ill. PERTURBATION THEORY Ug,, = a5u0(5§)+,85u0u0§§§+ YsUogUozet 55U0U0§v
The perturbative scheme consists of making the expan- (20
sion .
where a5, Bs, vs, and 85 are constants to be determined.
U= €20= €2(Ug+ €2Up+ €Uyt - - -), (12) _Then, by imposing the_naturah the multiple-time formal-
ism) compatibility condition

and substituting it, together with Eq&.0) and(11), into the

RLW equation(1). The result is the multiple-time equation (Uory) 7= (Uory) r,, (22)

P P it is possible to determine the above constants in terms of
( 53&— - 50— +.--|U as, which is left as a free parameter. As it can be veriftel

73 75 the resulting equation is the fifth-order equation of the KdV

92 J 9 9 hierarchy,
| et
3 5 u07'5: FSEUO(Sg)_ 10"0u0§§§_ 20J0§U0§§+ SQJOZU()g .
J (22
—3e3a—§(u02+262u0u2+ --+)=0. (13

The right-hand side of this equation would in principle ap-
Jear multiplied by the free parameteg, which would ac-
count for different possible normalizations of the time
However, since we have already defined the slow time nor-
malizations, this parameter was taken to be 1, in order to
have agreement with the normalizations introduced in Eq.
(9). This is an important point since, as we have already
stated, it allows for an automatic elimination of the solitary-
wave-related secular-producing terms appearing in the right-
hand side of Eq(19). These terms, wheuy, is assumed to be

a solitary wave of the KdV equation, are always of the form

[7]

We proceed then to an order-by-order analysis of this equ
tion.
At the lowest order, we obtain

UOTSZng_UO§§§+ 6UOU0§:0, (14)

which is the KdV equation. Introducing an operaltgmwhose
action on any component, is given by the linearized KdV
operator

LunEunT3+un§§§_6(uOun)§: (15)
. X i uO[(2n+1)§]y n=011121 cer (23)
the KdV equation(14) can be rewritten in the form
Thus, using Egs(14) and (22), respectively, to describe
Lug=—6ugUg;. (16) U, andug,,, Eq.(19) becomes
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Luy=—2UggUgge— 4UoUoggse T 30uozu0§. (24

We notice in passing that the substitution of E¢s?) and
(22), respectively, foruOT3 and Uor, with properly normal-
ized slow times, allowed for an automatically elimination of
all solitary-wave-related secular-producing terms of @§).

In fact, Eq.(24) does not present any secular-producing term

anymore. Moreover, we see that at this ordgmust satisfy
simultaneously the first two equations of the KdV hierarchy,
respectively, in the slow times; and 5. Introducing the
general definition

Ooni1= K[ E— AK®T3+ 16k m5— - - -+ (— 1)"(2K) " Ton 1],
(25)
such a solitary wave is given by
Uo=—2«?seclbs, (26)
and Eq.(24) becomes
Lu,=192«"sech fstanhys. (27
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Us=(4x?)2uq, (34)
with uy given now by Eq(32).

This procedure can be repeated up to any higher order. In
other words, we can use the compatibility condition
(UOT3) 72n+l: (u072n+1) T3 (35)
to obtain the evolution ofly in the time 75, 1, which will
turn out to be the (&+ 1)th equation of the KdV hierarchy.
In this caseu, will represent a solitary wave satisfying si-
multaneously the firsh equations of the KdV hierarchy:

Ug=—2xk%sech b, ;. (36)

The resulting secularity-free evolution equation at this order
will be

Lupn=3(4)""?(k)*"* >seclf 0, stanhbp 5. (37)
Assuming a vanishing solution for the associated homoge-
neous equation, the solution to this equation can be written in
the form

Assuming a vanishing solution for the associated homoge-

neous equation, we can write the solution of this equation in

the form

U,=4x2uq, (28)
with ug given by (26).
We proceed then to the next order, where we obtain

Lu4:_u077_u075§§+ u27'5+ U273§§+ 6U2U2§. (29)
Following the same scheme used above, we can use the co
patibility condition

(u07'3) T7:(UOT7) T3 (30)

to obtain the evolution ofly in the time . It is given by
Uor, = F7= —Ug7g + 14UgUo(s¢) T 42Uoslo(as)

+ 14qﬂm0)3,u,0§+ 7QJO§§UO§§§_ 280JOU0§U0§§
—70(Ugg)®— 70U Upg s » (31)

which is exactly the seventh-order equation of the KdV hi-
erarchy. At this order, therefore, the solitary wave must sat
isfy simultaneously the first three equations of the KdV hi-
erarchy, respectively, in the times, 75, and ;. This means
that

Uo=—2«k?seci6,. (32
Now, by using Eq(28) to expresa,, and the equations of

the KdV hierarchy to expressiy,, Ug,, and Up,, all

secular-producing terms of E(R9) are automatically elimi-
nated. Then, substituting the soluti@®), Eq. (29) becomes

Lu,=768«’secl #;tanty; . (33

m_

Uzn=(4x?)"uy, (38
with ug given by Eq.(36). Extending this procedurad in-
finitum, uy will represent a solitary wave satisfying simulta-
neously all equations of the KdV hierarchy, and we obtain an
exact solution for the RLW equation.

IV. RETURNING TO THE LABORATORY COORDINATES

Let us take the solutions,,, and substitute them in ex-
pansion(12). Puttingu, in evidence, we obtain

u=e?Ug[ 1+ 4€®k?+ 16e*k*+ 64e°k%+ - - -].  (39)
Now, the above series can be summed:
1+ 4€?k%+ 16€*k*+64€8k5+ - - - :—12—2. (40)
1-4e°k
Therefore, we obtain the RLW exact solution
u=-— % sech[ k¢ —4x313+ 16k° 75
) 64kt -], (41)

Then, by using Eqgs(5), (8), and (9), we can rewriteu in
terms of the laboratory coordinatel,X,t). The result is

2k?
=— msecﬁ[kx— K(1+4k?+ 16k*+64k8+ - - )t].
(42)
Again using Eq.(40) with ex=k, we finally obtain
t 2
u=—a secht k(x— Tk ) A=z 43

Again, by assuming a vanishing solution for the associated
homogeneous equation, the solution of this equation can be&hich is the solitary wave solution of the RLW equatidn.
written as The RLW equation has another solution, given by
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2k2 is that developed by Kodama and Mikhailp8/.
u=b tantf| k| x— 1red/ | P 1ire (44) Let us start by defining slow variables according to
— _ 1 _ — 3/
In fact, it is easy to see that E@l) is invariant under the u=ev, £=€x-t), m=ert. (49)
transformation In these coordinates, and up to terms of oré&r Eq. (1)
t'=a, x'=x, u'=b-au, (45)  becomes
where, if u is given by Eq.(43), u’ turns out to be the v73=(9§[3v2—v§§+ €0ee(302—v )
solution given by Eq(44). By following the same procedure
used to obtain the RLW solitary wave solutigtB), it is also + 63&(4§)(302—U§§)+ e (50

possible to use the multiple-time perturbative scheme to ob-

tain solution(44). This is done by choosing Then, we make a near identity transformat[®h given by

Up=2rtantf (k¢ —8r’rs), (46 v=W+ ed (W) + €W (W) +O( %), (51)
instead of(17) as the solution for the KdV equatidi4). As

higher orders are reached, thig is also required to satisfy where, for reasons of scaling-weight invariance, the differen-
the higher-order equations of the KdV hierarchy, whichtial polinomials® and¥, which are allowed to be nonlocal,
amounts to include dependences on the higher-order time=n involve only the following terms:

75, 77, €tc. However, there is an important difference: the

secular-prqducing term in each orde_r of the perturbative CI)=aW2+BW§§+ ,ngaflwy (52)
scheme will come not only from the linear term, but from

both the linear and nonlinear terms. As a consequence, the

slow time normalizations obtained from the linear dispersion ¥ =aW’+b(wg)?+CcWWge+ dW 4z +€WWd W

relation expansion will not be able to remove the secular-
producing terms in this case. In other words, different slow
time normalizations will be needed to obtain a secularity-free (53
perturbative series. These normalizations can be easily found

by properly choosing the free parameters left at each order afpstituting into(50), we obtain

the perturbation scheni@]. After doing that, we obtain the
following perturbative series fau:

+ W™ H(W?) + gWeged W+ hwe(d w)2.

WT3=K3+ eKg+ e?Ky+ - - -, (54
u=e1-8k*+64k*—- -]
with
X tantf[kx—k(1—8k2+64k*—- . -)]. (47
K3:(9§M0, (55)
As in the previous case, these series can be summed, result-
ing in
K= M1+ dgMy) MD(&M) (56)
_2k2 "N t 4s 5T IATIL T OEENI0) gy NYET0
U= Trad@m K X" g | (“48)

o

K7:(9 (M2+(9 M1+a4 Mo)__(a Mo)
which is the solution44) of the RLW equation. As already ¢ ¢ “ sw
stated, however, another slow time normalization is needed 5D 5D
in this case to obtain a secularity-free perturbative series, —— 19 M1+3::Mp) ——=(d:My) (57)

O , ; h ow | %€ geVlo) =5 (9eMo) |
which is different from that obtained from the dispersion
relation expansion.
where we have introduced the notation

V. STUDY OF THE APPLICABILITY

— 2
OF THE MULTIPLE-SCALE METHOD Mo=3W"— W, (58)
The multiple-scale method is not always able to remove M;=6wd— Dy, (59
all the secular-producing terms of a perturbative s¢8édn
some cases, honintegrable effects may preclude the existence M,=3d?+ 6wl ~ W (60)

of uniform asymptotic expansions. Considering that the
RLW is nonintegrable, the purpose of this section will be to
make a brief discussion of how those effects appear in th
higher-order terms of the perturbative series for the specific

case of the RLW equation. The approach we are going to use Kg=F3=6WwW;— W, (61)

At order €% we find
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orders, therefore, no problems appear. This is a general result
that holds for any equation, not only for the particular case of
the RLW equation. It is in the next order that the so called
obstacleg8] show up. In fact in the next order we obtain

that is,K 5 is the symmetry of orde¢® of the KdV equation.
At the next order, by properly choosing B, andy, we find

K5: F5, (62)

: ' : . K;=F;+ , 63
with F5 defined by Eq(22). This means that there exists a 7=F7+OW) 63
near-identity transformatioit1)—(53) such thatKs is the  with F; defined by Eq(31), andO(w) representing the ob-
symmetry of ordere of the KdV equation. In the first two stacle, which is given by

32 20 508 3
700 224 )
+(22—3c—6b—60d)We W+ T—18a—120—6f+729 WW W+ T—3f+21g W W g
158
+| - —6a—6b—3f+18g (wy)?. (64)

The important point is that, for an arbitrary KdV hierarchy wave[11] equations. However, while in these two cases the
solutionw, it is not possible to choosgb, ...,g in such a solitary wave solution was obtained due to a truncation of
way to have a vanishing obstacle. However, as an explicithe perturbative series, the RLW solitary wave was obtained
calculation easily shows, whem is a solitary-wave solution by summing the perturbative series.
of the KdV hierarchy, there is a near-identity transformation  To finish, let us make the following considerations. If we
leading toO(w)=0. assume the RLW equation to be an exact model equation, as
The above considerations are important in the sense thWe have in fact done' the KdV equation appears as its |Ong_
they clarify the results obtained in the previous sections CONgyavelength leading-order approximation. This is one more
cerning solitary-wave-related secularities. But, at the sam@gnfirmation of the widely known property of the KdV equa-
time, they put into evidence the limitations of the perturba-tion, which states that it holds a unique, privileged, and uni-

tive scheme which, as we now know, cannot be extended 9., 5| meaning in the sense it appears as the leading-order

the two-or-more soliton solutions in the nonintegrable case, proximation of any weakly nonlinear dispersive systems,

On the other hand, for integrable systems, as for example th s for example that represented by the RLW equation. From

shallow water wave equation, the multiple-scale method will ;. ; . ; .
be able to handle both the solitary-wave- and theth|s point of view, the old disputgl2] on the equivalence of

N-soliton-related secularitigd.0] since no obstacles will be ;Ehe RtLW ang th.e Kdt\é eguwaons WtC.)UId Ee rlr:jage on a d'f'd
present in either case. erent ground, since the equation should be compare

not to the KdV equation, but to the whole set of equations of
the KdV hierarchy. In other words, the RLW equation should
VI. FINAL REMARKS be compared not to its leading-order approximation, but to
the whole perturbative series. And according to our results,
We have applied a multiple-time version of the reductiveas far as solitary waves are concerned, the RLW equation is
perturbation method to study the solitary-wave solution ofindeed equivalent to the KdV hierarchy, since a solitary
the RLW equation. As it has already been shddhthe use  wave of the RLW equation is nothing but an infinite series
of mUltipIe'time scales allows for the elimination of all given by the sum of So|itary waves Satisfying Simu|taneous|y

solitary-wave-related secular-producing terms appearing igj| equations of the KdV hierarchy, each one in a different
the evolution equations of the higher-order terms of the wave|ow time variable.

field. Moreover, it has also been shoW] that these secu-

larities are automatically removed if the slow time scales are

norm_ahzed_ accord|_ng to the Io_ng-wavelen_gth expansion _of ACKNOWLEDGMENTS
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