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By considering the long-wavelength limit of the regularized long wave~RLW! equation, we study its
multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg–de Vries
hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case
of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be
summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and
considerations are made on theN-soliton solution, as well as on the limitations of applicability of the multiple-
scale method in obtaining uniform perturbative series.@S1063-651X~96!08909-X#

PACS number~s!: 03.40.Kf

I. INTRODUCTION

The regularized long-wavelength~RLW! equation,

ut1ux2uxxt26uux50, ~1!

also known as the Peregrine@1# or Benjamin-Bona-Mahony
@2# equation, was originally introduced as an alternative for
the Korteweg–de Vries~KdV! equation

ut1ux1uxxx26uux50. ~2!

Despite having quite different dispersion properties, these
two equations possess an intimate relationship. For example,
the linear dispersion relation of the RLW equation is

v~k!5
k

11k2
, ~3!

which, by the way, is the same as the dispersion relation of
the shallow water wave equation@3#. For long wavelengths,
k is small, andv(k) can be expanded according to

v~k!5k2k31O~k5!. ~4!

The first two terms of this expansion coincide exactly with
the complete linear dispersion relation of the KdV equation.
Thus, for sufficiently long wavelengths, the traveling-wave
solutions of Eqs.~1! and~2! are expected to be quite similar.
Despite this, there is a deep difference between these two
cases, since a polynomial is definitely not equivalent to an
infinite series. This difference, which appears when higher-
order terms of the dispersion relation expansion are consid-
ered, might also show up at higher-order approximations in a
perturbation theory.

As is well known, the KdV equation governs the first
relevant order of an asymptotic perturbation expansion, de-
scribing weakly nonlinear dispersive waves. However, to
make sense of it as really governing such waves, the large
time behavior of the perturbative series must be analyzed@4#.
In other words, one needs to study the evolution equations of
the higher-order terms of the perturbative expansion to check
for the existence or not of secular-producing terms. This

study, usually neglected in the derivation of the KdV equa-
tion, is essential to guarantee the uniformity of the perturba-
tive expansion, thus rendering a real meaning to the KdV
equation.

Motivated by the above considerations, in this paper we
are going to apply a multiple-time version@5# of the reduc-
tive perturbation method to study long waves as governed by
the RLW equation. As we are going to see, the KdV equation
appears at the lowest relevant order of the perturbative
scheme. Then, by assuming a solitary wave solution for the
KdV equation, we consider higher-order approximations and
show that the corresponding solitary-wave-related secular-
producing terms can be eliminated from every order of the
perturbative scheme. The equations of the KdV hierarchy,
which appear as a consequence of natural compatibility con-
ditions, are shown to play a crucial role in the process of
eliminating the secular producing terms. Once a secularity-
free perturbative series is obtained, we show that it may be
summed to give the exact solitary wave solution of the RLW
equation. We then close the paper with a discussion on the
N-soliton case, as well as on the limitations of the multiple
scale method.

II. MULTIPLE-TIME FORMALISM

To study the long-wavelength limit of the RLW equation,
we put

k5ek, ~5!

with e a small parameter. In this limit, the dispersion relation
~3! can be expanded as

v~k!5ek2e3k31e5k52e7k71•••. ~6!

Accordingly, the solution of the corresponding linear RLW
equation can be written in the form

u5a exp$ i @kx2v~k!t#%

[a exp$ i @ke~x2t !1e3k3t2e5k5t1e7k7t1•••#%,

~7!
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wherea is a constant. As given by this solution, we now
define a slow space

j5e~x2t !, ~8!

as well as an infinity of properly normalized slow time vari-
ables,

t35e3t; t552e5t, t75e7t, etc. ~9!

Consequently, we have

]

]x
5e

]

]j
, ~10!

and

]

]t
52e

]

]j
1e3

]

]t3
2e5

]

]t5
1e7

]

]t7
2•••. ~11!

It is important to note that the introduction of slow time
variables normalized according to the dispersion relation ex-
pansion are such that they allow for an automatic elimination
of the solitary-wave-related secular-producing terms appear-
ing in the evolution equations for the higher-order terms of
the wave field@6#.

III. PERTURBATION THEORY

The perturbative scheme consists of making the expan-
sion

u[e2û5e2~u01e2u21e4u41••• !, ~12!

and substituting it, together with Eqs.~10! and~11!, into the
RLW equation~1!. The result is the multiple-time equation

S e3
]

]t3
2e5

]

]t5
1••• D û

2e2
]2

]j2 S 2e
]

]j
1e3

]

]t3
2e5

]

]t5
1••• D û

23e3
]

]j
~u0

212e2u0u21••• !50. ~13!

We proceed then to an order-by-order analysis of this equa-
tion.

At the lowest order, we obtain

u0t3
5F3[2u0jjj16u0u0j50, ~14!

which is the KdV equation. Introducing an operatorL, whose
action on any componentun is given by the linearized KdV
operator

Lun[unt3
1unjjj26~u0un!j , ~15!

the KdV equation~14! can be rewritten in the form

Lu0526u0u0j . ~16!

Our interest in this paper is concerned with solitary waves.
Thus we assumeu0 to be the solitary-wave solution of the
KdV equation~14!,

u0522k2sech2u3 , ~17!

whereu35k@j24k2t3#. In this case, Eq.~16! becomes

Lu0548k5sech4u3tanhu3 . ~18!

In the next order, we obtain the equation

Lu25u0t3jj1u0t5
. ~19!

The evolution ofu0 in the time t3 is given by the KdV
equation~14!, but the evolution ofu0 in the timet5 is not
known up to this point. However, the multiple-time formal-
ism introduces constraints which determine uniquely the
evolution ofu0 in any higher-order time@5#. To see how this
is possible, let us make the following considerations.

First, to have a well ordered perturbative scheme, we im-
pose that each one of the equations describing the higher-
order times evolution ofu0 be e independent when passing
from slow (k,u0 ,j,t2n11) to laboratory coordinates
(k,u,x,t). This will select all possible terms to appear in
u0t2n11

. For instance, the evolution ofu0 in the timet5 is
restricted to be of the form

u0t5
5a5u0~5j!1b5u0u0jjj1g5u0ju0jj1d5u0

2u0j ,
~20!

wherea5, b5, g5, and d5 are constants to be determined.
Then, by imposing the natural~in the multiple-time formal-
ism! compatibility condition

~u0t3
!t5

5~u0t5
!t3
, ~21!

it is possible to determine the above constants in terms of
a5, which is left as a free parameter. As it can be verified@5#,
the resulting equation is the fifth-order equation of the KdV
hierarchy,

u0t5
5F5[u0~5j!210u0u0jjj220u0ju0jj130u0

2u0j .
~22!

The right-hand side of this equation would in principle ap-
pear multiplied by the free parametera5, which would ac-
count for different possible normalizations of the timet5.
However, since we have already defined the slow time nor-
malizations, this parameter was taken to be 1, in order to
have agreement with the normalizations introduced in Eq.
~9!. This is an important point since, as we have already
stated, it allows for an automatic elimination of the solitary-
wave-related secular-producing terms appearing in the right-
hand side of Eq.~19!. These terms, whenu0 is assumed to be
a solitary wave of the KdV equation, are always of the form
@7#

u0@~2n11!j#, n50,1,2, . . . . ~23!

Thus, using Eqs.~14! and ~22!, respectively, to describe
u0t3

andu0t5
, Eq. ~19! becomes
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Lu2522u0ju0jj24u0u0jjj130u0
2u0j . ~24!

We notice in passing that the substitution of Eqs.~14! and
~22!, respectively, foru0t3

andu0t5
, with properly normal-

ized slow times, allowed for an automatically elimination of
all solitary-wave-related secular-producing terms of Eq.~19!.
In fact, Eq.~24! does not present any secular-producing term
anymore. Moreover, we see that at this orderu0 must satisfy
simultaneously the first two equations of the KdV hierarchy,
respectively, in the slow timest3 and t5. Introducing the
general definition

u2n115k@j24k2t3116k4t52•••1~21!n~2k!2nt2n11#,
~25!

such a solitary wave is given by

u0522k2sech2u5 , ~26!

and Eq.~24! becomes

Lu25192k7sech4u5tanhu5 . ~27!

Assuming a vanishing solution for the associated homoge-
neous equation, we can write the solution of this equation in
the form

u254k2u0 , ~28!

with u0 given by ~26!.
We proceed then to the next order, where we obtain

Lu452u0t7
2u0t5jj1u2t5

1u2t3jj16u2u2j . ~29!

Following the same scheme used above, we can use the com-
patibility condition

~u0t3
!t7

5~u0t7
!t3

~30!

to obtain the evolution ofu0 in the timet7. It is given by

u0t7
5F7[2u0~7j!114u0u0~5j!142u0ju0~4j!

1140~mm0!
3m0j170u0jju0jjj2280u0u0ju0jj

270~u0j!
3270u0

2u0jjj , ~31!

which is exactly the seventh-order equation of the KdV hi-
erarchy. At this order, therefore, the solitary wave must sat-
isfy simultaneously the first three equations of the KdV hi-
erarchy, respectively, in the timest3, t5, andt7. This means
that

u0522k2sech2u7 . ~32!

Now, by using Eq.~28! to expressu2, and the equations of
the KdV hierarchy to expressu0t7

, u0t5
, and u0t3

, all
secular-producing terms of Eq.~29! are automatically elimi-
nated. Then, substituting the solution~32!, Eq. ~29! becomes

Lu45768k9sech4u7tanhu7 . ~33!

Again, by assuming a vanishing solution for the associated
homogeneous equation, the solution of this equation can be
written as

u45~4k2!2u0 , ~34!

with u0 given now by Eq.~32!.
This procedure can be repeated up to any higher order. In

other words, we can use the compatibility condition

~u0t3
!t2n11

5~u0t2n11
!t3

~35!

to obtain the evolution ofu0 in the timet2n11, which will
turn out to be the (2n11)th equation of the KdV hierarchy.
In this case,u0 will represent a solitary wave satisfying si-
multaneously the firstn equations of the KdV hierarchy:

u0522k2sech2u2n11 . ~36!

The resulting secularity-free evolution equation at this order
will be

Lu2n53~4!n12~k!2n15sech4u2n13tanhu2n13 . ~37!

Assuming a vanishing solution for the associated homoge-
neous equation, the solution to this equation can be written in
the form

u2n5~4k2!nu0 , ~38!

with u0 given by Eq.~36!. Extending this proceduread in-
finitum, u0 will represent a solitary wave satisfying simulta-
neously all equations of the KdV hierarchy, and we obtain an
exact solution for the RLW equation.

IV. RETURNING TO THE LABORATORY COORDINATES

Let us take the solutionsu2n and substitute them in ex-
pansion~12!. Puttingu0 in evidence, we obtain

u5e2u0@114e2k2116e4k4164e6k61•••#. ~39!

Now, the above series can be summed:

114e2k2116e4k4164e6k61•••5
1

124e2k2 . ~40!

Therefore, we obtain the RLW exact solution

u52
2e2k2

124e2k2 sech
2@kj24k3t3116k5t5

264k7t71•••#. ~41!

Then, by using Eqs.~5!, ~8!, and ~9!, we can rewriteu in
terms of the laboratory coordinates (k,x,t). The result is

u52
2k2

124k2
sech2@kx2k~114k2116k4164k61••• !t#.

~42!

Again using Eq.~40! with ek5k, we finally obtain

u52a sech2FkS x2
t

124k2D G , a5
2k2

124k2
, ~43!

which is the solitary wave solution of the RLW equation~1!.
The RLW equation has another solution, given by
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u5b tanh2FkS x2
t

118k2D G , b5
2k2

118k2
. ~44!

In fact, it is easy to see that Eq.~1! is invariant under the
transformation

t85a21t, x85x, u85b2au, ~45!

where, if u is given by Eq.~43!, u8 turns out to be the
solution given by Eq.~44!. By following the same procedure
used to obtain the RLW solitary wave solution~43!, it is also
possible to use the multiple-time perturbative scheme to ob-
tain solution~44!. This is done by choosing

u052k2tanh2~kj28k3t3!, ~46!

instead of~17! as the solution for the KdV equation~14!. As
higher orders are reached, thisu0 is also required to satisfy
the higher-order equations of the KdV hierarchy, which
amounts to include dependences on the higher-order times
t5, t7, etc. However, there is an important difference: the
secular-producing term in each order of the perturbative
scheme will come not only from the linear term, but from
both the linear and nonlinear terms. As a consequence, the
slow time normalizations obtained from the linear dispersion
relation expansion will not be able to remove the secular-
producing terms in this case. In other words, different slow
time normalizations will be needed to obtain a secularity-free
perturbative series. These normalizations can be easily found
by properly choosing the free parameters left at each order of
the perturbation scheme@6#. After doing that, we obtain the
following perturbative series foru:

u5e2@128k2164k42•••#

3tanh2@kx2k~128k2164k42••• !#. ~47!

As in the previous case, these series can be summed, result-
ing in

u5
2k2

118k2
tanh2FkS x2

t

118k2D G , ~48!

which is the solution~44! of the RLW equation. As already
stated, however, another slow time normalization is needed
in this case to obtain a secularity-free perturbative series,
which is different from that obtained from the dispersion
relation expansion.

V. STUDY OF THE APPLICABILITY
OF THE MULTIPLE-SCALE METHOD

The multiple-scale method is not always able to remove
all the secular-producing terms of a perturbative series@8#. In
some cases, nonintegrable effects may preclude the existence
of uniform asymptotic expansions. Considering that the
RLW is nonintegrable, the purpose of this section will be to
make a brief discussion of how those effects appear in the
higher-order terms of the perturbative series for the specific
case of the RLW equation. The approach we are going to use

is that developed by Kodama and Mikhailov@8#.
Let us start by defining slow variables according to

u5ev, j5e1/2~x2t !, t35e3/2t. ~49!

In these coordinates, and up to terms of ordere2, Eq. ~1!
becomes

vt3
5]j@3v

22vjj1e]jj~3v
22vjj!

1e3]~4j!~3v
22vjj!1•••#. ~50!

Then, we make a near identity transformation@9# given by

v5w1eF~w!1e2C~w!1O~e3!, ~51!

where, for reasons of scaling-weight invariance, the differen-
tial polinomialsF andC, which are allowed to be nonlocal,
can involve only the following terms:

F5aw21bwjj1gwj]
21w, ~52!

C5aw31b~wj!
21cwwjj1dw~4j!1ewwj]

21w

1 fwj]
21~w2!1gwjjj]

21w1hwjj~]21w!2.

~53!

Substituting into~50!, we obtain

wt3
5K31eK51e2K71•••, ~54!

with

K35]jM0 , ~55!

K55]j~M11]jjM0!2
dF

dw
~]jM0!, ~56!

K75]j~M21]jjM11]~4j!M0!2
dC

dw
~]jM0!

2
dF

dw F]j~M11]jjM0!2
dF

dw
~]jM0!G , ~57!

where we have introduced the notation

M053w22wjj , ~58!

M156wF2Fjj , ~59!

M253F216wC2Cjj . ~60!

At order e0 we find

K35F3[6wwj2wjjj , ~61!
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that is,K3 is the symmetry of ordere
0 of the KdV equation.

At the next order, by properly choosinga, b, andg, we find

K55F5 , ~62!

with F5 defined by Eq.~22!. This means that there exists a
near-identity transformation~51!–~53! such thatK5 is the
symmetry of ordere of the KdV equation. In the first two

orders, therefore, no problems appear. This is a general result
that holds for any equation, not only for the particular case of
the RLW equation. It is in the next order that the so called
obstacles@8# show up. In fact in the next order we obtain

K75F71O~w!, ~63!

with F7 defined by Eq.~31!, andO(w) representing the ob-
stacle, which is given by

O~w!5S 2
32

3
23gDww~5j!1S 2

20

3
23c224d23gDwjw~4j!1S 2

508

3
16a12 f218gDw3wj

1~2223c26b260d!wjjwjjj1S 7003 218a212c26 f172gDwwjwjj1S 2243 23 f121gDw2wjjj

1S 1583 26a26b23 f118gD ~wj!
3. ~64!

The important point is that, for an arbitrary KdV hierarchy
solutionw, it is not possible to choosea,b, . . . ,g in such a
way to have a vanishing obstacle. However, as an explicit
calculation easily shows, whenw is a solitary-wave solution
of the KdV hierarchy, there is a near-identity transformation
leading toO(w)50.

The above considerations are important in the sense that
they clarify the results obtained in the previous sections con-
cerning solitary-wave-related secularities. But, at the same
time, they put into evidence the limitations of the perturba-
tive scheme which, as we now know, cannot be extended to
the two-or-more soliton solutions in the nonintegrable case.
On the other hand, for integrable systems, as for example the
shallow water wave equation, the multiple-scale method will
be able to handle both the solitary-wave- and the
N-soliton-related secularities@10# since no obstacles will be
present in either case.

VI. FINAL REMARKS

We have applied a multiple-time version of the reductive
perturbation method to study the solitary-wave solution of
the RLW equation. As it has already been shown@5#, the use
of multiple-time scales allows for the elimination of all
solitary-wave-related secular-producing terms appearing in
the evolution equations of the higher-order terms of the wave
field. Moreover, it has also been shown@6# that these secu-
larities are automatically removed if the slow time scales are
normalized according to the long-wavelength expansion of
the dispersion relation of the original equation. By using this
strategy, we have succeeded in expressing the solitary wave
solution of the RLW equation as a sum of solitary-waves
satisfying simultaneously, in the slow coordinates, all equa-
tions of the KdV hierarchy. Similar results have been shown
to hold also for the Boussinesq@11# and the shallow water

wave @11# equations. However, while in these two cases the
solitary wave solution was obtained due to a truncation of
the perturbative series, the RLW solitary wave was obtained
by summing the perturbative series.

To finish, let us make the following considerations. If we
assume the RLW equation to be an exact model equation, as
we have in fact done, the KdV equation appears as its long-
wavelength leading-order approximation. This is one more
confirmation of the widely known property of the KdV equa-
tion, which states that it holds a unique, privileged, and uni-
versal meaning in the sense it appears as the leading-order
approximation of any weakly nonlinear dispersive systems,
as for example that represented by the RLW equation. From
this point of view, the old dispute@12# on the equivalence of
the RLW and the KdV equations would be made on a dif-
ferent ground, since the RLW equation should be compared
not to the KdV equation, but to the whole set of equations of
the KdV hierarchy. In other words, the RLW equation should
be compared not to its leading-order approximation, but to
the whole perturbative series. And according to our results,
as far as solitary waves are concerned, the RLW equation is
indeed equivalent to the KdV hierarchy, since a solitary
wave of the RLW equation is nothing but an infinite series
given by the sum of solitary waves satisfying simultaneously
all equations of the KdV hierarchy, each one in a different
slow time variable.
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