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Abstract 

We give here an n-point Chebyshev-type rule of algebraic degree of precision n - 1, but having nodes that can be 
given explicitly. This quadrature rule also turns out to be one with an “almost” highest algebraic degree of precision. 
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1. Introduction 

Let w(t) be an integrable nonnegative weight function on [a, bl. Then the n-point 
quadrature rule 

lbf(+v(t) dt = i wJn)+!n)) + [E,(f), 
a r=l 

where the nodes x!“) are all distinct and belong to (a, b), and E,(f) = 0 for f(t) E aD,, is said to 
have an algebraic degree of precision equal to N. 

When N takes the maximum value 2n - 1, the quadrature rule is known as a Gaussian rule. 
Following [2], one may also refer to a Gaussian rule as one of highest algebraic degree of 
precision. 

If the nodes wzn), Y = 1, 2, . . . , n, are all equal, then the quadrature rule is known either as a 
Chebyshev rule when N 2 it or as a Chebyshev-type rule when N < it. 
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The only Chebyshev rule, which also turns out to be a Gaussian rule, is that with 
w(t) = (1 - t2)-“2 in (- 1, 1). This quadrature rule, apart from being one of the very few 
Gaussian rules which have explicit nodes and weights, is the only Chebyshev rule with explicit 
nodes. 

Let us refer to any n-point quadrature rule with a precision given by lE,(f> = 0 whenever 
tkf(t) E P,,_, (where k is any integer, positive or negative) also as a quadrature rule of highest 
algebraic degree of precision. Our principal result is the following. 

Theorem 1. Zf 0 < a < b < ~0 and G(t) = i<l + m/t)/(fi\lt-a), then 

/“f(t)+(t) dt = ; $ j-(x!“‘), for t”-‘./-(t) E bn-2, 
a r-l 

provided that 

x(“) 
n+l-m =p+cr~~)+~(P+a~~))2-p2, 

p = P2 
m #o , form=l,2, ‘.‘, [t<n + I)], 

n+l-m 

where 82’ = 1 + cos((2m - UT/~), p = && and CI = $(6 - 6)“. 

This n-point quadrature rule, which lacks one degree from being 
degree of precision, is a Chebyshev-type rule with precision II - 1. 

2. Proof of Theorem 1 and some related results 

one of highest algebraic 

Proof of Theorem 1. For xl”) as given in Theorem 1, it has been shown [3] that when F(t) 

satisfies t”F(t) E lP2,_1, 

/ (1 ‘F t 
a 

If we take F(t) = $‘(t + P>f(t), then whenever f(t) satisfies t”-‘f(t) E P2n_2, it follows 
that t “F( t) E P,, _ 1, and therefore we obtain the required result of the theorem. 0 

One can observe that, since the Chebyshev-type rule given in Theorem 1 has degree of 
precision II - 1, it is also an interpolatory quadrature rule. This is not the case for Chebyshev- 
type rules of lesser degree. 

In Theorem 1, we now consider the linear transformations 

t = i(‘b -z)u + i(b + a) and t = -i(b -z)u + i(b + a). 

If we take in the first case A = (6 - 6>/<6 + 6) and in the other A = -(6 - &j/(6 + 
&>, the following result is obtained. 
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Theorem 2. If 0 < 1 A 1 < 1 and 

1 - A2 1 +A* 
,(n) = ~ r y’n’ _ ~ 

2A r 2A ’ 
I-=1,2, . . . ) n, 

where yr!, _-m = 22) + /( zg’)* - 1) y2' = l/y?!,_, and 

Z(n) _ 1 + A2cos((2m - l)r/n) 
m- l -A2 

) m=1,2, ***> [i(n + I)], 

then 

/’ ( I( f t 1 -P-l’* 1 +‘A;::,, dt = ; $ f(@), forf(f) E Y-1. 
-1 r-1 

This result is perhaps already known, as one can also derive it in the following manner. We 
note that the weight function is the same as the one considered in [4]. Taking I A I < 1, Ullman 
[4] shows that for the quadrature rule to be a Chebyshev rule, the cry) must be the zeros of the 
polynomial 

He proceeds to show that only when I A I G i, the zeros of P,(z) are distinct and belong to the 
interval (- 1, 1). 

Using a result of [l], one can say that the zeros of the polynomial P,(z) + c, where c is any 
real parameter, lead to a Chebyshev-type quadrature rule with precision IZ - 1. Hence, to 
obtain the result of the theorem, we consider the polynomial P,(z) + (+A)“. When 0 < I A I < 1, 
it can be verified that the zeros (Y, (n) of this polynomial can be given as in the theorem. 
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