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A B S T R A C T

This work presents a systematic review concerning recent studies and technologies of machine learning for
Barrett's esophagus (BE) diagnosis and treatment. The use of artificial intelligence is a brand new and promising
way to evaluate such disease. We compile some works published at some well-established databases, such as
Science Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing Institute (MDPI), Association
for Computing Machinery (ACM), Springer, and Hindawi Publishing Corporation. Each selected work has been
analyzed to present its objective, methodology, and results. The BE progression to dysplasia or adenocarcinoma
shows a complex pattern to be detected during endoscopic surveillance. Therefore, it is valuable to assist its
diagnosis and automatic identification using computer analysis. The evaluation of the BE dysplasia can be per-
formed through manual or automated segmentation through machine learning techniques. Finally, in this survey,
we reviewed recent studies focused on the automatic detection of the neoplastic region for classification purposes
using machine learning methods.
1. Introduction

The adenocarcinoma appearance in Barrett's esophagus (BE) diag-
nosed patients has increased significantly in western populations. This is
mainly explained by obesity, a known risk factor [1–3]. As such, the
expectation of this disease to rise in the next years must be considered.
The bad prognosis for patients suffering from esophageal adenocarci-
noma is related to its late diagnosis. However, when detected at the early
stages, the dysplastic tissue can be treated with very successful rates of
handling the disease, such as 5% of morbidity and 0% of mortality.
Additionally, 93% of patients featured a complete remission of the dis-
ease after 10 years treatment [2,4,5]. Developments in interventional
therapies, such as endoscopic resection and ablation techniques (radio-
frequency ablation, cryoablation) are promising methods for the man-
agement of BE, with the potential of reducing the cancer risk in dysplasia
diagnosed patients. However, there are limitations of the currently
accepted methods for monitoring and evaluating the disease state of BE
patients, with the benefit from early diagnosis and additional tools to
improve the detection of dysplasia [6–8].
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Several endoscopic technologies for image enhancement, such as
chromoendoscopy, electronic image enhancement, optical coherence
tomography, and confocal laser endomicroscopy have been developed
for BE evaluation, enabling endoscopists to conduct a more accurate
assessment of the dysplasia with an in vivo characterization of esophageal
histology [9]. This ability could result in improvements concerning the
detection of BE (screening), detection of dysplasia based on BE surveil-
lance, characterizing abnormalities within BE (selecting lesions and
delineating margins during endoscopic therapy), and detection of
recurrent neoplasia in patients who have received endoscopic treatment
(post-treatment surveillance) [9].

BE is oftenmisdiagnosed during endoscopy because of: (1) inability to
differentiate columnar mucosa of the proximal stomach (cardia) from
metaplastic epithelium in the distal esophagus; or (2) lack of goblet cells
in biopsies obtained from columnar lined epithelium in the esophagus.
Since dysplasia/BE areas are sometimes not readily perceived with
standard white-light endoscopy, the Seattle biopsy protocol is usually
recommended, where biopsies are taken for every 1 cm of the BE's mu-
cosa. However, this protocol may be susceptible to sampling errors
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mailto:papa@fc.unesp.br
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2018.03.014&domain=pdf
www.sciencedirect.com/science/journal/00104825
http://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2018.03.014
https://doi.org/10.1016/j.compbiomed.2018.03.014
https://doi.org/10.1016/j.compbiomed.2018.03.014


L.A. de Souza Jr. et al. Computers in Biology and Medicine 96 (2018) 203–213
because only a small part of the entire BE mucosa is usually considered
for sampling purposes, especially in patients with extensive disease area
[9]. Besides, the biopsy protocol can be costly and time-consuming, and
thus prone to errors. Consequently, the risk of missed dysplasia or cancer
diagnosis rises significantly [10]. Other studies have also considered the
classification of different esophagus' lesion types based on color and
texture information of the injured tissue area as well [11].

Machine learning techniques have benefited from significant im-
provements in image analysis and artificial intelligence fields. However,
related to the automated analysis of BE, we observed one recent work
only that attempted to compile relevant articles [12]. This work is a very
brief survey to discuss advances in BE Computer-aided diagnosis (CAD)
systems in three endoscopy modalities used for esophageal examination:
(i) white light endoscopy (WLE), (ii) high-definition white light endos-
copy (HD-WLE), and (iii) narrow band imaging (NBI). Focusing on
detection methods lately developed for BE detection, the survey is
composed of eight papers about automatic detection and evaluation of
the BE, compared by its endoscopy modality, number of images and
evaluated classifiers applied to the problem, validation method and re-
sults. The authors state the challenges for this detection and mention
some directions for future research.

Our work aims at reviewing and investigating the feasibility and
usage of machine learning techniques in the context of BE evaluation,
dysplasia description, and treatment, thus providing more details to the
previous brief survey. Next sections present the methodology used to
evaluate the compiled articles, as well as some medical background
related to the disease.

2. Theoretical background

2.1. Barrett's esophagus

The replacement of squamous cells by columnar cells in the esoph-
agus' mucosa is known as BE. This process is recognized as a complication
of gastroesophageal reflux disease, and in some critical stage, it can
progress and evolve into esophageal cancer. Fig. 1 illustrates the human
esophagus region [2,4,13].

Squamous cells (similar cells to skin or mouth ones) compose the
Fig. 1. Esophagus' location in the human body.
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mucosa of the normal esophagus. The normal color of the squamous
mucosal surface looks like whitish-pink, while the gastric mucosa goes
sharply from salmon-pink to red [2,4]. A demarcation line called squa-
mocolumnar junction or “Z-line” defines the normal esophagogastric
junction (Fig. 2), where the squamous mucosa of the esophagus and the
columnar mucosa of the stomach meet [13]. BE's mucosa may extend
upward in a continuous pattern, making the entire circumference of the
distal esophagus covered by columnar mucosa. A difference is stablished
among patients with more than 3 cm of BE (“long-segment BE”) and
those who feature the so-called “short-segment BE”, with refers to BE that
figures less than 3 cm, as depicted in Fig. 3.
2.2. Machine learning

Machine learning techniques have been paramount in the last de-
cades mainly due to their capability in handling problems non-linearly by
nature. Given a dataset composed of samples, the traditional pipeline
used for so many years considers partitioning the data into training and
testing sets. The former is used to learn the model (i.e., statistics of the
data) meanwhile the testing set is used to assess the efficiency of the
method.

Depending on the amount of knowledge we have about the training
set, machine learning techniques can be categorized into three main
groups: (i) supervised, (ii) semi-supervised, and (iii) unsupervised ap-
proaches. Supervised techniques usually achieve the best results since
they make use of an entirely labeled training set, thus having more in-
formation to cope with. Semi-supervised learning approaches make use
of both labeled and unlabeled data since only a fraction of the training
data is labeled. Different approaches such as active learning-based or
reinforcement learning can be referred to as well. In a nutshell, these
approaches employ the user knowledge into the learning process, which
can thus refine the results and correct possible errors.

Unsupervised learning or clustering stands for the group of tech-
niques that have no information about the training data, which means
they must group the data using some heuristic that can get together (i.e.,
same cluster) samples that share some information. To evaluate such
techniques, we usually make use of measures that take into account the
compactness and separability of clusters in the feature space, i.e., it is
highly desirable to have well-separated and compact clusters at the end
Fig. 2. Squamo-columnar junction and its respective esophagus endo-
scopic image.



Fig. 3. Endoscopic views from: (a) BE's short-segment and (b) BE's long-segment.

Fig. 4. Standard pipeline used in machine learning-driven applications.
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of the clustering process. Fig. 4 depicts a standard pipeline used in ap-
plications that use machine learning for solving problems.

3. Surveyed works

In this section, we present the works considered for further study and
discussion. The next subsections describe in more in-depth details the
works selected by their primary classifier employed.

3.1. Paper selection

To select works within the scope addressed in this systematic review,
a search in Science Direct, IEEEXplore, PubMed, Plos One, Multidisci-
plinary Digital Publishing Institute (MDPI), Association for Computing
Machinery (ACM), Springer, and Hindawi Publishing Corporation data-
bases was carried out. To this end, only two keywords were considered
for searching purposes: (i) “Barrett's esophagus” and (ii) “Barrett's
esophagus machine learning”. The main idea is to provide a fair selection
of works and to cover a total of 35 recent works published as follows:
before 2011 (5 works), between 2011 and 2014 (6 works), and early
2015–2017 (24 works). Also, the search returned a number of papers not
related to machine learning-assisted BE analysis. Therefore, the out-
coming of this survey does not consider them all.

3.2. Machine learning analysis of the BE

Machine learning is a branch of computational intelligence dedicated
to the development of algorithms that enable a computer program to
improve its performance based on learned information. The intense
research in this field has motivated a number of works that aimed at
using machine learning-oriented techniques to aid BE recognition and
distinction between adenocarcinoma and healthy tissue.

In this survey, the works are divided according to the classifiers they
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have employed to cope with BE identification. Considering the number of
works that used Support Vector Machines (SVM) and neural networks,
we decided to have a dedicated section for each them. Additionally, a
section presenting the comparison of two or more classifiers is also
considered, followed by a description of other techniques applied to BE
identification, such as k-nearest neighbors (k-NN), k-statistics, and deci-
sion trees, among others.

3.2.1. Support Vector Machines-based Barrett's esophagus recognition
Li and Meng [14] presented a new texture-based protocol for ulcer

regions using capsule endoscopy (CE) discrimination in endoscopic im-
ages. A novel approach based on curvelets and Local Binary Patterns
(LBP) was proposed for texture extraction aiming to distinguish ulcer and
normal regions. These new features are sensitive to illumination changes,
multidirectional features, and feature invariance. Experiments were
conducted using two different classifiers on a 4-fold cross-validation
procedure: (i) a Multilayer Perceptron Neural Network (MLP) and (ii)
Support Vector Machines. The database used for the experiments is pri-
vate and composed of 100 images from 5 different patients. Regarding
the images, 1;800 patches of normal images and 1; 800 patches of
ulcer-diagnosed images were extracted. The authors concluded the pro-
posed textural features were suitable to identify ulcerous regions in CE
images, once detection rates of the proposed features with the MLP were
92:37% of accuracy, 91:46% of specificity, and 93:28% of sensitivity.

Rodriguez-Diaz and Singh [15] proposed a computer-based approach
that employs the NICE criterion for diagnostic purposes, as well as it
provides an on-the-fly interpretation of the histology of the polyps rep-
resented by near-focus NBI (NF-NBI) images. The NICE criterion con-
siders three main characteristics when learning the information that may
be useful to deal with BE identification: color, vasculature, and surface
pattern. The color information was used to encode the tone of neoplastic
regions compared to non-neoplastic polyps, which appears to be
brown-colored. Regarding the vessels, the authors performed an
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automatic segmentation of the inter-crypt space and compared its color
to the remaining tissue of the polyp to distinguish brown vessels from
lighter structures around them. Finally, the authors employed the
discrete wavelet transform to describe the local spatial distribution of
gray levels (green and blue channels) and then characterize the
neoplastic and non-neoplastic regions. Individual features were used as
inputs for SVM in a leave-one-out cross validation (LOOCV) protocol. A
total of 26 patients and 56 images (16 non-neoplastic and 40 neoplastic
polyps) were considered for the database composition. The classification
results achieved 86% of sensitivity and specificity.

Nancarrow et al. [16] performed a comparative study to define
convincing differences between BE and esophageal adenocarcinoma
(EAC) in biopsies from selected patients using SVM classification. A
database composed of 54 biopsy specimens from 54 different patients
were used for validation purposes, and certified by a pathologist (23
annotated as presenting EAC). The results concluded that BE-affected
regions figure a tissue containing an enhanced glycoprotein synthesis
mechanism designed to provide mucosal defenses. Such mechanism re-
sists to gastro-esophageal reflux, while EAC exhibits the enhanced
extracellular remodeling effects expected in an aggressive form of cancer.
Also, evidence of reduced expression of genes associated with mucosal
and xenobiotic defenses was also perceived. The authors observed eleven
genes that are also represented in at least three other profiling studies
used to discriminate among squamous epithelium, BE, and EAC, within
the two largest cohorts using an SVM-based LOOCV analysis. The pro-
posed method was considered able to distinguish squamous epithelium
and BE reasonably, and it also evidenced that more detailed in-
vestigations into profiling changes between BE and EAC are desired. The
work mentioned above achieved the following results: sensitivity and
specificity higher than 88% concerning the task of discriminating BE
from squamous samples, as well as a sensitivity of around 73% when
distinguishing EAC (cancer) from BE or squamous (non-cancer).

Veronese et al. [17] proposed a computer-assisted approach to
distinguish gastric metaplasia (GM), intestinal metaplasia (IM), and
neoplasia (NPL) based on the use of appearance features in confocal
images. The database was composed of CLE images obtained from
consecutive 29 BE patients undergoing surveillance. In a nutshell, fea-
tures are extracted based on the division of the image in sub-regions for
the further application of LBP for a multiscale evaluation. The evaluation
of the method was performed by the comparison of the automatic results
with the histological gold standard using SVM-based classifiers. The
proposed method identified IM, GM, and NPL in confocal images with
accuracy close to the human observer. The validation protocol adopted
was the LOOCV, and the overall sensitivity results were: 96% for GM,
95% for IM and 100% for NPL.

Using the technology of High Definition (HD) endoscopy, Muldoon
et al. [18] developed a CAD system to help physicians with faster prog-
nosis and decrease the diagnosis miss rate in the context of early-stage
cancer detection. The work compared several techniques for
texture-oriented feature extraction, including Gabor, co-occurrence ma-
trix features, and LBP. For a better image description, an efficient com-
bination of color and texture features were proposed. A pre-processing
step designed for endoscopy images was also considered to improve the
classification accuracy. Later on, Principal Component Analysis was used
to reduce the number of features for the further usage of SVM. The
experimental results were validated by a gastroenterologist and showed a
classification accuracy up to 96.48%, in 129 sites calculated in a database
composed of 16 HMRE images.

Van der Sommen et al. [19] presented an approach based on HD
endoscopic images for the automatic esophagus irregularity identifica-
tion. They employed the concept of tile-based image processing, so that
the system was able to identify early cancer and also locate it in endo-
scopic images. The identification process was based on the following
steps: (i) pre-processing, (ii) feature extraction with dimensionality
reduction, and further (iii) classification. The performance detection was
evaluated in RGB, HSI, and YCbCr color spaces using the Color Histogram
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and Gabor features in a database of HD endoscopic images obtained from
66 patients. Other well-known texture features were also considered for
comparison purposes. Concerning the classification step, an SVM
configured with different parameters and kernel functions were applied.
The proposed approach achieved a classification accuracy of 95:9%
considering tiles of tumorous and normal tissue of 50 � 50 pixels, with
area under the curve (AUC) of 99%.

Van der Sommen et al. [11] proposed a novel algorithm that calcu-
lates local texture and color features based on the original and
Gabor-filtered images for the automatic detection of early cancer in
high-definition endoscopic images. Appropriate filters based on spectral
characteristics of the cancerous regions were designed, and
post-processing techniques were further applied to annotate the injured
regions and the features were extracted and classified by a trained SVM
classifier. For seven evaluated patients, the experiments compared 32
annotations performed by the algorithm with the corresponding anno-
tations made by a gastroenterologist expert using a LOOCV protocol.
From 38 lesions highlighted independently by the gastroenterologist, 36
of those lesions with a recall of 95% and precision of 75% were correctly
detected by the system.

Hassan and Haque [20] proposed a real-time and computationally
efficient bleeding detection technique using Wireless Capsule Endoscopy
(WCE) technology. The technique was based on the observation of
characteristic patterns present in the frequency spectrum of WCE frames.
After these patterns have been defined, the authors developed a
texture-based feature descriptor that operates on the Normalized Gray
Level Co-occurrence Matrix (NGLCM) in the magnitude spectrum of the
images. This descriptor was called Difference Average. The proposed
algorithm was validated using a WCE database; the SVM training set was
composed of 600 bleeding and 600 non-bleeding frames. Additionally,
860 bleeding and 860 non-bleeding images were chosen from the
remaining images to compose the test set. The accuracy, sensitivity, and
specificity values achieved were 99:19%, 99:41%, and 98:95%, respec-
tively. The proposed method requires a low computational cost, thus
making it suitable for real-time implementations.

Souza Jr. et al. [21] conducted a study to test the feasibility of
adenocarcinoma classification in endoscopic images. The 2016 Endovis
Challenge database [22] was used for the further extraction of Speed-Up
Robust Features (SURF) [23], which were employed together with SVM
using the LOPOCV protocol for training and testing purposes. Two classes
composed the problem: non-cancerous- and cancerous-annotated images.
Two approaches for feature extraction and classification were carried
out: using the full images and using the expert-annotated regions of the
adenocarcinoma. The results for the “full images approach” were 77% of
sensitivity and 82% of specificity. For the “regions approach”, the results
were 90% of sensitivity and 95% of specificity.

Zhang et al. [24] conducted a study using endoscopic ultrasonogra-
phy (EUS) to calculate textural features in a spectral analysis of pixels to
provide a quantification of early esophageal carcinoma tissue. A database
composed of 1;210 EUS examination samples was used from 66 patients
with early esophageal cancer and 91 without cancer. The textural fea-
tures of the EUS images were represented as a graph, in which the pixels
are the nodes and the similarity between the gray-level or local features
of the images are the edges. The similarity were provided by a high-order
graph matching of the texture features. Finally, a 10-fold cross-validation
approach was considered, and an SVM classifier was applied to calculate
the optimal prediction of the esophageal carcinoma samples represented
in the graph. As the primary results, the authors obtained 93% of accu-
racy in the prediction of early esophageal carcinoma, normal and leio-
myoma tissues. Considering only the early esophageal carcinoma
prediction, the average results of accuracy, sensitivity, specificity and
negative prediction were 89.4%, 94%, 95%, and 97%, respectively.

Klomp [25] explored the feasibility in the use of computer vision
techniques to correctly predict the presence of dysplastic tissue in VLE
images. Three new features based on the classic Haralick features were
proposed, and the SVM classifier was applied in a dataset composed of 30
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dysplastic BE images and 30 non-dysplastic BE images. Using a 10-fold
cross-validation protocol, the authors obtained an area under the
Receiver Operating Characteristic (ROC) curve as of 0.95 compared to
the 0.81 achieved by the clinical prediction model.

3.2.2. Neural network-based Barrett's esophagus recognition
Seguí et al. [26] introduced a system for small intestine motility

identification based on Deep CNN to avoid the time-consuming step of
specifying features for each motility event. This study aimed to help
physicians with the diagnosis performed by the WCE video screening.
Concerning the network training, 100; 000 annotated WCE samples were
used, and the remaining 10;000 samples were employed for testing
purposes. The experimental results evidenced the robustness of the new
features over others designed using state-of-the-art handcrafted ap-
proaches. In particular, the proposed approach obtained a mean accuracy
of 96% for six intestinal motility events. Such result allowed the proposed
approach to outperform other classifiers trained with classic handcrafted
features (a 14% relative performance increase was observed).

Mendel et al. [27] carried out a work in which deep learning was
applied in specialist-annotated images containing adenocarcinoma and
BE's disease. A dataset provided by the 2016 Endovis Challenge [22] was
used for the experimental step, and it comprises 100 annotated endo-
scopic images (50 presenting BE and 50 presenting adenocarcinoma)
from 39 patients (17 not presenting adenocarcinoma and 22 presenting
adenocarcinoma). The convolutional neural network was adapted to the
set of images by a transfer learning approach in a leave-one-patient-out
cross-validation (LOPOCV). With positive results of sensitivity and
specificity (94% and 88% respectively), the study demonstrated that it is
possible to extend its results to the BE's esophageal segmentation domain
itself using deep learning to reach the region affected by adenocarcinoma
specifically.

To cope with the problem of time-consuming and cost-inefficient
manually ground-truth definition, Georgakopoulos et al. [28] proposed
a weakly-supervised learning technique based on CNN that uses only
image-level semantic annotations for the training process, instead of
using annotations at the pixel's level. The performance of the proposed
method was evaluated in the context of CAD system of inflammatory
gastrointestinal lesions represented in WCE videos. The results showed
the proposed method could be more accurate than the conventional su-
pervised learning with an accuracy of around 90% obtained in a previous
proposed data set proposed by Ref. [29].

Chan et al. [30] used an e-nose, a device that utilizes
chemical-to-electrical interfaces, to measure the volatile organic com-
pounds (VOC) profiles of disease states. When paired with a machine
learning platform, an e-nose can be trained as a canine to serve as a tool
for noninvasive diagnostic testing. Such approach was used to perform a
cross-sectional study evaluating the breath VOCs of a cohort of 112 pa-
tients (66 with BE and 56 without BE) with a history of dysplastic BE to
differentiate the differences in BE by dysplasia grade. These VOC profiles
were introduced into an artificial neural network in a supervised step to
identify data classifiers to discriminate differences in subjects stratified
by the presence or absence of BE by biopsies. Optimal models were
validated using a leave-some-out cross-validation (LSOCV) approach to
generate performance characteristics of BE detection in a CNN classifi-
cation. The sensitivity and specificity was 82% and 80%, respectively, the
accuracy was 81%, and the AUC was 79%. The task of analysis and
interpretation of WCE records is complex and require sophisticated CAD
systems to assist physicians in the video screening and further diagnosis.
Because most of the capsule endoscopy CAD systems share a standard
design, each time a new clinical application of WCE appears, a new CAD
system has to be structured from scratch.

Yoshida et al. [31] performed a study to evaluate the classification
accuracy of gastric biopsy specimens using the e-Pathologist image soft-
ware. A dataset composed of 3062 gastric-biopsy specimen slides were
used, being each one evaluated by at least two experts to provide the
diagnosis. Finally, the comparison was performed between the experts
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and the e-Pathologist classification results. A cross-validation protocol
was used together with a neural network, which achieved a recognition
rate as of 55:6% over a three-class problem: (i) positive for carcinoma,
(ii) caution for adenoma, and (iii) negative for a neoplastic lesion. An
additional experiment was carried out in a two-class problem: (i) nega-
tive for neoplastic regions, and (ii) positive for neoplastic areas. In this
analysis, the sensitivity, specificity, and negative predictive value were
89:5%, 50:7%, and 90:6%, respectively, showing a promising direction
for the automated classification of injured regions of the intestine.

Hong et al. [32] developed a CAD system to classify endomicroscopy
images between gastric metaplasia, intestinal metaplasia, and neoplasia
(these last two are sub-classes of BE). A database provided by ISBI 2016
challenge and composed of 155 gastric metaplasia instances, 26 intesti-
nal metaplasia instances and 55 neoplastic samples was considered for
experimental purposes together with Convolutional Neural Networks in a
cross-validation protocol. The training data were distorted for augmen-
tation purposes as well, providing an accuracy as of 80:77%, thus sug-
gesting that CNN might be useful to this kind of problem.

3.2.3. Comparison among classifiers for Barrett's esophagus recognition
Rajan et al. [33] performed a comparison experiment using several

classifiers, such as SVM, k-NN, and Boosting on images from different
endoscopy modalities (WLE, NBI, Chromoendoscopy). The datasets (125
WLE images, 122 NBI images, and 150 Chromoendoscopy images) have
been classified between four categories: Normal Squamous, Gastric Mu-
cosa, BE, and High-grade dysplasia (adenocarcinoma). The classification
step was performed using features (i.g., color and texture) obtained from
the injured regions of the endoscopic images in a cross-validation pro-
tocol. The accuracy ranged from 36:36% up to 89:17% according to the
endoscopy modality images and classifier applied.

Considering the use of vibrational spectroscopy for the diagnosis and
staging of cancer, Sattlecker et al. [34] conducted a study aiming to
corroborate the many promising benefits in the current histopathology
methods used in the context of BE identification. To correlate complex
multivariate spectral and the disease level, the authors applied machine
learning methods, such as SVM, Linear Discriminant Analysis (LDA),
Artificial Neural Networks (ANN), and Random Forests to recognize
spectral patterns. The validation protocols adopted were LOOCV, boot-
strapping, and independent testing. A detailed review of related works
was conducted, and the average recognition rates of the surveyed studies
were around 90% of sensitivity and specificity, although the majority of
the studies used less than 40 samples. The authors concluded that more
studies need to be carried out in case we decide to put in practice the
combination of spectroscopy and machine learning.

Kandemir et al. [35] performed a study for the diagnosis of BE pre-
sented in hematoxylin-eosin stained histopathological biopsies using
multiple instance learning (MIL) and Support Vector Machines.
Regarding the experiments, the database comprised 214 tissue cores (165
presenting cancer and 69 showing healthy condition) from 97 patients.
Rectangular patches of the tissue cores were extracted, and a feature
vector was calculated based on a large set of cell- and patch-level features
(color features, texture features, and object features such as minimum,
maximum, and standard deviation of the cells) for each patch. The tissue
core as considered a bag (a group of instances with a unique group-level
ground-truth label), while each patch was considered an instance. After
many MIL approaches, the authors realized that a graph-based MIL al-
gorithm (mi-Graph [36]) obtained the best performance explained by its
inherent suitability to bags with instances that presents spatial correla-
tion. For patch-level diagnosis, the result was around 82% of accuracy
and 89% of AUC using Bayesian logistic regression in the distinction of
BE and cancer region patches.

Considering the WCE as a promising technology for gastrointestinal
disease examination in a non-invasive way, Yu et al. [37] studied the
classification problem of the digestive organs for WCE images aiming to
save the time of doctors in the image review task. Based on a previous
study using Convolutional Neural Networks (CNN), a database composed
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of 25 real WCE recording samples (approximately 1 million of WCE
images) was considered for experimental purposes, and with results
nearly to 95% of accuracy. The authors also tried to improve the results
by the proposition of a WCE classification system built as a hybrid CNN
with an Extreme Learning Machine (ELM). In the new approach, the CNN
was designed as a data-driven feature extractor, and the cascaded ELM
was designed as a strong classifier instead of the conventionally use of a
deep CNN fully-connected classifier. The results showed a performance of
around 97% concerning the WCE organ classification accuracy.

Swager et al. [38] conducted a study to identify VLE features from
neoplasia areas regarding BE identification, as well as the authors aimed
to develop an approach to predict VLE scores. The work used a VLE image
database composed of 52 endoscopic resection specimens from 29 BE
patients, which were assigned positive and negative to neoplasia. Fea-
tures potentially significant for the prediction of early BE neoplasia were
identified over twenty-five VLE-histology images. In a learning phase,
twenty VLE images presenting or not BE neoplasia were scored by two
experts blinded to histology. A prediction score was developed by the use
multivariable logistic regression analysis, being validated by scoring
forty VLE images (50% neoplastic) using the area under ROC curve
analysis. The work identified three main VLE features that can be used to
assist BE neoplasia identification: (i) lack of layering, (ii) higher surface
than subsurface signal, and (iii) presence of dilated glands/ducts. The
sensitivity and specificity values obtained were 83% and 71%, respec-
tively, showing promising accuracy.

Another study conducted by Souza Jr. et al. [39] introduced the
Optimum-Path Forest (OPF) [40,41] classifier in the adenocarcinoma
and BE classification using endoscopic images. The work considered
describing endoscopic images (database provided by Ref. [22]) using
feature extractors based on key point information, such as the SURF and
Scale-Invariant Feature Transform (SIFT) [42], for further designing a
bag-of-visual-words that were used as input to both OPF and SVM clas-
sifiers in a cross-validation protocol. The OPF classification outperformed
the well-known SVM, presenting better results for both feature extrac-
tors, with values lying on 73:2% (SURF) - 73.5% (SIFT) for sensitivity,
78:2% (SURF) - 80:6% (SIFT) for specificity, and 73:8% (SURF) - 73:2%
(SIFT) for the accuracy.

Pu et al. [43] performed a study to extract cost-efficient biomarkers
more efficient than the ones currently available, aiming to provide high
sensitivity and specificity in the task of esophageal squamous cell carci-
noma (ESCC) diagnosis. The proposed biomarker to be evaluated was the
DNA methylation, and 100 samples of ESSC DNA methylation from “The
Cancer Genome Atlas” were analyzed along with a particular dataset of
12 samples of the same kind. Candidate CpG sites and their adjacent
regions were defined and compared with adjacent normal tissue regions
using several machine learning techniques such as Random Forest, SVM,
CNN, Logistic Regression, Naive Bayes, LDA and Flexible Discriminant
Analysis in a 5-fold cross-validation protocol. The sensitivity, specificity,
and area under the curve results of the diagnostic model based on the
combination of five genomic regions were 75%, 88%, and 85%,
respectively.

Serpa-Andrade et al. [44] proposed a method in which the esophagitis
(a condition of chronic BE stage) was described using Fourier Transform
on the Z-line signature (esophageal irregularities) for classification pur-
poses. The proposed descriptors were based on statical features and
textural information. A database comprising 10 samples of healthy tissue
and 16 samples of ill tissue was used, and a cross-validation protocol
applied for classification purposes based on k-NN and Random Forests.
The best average results obtained were around 81% of precision, 86% of
sensitivity, and 72% of specificity.

3.2.4. Additional works
In this section, we present works that make use of classification

techniques other than SVM and neural networks. Zopf et al. [45] pro-
posed a study using NBI endoscopy images for the automatic detection of
BE using a nearest neighbor classifier. The model extracted features from
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a proper database of images presenting 326 regions of Interest (ROIs)
annotated by experts, and classified between three classes: epithelium,
cardiac mucosa, and BE. The features applied to the classification were
the co-occurrence matrices, summation and difference of histogram,
statistical geometric, and Gabor Filters, leading to a high-dimension
vector reduced later. The evaluation has been made measuring the per-
formance of each feature and also by combining them all, using the
LOOCV protocol and the Euclidean distance as similarity metric with the
following results: accuracy between 85% and 92%. The best BE classifi-
cation accuracy was around 74%.

In 2016, the BE's International NBI Group (BING) [4] performed a
study with the goal of developing a simple and reliable approach to
recognize dysplasia as well as esophageal adenocarcinoma (EAC) in in-
dividuals affected by Barrett's esophagus. The research group analyzed
60 NBI images containing nondysplastic BE, high-grade dysplasia, and
esophageal adenocarcinoma to find out vascular and mucosal patterns
visible by NBI to be used as features and then creating the BING criteria.
Further, patients that were under supervision or endoscopic treatment for
BE were recruited at four institutions in the United States and Europe,
performing histologic biopsy analysis and composing a high-quality NBI
image database. Experts reviewed 50 NBI images to validate the pro-
posed approach and then evaluated 120 additional NBI images (without
previous review) to assess its prediction accuracy. The proposed method
identified patients with dysplasia with 85% of overall efficiency.

Pech et al. [46] designed a study to evaluate the potential of endo-
microscopy for predicting histology in vivo in patients presenting early
stage of squamous cells in the esophagus. Twenty-one patients suspected
to early squamous cell cancer and recommended for endoscopic therapy
were included in this study, being their mucosal areas examined using
confocal imaging and resulting in 43 lesion images. Each scanned lesion
image was stored and in vivo diagnosis was performed during routine
endoscopy. Biopsy specimens were extracted from every lesion. The
confocal images were reviewed by two personnel blinded to the histology
endoscopists. The overall accuracy using the k-statistics was 95%, and the
sensitivity and specificity were 100% and 87%, respectively. Intra-
observer agreement was close to perfection (kappa ¼ 0.95), meanwhile
the interobserver agreement was very relevant (kappa ¼ 0.79).

Rosenfeld et al. [47] aimed at studying how data mining can be
applied to assist the diagnosis of high-risk lesion patients affected by BE
in HD videos. As the patient information is open to interpretation, the
authors demonstrated that composite rules learned from many experts
can be more accurate than that of a single expert. Such fact can be
explained because even expert physicians can interpret endoscopy im-
ages differently, thus potentially making it relevant to aggregate multiple
opinions for the precise interpretation of the endoscopic image. Also, the
authors demonstrated that decision trees could learn simple rules to assist
the dysplasia diagnosis. The authors employed two decision models in a
dataset composed of 47 HD endoscopic videos of the esophagus (23
dysplastic and 24 non-dysplastic): one considering the expert decisions
about dysplasia and no-dysplasia, and another without the expert de-
cisions. The overall accuracies concerned the aforementioned models
were around 79% (with the experts' decision) and 77% (without the
experts' decision).

Li et al. [48] proposed a new learning method based on the multiple
instance paradigm to recognize tumor invasion of gastric cancer using
computed tomography (CT) imaging. The authors extracted bag-level-
and instance-level features for processing and classification purposes
using a database composed of 26 patient exams. Since there might be
ambiguity when assigning labels to some selected patches in
instance-level features, the authors proposed an improved Citation
k-nearest neighborhood (Citation-kNN) that achieved recognition rates
of around 76:92%.

Curvers and Bergman [49] carried out a study with patients under-
going BE neoplastic or with a suspect of such disease. Microscopic images
of the esophagus were obtained from regions with neoplasia suspicious
and from other locations randomly sampled for further biopsy analysis.



Table 1
Summarization of the works considered in this survey.

Reference Classifier Database Validation
Protocol

Evaluation Method Results

Li and Meng [14] SVM 100 endoscopic images from
5 patients

4-folder cross-
validation

Presented a study for the application of
a new texture extraction scheme in
ulcer regions for capsule endoscopy
discrimination in endoscopic images.

Detection rate of the proposed
features with the MLP was 92.37%,
91.46%, and 93.28% in terms of
accuracy, specificity and sensitivity,
respectively.

Rodriguez-Diaz
and Singh [15]

SVM 16 non-neoplastic and 40
neoplastic NBI images from
26 patients

LOOCV Conducted a study aiming to explore
the feasibility in developing a
diagnostic computer algorithm based
on the NICE criterion for a real-time
interpretation of polyp histology from
near-focus NBI images.

The classification based on color
resulted in a sensitivity of 86% and
specificity of 86% with a high-
confidence rate of 77.%

Nancarrow et al.
[16]

SVM 54 images from 54 patients
(23 presenting EAC)

LOOCV Performed a comparative study to
define convincing differences between
BE and EAC using SVM classification.

The results were: sensitivity and
specificity higher than 0.88 for
discriminating BE from squamous,
and the sensitivity for determining
EAC (cancer) from BE or squamous
(non-cancer) was 0.73.

Veronese et al.
[17]

SVM CLE images from 29
consecutive BE patients
undergoing surveillance

LOOCV Presented a computer-based method
for the automatic classification of
gastric metaplasia, intestinal
metaplasia, and neoplasia on the basis
of appearance features of confocal
images.

The sensitivity overall results were:
96% of gastric metaplasia, 95% of
intestinal metaplasia, and 100% of
neoplasia.

Muldoon et al.
[18]

SVM 129 sites from a database of
16 HMRE images

cross-validation Developed a CAD system to help
physicians with faster identification of
early cancer using color and texture
features extracted from HD endoscopy
images.

In an SVM-classification approach,
the results reached were up to
96.48%.

van der Sommen
et al. [19]

SVM HD endoscopic images from
66 patients

10-fold cross-
validation

Proposed an algorithm based on HD
endoscopic images for the automatic
esophagus irregularity identification
and location using color histograms,
Gabor features, and SVM-based
classification.

The proposed system achieved a
classification accuracy of 95.9%
with AUC value as of 99%.

van der Sommen
et al. [11]

SVM 32 HD endosocopic images
from 7 patients

LOOCV Presented a novel algorithm that
computes local color and texture
features based on the original and on
the Gabor-filtered image for the
automatic detection of early cancerous
tissue in high defintion endoscopic
images.

From 38 lesions, the system
detected correctly 36 of those
lesions with a recall of 0.95 and a
precision of 0.75.

Hassan and Haque
[20]

SVM 120,000 WCE frames for the
training set and 1720 WCE
frames for the test set

cross-validation Proposed a real-time bleeding
detection technique based on the
observation of characteristic patterns
that appear in the frequency spectrum
of the WCE.

The accuracy, sensitivity, and
specificity values achieved were
99.19%, 99.41% and 98.95%,
respectively.

Seguí et al. [26] CNN 100,000 WCE images for
training the network and
10,000 for testing

cross-validation Introduced a system for small intestine
motility characterization based on
Deep Convolutional Neural Networks.

The proposed approach obtained a
mean classification accuracy of 96%
for six intestinal motility events.

Mendel et al. [27] CNN Database provided by [22] LOPOCV Carried out a work in which deep
learning was applied in specialist
annotated images containing
adenocarcinoma and BE's disease.

The sensitivity and specificity
values of 94% and 88%
respectively.

Souza Jr et al. [21] SVM Database provided by [22] LOPOCV Tested the feasibility of adenocarcima
classification in endoscopic images
using SURF features and SVM classifier.

The mean results for the “full image
approach” were 77% of sensitivity
and 82% of specificity. For the
“region-based” approach, the results
were 89.6% of sensitivity and
95.1% of specificity.

Zhang et al. [24] SVM 1210 EUS images from 157
patients (66 with early
cancer and 91 without)

10-fold cross-
validation

A study was conducted using
endoscopic ultrasonography (EUS) to
calculate textural features in a spectral
analysis of pixels to provide a
quantification of early esophageal
carcinoma tissue.

In the first classification approach,
the overall concordance rate was
55.6% with kappa coeficient of
28%. The early esophageal
carcinoma average prediction
results of accuracy, sensitivity,
specificity, and negative prediction
were 89.4%, 94%, 95%, and 97%.

Klomp et al. [25] SVM 30 VLE non-dysplastic
images and 30 VLE
dysplastic images

10-fold cross-
validation

Tested the feasibility in the use of
computer vision techniques correctly
predict the presence of dysplastic tissue
in VLE BE images.

Considering the novel proposed
descriptors, the area under ROC
curve result was 95%, compared to
the 81% of the clinical predicition
model.

(continued on next page)
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Reference Classifier Database Validation
Protocol

Evaluation Method Results

Georgakopoulos
et al. [28]

CNN Database proposed in
Ref. [29]

Patches
evaluation
(normal or
abnormal)

Proposed a weakly-supervised learning
method based on CNNs that uses only
image-level semantic annotations in
the training process for ground truth
calculation.

The results achieved by the authors
showed the proposed method can be
more effective than the
conventional supervised learning
with an accuracy of around 90%.

Chan et al. [30] CNN 66 VOCs of patients
presenting BE and 56 VOCs
of patients without BE

LSOCV Used an e-nose to perform a
crosssectional study evaluating the
breath VOCs of a cohort of 112 patients
with a history of dysplastic BE to
differentiate the differences in BE by
dysplasia grade.

The sensitivity result was 82%, the
specificity result value was 80%, the
accuracy was 81%, and the AUCwas
79%.

Yoshida et al. [31] ANN 3062 gastric-biopsy
specimen slides

cross-validation Using textural features, were
performed a study aiming to evaluate
the classification accuracy of gastric
biopsy spicimens using the e-Pathologist
image software and expert annotations,
in two different comparison
approaches.

In the first classification approach,
the overall concordance rate was
55.6% with kappa coeficient of
28%. In the second approach, the
sensitivity, specificity, and negative
predictive vale were 89.5%, 50.7%,
and 90.6%, respectively.

Hong et al. [32] CNN 155 gastric metaplasia
instances, 26 instestinal
metaplasia instances and 55
neoplastic instances

cross-validation Developed a CAD system to classify
endomicroscopy images between
gastric metaplasia, intestinal
metaplasia and neoplasia (these last
two are sub-classes of BE) using a
public database with 262 samples.

The accuracy result obtained was
80.77%, suggesting that CNN could
become a good classifier for the task
of BE tissue distinction.

Rajan et al. [33] SVM, k-NN, Boosting
1/2

125 WLE images, 122 NBI
images, and 150
Chromoendoscopy images

cross-validation Performed experiments using several
classifiers (SVM, k-NN, Boosting) in
images from different endoscopy
modalities (WLE, NBI, and
Chromoendoscopy).

The accuracy for detecting BE
presented a range of variation from
36.36% up to 89.17% according to
the endoscopy modality and
classifier.

Sattlecker et al.
[34]

SVM, LDA, ANN, and
RF

– LOOCV,
Boostraping and
independent
testing

Conducted a study aiming to
cohoborate the many promising
benefits over the currently used
histopathology methods.

If the combination of spectroscopy
and machine learning is mapped
into clinical practice, more studies
need to be carried out to support the
reproducibility.

Kandemir et al.
[35]

MIL and SVM 214 tissue cores (165
presenting cancer and 69
showing healthy condition)
from 97 patients

cross-validation Performed a study for the diagnosis of
BE's cancer from hematoxylin-eosin
stained histopathological biopsy
images using multiple instance
learning and SVM classifiers.

For patch-level diagnosis, the result
was around 82% of accuracy and
0.89 of AUC using Bayesian logistic
regression.

Yu et al. [37] CNN and SVM 25 real WCE recording
samples (approximately 1
million of WCE images)

CNN-features
compared to SVM-
features

Studied the classification problem of
the digestive organs for WCE images.

The results showed performance of
around 97.25% concerning the
classification accuracy.

Swager et al. [51] SVM, adaBoost, and
k-NN

52 endoscopic resection
specimens from 29 patients

LOOCV Investigated the feasibility of a
computer algorithm to identify early
BE neoplasia in VLE images using VLE
features and machine learning
methods.

AUC of 0.95, and sensitivity and
specificity were 90% and 93%,
respectively.

Souza Jr et al. [39] SVM and OPF Database provided by
Ref. [22]

cross-validation Introduced the OPF classifier in the
context of adenocarcinoma and BE
classification using SURF and SIFT
features combined with a bag-of-visual-
words approach for the feature vectors
calculation.

The OPF outperformed the SVM,
presenting better results for both
feature extractors, with values lying
on 73.2% (SURF) - 73.5% (SIFT) for
sensitivity, 78.2% (SURF) - 80.6%
(SIFT) for specificity, and 73.8%
(SURF) - 73.2% (SIFT) for the
accuracy.

Pu et al. [43] logistic regression,
SVM, CNN, LDA,
Naive Bayes and
flexible discriminant
analysis

100 samples of ESSC DNA
methylation and a particular
dataset of 12 samples of the
same kind

5-fold cross-
validation

Performed a study to extract more cost-
efficient biomarkers (using DNA
methylation) than the ones available
until now, aiming to provide high
sensitivity and specificity in the ESCC
diagnosis.

In the SVM classification approach,
the best average accuracy result
were reached, with value of 0.82%.

Serpa-Andrade
et al. [44]

k-NN and Random
Forests

10 endoscopic images of
healthy tissue and 16
images of ill tissue

cross-validation proposed a method in which the
esophagitis (a condition of cronic BE
stage) was described using Fourier
Transform on the Z-line signature for
classification purposes.

The very best average results
obtained were 81% of precision,
86% of sensitivity and 72% of
specificity.

Zopf et al. [45] euclidean distance 326 ROIs annotated by
experts

LOOCV Proposed a study using NBI endoscopy
images for automatic detection by
classification systems with gastroscopy.

Accuracy in the range of 85% and
92% for the feature combination
(BE accuracy as of 74%).

Sharma et al. [4] NBI classification
criteria

50 NBI images plus 120
additional NBI images

Comparison
between BING
criteria and
expert's
annotations

Aimed to develop and validate a
narrow-band imaging classification
system for the identification of
dysplasia and cancer in patients with
BE.

The criteria identified patients with
dysplasia with 85% of overall
accuracy, 80% of sensitivity, 88% of
specificity, 81% of positive
predictive value, and 88% of
negative predictive value.

(continued on next page)
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Reference Classifier Database Validation
Protocol

Evaluation Method Results

Pech et al. [46] k-statistics 43 lesion images confocal image
review (2 experts)

Performed a study to assess the
potential of endomicroscopy for
predicting histology in patients with
early squamous cell cancer in the
esophagus.

The results were: accuracy value as
of 95%, and the sensitivity and
specificity as of 100% and 87%,
respectively.

Rosenfeld et al.
[47]

Decision Trees 47 HD endoscopic videos
(23 dysplastic and 23 non-
dysplastic)

– Studied how data mining can be
applied to aid the diagnosis of patients
with high-risk lesions within BE.

The overall accuracies concerned
the aforementioned models were
around 79% (with the experts'
decision) and 77% (without the
experts' decision).

Li et al. [48] Citation-k-NN 26 patients LOOCV Proposed a novel multiple instance
learning method for the identification
of tumor invasion of gastric cancer with
dual-energy computed tomography
imaging.

The experimental evaluation was
performed using leave-one-out cross
validation, obtaining an accuracy of
76.92%.

Curvers and
Bergman [49]

Automated image
classification

– independent set of
images

Carried out a study with patients
undergoing BE neoplastic or
surveillance underwent standard
gastroscopy.

The results of the quantitative
image classification algorithm
showed a sensitivity of 84% and
specificity of 85% in the learning
set, and a sensitivity of 88% and
specificity of 85% in the validation
data.

Wang et al. [50] Automatic image
analysis

9 VLE volumetric datasets
from 7 patients

– Developed an algorithm that can
automatically detect and quantify
subsquamous glandular structures in
VLE data and RFA in the decrease of the
BE extension.

The subsquamous glandular
structures depth and eccentricity
characteristics were the most
significant for the RFA outcome.

Swager et al. [38] VLE features
comparison

30 non-dysplastic VLW
images and 30 high-grade
dysplasia/early-
adenocarcinoma VLE
images

cross-validation Conducted a study aiming to identify
VLE features of BE neoplasia and to
develop a VLE prediction score.

The sensitivity and specificity
values obtained were 83% and 71%,
respectively, showing promising
results.

Boschetto et al.
[52]

Random Forests 116 NBI images 10-fold cross-
validation

Presented a CAD system to automate
the classification of normal and
metaplastic endoscopic NBI images.
Eight features were extracted from
regions defined as clusters of
superpixels.

The overall accuracy, sensitivity
-and specificity result values were
83.9%, 79.2% and 87.3%,
respectively.

Ghatwary et al.
[12]

– – – Presented a brief survey to discuss
advances in the development of BE
CAD systems WLE, HD-WLE, and NBI
endoscopy modalities.

Eight works were listed based on
number of images, classifier,
validation method, and results.
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The database images were further identified as neoplastic or
non-neoplastic by two experts (blinded for histology results) with expe-
rience in HRME image representation of BE. A tool for the visual inter-
pretation of HRME images was designed for the reviewers to classify each
image of the dataset. Also, three endoscopists with HRME experience
annotated the entire image set using the developed tool. As a result, an
analysis of the HRME images was performed based on the relevant image
features selected for the classification step. A sequential and automatic
image classification approach was developed and trained in a separate
learning set. The results of this learning phase were validated in a
selected set of images. The experimental results concerning sensitivity
and specificity for neoplasia were around 81% and 76%, respectively,
presenting a fair interobserver agreement. The results of the quantitative
image classification algorithm achieved were: sensitivity of 84% and
specificity of 85% for the learning set, and sensitivity of 88% and spec-
ificity of 85% for the validation data. These results corroborate that
quantitative analysis of HRME images can provide an accurate classifi-
cation of neoplastic and non-neoplastic BE tissue, which can be compared
to the precision showed in the assessment of experienced endoscopists.

Wang et al. [50] developed an approach for the automatic detection
and quantification of subsquamous glandular structures (SGSs) in volu-
metric laser endomicroscopy (VLE) data sets using automated image
processing for the radiofrequency ablation (RFA) in the decrease of the
BE extension. There were considered import information of SGSs right
before RFA treatment, such as the average number, size, depth, and ec-
centricity per cross-section, and their correlations with the reduction of
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maximum BE length at follow-up after RFA were evaluated. After the
analysis of nine VLE volumetric datasets from seven patients, there were
found strong correlations between the SGS characteristics immediately
before RFA, and the change of maximum BE length at follow-up after
RFA. The SGS depth and eccentricity characteristics were the most sig-
nificant for the RFA outcome.

Swager et al. [51] investigated the effectiveness of a
computer-assisted tool to identify early BE neoplasia in sixty ex vivo VLE
image using VLE features and machine learning methods for classifica-
tion purpose. The database comprises sixty BE patients (30 nondysplastic
BE - NDBE- and 30 high-grade dysplasia/early adenocarcinoma images).
VLE features from a clinical VLE prediction score for BE neoplasia were
used to feed the proposed approach, and novel clinically-inspired algo-
rithm features were developed based on signal intensity statistics and
grayscale correlations. The comparison was performed with generic
image analysis methods for neoplasia detection. For classification pur-
pose, several machine learning methods were evaluated, such as SVM,
adaBoost, and kNN, allied to an LOOCV protocol. Three novel
clinically-inspired algorithm features were developed as a result of the
work, presenting an area under the receiver operating characteristic
curve of 95%. Corresponding sensitivity and specificity were 90% and
93%, respectively.

Boschetto et al. [52] presented a CAD system to automate classifica-
tion of normal and metaplastic endoscopic NBI images. Eight features
were extracted from regions defined as clusters of superpixels, which are
based on the superpixels of each region: three features are calculated as
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mean intensities of each color channel, three other features stand for
mean intensities of the red-channel with the application of three different
morphological filters (top-hat, entropy and range filters), and the last two
features are related to the contrast and homogeneity of the superpixels.
The classification step was performed using Random Forests in a 10-fold
cross-validation approach on a dataset with 116 NBI samples. Following
the feature extraction step, the samples were split into training (70% of
the instances) and testing (30% of the instances) sets, and the overall
accuracy, sensitivity and specificity results were 83:9%, 79:2%, and
87:3%, respectively.

4. Discussions and conclusions

In the last years, the amount of people with BE has increased
considerably, mostly in the western countries, turning it in a world's
health problem up to date. The use of artificial intelligence and machine
learning techniques showed promising results, thus becoming a major aid
to cope with BE pattern prognosis.

As it can be noticed in this survey, the application of machine learning
has risen in the last years, with high use of SVM, CNN, and other methods
for the detection and classification of adenocarcinoma or abnormalities
in the esophagus region. In light of that, research in this area becomes
very relevant and important for the early, fast, and standardized detec-
tion of BE and adenocarcinoma.

In this work, we presented a review concerning BE detection and
monitoring using recent studies, being its main contribution to consider
very recent works dating from 2011 to 2017 mostly, with the application
of machine learning and computer vision for the description and classi-
fication between BE and adenocarcinoma. Additionally, the very recent
studies for the detection, treatment, and evaluation of the BE are
reviewed in this survey, and Table 1 presents a summarization of them
all. Currently, based on the works considered in this survey, we can
conclude the BE problem assisted by machine learning techniques is not
mature yet, and there is a need for even more research to provide solid
methods to distinguish the BE and adenocarcinoma regions in endoscopy
images and videos.

We have observed the vast majority of works that use machine
learning and computer vision for any BE purpose are brand new (between
2015 and 2017), thus highlighting new directions in which the prognosis
and treatment of BE will benefit from the technologies to help experts in
this task. Also, the definition of a pattern in the BE identification is very
important, considering the massive human evaluation of this problem in
practice today. We believe the computer learning and classification may
help to define markers and identifiers for the best BE description, helping
the accurate and fast definition of the injured region in endoscopy images
or even in endoscopy videos in a real-time definition way.

The primary challenges related to computer-assisted BE identification
are mainly associated with the lack of data since most of the datasets
figure a few dozens of patients only. Another problem is related to the
absence of public datasets to cope with BE identification, which could
foster the research towards more effective approaches to detect early-
stage illness from endoscopic images.

Another bottleneck concerns unbalanced data, which may bias the
machine learning technique towards the majority class. Data augmen-
tation appears to be an exciting solution together with transfer learning
approaches. Also, we believe that combining handcrafted with automatic
learned features may be a useful idea, mainly in the context of medical-
drive data where the lack of images is of great concern.
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