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1. Introduction

In [8] we studied equivariant bifurcation problems with a symmetry group acting
on parameters, from the point of view of singularity theory. We followed the now
classical theory originated by Damon [5], using the ideas presented in [5, 13, 14].
We adapted general results about unfoldings, the algebraic characterization of finite
determinacy, and the recognition problems, to multiparameter bifurcation problems
f(z,A) = 0 with ‘diagonal’” symmetry on both the state variables and on the bifur-
cation parameters. More precisely, such bifurcation problems satisfy the condition
flyx,yvA) = v f(z, A) for all v € I', where I' is a compact Lie group.

In this paper we attack the same problem from a different angle: the path formau-
lation. This idea can be traced back to the first papers of Mather [17] and Martinet
[15, 16]. It was used explicitly in Golubitsky and Schaeffer [12] (see also their earlier
paper [11]) as a way of relating bifurcation problems in one state variable without
symmetry to a miniversal unfolding in the sense of catastrophe theory. At that time
the techniques of singularity theory were not powerful enough to handle the full
power of the idea efficiently — either in theory or in computational practice. This
is why the path formulation was abandoned in favour of contact equivalence with
distinguished parameters, as developed in Golubitsky and Schaeffer [12]. Consider-
able progress has been made since then; for example Montaldi and Mond [19] use
the path formulation to apply the idea of /" -equivalence introduced by Damon [6]
to equivariant bifurcation theory. Bridges and Furter [3] studied equivariant gra-
dient bifurcation problems using the path formulation, and defined an equivalence
relation in the space of paths and their unfoldings that respects contact equivalence
of the gradients. Here we describe an algebraic approach to the path formulation
that has the advantage of organizing the classification of normal forms. Moreover,
it minimizes the calculation involved in obtaining the normal forms (compare with
the classical framework in Furter et al. [8]). The geometric approach to the path
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formulation using /"y -equivalence is still open in the context of a symmetry group
acting diagonally on parameters.

Let £ C T be the isotropy subgroup of A, that is, Z = {oc € T' | oA = A, VA}L
For fixed X the full equation is T-equivariant, but when A € Fix (I'), then the germ
f(z, ) is Tequivariant. In the language of singularity theory, without additional
constraints, we would consider the recognition problem for I*equivariant problems
and unfold them in the X-theory. In our case we do not have a ‘full’ unfolding in the
2-theory because I' remains as a residue of symmetry when we enlarge the space to
encompass the parameters.

In Furter et al. [8] we found normal forms for bifurcation problems with two
state variables and two bifurcation parameters that are equivariant under an ac-
tion of the dihedral group Dy on both state variables and parameters, see (1-1)
below. This context was motivated by mathematical models describing the buckling
of a square plate when forces act on its edges We used the classical framework to
find the tangent spaces and higher order terms, from which we deduced the normal
forms. We gave a corrected version of the generic normal form already obtained by
Peters [21], and extended the classification to bifurcation problems of topological
codimension one. We also described the bifurcation diagrams of the generic normal
form.

We briefly put these results into a broader context. The study of equivariant
bifurcation problems via singularity theory (Golubitsky et al. [12, 13]) has mainly
been concerned with models exhibiting spontaneous symmetry-breaking, where the
equations maintain the same symmetry throughout the bifurcation, but the solutions
lose symmetry as the parameters vary. Golubitsky and Schaeffer [12] and Golubitsky
et al. [13] study one-parameter bifurcation problems where the symmetry groups
acts only on the state variables. Peters [21] classified the bifurcation problems with
a one-dimensional state variable and two bifurcation parameters, and extended the
basic formalism to multiparameter bifurcation problems with diagonal symmetry on
both state variables and bifurcation parameters. Simultaneously, in his Ph.D. thesis
[14], Lari-Lavassani analysed multiparameter bifurcation problems with symmetry
on the state variables.

However, there is another category of equivariant problems where the bifurcation
equations satisfy less symmetry when some parameters are non-zero; this is called
forced symmetry-breaking. There has been some some analysis of this situation
using classical techniques in bifurcation theory (see Vanderbauwhede [25], Chill-
ingworth [4], for instance). Although many of the results obtained so far are fairly
general, they have mainly been applied to forced symmetry-breaking from a full
orbit of solutions under a continuous Lie group — which arise for instance
in periodic forcing of autonomous systems, or, in mechanics, for rigid body
motion.

We now describe the structure of this paper. In Section 2 we recall the general the-
ory derived in [8] in order to study I-equivariant multiparameter bifurcation prob-
lems via singularity theory, for a diagonal linear action of a compact Lie group I" on
the state variables z and on the multiparameter A\. We define an equivalence relation
for such bifurcation problems using a change of coordinates (contact equivalence)
that preserves the bifurcation structure (A-slices) and the symmetry (I~action) of the
problem. Two germs f, g representing bifurcation problems are said to be equivalent
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if there exist T, X, A such that

9@, A) = T(x, X) f(X(z, X), A(N)),

where T'(z, ) is an invertible matrix and (x, ) — X(z, ), A(}N)) is a local diffeo-
morphism. Both T and (X, A) must be symmetry- and orientation-preserving; that
is, T(yz,v\)y = vT(x,A), X(vx,vA) = vX(x,A), A(yA) = vA(A), and T(0,0),
X2(0,0), Ax(0) must be in the connected components of their respective identity
operators.

In [8] we showed that this context fits into the classic framework of Damon [5].
Indeed we can either derive the main algebraic results — the finite determinacy and
unfolding theorems — directly, or from the abstract formalism of Damon [5]. Fi-
nite codimension of the ‘extended tangent space’ of such f implies both that f is
contact equivalent to a finite segment of its Taylor series (finite determinacy) and
that any perturbation of f can be induced from a special perturbation F’ with cod f
parameters (the universal unfolding of f).

In Section 3-1 we develop the idea of the organizing centre f, of a bifurcation
problem f, fy(x) = f(x,0). Such an organizing center is still [~equivariant. Let £ be
the isotropy subgroup of the bifurcation multiparameter A and suppose that f, has
a X-universal unfolding F'(z,a). Now consider f as a perturbation of f, and seek a
germ & such that f(x, A) = F(x, &(A)). We call such a germ & a path. (More accurately
it is a path-germ.) Because f is Itequivariant and F' is only Z-equivariant in x, we
define a I action on the space of A-paths in the parameter space of a well-chosen
universal X-unfolding of the organizing centre, in a such way that the pullbacks &*F
of that X-unfolding by such paths become I~equivariant.

Our fundamental hypothesis (HO) is seemingly rather natural: we assume that

cod*(f) < 00.

Indeed, in Section 3-2 we show that under (HO) the path formulation can always
be introduced. Nevertheless, we also show in Section 3-1-2 that (HO) is not actually
a necessary condition for f itself to be of finite codimension. The understanding of
what happens there is an open question.

In Section 3-3 we define the tangent space and the unipotent tangent space of a
Itequivariant path. The main result establishes an isomorphism between the normal
space of a [~equivariant path and the normal space of the pullback of the X-unfolding
of the organising center by this path. These results represent an algebraic characteri-
sation of the path formulation, in the sense that we use only algebraic manipulations
of the classical tangent spaces of Damon [5], as developed by Furter et al. [8], to
construct the tangent spaces to a path. We rely upon the existence, from the start,
of such a general theory. (The geometric approach, using the "y -equivalence de-
fined in Damon [6] and applied in [3. 19], with V' being the relevant local bifurcation
variety for F', is under investigation.) We finish in Section 3-4 with the proofs of the
main results of Section 3-3.

In Section 4 we illustrate our theory by extending the classification of Dy-
equivariant bifurcation problems started in [8]. We consider problems with two state
variables and two bifurcation parameters equivariant under the aforementioned
action of the dihedral group D,. In complex notation, the effect of this action on a
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bifurcation problem f(z, A) is

f(Z,0) = f(z,A) and f(iZ,\) =1 f(z,A). (1-1)
This section ends with remarks on the use of our classification to tackle gradient
D,-equivariant bifurcation problems. Some bifurcation problems, like those arising
from models of the buckling of elastic shells, have a natural gradient structure.
This acts as an additional constraint. Even if contact equivalence does not preserve
the set of gradients éz&)\, it still induces an equivalence relation on éfégﬂ\. Moreover,
the perturbation (unfolding) theory extends to the gradient case: see Bridges and
Furter [3] for general theoretical results on such questions.

In the multiparameter situation we must understand what structure is preserved
by contact equivalence. In general, only the relative position of open regions in pa-
rameter space where the zero-set structure does not change in its principal charac-
teristics is preserved. Without further information, one dimensional slices have in
general no invariant meaning. In our situation, though, because of the symmetry
on the parameters, the axis Ao = 0 is invariant under contact equivalence, so the
structure in each half-plane is preserved. For two of our normal forms, Iy and I, we
can say more. They are also normal forms for the stronger contact equivalence that
respects A(-slices for Ay = constant, that is, with

AL X2) = (A(Ar; ), A(Ne))

Hence, in that case, the \s-sequence of those A -slices has a perfectly good invariant
meaning.

The proof of that fact is quite easy using the path formulation. The main part
of the tangent space, which depends on F', is independent of the changes in the
structure of the A\-space. So we need only change the second part of the tangent space,
which depends on the A-derivatives. When I' acts nontrivially on the parameter A
we nevertheless may have to reconsider part of the general calculations, because we
have to keep track of all the symmetries: see Sections 3 and 4).

Applications of the theory for Dj-equivariant problems to forced symmetry
breaking in four-cell rings are discussed in another paper currently in preparation,
Furter [7], along with further Ds-equivariant multiparameter bifurcation problems.

2. Fundamentals of the general theory

In this section we recall the fundamental concepts and principal results about un-
foldings, finite determinacy and the recognition problem for multiparameter equiv-
ariant bifurcation problems, which we derived in [8] from the general abstract theory
of Damon |[5].

2-1. Notation and definitions

The state variable is * = (x; ... x,) € R™ and the bifurcation parameter is A =
(A1 ... X¢) € RY Derivatives are denoted by subscripts, for example f,, for 0 f /0, and
the superscript ¢ denotes the value of any function at the origin, so that f° = f(0),
f2 = f.(0), and so on.

Let &, be the ring of smooth germs f: (R”,0) — R and .#, its maximal ideal. For
y € R™, &, , denotes the §,-module of smooth germs ¢g: (R",0) — R™ and .#,,
its submodule of germs vanishing at the origin. When y is clear from the context we
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denote &, , by é”_;; and A, by %z In the path formulation, we also make use of
the ring ¢, and module 0, of real-analytic germs.

Let GL(n) be the group of all invertible n X n real matrices and O(n) the n-
dimensional orthogonal group. Let I' be a compact Lie group acting on R and ‘di-
agonally’” on R"** via orthogonal representations py: I' — O(N), where N = m,n, [.
(The abuse of notation involved here is intentional and useful.) We denote by vy the
action on RY induced by pn, N = n,l,m, and identify vy with py(v) for all v € T.
The connected component of the identity map in the subset of GL(n) consisting of
all I[*equivariant maps is denoted by Z¢(n). The identity map in GL(n) is denoted
by L,.

Let &, = {h: (R™0) — R | h(yn2,vA) = h(x,\), Vv € T} be the ring of
smooth I'-invariant germs and .# (Fz » its maximal ideal. There exists a finite set of

[-invariant polynomials {@;(z, \)}i_, (see Schwarz [23]) such that any element h €

o@};’)\) can be written as the pullback by @ = (@, ... @,) of a function of u = (uy ... u,);
that is, (5&,/\) = @*&,. Similarly, taking &} = {n: (R%,0) = R | n(ve\) = n(\), Vv €
I'} and 4" its maximal ideal, there also exist polynomials 5(\) = (91(\) ... T:(N))

with 6"1; =7*&,.
Let &y = {f1 R™,0) > R™ | f(12,7%0A) = Ym f(2,0), ¥y €T } be the &7, -
module of smooth I'-equivariant germs. @‘”é’ ) 18 generated over @@};,/\) by a finite

set of I equivariant polynomial maps {g;};-,. Hence for any f € (;‘”((g’/\) there exist

{hj}5-, € &, with
f = ﬂ*(hlgl +ee h895> .

Thus we may identify o&"(g’)\) with @*&”, (in general that module is not free on gd(g))\)).
Similarly, we represent EX = {A: (R,0) — R* | A(weA) = 7% A(\), Vv € T} as
7*&" for some £. We denote by %(g’/\) () the submodules of 5’(;/\) (&)) of germs

- rk -
vanishing at the origin and, in general, ﬂ(;)\) = (%&M-é)(x,)\))r.

2-2. Contact equivalence
2:2-1. A -equivalence
Let

M, 5 = {T: (R™,0) = Min(R) | T(va2,76N) Y = Y T(2,A), Yy €T }

be the & }; »-module of I-commuting smooth matrix-valued maps. We also need the
following 5};7A)-1n0(1ule:

Ok s = {X: (R™,0) = R" | X(32, %)) = 7 X(2,X), ¥7 € T},
the following &%-module:
6! = {A: (R",0) > R | A(3\) =% A(N), ¥y € T}
with their submodules
®(5,0>\) ={X €0, | X° =0}

and

O ={A @ | A°=0}.
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The appropriate coordinate changes should preserve the zero-set, the special role of
the bifurcation parameter, and the symmetry on both spaces. We therefore introduce
the contact group A’ defined by

HL= AT X,0) € ME < O5 xBY7 | 17 € L(m), X7 € LEn), A3 € L0},
which acts in a natural way on f € gé(;/\) by

(T.X,A) - fl, ) = T, A) F(X (@A), AQV).
Two elements f,g € 3(57/\) are A S-equivalent if they belong to the same #\-orbit.

2.2.2. xT

A un (K)-equivalence

Let 3 € R¥, we extend in a straightforward manner the definitions of Section 2-2-1
to their B-parametrized VGI‘Si_(»)I’lS, M&/\’ﬁ), (;fil;’,\ﬁ), @é’,‘i\ﬂ), @&’;3).

Perturbations of any f € & (I;’ ) are described by unfoldings with k parameters of
f, which are map germs F' € é’“'(;w, 8 =(B¢ ... Bk), such that F(x, \,0) = f(x, \).
We denote by A~ Kun(/c) the group of I~equivalences for unfoldings with k param-
eters. It is a natural extension of 7} in the following sense:

— 3 Lo 3 Lo
fgun(k) ={ (T, X,A,®) € M(rz,A,ﬁ) X®(I,A,,@’) X®(/\,,6) X Msp |
(T, X, A) is a k parameter unfolding of an element of 4"}

and @ is a diffeomorphism germ }.

The action of #'T

A,un

(T, X, A, @) - Fx, A, f) = T'(x, A, B) F(X (2, A, 5), A(A, B), ©(5)).

(k) on F € 6L, 4 is defined by

We say that F,G € é@'(g,m) are Ji”iun(k)-equivalent if they belong to the same
AL (k)-orbit.

A, un

2-2-3. Tangent spaces
Associated with #| we can define different tangent spaces to f € & (; »- The
extended langent space to f is
TeN)=ATI+ Lo X+ HA [ T M\, X €04, Ac Oy},
Note that it has only the structure of a &-module. The extended normal space to f
is defined by
Nelh) = Ean/Telf)

and the Tcodimension of f. cod" (f), is defined as dimg AL (f).

2-3. The unfolding theory
Let F' € @?;(5,/\75) be an unfoldings of f € éf")(gy)\) with £ parameters, and let G' €

3(2)\,0‘) be an unfolding of f € %;M with 7 parameters. We say that G' maps into
F or G factors through F if there exist T' € M&A’a), X € @(g,/\m, A € (:j&a) and

A (R",0) — (RF,0) satisfying T(z, \,0) = I,,, X(x,\,0) = 2 and A(\,0) = A, such
that

Gz, A\ a) =T(x, A o) F(X(z, A, a), AA, ), A(a)).
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The unfolding F' is called versal if any unfolding G of f maps into F. If F' is versal
and has minimal number of parameters, it is called miniversal. The usual results from
unfolding theory hold, as follows:

THEOREM 2-3-1 (The unfolding theorem). Let f € (5‘"(;» and F € 3(5,\@) be an
unfolding of f with k parameters, o = (o ... ay). Then
(i) F is versal if and only if 3(£7A) =T +R-<Fo(.,0) ... Fs (.., 0)>.

(i1) Two versal unfoldings of a germ in (azz(g,/\) are equivalent as unfoldings if and only
if they have the same number of unfolding parameters.

(iii) Let W C g(g,x) be a finite dimensional complement of NV (f) as a vector space,
that s, %;M =T(f)eW. Let {pi};::r(f) be a basis for W. Then a miniversal
unfolding of g is

rodr(

f)
Flz, A a) = fl@, )+ Y a;pi(@, ).

J=1

(iv) If fand g € g(g,k) are two AN~ equivalent germs of finite codimension and F

and G € (;“"(;A’a), with o = (o ... ag), are two miniversal unfoldings of f and g,
respectively, then F and G are A Run(k)—equi/ualent. We say that F, G are universal
unfoldings.

2-4. Determinacy

For any mapping f we denote by j%(f) the Taylor polynomial of order k (or k-jet) of
f-Agerm f € cg‘;(g’)\) is k- "-determined if every germ g € (;ﬁg,/\) with j%(g) = j*(f) is
A \-equivalent to f. A germ is finitely A S-determined if it is k-5 -determined for some
integer k. As usual, there is a close relationship between being finitely determined
and being of finite codimension. The first theorem follows from the general theory.

THEOREM 2-4-1 (Finite determinacy theorem). 4 germ f € g"f;/\) is finitely A\
determaned if and only if cod Y(f) is Jinate.

2-5. The recognition problem

The recognition problem seeks conditions under which a germ g € (;0;(;M is AL
equivalent to a given normal form. To solve a particular recognition problem means
explicitly to characterise the #\-equivalence class in terms of a finite number of
polynomial equalities and inequalities to be satisfied by the Taylor coefficients of
the elements of that class.

2-5-1. Intrinsic submodules and higher order terms

Let ® = (T, X,A) € 4% and consider the mapping f — ®(f) = T - f o (X, A).
A submodule M C 3(57/\) is intrinsic if ®(f) € M for all f € M and all ® € #7.
IfV C (?(g’)\) then the intrinsic part of V., denoted by ItrV, is the largest intrinsic
submodule of & (g’ ) contained in V.

Let f € c;‘”{(gﬁ/\). The ‘perturbation term’ p € c;‘”"(g’/\) is of higher order with respect to
fif g+pis A equivalent to f for every g that is #S-equivalent to f. By definition,
such a perturbation cannot enter into a solution of the recognition problem for f.
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We denote by 2(f) the set of all higher order terms of f, that is,

9’(f)={p€3<§,A)I gtp~1f, Vng}
where ~ denotes A\ -equivalence.

Prorosition 2-5-1. For each [ € g(g’ N the set P(f) is an intrinsic submodule of
2T
g(m’A)-
2-5-2. Unipotent A \-equivalences

The final subgroup of 4% that we need is that of unipotent equivalences. The

kernel of the projection map 7 sending (T, X, A) € A5 onto (T, X2, A3) is given by

U\ ={ (T, X,N) e\ | T°=1,, X2=1,, A3 =1, }.

It is a normal subgroup of #} consisting of unipotent diffeomorphisms, and is called
the subgroup of unipotent I-equivalences. Its associated tangent space at f € é’(g)k)
is

TU(f)={Tf+fX+HA|TeM,,, X €O, AcB”,
°=0,X°=0,A=0}.
As a consequence of Theorem 1-17 (|9], p. 108) we have the following proposition:

ProposiTioN 2-52.  Let f € z;é(g’» be of finite I-codimension. Then P(f) D
Itr TU"(f).

COROLLARY 2-5-3. Let p € Itr ﬂ'Ur(f). Then [+ pis A S-equivalent to f.

3. The path formulation

In this section we describe a general ‘algebraic’ path formulation theory for I*
equivariant bifurcation problems with diagonal I action on state and parameter
spaces.
3-1. Organizing centres and equivariant paths

Recall that T" is a compact Lie group acting diagonally on state and parameter
spaces. Let £ be the subgroup of I' leaving the A-coordinate fixed. Technically X =
Ker pg, so T is a normal subgroup of I'. Let &= be the set of -invariant germs, let
& Z be the set of Z-equivariant germs, let (:)E be the set of Z-equivariant vector fields
on R™, and let M= be the set of z-dependent X-commuting matrices. For h € & Z we
have the following results (see [13]):

(i) TE(h) = { Th+h,X | T € M%, X € ©F } is the Z-calended tangent space to
h.

(i) N Z(h) = EZ/TE(fy) is the Z-normal space to h.

(iii) cod*(h) = dimg A"Z(h).

(iv) If dimg A Z(h) = r < oo and {h;}7_, C &7F is a basis for A Z(h) then a Z-

miniversal unfolding of h is H(z, ) = h(z) + Y _;_, a;hi(z).

Let f € (?(;A). Then the organizing centre fo of f is defined as fy(z) = f(x,0).
Clearly, fy is not only X-equivariant but it is actually I~equivariant. We assume
henceforth that f; is of finite X-codimension. To fix the ideas, f, satisfies

cod*(fo) =r. (HO)
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This hypothesis is fundamental in our work. In Section 3-2 we show that under (HO)
the path formulation is always feasible (see Theorem 3-2-1). However, we also show in
Section 3-1-2 that (HO) is not always necessary, by giving an example of a bifurcation
problem where cod" (f) is finite but f, does not satisfy (HO).

Let Fy: (R™7,0) — R™ be the Z-miniversal unfolding of f, with r parameters
a = (aj ... a,), constructed from a basis {h;}7_, of /%(fy), namely

‘)(.CC CY f‘) + Z az

We say that a: (R*,0) — (R",0) is a path in the 7-dimensional pardmeter space
of the miniversal unfolding of f,. The pullback (a*Fy): (R***,0) — R™ is given
by (& *Fy)(z,A) = Fy(x,a(N)). We can now state the fundamental result about the
existence of a space of paths. With the above notation let

P={aeP, | aisrequivariant.} , (3-1)

That is, a € 2 if and only if a(y,A) = v, a(A) for all v € T'). We call 2 the space of
paths.

THEOREM 3-1-1 (Space of Paths). There exists a basis {h;}_, of N/*(fo) and a T~
action on R” (see (3-2) below) such that

(" Fy)(x, ) +Z a;(A) hi(z

s Irequivariant for o € 2.

We call such as basis a good basis, see Lemma 3:1-3. The proof of this result is in
the next subsection.

3-1-1. Space of paths

We now construct the space 2 of I'equivariant A\-paths through the parameter
space of Fy. Consider the isomorphism 0: & >/ 7 >(f,) — R" defined by

0(g)) = (Zah) a) -

Let o : Txé&F — &F be the action of T on & defined by ©(7, g) =%, (90 Yn).
LemMA 3-1-2. ¢ is well-defined and T =(fy) is a p-invariant submodule of ng.

Proof. Since X is a normal subgroup of I', a simple verification shows that for g €
o@ the equation ¢(v, 9)(0,7) = 0, ©(7, g)(z) holds. Moreover, let h € 7 =(f,); that is,
there are T € M= and X € @E such that h = T'fy + (fy).X. Then @(v,h) € T=(fo),
Vyel. [

As a consequence, we can project ¢ down to the quotient to define an action ¢ on
Tx&7 /7 E(fo) by ¢(1[91) = [¢(7,9)]. Then @ is well-defined, since T (fy) is a -
invariant submodule of é”’f, and it defines a representation p,: I' — GL(r), p(y) = ~L
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where 7, is the matrix defined by
T
[G(1, h)] = ()i [hyl, 1<i<r.
j=1
As usual we identify the action with its image.
We now consider a particular choice of a polynomial basis {h;}1_, of /Z(f,) for
which the previous equivariance is ‘exact’ and ~, C O(r); that is, we want the

relations
-

Vi i) = D (0)ig hy(@), Yy €T, VI<is<r, (32)
J=1
to hold for the polynomials, not only for the classes, and we want p, to be an or-
thogonal representation. When such a choice is possible, we call such a basis a good
basis.

LemMA 3-1-3. There exists a good basis

Proof. Since (HO) holds, that is codz(fo) = r, there exists k € N such that (.#%)*.
EEX C TE(f,). Denoting by PX_ the vector space of Z-equivariant polynomials of
degree less or equal to k — 1, it follows that & /7 >(fy) C Pr_,. As T2(fy) N PL_,
is X-invariant, the tangent space has some Z-invariant complement A= (f,) in P¥_,.
Choose a basis {h;}7_, for /Z(f,) so that

BV, hi) = Y hi 0 = D (Wi by
=1

and change the coordinates again to make of p, an orthogonal action. [

Proof of Theorem 3-1-1. We have constructed a good basis in Lemma 3-1-3; Now
we define the space of paths 2 more precisely. For a good basis {h;}i_,, let [g] =
> i, a; h;. Then @ is explicitly given by

Pl9) =D i (Fhhioy) =Y (Z(W» hj> =Y (va)ihi,

=1 =1 j=1 =1

where (v£)i; = () ji» 1 < i,j < r. By considering the isomorphism 6: g”’f/ﬂ‘?(fo) —
R” we have p,.(7)(a) = yia for all a € R".

Let 24, = {a: (RY,0) — (R",0)} be the set of paths in the unfolding parameter
space. We define an action ¢, on 2, by ¢, : IxP;, — Py, (7, @) — 7L (@o~y,). The
fundamental space of paths we want to work with is the subspace of 2, defined as
2 = Fix p,, that is, o € 2 if and only if a(y,A) = v, a()), Vv € I'. The proof now
follows from a straightforward calculation, carried out in detail in Sitta [24]. [

3-1-2. Counterexample
The following example shows that

cod"(f) < 0o does not imply that cod®(fy) < oc.

We consider O(2)-equivariant bifurcation problems with 2 variables and 2 param-
eters. For convenience we shall use complex notation, that is, (zy, 72, A;, \2) € R* is



Equivalent bifurcation problems 285
identified with (z,\) = (z; + ima, A\; +iXy) € C. Let O(2) act on C* by 0 - (2,\) =
(€2, ew)\) and & - (2,A) = (2, \). Then as in [24]:

(1) 5 @ /\ the ring of O(2)- invariant germs, is generated by u = 2z, v = A\ and
w=2A+ 2. ,
(ii) é”(g(;\z;, the é”g(f\))-module of O(2)-equivariant map germs, is generated by z and
A, that is,
f(z,A) = pu,v,w)z + q(u, v, W)A.

We also denote f by [p, q].

(iii) Considering the action of O(2) on A only, every O(2)-equivariant mapping
A € % has the form A(X) = AN = £(v)A, for some £ € &,.

(iv) Mg(’i\)), the 58{2)3)—m0du1e of O(2)-equivariant matrices, is generated by the
following linear maps on C:

Si(z, ) w = w,

So(z, \)w = (A — Z\) w,
Ss(z, \) w = 2%,

Si(z, \)w = zAw,

Ss(z, \) w = \.

v) The extended tangent space at f = [p,q] € &%) is defined by
g P (z,M\) B

T = { Sf+LX+HA|SeMA, X eE AedP .

A calculation shows that

TON(f) =600 <gi ... gi> +60F <gy> (3-3)

where

91 =p; al,

go = [wp + 2vq, —2up — wq],

93 = [up + wq, —uq],

94 = [ vq, upl,

95 = [—vp, wp +vq],

96 = [P+ 2upy + wpu, 2uqy + wqu ],

g7 = [wpy + 20py,, p + waqy + 2vq,],

gs = [ 2up, + wpy, q + 2vq, + wq,] .

The example is the generic bifurcation problem f(z, A) = euz—08\, where €2 = §* = 1.
Using (3-3), Z2O(f) = [ M y,p,), E]. 50
cod®®(f) = dimg 6 2% /TP (f) = 1.
The organizing centre of f is by fy(z) = uz. The isotropy subgroup of A is the
trivial group, £ = 1. Thus, cod*(fy) = cod(fy). By Proposition 2-4 (|26], p. 494),
any A -finite germ is @-finite, and using the geometric criterion for a germ to be

%-finite we find that f, has infinite Z-codimension since the complexification of f,
has a non-isolated singularity.
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That f is the generic bifurcation problem follows from the general theory of [8].
A straightforward calculation shows that .#, . .) and <v,w > are intrinsic ideals

and that |4, 7] is an intrinsic module if and only if .# and # are intrinsic ideals and
<v,w>-¢ C I C #. Therefore

‘d}(f) = [%2 ) + ﬂ(u,v,w)' <v,w>, %(u,v,w)] :

(u,v,w

Hence it p) + 0 and ¢° # 0, simple rescalings show that [p, ¢] is contact equivalent
to f with € = sgp? and 6 = sg ¢°.

3-2. General path formulation

Now we show that if (HO) holds then we can always define a path formulation for
the bifurcation diagrams and their unfoldings.

THEOREM 3-2-1 (path formulation). Let f € (%l;’)\) with organizing centre fy € 65 of
finite A >codimension v having miniversal unfolding Fy(z,a) = fo(z) + >i_, a; hi(z).
Then there exists a path & € P such that f is A E—contact equivalent to &* Fy.

Similarly, if F is an unfolding of f with parameters B, then there exists an unfolding
A of & with parameters 3 such that F is A {/\7 gy-contact equivalent to A F,.

Proof. We construct a A \-trivial homotopy G:[0,1] — (o}(g,x) between f and
a(., 1)*Fy, defined by
G('/L‘y )‘a t) = (1 - t) f(xa /\) +t E)(Ia d()‘> t))
for some (yet to be determined) &(.,t) € £ with &(0,t) = 0, V¢ € [0,1]. By ‘trivial
homotopy” we mean that G; is #"{-contact equivalent to f, V¢ € [0, 1], which would
imply that & = a(., 1).
To find &, define

T

H(x, X a,t) = (1—t) f(z,\) +t folw) + ) azhi(x).
i=1
Note that G = (t &(), t))*H and that H is I equivariant. Moreover, Fy, G and H are
all unfoldings of fj.
The key ingredient is the following version of the Parametrized Preparation
Theorem (the idea is to have germs in (z, A, &) but not in ¢ € [0, 1]).

PARAMETRISED EQUIVARIANT PREPARATION THEOREM (see Arnold et al. [1]).
If
2% _ T
E; =T A (fo)+R-<H,, ... H, >

then
E oy =T HonanH) + Epan <Ha, ... Hy > Vte[0,1]. (3-4)

Let g(x,\) = f(z,A) — fo(x). From the Hadamard Lemma there exist {M;}*_ C
ng such that g(x, A) = Zle AjM;(x, A). We can use (3-4) to decompose each M;,
1 < j < k. That is, there exist (S;,Y},a;) such that

Mj(, \) = Sy, A,y t) Hw, A,y )+ Hy (0,0, 0, 8) Y (2, A s )+ (a;)i(A, @, 8) i)

=1
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Now define S =>"", XS, Y =" ANYanda=>_, N\a;. Then

Fl@,X) = folw) = SH+HY + 3 ai(X,a,1) h(). (3:5)
i=1
Moreover, S(z,0,a,t), Y(z,0,a) and a(0, o, t) are all identically 0 for all ¢ € [0,1].
Those two properties are preserved when we I-average (3:5) to get [~equivariant .S,
Y and a.
Now consider the following ODE for ¢ € [0, 1]:

L6 1) = ald 61, 1)
For consistency at t = 0 we need
(A, 0) = a(A, @A, 0),0). (3-6)

We want to have @(0,0) = 0, and we know that a(0,0,0) = a,(0,0,0) = 0. We use
the Implicit Function Theorem to find a unique solution &(\, 0) of (3-6); we use that
solution as an initial point for the ODE. Moreover, since a(0,0,%) = 0 we see that
@(0,t) = 0 for all t € [0, 1].

Once we have & we can get the rest of the change of coordinates in the classical
manner. We integrate X = Y (X, \,ta,t) to find X (z, A, t) such that X (z,\,0) = z.
As Y(0,0,0,t) = 0, Vt € |0,1], we verify that X (0,0,t) = 0, Vt € |0,1]. Finally we
integrate the matrix vectorfield

T(x, N\, t) =T(x,\,t) S(X(x,\, 1), \, ta(\, 1), 1)
to find T" such that T'(z, A,0) = I,. Then
T'T, G(X, \t) + G (X, M\ 1) Xy + Gy(X, A\ 1) =0
with

" d
Gl M t) = —=(f(, N) = fol@) + D - (Ea(N ) hi(w).
i=1

We conclude that

d

so that T'G(X, A\, t) is a constant over time, equal to Gy = f. [

3-3. Tangent spaces to a path

Suppose that (H0) holds and let A% (f,) be generated by a good basis {h;}7_,. Let
pr be the orthogonal representation defined in Section 3-1-1. Consider the action of I
on « € R given by (v, @) — 7,a. Note that the Z-miniversal unfolding of f, denoted
as before by Fy, is I-equivariant. More precisely, Fy(vnx, Vr@) = YymEFo(z,a), Vy € T.

In what follows we establish preliminary results needed to define the tangent
space and the unipotent tangent space to a I* equivariant path. We have to keep
track of the symmetry on A € R®. Because of that, we first enlarge the space of
paths 2. Let 2 be the set of Iequivariant paths defined by B(\) = (&(\), \) for
& € 2. Let m.: R™ — R" be the natural projection. For 8 = (a,\) € R™, let
E: (R™7* 0) — R™ be defined as

E($76) = Fy(x, 7. (8)) = (InXWr)*E(maﬁ) .
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We also have the following 3-parametrised spaces with the Iaction on the - space:
g(gﬂ), M(rxﬁ), é(gﬁ), (géﬁr’ éag and C:)(EOB) IFrom a simple calculation it follows that
E e 3(;[3), B*E, = &*F, and so §*F, € 3(5)\). We have already proved that (&*F,) €
c;é(g)\) if & € 2 (Theorem 3-1-1).

The tangent space at f € g(gﬁ) is defined by

TN ={8F+f.€1 5eMl , and €8,
and the unipotent tangent space at f € 3(576) is
TU™(f)y={Sf+f. | S ¢e M(rxﬁ), fe C:)éfg) satisfying $° = 0 and £2 =0} .

Because (91;, is a noetherian ring (Montaldi [20]), the following intersections of

a8 fAini . /s "t snectiv e
(91-6—modules have a finite number of generators {h}}i_,, {h} respectively, such

=t
that
TE)N (O <hy ... he>)' = O <h| ... h,>, (3-7)
and
TU(E)N(Op-<hy ... > =04 <] ... B> . (3-8)

Recall here that E, is a polynomial. Note that Of-<h{ ... h}/>C Op-<hj ... h,>.

For any 1 < j < s, we can decompose h’; as hl(z,3) = Sy (75)i (B) hi(z) where
n;: (R™0) — R", m; = (1, ... n;.) is Trequivariant, that is, n; (Y+8) = v 15 (8),
for all v € I'. We define

N=6&f-<n...ns>. (3-9)

Similarly, for any 1 < j < t, we can decompose hf as hff(z, 8) = >2._, ()i (6) hi(x)
where 7j; : (R™,0) — R", 7}; = (f};, ... 7;,) is ['equivariant. We define

N=65 <y ...0>. (3-10)

For & € 2, let ws: Zp, — g(i)\) be given by ws(§) = Z;lﬁi h;. We define the
extended tangent space at the path & by

T (@) =a*N +ay- &1
and the unipotent tangent space at & by
TUG) = 6N +ay- A5
We denote by 2(&) the higher order terms of & € 2 and define £ € 2(&) if and only
ifws(€) € 2(a*E).
PROPOSITION 3:3-1. Let £ € TU(&). If wa(€) € Itr TU" (& * ) then £ € P(a).

Proof. Since & € TU(&), we deduce that ws (&) € TU " (& * ) by Proposition 3-4-5.
By hypothesis, wg(§) € Ttr 7" (& * F) and so wg(§) € (& *F) by Proposition 2-5-2.
By definition, £ € Z(&). O

We define the normal extended tangent space at & € P by N (&) = P/ T (&), and
define the codimension of & € 2 as cod' (&) = dimg. A" (&).
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THEOREM 3-3-2. The map ws induces an isomorphism between N (&) and NT (& * F,)
as real vector spaces. Moreover if {¢;}i—, C P projects into a basis of N (&), then
{waldi) Yoz projects into a basis of /'L (& *E).

COROLLARY 3-3-3. cod" (& *F) is finite if and only if cod" (&) is finite.
3-4. Proofs.

From the decomposition of h}, 1 < j < s, define 7;(3) = (1;(8),A) . Note that

J
7y € OF . since 7 (e) = (1 (yree), 7eN) = (3 (), %eA) = Vs 75(5). ¥y €T
Define

N =685 <y ...H>. (3-11)
Similarly, for 1 < j < ¢, let 7;(3,A) = (;(8), \). Note that 7j(8) € €. Define
N = &5 <ijy ... i), > . (3-12)
Letwg : 65 — &5 5 be defined as ws() = Y1, (m, 0 f1); hy. Clearly wg(f1) € &L 4.
PROPOSITION 3-4-1. wgl(fr(ﬁg)) = N and wil(f%r(ﬁ;)) = N.

Proof. We show that wil(”"r( 7)) = N in two steps.
(i) Nc ws YWTT(E)). Let ) € N, that is, 7 = Zj:1 p;n;. Therefore

wﬁ(ﬁFZ(m«on = (Zug mom) hi
M (Z(nj)ihi> = Z i
=1 J=1

j= i=1

It follows that ws(f) € - <hj ... h,>C I TT(E).
(ii) wy YTT(E) € N. Let i € é”ﬁ with wg(ft) € 9’1-( »). We have to show that
gt

fi € N. Therefore ws(f) = Yooy (0 )ik €
<hy ... hl>. Hence,

S )

=1

_Z<; 5 (e, 0 ;) ) hi = wg (ZM%)

(F) implies that wg(f) € &)

=1

By uniqueness, i =37 p;f; and so i € N.

The proposition follows then from (i) and (ii). The proof that wy YTU"(E)) = N
is similar. [

PROPOSITION 3-4-2. wg is an R-isomorphism between 2P and (6 x-<hy ... hy.>)'.

Proof. 1t is straightforward to show that ws is a R-linear map and that wg
is injective since {h;}7_, is a basis of AZ(fy). What remains to be shown is that
Wa(?) = (Ex- <hy ... h.>)'. We have already proved that for £ € 2, ws(€) is
Cequivariant and so ws(?) C (Ex- <hy ... h.>)T. It remains to be verified that
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(Ex- < hy...hy DT C wa(?). Let ¢ € (Ex < hy ... h.>', that is, {(z,)\) =
Yoo vi(A) hi(z). Let v(A) = (11(A) ... v-(N). We claim that v € 2.

Define & = fr Yivydy where dy is the Haar measure on I'. For h(z) =
(hi(z) ... hr(x)), we have that £ € 2 and

(Wal))(x,A) = <€), h(x)> = <([p v ) (N), hz)>

Jr <v(ed), (@) > = [ <v(ved), (L @ 7" h(ynx) >
= Je vt <v(1eA), h(vaz) >= [ 7 (A, )

= ((z, A) = (wa(v))(z, A) .

Therefore, by injectivity, v = and sov € . [

For (3 € Q we define wy: P — 5 @\ by wﬁ(ﬁ) wg (- 0&). By definition, it follows
that ws(§ =30 &h; with &€ = 7, of = (& ...&) and wg is an R-isomorphism
between 9 and (6x-<hy ... h.>)'. Recall that

(i) For B € 2, (B*F) € (g”(;)\>7
é‘F(B* o) = {T (B E)+ (B*E). X | Te ML, , and X € ©F , }.
(B )={T (B*E)+(B*F). X | T € M, ,,,X € ©.% withT°=X? = 0}.

(i ) From (3- ) nd (3-10), N = 52 <Ny oM >, M50 (R™*,0) — R" is [*equivariant,

1 <j<s and N = &G <ijy ... >, 7;: (R™,0) — R” is I equivariant,
1<5<t.

Let (67n;): (R, 0) — R”, (5*1;)(A) = (@A), A). 1 < J < s and (577);): (R, 0) —
R” be given by (3* ) (A) = n;(&(A),A), 1 < j < ¢ It follows that G n; and G 7);

belong to 2 and we may write 3*n; = & *n;, 1 <j < sand f*ij; = a*ij;, 1 < j < t.
We define

nj
1

a*N=§&\-<a*n ...a*n,> (3-13)
and

a*N=6&-<a™ij ... a*m>. (3-14)
From (3-11) and (3-12), N = (a@g <Ay ... N>, 0y (RT0) — R” is Trequivariant,
1<j<s,and N = §g~<ﬁ| 72]75>, 1A7j: (R™*, 0) — R" is I* equivariant, 1 < j < t.
By definition. (377;)(A) = 7;(&(A), A) = (17;(&(A), A),N). 1 < j < s, and (377;)(A) =

7;(G(A), A) = (7@ (N()\) A),A). 1 < j < t. Hence 3*#); and 3*ij; belong to 2 for all
<J<

1 <7 <s, 1 <7<t respectively.
We define
B*N = &5-<B " ... B Hs> (3-15)
and
B*N = &5 <3, ... B> . (3-16)

~ A —TI < A ~ e~
Prorosirion 3-4-3. wy YTT(B*E)) = B*N and wﬁfl(ﬁ‘% (B*F,)) = B*N, where
*N and ﬂ*N are defined in (3-15) and (3-16).

Proof. 'To prove wﬁ_'(ﬁg(ﬁ*ﬁ;)) = (B*N we show first in two steps that
wi(TEB E) C BN
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Step 1. By definition, 3 is an immersion and so there exists W: (R"™, 0) — (R, 0)
such that W o § = I,. Tt is then poss1ble to exhibit a [tequivariant map P, that is,
Pon,y= Yo ¥, such that ¥ o 5 =

We define ¥ = JovE Yoy Using the properties of Haar integration, ¥: (R"*¢, 0) —
(R*,0) and

~ 't
Yoy = [ %Y oyreYiy = / YeYe Ve © P 0 YritVrrg
I I

Z/’yéyt‘Pou (with v =~7') =~,0 V.
r

Furthef‘,‘i’o@zfrfy}f‘l’o*yﬂgoﬁzfrfyé‘{’o/@ow:fr%w:IZ_
Via P,
(1) M( =G* Mxﬁ since 3* Mxﬁ CMx/\ and, fOITEMl)\ we may define

Sz, ﬁ) (P*T)(x, B) = T(x, ¥(B)). Clearly, § € M, 5 and

(B*8)(@,A) = 8(z, BN) = T(x,¥ 0 B(A) = T(z, A).

(11)@5 =p" gﬁ since 3* @wﬁ C@w/\ andmeG@wA we may define
f(x ﬁ (P*X)(z, B) = X (z, ¥(B)). Clearly, fe ®(ﬁv75)’ and

Bré(x,N) = €z, fN) = X(z, ¥ o V) = X(x, ).
Step 2. Let € € 2 such that wB(f) € 9*2(5*13;). We have to show that £ € 3*N.
Because wj(€) = wa(m 0 &) = ws(€) = Y0, & hi € TL(B*E) there exist T € M|,
and X € (:)'(5.7)\) such that

wa€) (@, N) = T, N) (B E) (@, A) + (57 E)a(w, A) X (2, ).

Flomhteplwﬁ(g) B*(S (B, &) e B*(TT (K ))WlthSEM(mﬂ andfé@Lﬁ
By Proposition 3-4-1, wﬁ ( E)) = N and so we may write wﬁ(f) €p* (.«Jg(N) that
is, there exists f e N, f ijl 5 7);, such that

wald) =B wslé) = B (L (mr 0 )i i) = 6*(2“ (325t (0 7))
:Z::lg*(WTOZ;:lﬂjﬁﬂihi_Z‘: Ty ﬁ ijlugm )i hi _wﬁ(ﬁ 5)
E

By uniqueness, £ = 3*€ with € € N and so £ € 3*N. Therefore, LWy YWITT(B*E)) C
B*N.

B+ (E
T

Now we wish to show the converse: WB(B ) C %F(B*F) Let £ € N, that is, é =
25:1 ;7). By Proposition 3-4-1, wﬁ(é) € 7T (F) and so there exist some S € M
W,

and é’e@(g)m with wg(€) = SE + (F), €. Now, from Step 1,

o
>
m
@1
Bl
>
s
)
=
Q
&
S
®
=
*
@)
m
&>
°
e
*
3'1}
©
=
o
&
ks
=
*
=
N

for some T' € M};)A) an
T (B E).
We conclude that wﬁ_l(ﬁg(,@* 5)) = B*N.
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—T ~ A P

It remains to show that wgl (ZU (B*E,)) = 8*N. This is similar to the proof of the

previous result, so we omit the details of the calculations. We use Proposition 3-4-1,
—T . a4 .

the definition of 7% (F,) and write, via P, (ﬁ* S)x,A) = T'(z, ) with § € Mrz 8)°
T e M[, . and (3*€)(z, \) = X(z, ) with€ € ©1% . X € 6%, Note that (379)° =
Oifand only if T° = 0 and (5*¢)? = 0 if and only 1f Xg = 0. Therefore the proposition
holds. [

PROPOSITION 3-4-4. Let & € 2. Then, w;'(9%(@*E)) = a*N  and

—T
wi'(Tu (a*E)) =a*N.

Proof. This follows from Proposition 3-4-3 since & *F, = 3* £, wﬂ(f) = wa(m, 0 &)
and &@*N = B*(m, o N), &*N = 3* (WTON) Here N, N are given by (3-11), (3-12),
and 7, o N, 7 o N denote the é”’g—modules T, O N = 55 <m.0f ... 01N, > and
T 0N = 6”5-<7r,, o ... T 01, >, respectively. []

PROPOSITION 3:4-5. wy ' (TL(@*R)) = T (&) and wy,' (TU" (@& *E)) = TU(&).

€

Proof. We show the first part in two steps:

(i) Te(@) C wy(T(@*E)). We can split £ € T (@) as £ =
&) € ITN@*E). Let

a*N and & € a, - 3A Flom Proposmon 344, wa(
& =(Ly ... L) where L; = Z »; Aj. Then

& + & with & €
) €

a(&)(@,N) ZL = (B)a(z,G(N) ax(N) AQ) = (@ E)a(@, A) AN

Hence, ws (&) = (@ *F)y o A for some A € é{ From the linearity of ws,
(5) € 71 (a*F,). Therefore (i) holds.

(it) Let € € 2 and suppose that ws(€) = ¢ € T (a*F,). We have to show that

£c 7(a). Wecansplit 7L(a*F) = 7L (@a*F)+ {(d *E)xoA | Ae (g?)\r} and

¢ = ¢ + (2. We claim that there exists & € @y - (5’{ such that ws(&2) = ¢ As
a matter of fact, (o = (& *F,)x o A for some A € (g)/\r and so

G=(ad"FR)y\oA= Z(Z >h—wa(0u01\)

7=1

Therefore there exists & satisfying the claim.

From the linearity of ws, ¢; = uja(éT — &) and by Proposition 3-4-4, E—&€arN.
Hence, wy ' (TV(@*F)) C T o(@). From (i), wy' (7L (@ *F)) = T ().

The proof of the second part is analogous to what we have done for the first part:
now we use Proposition 3-4-4 and the definitions of the unipotent tangent spaces at

a*F,and & [
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Proof of Theorem 3-3-2. Consider the following diagram:

Wa

P &

Ta |7Td

2 Qs 8o
T o(&) T L(a*E)

Define Qg: N (@) — N/ T(@*E) by Qa([v]) = [wa(v)].
(i) Qg is well-defined, that is, [v(] = [vs]| implies that Qg ([v(]) = Qa([va]).
Note that if [v;] = [v2] then v; — vy € T (&) and 50, wa (v — v2) € TL(A*E)
by Proposition 3-4-5. Hence, [ws(v()] = [wa(ve)].
(i1) Q4 is R-linear since ws and the projections are R-linear.
(iii) Qg is injective since if Q4 (|v(]) = Qa([va]) then wgs(vy) — wa(v2) € T (@ *F).
From Proposition 3-4-5, (vi—v,) € wy' (T (G *E)) = T (&) and so, [v, ] =
(iv) Qg is surjective.
ImQ, = {[f] € /) (& F) | [f] = Qa ([v]) for some [v] € N (&)} .
Since Im Q4 C A T(@*F), it remains to show that /(& *F) C Im Q4. Let [f] €
NT(@*F). By the definition of Qa. [f] = 7a (e (€) = Qa0 ma) (€) = Qa (€])
for some & € 2, that is, [f| € Im Q4. Therefore Q4 is an isomorphism between

Ne(@) and A T(@*E). From Proposition 3-4-5, the other claim of the theorem is
straightforward, since w; (7L (@& *F)) = 7 .(a).

4. Classification of Dy-equivariant bifurcation problems using the path formulation

In this section we confirm and extend the classification obtained in [8].

4-1. Organizing centres

The D,-action on R*xR? that we are studying is defined by

R - (ZE] , Lo, )\] y )\3) = (:‘i . (LL‘],IQ), /\l, )\2) = (ZE] , — X2, )\],)\2), (41)
ﬂ . (ZEI,JZQ, /\],)\2) = (/L . ($1,x2), K ()\],/\2)) = (.TQ,ZE1,)\1, —)\2)
The isotropy subgroup of A is X dg< L, &, ki, (RR)? >~ Zy @ Zs.
As defined before, (3-2) induces an action on the Z-unfolding parameters o € R".
So we define the action of Dy on (z,a, A) where z = (z(,x2), @« = ( ... ;) and
A= (A1, A2) by

(H'xvvf'aa/\lv)‘Z) and (M'.Z',’Yﬁ'a,)\l,—Az).

When it is clear from the context, we denote this action by (v2 x, v, o, ve A).

Let N = 22,6 = —3(2* + 2) and uy = A3. The ring &% of Z- invariant germs is
generated by N and §. The &=-module of Z-equivariant germs & Z is generated by
z and z, and we identify h and [p, q]. The set M of Z-commuting matrices is the
&*-module generated by
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tw(w+w), Si(z)w = iw(w—w),

SI(Z)’LU -w, SZ(Z)U) = wa SB('Z)U)

where w = (2% — 27%).

The extended tangent space is 7=(h) = {Sh+h.X | S € M2 X € %} and a
calculation shows that 72(h) = §-<h, ... hg> where

hl = Lpa an h3 = (p+Q)[N_ 67 5_ NJa h.") = leN +6p§a NqN + 6q5Ja
hy =1[q,p], hi=@—qIN+06, N+06|, hs=[0pn + Nps, 6qn + Ngs]| .

The general form for a D,-bifurcation problem is
fz,A) = p(u) z + q(u) 62 + r(u) AaZ + s(u) Adz

where p,q,r,s € &,, u = (N, A, A\(, uy), and p°® = 0.

The organizing centre of f is fo(z) = f(2,0) = p(IV,A) z + q(N,A) 6z.

We classify those organising centres using the Dy-theory. If we want to stop at
topological codimension 2 problems (with two parameters), we need to consider the
following cases. We denote by A, ,(p, q) the expression pgqy — pjqs.

THEOREM 4-1-1. Let f € & (]x),t\> of topological codimension less or equal to 2, then its
organizing centre belongs to the following list:
(1) fo(z) = mNz + €502, (f, is the generic organizing centre),
the nondegeneracy conditions are m #+ £1,0 and ¢° * 0,

(i) (when m =0) fi(z) = 2N?z + €362,

(iii) (when m = —1) f3(z) = —e;Nz + €562,

(iv) (when m =1) fy(z) = €Nz + esN?2 + €,62,
(v) (when q° = 0) f3(2) = €, Nz + €A 62.

Here m = pX/|q°|. €1 = sgpQ. €2 = sg v €3 = 59 (PRv + 2P3 — 20R). € = 89 ¢° and
€6 — €189 AN,A(Z% q).

Proof. We first rule out many organizing centres via the following remarks.

Suppose that the Zy & Zy-codimension of an organizing centre f, is k. Observe
that the modal parameters of f, are also modal parameters for the path & and all
component of & are 0 at the origin unless they correspond to a modal parameter
of fy. Hence, at constant and first order in the invariants A, uy, the tangent space
7 (&) has dimension less than or equal to k+m (the vectorfields component) + 6 (the
A1, ug-derivatives part). Thus we require 3k — (K +m +6) > 3+ m, hence k > 2 + m;
that is, the germ must be of Z, © Z,-topological codimension at least 5.

The centres listed in the Theorem are of Z, & Z,-topological codimension less or
equal to 3. The next layers can be found in [3]. Of those, the only centre remaining
under consideration is

GN:;Z + 6()62
because it is of Zs @ Z,-topological codimension 4. Its Zs & Z,-universal unfolding is
(eN*+ ay + ao N+ azN?) z + (€6 + ay) 2

with the Zs-action given by —1 — (aq, as, ag, —au). An explicit analysis in this case
show that a general path has codimension at least 3. [

Note that f; is not distinguished in the D,-theory for organizing centres. It belongs
to the same AP class as fi, but its Zy & Z,-universal unfolding is different, and
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Table 1. Normal forms. Here top-cod denotes the topological D,-codimension and cod
the differentiable D,-codimension

Case Normal form Top-cod Cod
I(] [mN + 6())\17 €5, 1, 0] 0 1
1 [mN + esNA + €4Af +a, €, 1, 0] 1 2
I [mN +nlNug + €0, €5, A\ + esuy + a, 0] 1 3
I3 [mN + esNAy + en X + o+ B, €, 1, 0] 2 3
N [mN+E7N/\f+E4)\?+a+BN/\1, €, 1, 0] 2 3
I5 [mN + e N\ + 64)\? +njuy + o, €5, A+ ﬂ, OJ 2 4
I [mN + egA\ + 69N’LL4, €5, Us T 0+ ﬁ)\], 0] 2 3
I; [mN +e M ta+ BN’LH, €5, A+ €3y, OJ 2 3
I [mN + egAi + nNuy + auy, €5, A\ + elnuf + 0, 0] 2 4

so we have to consider as an additional class for our classification. With only one
parameter and no symmetry it was again not necessary to make that distinction (cf.

[10]).

4-2. Classification of Dy-equivariant problems with organizing centre I
The following theorem gives the classification up to topological codimension 2 of
Dy-problems with organizing centre f}(z) = mNz + €56z, m + +1,0.

TurorEM 4-2-1 (Recognition Theorem for f)). Let f = [p,q,7,8] be a Dy-
bifurcation problem with organizing centre f). Then f is of topological codimension
0.1 or 2 if and only if it belongs to the following list. Moreover, f is Jf]/\)*—equivalent to the
giwen normal form in each case below if and only if it satisfies the correspondent sets of
defining and nondegeneracy conditions listed below in Section 4-2-1. In all cases p° = 0.
The parameters a, B are the unfolding parameters, as m,m;, ms, n,ny are moduli.

4-2-1. Additional information

Case 1: Nondegeneracy conditions
PR P8, T (PR — %) * 0.
Case I: Defining condition
s, = 0.

Nondegeneracy conditions
p?\f 'pilA, . qo. ro. (p?\fz _ qOZ) . (p?\l)\lqo _ q?\.pﬁ)v) + 0.
Case I: Defining condition
r° = 0.
Nondegeneracy conditions
PR P8, 4 (PR = 4%%) - Ax(ps7) - & - & % 0.
Case I: Defining conditions
S SOV
Nondegeneracy conditions
P DRoan 0 (0% = a%%) - (0%, 4° — @8, p%) * 0.
Case 14: Defining conditions
Py, = P9’ — @3, py = 0.
Nondegeneracy conditions
PR P30 (PR = q%%) & * 0.
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Case I5: Defining conditions
e =p3, = 0.
Nondegeneracy conditions
PR a” (p%° — %) & * 0.

Case Ig: Defining conditions
re = 54 =0.
Nondegeneracy conditions: p%; - pS, - (PX* — q°) - & - & * 0.
Case I7: Defining conditions
=8 =0.

Nondegeneracy conditions
p(I)\/ 'pg\l : (p?\f2 - q02) ’ A/\I7u+(p7r) : 64 *0.
Case Is: Defining conditions
re = Akn?u(p??a) = 0.
Nondegeneracy conditions
PR PR, (PR —0%) & & & F 0.
Coefficients: €y = sgp3,. €1 = SPX. €2 = SYPRN . € = €59 (PR, 0"~ 43, PRY). € =
SGPS, - €5 = SGQ°, €1 = €1 €559, € = €0, €559 (PR — ¢°%) &, €0 = (03, - (DX — 4°7)

sg fﬁ/&,

€3 = €9 S¢g

Py —9q%) -AAI,M(pm} e = 5GP
ps, - (q°s®—rp) 1%, (PN — %)
=P8y =) TR~ Ph)
& =% (PN —q7) Ax (P @) + 4% (PR — q”) - (PhoPoy — PRu,PS,)

P p%, @ (1% +57) — S, TR 50 (0% + ¢%).

& =18, - (q°s° —r{p%) + 78, (p?vi - q(’j),
& = po, - (q°s° —pryy) o, (py — %),

g(i = pZ4 'T;)u : (pKI'LH pKI ;pil)\lzp’?lq)-’_pK] .pf“ : (TS)\I)\lpZ4 _TS)\|U4 pg|)_pg| -Auwtuhkl(p’r)’
— 2 p 2
=08\ Po, 4 (PN — %) +pX s (p?ylx,qo — PNa ) 1
tPIa 0 4070 (8747 = PRTR) P A T (PRAR — PREC — 3PANG°)-
& T PR Pu TR (PR g T PR
o €5 O . (0" _ O~
Py 5P, (47 — PR _) _

lq°|’ a3, (s°¢°— parse) + 15, (0% — ¢°) 2

4-2-2. Variational problems

_po [P, |
= Pu 1 P30, |
27’§|

Another criterion affecting the choice of a normal form is the gradient structure of
some bifurcation problems. For instance, the first example in [8] of buckling of elastic
shells is usually given a variational formulation. We refer to Bridges and Furter [3] for
a theory of the contact equivalence classification of gradient bifurcation problems.
The difficulty is that # 2% equivalence does not in general preserve the gradient
structure of the problem, although it defines an equivalence relation on (??j\ Bridges
and Furter [3] show that it is enough to look for normal forms that are gradients,
and that the basis of the vector space 3%?;/(3% N T .(f)) provides the generators
needed for the gradient universal unfolding of f. In effect we are looking for normal
forms and universal unfolding terms that are the gradients of suitable equivariant
functionals.

In our problem, a routine calculation shows that

fo(z) =p(N,A) 2z + q(N,A) 6z
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is a gradient if and only if gy + 2ps = 0. By inspection all of the organising centers
classified in Theorem 4.1.1 satisfy that condition. For their universal unfoldings, that
condition together with the additional one ry +s+2Asx = 0, is also readily checked.
Thus we have the following result:

THEOREM 4-2-2. The list of gradient bifurcation problems and the universal unfoldings
mé g 1 of organizing centres fy of topological codimension up to 2 is the same as the list
given in Theorem 4-2-1.

This is again a situation where symmetry puts enough constraints on the diagrams
so that the difference between gradient systems and the rest is negligible. This al-
ready happens for D,-equivariant (n > 3) bifurcation problems with one parameter,
see Bridges and Furter [3].

4-2-3. Hierarchy of parameters

So far we have not considered any hierarchical structure involving parameters,
such as Ay > Xy or Ay > A, but retaining the same symmetry constraints. Such
hierarchies require us to consider changes of coordinates in %" ]/\)* with A satisfying

A(A1, A2) = (Ai(Ar, Ag), Az(A2)) (4-2)
or
A(A1, A2) = (Ar(Ar), Az(Ar, A2)).

The advantage of such more restricted changes of coordinates is that they respect
the order in Ay (respectively A() of the )\ -slices (respectively As-slices), instead of
simply respecting open regions in parameter space. We ask if any of the normal forms
in Theorem 4-2-1 is also a normal form for this more restrictive equivalence, with
the same codimension. The path formulation is particularly well-adapted to answer
such a question, because the vectorfields generating N and N are independent of
such considerations. Only the part & will change. Hence the new tangent spaces for
the equivalence corresponding to (4-2) are given by

T (@)= &N+ 0 hy + 6V hs
and
TUG) = &N+ M Ty + MY o,
where &@*N and & N are given in Theorem 4-3-1.

Note that the residual Z;-symmetry on A already imposes some restrictions. In
particular, a simple inspection shows that the second assumption on A is too strong
—none of our normal forms persists with the same codimension. It is then a straight-
forward verification to see that only I, and Is remain as normal forms with the same
universal unfoldings for the more restrictive change of coordinates in (4-2).

4-3. Proofs
For Case I, fi(z) = mNz + €56z, m #+ +1,0. Using the Z; & Z,-description, we

write fj = [mN,es56]. A calculation shows that

TE(fy) = Exs <[0,N], [6,0], [0,87], [N?,0], [mN, e56]> .
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The Z-normal space A "Z(f)) is generated by [1,0], [N,0] and [0,1] as a real vec-
tor space. The Z-unfolding of f; is given by Fj(z,a) = m Nz + ay 2 + (656 + a3) 2,
where 1 represents (m + as). Because D, acts on z as Z and ¢z, it follows that
{[1,0], [N, 0], [0,1] } is a good basis; the action on the a-space is generated by &
acting as Iy and {1 as —1 on the last component, but as the identity on the first two.

Let 253 = {a: (R?,0) — (R?,0)} be the set of paths defined from the bifurcation
parameter space to the unfolding parameter space. The action ¢ of Dy on & € 2, 3
is given by

v &= (@oy), VyeD,.

2 denotes the set of Dy-equivariant paths, that is,

) =3 &(A)}-
A calculation shows that & € 2 if and only if
QA1 A2) = (ar (A, uy), as(Ar, uy), Aeas(Aq,uy)).
By Theorem 3-2-1, f is # D-equivalent to &*F} where
(@ F)(z,A) = [(m+ as(A,ua)) N+ an(Ar, ua), €5, as(Ar, ug), 0.

THEOREM 4-3-1. Let & € 2. Then the tangent spaces at & are

T (@) =6EY<hy ... hy> (4-3)
and
g'%(d) = é(}])\)¢'<711, ]N'L2, Oélilg, )\1713, ’U,4FL3, )\fiu, U4FL4, )\1FL5, ’LL477,5> (—1-4)
where
hy = (Mugad, (1 — 1w’ )al, Moy ass),
tLZ (ugayag, M1 — M2 ugas, a3 \z),
tLg (04170 Oé;/\z) (-1-5)
h4 (( ))\17 (052))\17 (043))\])\2),
s = (2u()uys 2ua(02)u,, Q3Ae + 2ug(0s)u,A2),

To find the tangent space at a path & € 2, we follow § 3-2. We start by calculating
the tangent space at a germ f € g(g*ﬁ). We denoted (o, A) by 3 and define

EPy = {f: (€ xBR,0) = C | faz7:00) = 12f(2,8), ¥7 € Dy},
Oy = {£€ O, | & =0},

Mgfﬁ) = {S (C xR*xR?0) — GL(2 ) | S (Y22, V3+28) 12 = 12 (Z>ﬂ)7 V~yeDy}.
The action of Dy, on C xR*xR? is given by
I%'(Z,(X],Oéz,ag,)\],/\g) = (Z,a1,a2,a3,)\1,)\2),
B (2,00, a3, A, A2) = (12, 00, gy —ig, Ay, —A).
The D,-invariants for this action are

N = ﬂQZA:(SZ:%(Z +Z) U _)\1, 114:)\§=u4, (46)
aq . Uy = 0ag, Uy = 06X, Ui = aghs.

Q)
1

ZZ,
Ug

Q)
Il
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They satisfy the following relations: 43 = dyfy, 4§ = G20y and 43, = G704 Let
% = (@ ... ;) where the 4;, 1 <7 < 7, are stated in (4-6).

ProrosiTioN 4-3-2. (i) 3(2:@ is freely gemerated by z, 0z, M\aZ, a3z, 6oz, a3z,

ashoz and oz ez as an & z-module.
(i1) Mg*ﬂ) s the & - module freely generated by the following linear maps on C :

(z, ) w =w, S’Q(z,ﬁ)w = X\, S’g(z,ﬁ)w = 6w,
Wz, 0)w = azw, S;,(z,ﬂ)w = w, S’ﬁ(z,ﬁ)w =dbasw,
(z,H)w =«

5} z, = azhw, Ss(z,ﬂ) w = daz AW, Sg(z,ﬁ) w = W,
gl()(z,ﬁ) W= —iAww , S'n(z,ﬂ)w = —jbww Slg(z,ﬁ)w = —jasww ,
g]g(Z, B)w = iddww 314(z,ﬂ) w = 1603w

Slﬁ(z,ﬁ) W = T3 AW , S’m(z,ﬂ)w = —ibaz oww ,

(.
where w = — (27 — 27).
4
From Proposition 4-3-2, every f € g(?j@) is written as

flz,a,X) = pi(@) 2+ pa(@) 82 + ps() Aoz + py(T) 32
+p5(T) O Aoz + p6(T) O3z + p7(Q) oz + ps(@) baz Aoz

and we identify f and [pl p ].
The tangent space at fe é" ) Is given by

TP(f) = {§f+f2f( | SeMPy, Kedly ).

€

PROPOSITION 4-3-3. TP4(f) = Ea-<gi ... gos> where
g1 [p1 D2, D3, P4, P55 Pes P75 p8] 3

g2 = [u4p3, UsDs, Pty UsP7, D2, UsPs, Pay Do)

g3 = [Apz, p17 Aps, Ap67 p3, p4, Aps, p7],

9s = (03P, O5ps, O5P7, D1, O3PS, P2, D3, Ps]

g5 = [AUJJ?;, u4p«h Aps, Auyps, pu uyp7, Aps, pal,

g6 = [Aaips, a5py, Aasps, Aps, a5pr, pi, Aps, psl,

g1 = [Of Uy P75 Oé.)uﬁtps, 0431’4, U4P3, 04%]967 UyDs, Pty P2]s

gs = [AOZ U4Pg,s 3u4p7, Aaipu, Auyps, oz%m, uyps, Apa, pil,

9o = [Np1 — Apa, p1 — Np2, Aps — Np3, Aps — Npy, Nps — ps, Nps — pu,

Np7 — Aps, pr — Nps],
g0 = [Auyps — Nuyps, Nuyps — usps, Npi — Apa, Nuypr — Auypy,
— Np2, uypr — Nuyps, Aps — Npy, Nps — pa,
gu1 = [Api — NApy, Npy — Apa, NAps — Aps, NAps — Apy, Aps — Nps,
Aps — Npy, Ap; — NAps, Np; — Apg],
di2 = [Aaipﬁ - Naim, Noz%p(; - a§p4, Na§p7 - Aaips, Np — Ap,, a§p7 - Naips,
p1 — Np2, Ap; — Np3, Np; — D3,
913 = [NAusps — Auyps, Auyps — Nuyps, Apy — NAps, Auyp; — NAuyps,
Npi — Apa, Nusp; — Augpg, NAps — Apy, Aps — Npy],
14 = [NA&3ps — Aipy, Aaips — Nodpy, Aazp; — NAagps, Apy — NAp,,
Noipr — Acips, Npy — Aps, NAps — Ap;, Aps — Nps],
gi5 = [Nu4a§p7 - U404§Ap8, u4a§p7 - Nmaips, Aaim - Naim, Auyps — Nuyps,
Noips — aipy, Nugps — wsps, Npy — Aps, pr — Npa|,
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gi6 = [Aazuyp; — NAazuyps, Noguupr — Aaguyps, NAaGps — Aagp,,
NAuyps — Auyps, azAps — Nogpy, Auyps — Nugps, Apy — NApy, Np; — Aps,

917 = [2Npiy + 4Apia + pi, 2Npan + 4Apan + 3pa, 2Npsy + 4Apsa + ps,
2Npyn + 4Apsa + py, 2NpsN + 4Apsa + 3ps, 2Npen + 4Apea + 3ps,
2Npin + 4Apia + pr, 2Npsn + 4Apsa + 3ps],

g1s = [—2Apin — 4NApip + Aps, —2Apsn — 4NApon — 2Nps + py,
—2Apsn — 4NApsa + Aps, —2Apyn — 4NApsa + Aps,
—2ApsN — 4NApsa — 2Nps + ps3, —2Apsn — 4NApgs — 2N ps + py,
—2Ap;n — 4NApaa + Aps, —2Apsy — 4NApsa — 2Npg + pq],

g1 = [—2Auspsn — 4NAuspspa — 2Nugps + wyps, —2uspsy — 4Nugpsa + uyps,
—2Apan — 4NApaop — 2Nps + pi, —2Auspsn — 4NAuypga — 2Nuypg + ugps,
—2pin — 4Npia + p2, —2usprn — 4Nugpra + uygps,
—2Apsn — 4NApsa — 2Nps + ps, —2pan — 4Npaa + pe,

20 = [03ps — 2N agps — 2A0pen — 4NACEDea, aips — 205pan — 4N apaa,
a5pr — 2Ac5psy — 4NAaGpsa — 2N oips, pi — 2Apay — 4N Apsa — 2Nps,
—205piN — 405 Npra + aips, —2pin — 4Npia + po,
p3 — 2Apsn — 4NApsp — 2N ps5, ps — 2psny — 4Npsal,

Go1 = [2NAuspsn + 4A%uspsa + 3Auyps, 2Nuypsn + 4Auspsa + usps,
2NADsn + 4A%pon + 3Aps, 2NAugpsy + 4A%u pga + 3Au,pg,
2Npin + 4Apia + pi, 2Nusprn + 4Auypra + uspy,
2NApsn + 4A°psa + 3Aps, 2Npyn + 4Apss + pal,

g2z = [2NAQSpsn + 4A%a3pea + 3Aa3ps, 2N aipyn + 4Aaipia + aipy,
2NA3psy + 4A%a3psa + 3Aa3ps, 2NApan + 4A%pop + 3Aps,
2Najpry + 4Aadpra + a3pr, 2Npiy + 4Apia + py,
2NAp;N + 4A°psa + 3Aps, 2Npsn + 4Apsp + ps],

G23 = [2Nwyaiprn + 4Acgugpra + wiaipr, 2Nusoipsy + 4Augaipsa + 305uyps,
2N a5pan + 4AaEpaa + aipy, 2Nugpsy + 4Augpsa + uyps,
2Najpsny + 4Aazpea + 3aips, 2Nugpsn + 4Auspsa + Sups,
2Npin + 4Apia + pi, 2Npan + 4Apaa + 3ps],

Go1 = | —2A0jusprn — ANAGuypra + Ackuyps,

—2A03uspsny — 4NAQGuspsa — 2Nuyaisps + usoipr,

—2Aaip,y — 4NAaspa + Aadps, —2Auspsn — 4 NAuspsa + usAps,
—2Aaipsn — 4NA3pes — 2N a3pg + aipy,

—2Auypsn — 4NAuypsp — 2N uygps + uyps,

—2Apin — 4NApia + Aps, —2Apon — 4NAp2a — 2Nps + pi .

ProrosiTioN 4-3-4. The unipotent tangent space at f € é(?ﬁ) s
TUP(f) = Ea-<Ngi, Agi, a1gy, ogi, a3gi, Mgi, Wgis go -- - Gis,
Ngiz, Agiz, a1gi7, 2617, 043917, A1G17, UsGi7, Gis - -+ Goa >
where gy ... goy arve stated in Proposition 4-3-3.

Proof of Theorem 4-3-1. We calculate the tangent space 7 .(&) at & in two steps.
The space I % (&) is computed following the same lines.

Step 1. E} - (C xR*xR?,0) — C is defined by
Fy (2, 0, 0, a3, Ay M) = F (2,0, @, 03) = (MN+ ) 2+ 65,02 + 03 2

where m = m + ao.
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Using Proposition 4-1-6, a calculation shows that 9'?*(15(,1) =Ea <G ... gi15>,
where

2

gi 3643(52‘{‘7’/)\1]\[2, gs = ( )N/\22+ma1)\22+ma3)\zz

g3 =mAz+aq Nz, g,=(m —I)A)uz—ala;/\gz—a A2Z,

g5 = €5(1 — M*)0Aaz + Aoz + az sz,

ge — 65(76\’&2 — 1)60[3/\22 + Ck12)\22 + 041043)\225,

g7 = M*Nbazz + 502Nz, gg= (1 —M*)N?*XaZ + ajashez + a3 X2,
gy = MN?z + 041NZ o =zt oz, g = aqazhez + a3z,
g2 = ma z+(1— )alNz + ooz,

g1z = 041043)\22 + m(l — )Na,g)\gz + al)\gz,

gu = aiazz +m(l —n “)) Nz + ooz,

Jis = maga;)\zz + (1 —mAa Naghez + moy o 2o % .

It follows that 7 2«(F}) N (65 <z, Nz, 2>)P+ = é”‘g*-<h’l, hy, Ry, Ry, R, hi> where

hy = rmajz + (1 — )alNz+ma1a;z

Ry = ajazaz + (1 — m*) Nag ez + a2 \s 2,

hy = aloz{ z+m(l —n °) INz +ajayz,

B = majazhez + (1 — m%)a; Naghez + maai sz,
hi = a2z + oz,

hé) = (110(3)\22’ + Oéi)\zf .

Let n;: (R*xR? 0) — R* 1 < j <6, be given by

M, A) = (rag, (1 — mz)al,ﬁmlas)

Ma(a, A) = (rag)e, (1 —1m7)azAs, ajds),
ns(a, A) = (04101;, m(l — )0437 ajas),
Ne(a, A) = (M )u, (1 — M) ajagds, Moy Qs )\2)
n5(a, A) = (ay, () as),

Ne(a, A) = (arasAe, 0, a3 A2)

The 7; are Dy-equivariant since

nj(a, oz, —ag, Ar, —A2) = 3 - (i, az, as, Ap, Ag)
with v - n; = (05,15, —1;5,), 1 < J < 6.
Let N = §E*~ <N ...ne>. For & € 2, we define @*N = é”?‘- <A&*N ... &g >,
where

a*ny = (hugad, (1 — m?)ay, maias)s),
a*ne = (ugapag, m(1 — m‘)ma;,a A2),
a*ny = (ugenad, m(l — m?)ugad, afags),
a&*ny = (hagui, (1 — M) ajazuy, moguais),
a*n; = (o, 0, azhe),

&g = (aqugas, 0, uga3y).

Since «; € é”]/\)*, we have that a*N = (o@]/\)*‘<ﬁl, iLQ,iLg> with

hy = (mu4a3, (1— )al, M agagAs),
hy = (ugoy o, 1 (1 — 1P usas, @i Xs), (4-7)
h; (041,0 Od;)\ )
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Step 2. Clearly &> is generated by ( 0 ) and < 0 ) as an &y module. Then, as

Ao
(aeq)a, 200 (0t ),
ay = | (a2)x 200 (2)u, )
Az(a3)x, ag + 2uy (o),

>
=

Il
o)

A < (1) > = ((@i)ars (@2)a,5 (a3)x,A2)

s <(A) ) = (2 (@), 2ua(@2)u,, @3 A0+ 2(05), 1 As)

In a similar way we get N and
TUG&) = &N+ o> O

Proof of Theorem 4-2-1. We use (4-3) and (4-4) to find, respectively, the tangent
space and the unipotent tangent space of the path associated with each normal
form, denoted hereafter by g.

The first part of the theorem follows from Propositions 3-3-1 and 3-4-5. To obtain
the normal form and the non-degeneracy conditions we change of coordinates modulo
an intrinsic submodule contained in the intrinsic part of 7 %™ (g), which in turn
is contained in 2(g) by Proposition 2-5-2. The miniversal unfolding follows from
Theorems 2-3-1 and 3-3-2. To conclude the proof, we now state the basic data for
each case.

Case Iy. Associated path: &(A) = (69, 0, Ag).

T (@) = EY'-<(1,0,0), (0,A1,0), (0,us,0), (0,0,5)>
Ne(&) =<(0,1,0)>; m is a modal parameter.
j%(d) = éﬂ],\)4<()‘f7070)7 (U4,0,0), (07 )\1,0),(0,’&4,0), (0707)\1)\2)7 (0707u4)\2)>

Case I;. Associated path: a(X) = (e4A], €3A1, As).

T o(@) = 63 < (uy, 0, 0)7 (0,A1,0), (0,u4,0), (2e4A1, €5,0), (0,0, A2) >
Ne(&) =<(1,0,0), (0,1,0)>; m is a modal parameter.
TU&) = EV- < (uy,0,0), (A\,0,0), (0,A2,0), (0,24, 0), (0,0, \A2), (0,0, u3)s) >

Case L. Associated path: &(A) = (69, nuy, (A + €guy)As).

T (@) = 62 <(—2mA2 6o (1 — m*)Ay, 0), (uy,0,0), (€0,0, X2),
(—6())\] s 271'&4, 0), (60777/(1 - mz)/\?, O, 2”/\%)\2) >
N (&) = <(0,1,0), (0,uy,0), (0,0, A2) >; m and n are modal parameters.
‘9—%(&) = (”@])\)‘L' < (/\T)v 07 0)7 <u-2L7 O’ 0)7 (07 /\l ’ 0)7 (0? ’U,i, O)v (0, 07 UJ)‘I)\?)’
(60U4, O, U4>\2)7 (0, 0, )\f)\g) >

Case Ty. Associated path: G(\) = (e A2, e3Ai, Aa).

E9"6(&> = (o@f\)‘~<(mu4 + 63”4)\17070)7 (07u470)7 ()\f7070) (‘3611)\17637 ) (0707 >\2)>
Ne(&) =<(0,1,0), (1,0,0), (Ar,0,0)>; m is a modal parameter.
7 (d) - é"]/\)*-<(u4,0,0), ()\-1‘,0,0), (O,U4,0), (O, )\f,()), (0,0, )\1)\2), (0,0,U4)\2)>
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Case T,. Associated path: G(A\) = (e4\3, €207, \2).
= 6V < (ug, 0,0), (A1,0,0), (€4hr, €A1,0), (0,us,0), (0,0, A2) >
<(1,0,0), (0,1,0), (O A1, 0)>; m is a modal parameter.
/(@) = 6% < (m s, (1 — N, 0), (0,11,0), (A4,0,0), (0, X%, 0),
(0, O, )\1)\2), (0, O, U4)\2)

R
@@
| |

Case T5. Associated path: &(X\) = (e,A] + njuy, e3X1, A Ag).

T (@) = &Y < (mug?, (1 — m*)ngug, mAAa), (dnughd, 0, e, A30,),
(2n1u4, 0, /\1)\2), (264)\1 , €3, )\2), (0, )\1, 0) >
N (@) = <(1,0,0), (uyg,0,0), (0,1,0), (0,0,1)>; m and n; are modal parameters.
TUG) = EY- < (esmAt, (1 — mP)nduy, 2e,mmAtA;), (ughd, 0,0), (0,2%,0),
(0, ’U,4)\1, 0), (27&11/4)\1, 0, )\f)\g), (264’&4)\1, €3Uy, U4)\2),
(niugh; — €xA3,0,0), (nqui — equgAi, 0,0) >

Case Ig. Associated path: &(A) = (g1, €gtiy, UgAa).

T (@) = gD* <(1,0,0), (0, X1, 0), (0,uy,0), (0,0, A2X2), (0,0, ugXs) >
Ne(@&) = <(0,1,0), (0,0, A2), (0,0, A{A2)>; m is a modal parameter.
T ( ) = éal,\)4'<(u47070)7(>‘?7070)7 (07>\170>7 (07u370>7 (0707>\f)\2)7
((),0,U4)\1)\2), (0,0,Ui)\z)>
Case I7. Associated path: &(A) = (691, 0, (A + €3uy) Aa).
T (&) 51;* <(0,A1,0), (0,u2,0), (0,0,us)s), (€0,0,A2), (€0,0,A2), (A1,0,0)>
N (@) = <(1,0,0), (0,1,0), (0,uy,0)>; m is a modal parameter.
TUG) = X< (0,A1,0), (0,413,0), (0,0,ushiXe), (0,0,u3h), (A7, 0,0),
(6()U4,0,U4)\2), (O 0,)\]>\-_)

jo)]
I

Case Ig. Associated path: a(X) = (e A1, nuy, (A + €pui)N2).

T e(@) = 6 < (60,0, X2), (€0A1,0,u3N2), (0, 201y, A ), (0, A, 0)>
N () = <(u4,0,0), (0,uy,0), (0,1,0), (0,0, As) >; m and n are modal parameters.
TUG)=E-<(A2,0,0), (€otg, 0, uAs), (0, A1, 0), (0, 2nu, ughi\s),

(0’ 0, Ui)q /\Q)a (07 0, ui)‘z)v <Oa 0, )‘f/\z) >
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