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1. Introduction

In [8] we studied equivariant bifurcation problems with a symmetry group acting
on parameters, from the point of view of singularity theory. We followed the now
classical theory originated by Damon [5], using the ideas presented in [5, 13, 14].
We adapted general results about unfoldings, the algebraic characterization of finite
determinacy, and the recognition problems, to multiparameter bifurcation problems
f (x, λ) = 0 with ‘diagonal’ symmetry on both the state variables and on the bifur-
cation parameters. More precisely, such bifurcation problems satisfy the condition
f (γx, γλ) = γ f (x, λ) for all γ ∈ Γ, where Γ is a compact Lie group.

In this paper we attack the same problem from a different angle: the path formu-
lation. This idea can be traced back to the first papers of Mather [17] and Martinet
[15, 16]. It was used explicitly in Golubitsky and Schaeffer [12] (see also their earlier
paper [11]) as a way of relating bifurcation problems in one state variable without
symmetry to a miniversal unfolding in the sense of catastrophe theory. At that time
the techniques of singularity theory were not powerful enough to handle the full
power of the idea efficiently – either in theory or in computational practice. This
is why the path formulation was abandoned in favour of contact equivalence with
distinguished parameters, as developed in Golubitsky and Schaeffer [12]. Consider-
able progress has been made since then; for example Montaldi and Mond [19] use
the path formulation to apply the idea of KV -equivalence introduced by Damon [6]
to equivariant bifurcation theory. Bridges and Furter [3] studied equivariant gra-
dient bifurcation problems using the path formulation, and defined an equivalence
relation in the space of paths and their unfoldings that respects contact equivalence
of the gradients. Here we describe an algebraic approach to the path formulation
that has the advantage of organizing the classification of normal forms. Moreover,
it minimizes the calculation involved in obtaining the normal forms (compare with
the classical framework in Furter et al. [8]). The geometric approach to the path
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formulation using KV -equivalence is still open in the context of a symmetry group
acting diagonally on parameters.

Let Σ ⊂ Γ be the isotropy subgroup of λ, that is, Σ = {σ ∈ Γ | σλ = λ, ∀λ}.
For fixed λ the full equation is Σ-equivariant, but when λ̄ ∈ Fix (Γ), then the germ
f (x, λ̄) is Γ-equivariant. In the language of singularity theory, without additional
constraints, we would consider the recognition problem for Γ-equivariant problems
and unfold them in the Σ-theory. In our case we do not have a ‘full’ unfolding in the
Σ-theory because Γ remains as a residue of symmetry when we enlarge the space to
encompass the parameters.

In Furter et al. [8] we found normal forms for bifurcation problems with two
state variables and two bifurcation parameters that are equivariant under an ac-
tion of the dihedral group D4 on both state variables and parameters, see (1·1)
below. This context was motivated by mathematical models describing the buckling
of a square plate when forces act on its edges We used the classical framework to
find the tangent spaces and higher order terms, from which we deduced the normal
forms. We gave a corrected version of the generic normal form already obtained by
Peters [21], and extended the classification to bifurcation problems of topological
codimension one. We also described the bifurcation diagrams of the generic normal
form.

We briefly put these results into a broader context. The study of equivariant
bifurcation problems via singularity theory (Golubitsky et al. [12, 13]) has mainly
been concerned with models exhibiting spontaneous symmetry-breaking, where the
equations maintain the same symmetry throughout the bifurcation, but the solutions
lose symmetry as the parameters vary. Golubitsky and Schaeffer [12] and Golubitsky
et al. [13] study one-parameter bifurcation problems where the symmetry groups
acts only on the state variables. Peters [21] classified the bifurcation problems with
a one-dimensional state variable and two bifurcation parameters, and extended the
basic formalism to multiparameter bifurcation problems with diagonal symmetry on
both state variables and bifurcation parameters. Simultaneously, in his Ph.D. thesis
[14], Lari-Lavassani analysed multiparameter bifurcation problems with symmetry
on the state variables.

However, there is another category of equivariant problems where the bifurcation
equations satisfy less symmetry when some parameters are non-zero; this is called
forced symmetry-breaking. There has been some some analysis of this situation
using classical techniques in bifurcation theory (see Vanderbauwhede [25], Chill-
ingworth [4], for instance). Although many of the results obtained so far are fairly
general, they have mainly been applied to forced symmetry-breaking from a full
orbit of solutions under a continuous Lie group – which arise for instance
in periodic forcing of autonomous systems, or, in mechanics, for rigid body
motion.

We now describe the structure of this paper. In Section 2 we recall the general the-
ory derived in [8] in order to study Γ-equivariant multiparameter bifurcation prob-
lems via singularity theory, for a diagonal linear action of a compact Lie group Γ on
the state variables x and on the multiparameter λ. We define an equivalence relation
for such bifurcation problems using a change of coordinates (contact equivalence)
that preserves the bifurcation structure (λ-slices) and the symmetry (Γ-action) of the
problem. Two germs f, g representing bifurcation problems are said to be equivalent
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if there exist T,X,Λ such that

g(x, λ) = T (x, λ) f (X(x, λ),Λ(λ)) ,

where T (x, λ) is an invertible matrix and (x, λ) 7→ X(x, λ),Λ(λ)) is a local diffeo-
morphism. Both T and (X,Λ) must be symmetry- and orientation-preserving; that
is, T (γx, γλ) γ = γ T (x, λ), X(γx, γλ) = γ X(x, λ), Λ(γλ) = γ Λ(λ), and T (0, 0),
Xx(0, 0),Λλ(0) must be in the connected components of their respective identity
operators.

In [8] we showed that this context fits into the classic framework of Damon [5].
Indeed we can either derive the main algebraic results – the finite determinacy and
unfolding theorems – directly, or from the abstract formalism of Damon [5]. Fi-
nite codimension of the ‘extended tangent space’ of such f implies both that f is
contact equivalent to a finite segment of its Taylor series (finite determinacy) and
that any perturbation of f can be induced from a special perturbation F with cod f
parameters (the universal unfolding of f ).

In Section 3·1 we develop the idea of the organizing centre f0 of a bifurcation
problem f , f0(x) = f (x, 0). Such an organizing center is still Γ-equivariant. Let Σ be
the isotropy subgroup of the bifurcation multiparameter λ and suppose that f0 has
a Σ-universal unfolding F (x, α). Now consider f as a perturbation of f0, and seek a
germ α̃ such that f (x, λ) = F (x, α̃(λ)). We call such a germ α̃ a path. (More accurately
it is a path-germ.) Because f is Γ-equivariant and F is only Σ-equivariant in x, we
define a Γ-action on the space of λ-paths in the parameter space of a well-chosen
universal Σ-unfolding of the organizing centre, in a such way that the pullbacks α̃MF
of that Σ-unfolding by such paths become Γ-equivariant.

Our fundamental hypothesis (H0) is seemingly rather natural: we assume that

codΣ(f0) <∞ .

Indeed, in Section 3·2 we show that under (H0) the path formulation can always
be introduced. Nevertheless, we also show in Section 3·1·2 that (H0) is not actually
a necessary condition for f itself to be of finite codimension. The understanding of
what happens there is an open question.

In Section 3·3 we define the tangent space and the unipotent tangent space of a
Γ-equivariant path. The main result establishes an isomorphism between the normal
space of a Γ-equivariant path and the normal space of the pullback of the Σ-unfolding
of the organising center by this path. These results represent an algebraic characteri-
sation of the path formulation, in the sense that we use only algebraic manipulations
of the classical tangent spaces of Damon [5], as developed by Furter et al. [8], to
construct the tangent spaces to a path. We rely upon the existence, from the start,
of such a general theory. (The geometric approach, using the KV -equivalence de-
fined in Damon [6] and applied in [3, 19], with V being the relevant local bifurcation
variety for F , is under investigation.) We finish in Section 3·4 with the proofs of the
main results of Section 3·3.

In Section 4 we illustrate our theory by extending the classification of D4-
equivariant bifurcation problems started in [8]. We consider problems with two state
variables and two bifurcation parameters equivariant under the aforementioned
action of the dihedral group D4. In complex notation, the effect of this action on a
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bifurcation problem f (z, λ) is

f (z̄, λ) = f (z, λ) and f (iz̄, λ̄) = i f (z, λ) . (1·1)

This section ends with remarks on the use of our classification to tackle gradient
D4-equivariant bifurcation problems. Some bifurcation problems, like those arising
from models of the buckling of elastic shells, have a natural gradient structure.
This acts as an additional constraint. Even if contact equivalence does not preserve
the set of gradients ~E Γ

∇,λ, it still induces an equivalence relation on ~E Γ
∇,λ. Moreover,

the perturbation (unfolding) theory extends to the gradient case: see Bridges and
Furter [3] for general theoretical results on such questions.

In the multiparameter situation we must understand what structure is preserved
by contact equivalence. In general, only the relative position of open regions in pa-
rameter space where the zero-set structure does not change in its principal charac-
teristics is preserved. Without further information, one dimensional slices have in
general no invariant meaning. In our situation, though, because of the symmetry
on the parameters, the axis λ2 = 0 is invariant under contact equivalence, so the
structure in each half-plane is preserved. For two of our normal forms, I0 and I6, we
can say more. They are also normal forms for the stronger contact equivalence that
respects λ1-slices for λ2 = constant, that is, with

Λ(λ1, λ2) = (Λ1(λ1, λ2),Λ(λ2)) .

Hence, in that case, the λ2-sequence of those λ1-slices has a perfectly good invariant
meaning.

The proof of that fact is quite easy using the path formulation. The main part
of the tangent space, which depends on F , is independent of the changes in the
structure of the λ-space. So we need only change the second part of the tangent space,
which depends on the λ-derivatives. When Γ acts nontrivially on the parameter λ
we nevertheless may have to reconsider part of the general calculations, because we
have to keep track of all the symmetries: see Sections 3 and 4).

Applications of the theory for D4-equivariant problems to forced symmetry
breaking in four-cell rings are discussed in another paper currently in preparation,
Furter [7], along with further D4-equivariant multiparameter bifurcation problems.

2. Fundamentals of the general theory

In this section we recall the fundamental concepts and principal results about un-
foldings, finite determinacy and the recognition problem for multiparameter equiv-
ariant bifurcation problems, which we derived in [8] from the general abstract theory
of Damon [5].

2·1. Notation and definitions

The state variable is x = (x1 . . . xn) ∈ Rn and the bifurcation parameter is λ =
(λ1 . . . λ`) ∈ R`. Derivatives are denoted by subscripts, for example fx for ∂f/∂x, and
the superscript o denotes the value of any function at the origin, so that fo = f (0),
fox = fx(0), and so on.

Let Ex be the ring of smooth germs f : (Rn, 0)→ R and Mx its maximal ideal. For
y ∈ Rm, Ex,y denotes the Ex-module of smooth germs g : (Rn, 0) → Rm and Mx,y

its submodule of germs vanishing at the origin. When y is clear from the context we
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denote Ex,y by ~Ex and Mx,y by ~Mx. In the path formulation, we also make use of
the ring Ox and module ~Ox of real-analytic germs.

Let GL(n) be the group of all invertible n×n real matrices and O(n) the n-
dimensional orthogonal group. Let Γ be a compact Lie group acting on Rm and ‘di-
agonally’ on Rn+` via orthogonal representations ρN : Γ→ O(N ), where N = m,n, l.
(The abuse of notation involved here is intentional and useful.) We denote by γN the
action on RN induced by ρN , N = n, l,m, and identify γN with ρN (γ) for all γ ∈ Γ.
The connected component of the identity map in the subset of GL(n) consisting of
all Γ-equivariant maps is denoted by Lo

Γ(n). The identity map in GL(n) is denoted
by In.

Let EΓ
(x,λ) = {h: (Rn+`, 0) → R | h(γnx, γ`λ) = h(x, λ), ∀ γ ∈ Γ} be the ring of

smooth Γ-invariant germs and MΓ
(x,λ) its maximal ideal. There exists a finite set of

Γ-invariant polynomials {ūi(x, λ)}ri=1 (see Schwarz [23]) such that any element h ∈
EΓ

(x,λ) can be written as the pullback by ū = (ū1 . . . ūr) of a function of u = (u1 . . . ur);
that is, EΓ

(x,λ) = ū∗Eu. Similarly, taking EΓ
λ = {η: (R`, 0) → R | η(γ`λ) = η(λ), ∀ γ ∈

Γ} and MΓ
λ its maximal ideal, there also exist polynomials v̄(λ) = (v̄1(λ) . . . v̄t(λ))

with EΓ
λ = v̄∗Ev.

Let ~E Γ
(x,λ) = {f : (Rn+`, 0)→ Rm | f (γnx, γ`λ) = γm f (x, λ), ∀ γ ∈ Γ } be the EΓ

(x,λ)-

module of smooth Γ-equivariant germs. ~E Γ
(x,λ) is generated over EΓ

(x,λ) by a finite

set of Γ- equivariant polynomial maps {gi}si=1. Hence for any f ∈ ~E Γ
(x,λ) there exist

{hj}sj=1 ∈ Eu with

f = ū∗(h1g1 + · · · + hsgs) .

Thus we may identify ~E Γ
(x,λ) with ūMEsu (in general that module is not free on ~E Γ

(x,λ)).

Similarly, we represent ~E Γ
λ = {Λ: (R`, 0) → R` | Λ(γ`λ) = γ` Λ(λ), ∀ γ ∈ Γ} as

v̄MEt̂v for some t̂. We denote by ~M Γ
(x,λ) ( ~M Γ

λ ) the submodules of ~E Γ
(x,λ) (~E Γ

λ ) of germs

vanishing at the origin and, in general, ~M Γk
(x,λ) = (Mk

(x,λ) ·~E(x,λ))Γ.

2·2. Contact equivalence

2·2·1. KΓ
λ-equivalence

Let

MΓ
(x,λ) = {T : (Rn+`, 0)→Mm(R) | T (γnx, γ`λ) γm = γm T (x, λ), ∀ γ ∈ Γ }

be the EΓ
(x,λ)-module of Γ-commuting smooth matrix-valued maps. We also need the

following EΓ
(x,λ)-module:

~Θ Γ
(x,λ) = {X: (Rn+`, 0)→ Rn | X(γnx, γ`λ) = γnX(x, λ), ∀ γ ∈ Γ} ,

the following EΓ
λ-module:

~ΘΓ
λ = {Λ: (R`, 0)→ R` | Λ(γ`λ) = γ` Λ(λ), ∀ γ ∈ Γ}

with their submodules

~Θ Γ,o
(x,λ) = {X ∈ ~Θ Γ

(x,λ) | Xo = 0}

and
~ΘΓ,o
λ = {Λ ∈ ~ΘΓ

λ | Λo = 0}.
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The appropriate coordinate changes should preserve the zero-set, the special role of
the bifurcation parameter, and the symmetry on both spaces. We therefore introduce
the contact group KΓ

λ defined by

KΓ
λ = {(T,X,Λ) ∈MΓ

(x,λ)×~Θ
Γ,o

(x,λ)×~Θ
Γ,o
λ | T o ∈Lo

Γ(m), Xo
x ∈Lo

Γ(n), Λo
λ ∈Lo

Γ(`)},

which acts in a natural way on f ∈ ~E Γ
(x,λ) by

(T,X,Λ) · f (x, λ) = T (x, λ) f (X(x, λ),Λ(λ)).

Two elements f, g ∈ ~E Γ
(x,λ) are KΓ

λ-equivalent if they belong to the same KΓ
λ-orbit.

2·2·2. KΓ
λ,un(k)-equivalence

Let β ∈ Rk, we extend in a straightforward manner the definitions of Section 2·2·1
to their β-parametrized versions, MΓ

(x,λ,β), ~E
Γ

(x,λ,β), ~Θ
Γ,o

(x,λ,β),
~Θ Γ,o

(λ,β).

Perturbations of any f ∈ ~E Γ
(x,λ) are described by unfoldings with k parameters of

f , which are map germs F ∈ ~E Γ
(x,λ,β), β = (β1 . . . βk), such that F (x, λ, 0) = f (x, λ).

We denote by KΓ
λ,un(k) the group of Γ-equivalences for unfoldings with k param-

eters. It is a natural extension of KΓ
λ in the following sense:

KΓ
λ,un(k) = { (T,X,Λ,Φ) ∈MΓ

(x,λ,β)×~Θ
Γ,o

(x,λ,β)×~Θ
Γ,o

(λ,β)×Mβ,β |
(T,X,Λ) is a k parameter unfolding of an element of KΓ

λ

and Φ is a diffeomorphism germ } .

The action of KΓ
λ,un(k) on F ∈ ~E Γ

(x,λ,β) is defined by

(T,X,Λ,Φ) · F (x, λ, β) = T (x, λ, β)F (X(x, λ, β),Λ(λ, β),Φ(β)).

We say that F,G ∈ ~E Γ
(x,λ,β) are KΓ

λ,un(k)-equivalent if they belong to the same
KΓ

λ,un(k)-orbit.

2·2·3. Tangent spaces

Associated with KΓ
λ we can define different tangent spaces to f ∈ ~E Γ

(x,λ). The
extended tangent space to f is

TΓ
e (f ) = {Tf + fxX + fλ Λ | T ∈MΓ

(x,λ), X ∈ ~Θ Γ
(x,λ), Λ ∈ ~ΘΓ

λ} .

Note that it has only the structure of a EΓ
λ-module. The extended normal space to f

is defined by

NΓ
e (f ) = ~E Γ

(x,λ)/TΓ
e (f )

and the Γ-codimension of f , codΓ(f ), is defined as dimR NΓ
e (f ).

2·3. The unfolding theory

Let F ∈ ~E Γ
(x,λ,β) be an unfoldings of f ∈ ~E Γ

(x,λ) with k parameters, and let G ∈
~E Γ

(x,λ,α) be an unfolding of f ∈ ~E Γ
(x,λ) with r parameters. We say that G maps into

F or G factors through F if there exist T ∈ MΓ
(x,λ,α), X ∈ ~Θ Γ

(x,λ,α), Λ ∈ ~Θ Γ
(λ,α) and

A : (Rr, 0) → (Rk, 0) satisfying T (x, λ, 0) = Im, X(x, λ, 0) = x and Λ(λ, 0) = λ, such
that

G(x, λ, α) = T (x, λ, α) F (X(x, λ, α),Λ(λ, α), A(α)).
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The unfolding F is called versal if any unfolding G of f maps into F . If F is versal
and has minimal number of parameters, it is called miniversal. The usual results from
unfolding theory hold, as follows:

Theorem 2·3·1 (The unfolding theorem). Let f ∈ ~E Γ
(x,λ) and F ∈ ~E Γ

(x,λ,α) be an
unfolding of f with k parameters, α = (α1 . . . αk). Then

(i) F is versal if and only if ~E Γ
(x,λ) = TΓ

e (f ) + R · <Fα1 (., ., 0) . . . Fαk (., ., 0)>.
(ii) Two versal unfoldings of a germ in ~E Γ

(x,λ) are equivalent as unfoldings if and only
if they have the same number of unfolding parameters.

(iii) Let W ⊂ ~E Γ
(x,λ) be a finite dimensional complement of NΓ

e (f ) as a vector space,

that is, ~E Γ
(x,λ) = TΓ

e (f ) ⊕W . Let {pi}codΓ(f )
i=1 be a basis for W . Then a miniversal

unfolding of g is

F (x, λ, α) = f (x, λ) +
codΓ(f )∑
j=1

αj pj(x, λ).

(iv) If f and g ∈ ~E Γ
(x,λ) are two KΓ

λ- equivalent germs of finite codimension and F

and G ∈ ~E Γ
(x,λ,α), with α = (α1 . . . αk), are two miniversal unfoldings of f and g,

respectively, then F andG are KΓ
λ,un(k)-equivalent. We say that F,G are universal

unfoldings.

2·4. Determinacy

For any mapping f we denote by jk(f ) the Taylor polynomial of order k (or k-jet) of
f . A germ f ∈ ~E Γ

(x,λ) is k-KΓ
λ-determined if every germ g ∈ ~E Γ

(x,λ) with jk(g) = jk(f ) is
KΓ

λ-equivalent to f . A germ is finitely KΓ
λ-determined if it is k-KΓ

λ-determined for some
integer k. As usual, there is a close relationship between being finitely determined
and being of finite codimension. The first theorem follows from the general theory.

Theorem 2·4·1 (Finite determinacy theorem). A germ f ∈ ~E Γ
(x,λ) is finitely KΓ

λ-
determined if and only if cod Γ(f ) is finite.

2·5. The recognition problem

The recognition problem seeks conditions under which a germ g ∈ ~E Γ
(x,λ) is KΓ

λ-
equivalent to a given normal form. To solve a particular recognition problem means
explicitly to characterise the KΓ

λ-equivalence class in terms of a finite number of
polynomial equalities and inequalities to be satisfied by the Taylor coefficients of
the elements of that class.

2·5·1. Intrinsic submodules and higher order terms

Let Φ = (T,X,Λ) ∈ KΓ
λ and consider the mapping f 7→ Φ(f ) = T · f ◦ (X,Λ).

A submodule M ⊂ ~E Γ
(x,λ) is intrinsic if Φ(f ) ∈ M for all f ∈ M and all Φ ∈ KΓ

λ.

If V ⊂ ~E Γ
(x,λ) then the intrinsic part of V , denoted by Itr V , is the largest intrinsic

submodule of ~E Γ
(x,λ) contained in V .

Let f ∈ ~E Γ
(x,λ). The ‘perturbation term’ p ∈ ~E Γ

(x,λ) is of higher order with respect to
f if g+ p is KΓ

λ-equivalent to f for every g that is KΓ
λ-equivalent to f . By definition,

such a perturbation cannot enter into a solution of the recognition problem for f .
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We denote by P(f ) the set of all higher order terms of f , that is,

P(f ) =
{
p ∈ ~E Γ

(x,λ) | g + p ∼ f , ∀ g ∼ f
}

where ∼ denotes KΓ
λ-equivalence.

Proposition 2·5·1. For each f ∈ ~E Γ
(x,λ) the set P(f ) is an intrinsic submodule of

~E Γ
(x,λ).

2·5·2. Unipotent KΓ
λ-equivalences

The final subgroup of KΓ
λ that we need is that of unipotent equivalences. The

kernel of the projection map π sending (T,X,Λ) ∈KΓ
λ onto (T o, Xo

x,Λ
o
λ) is given by

UΓ
λ =

{
(T,X,Λ) ∈KΓ

λ | T o = Im, Xo
x = In, Λo

λ = I`
}
.

It is a normal subgroup of KΓ
λ consisting of unipotent diffeomorphisms, and is called

the subgroup of unipotent Γ-equivalences. Its associated tangent space at f ∈ ~E Γ
(x,λ)

is

TUΓ(f ) = { Tf + fxX + fλΛ | T ∈MΓ
(x,λ), X ∈ ~Θ

Γ,o
(x,λ), Λ ∈ ~Θ Γ,o

λ ,

T o = 0 , Xo
x = 0 , Λo

λ = 0 } .

As a consequence of Theorem 1·17 ([9], p. 108) we have the following proposition:

Proposition 2·5·2. Let f ∈ ~E Γ
(x,λ) be of finite Γ-codimension. Then P(f ) ⊃

Itr TUΓ(f ) .

Corollary 2·5·3. Let p ∈ Itr TUΓ(f ). Then f + p is KΓ
λ-equivalent to f .

3. The path formulation

In this section we describe a general ‘algebraic’ path formulation theory for Γ-
equivariant bifurcation problems with diagonal Γ-action on state and parameter
spaces.

3·1. Organizing centres and equivariant paths

Recall that Γ is a compact Lie group acting diagonally on state and parameter
spaces. Let Σ be the subgroup of Γ leaving the λ-coordinate fixed. Technically Σ =
Ker ρ`, so Σ is a normal subgroup of Γ. Let EΣ

x be the set of Σ-invariant germs, let
~E Σ
x be the set of Σ-equivariant germs, let ~ΘΣ

x be the set of Σ-equivariant vector fields
on Rn, and let MΣ

x be the set of x-dependent Σ-commuting matrices. For h ∈ ~E Σ
x we

have the following results (see [13]):
(i) TΣ

e (h) = { Th + hxX | T ∈MΣ
x, X ∈ ~ΘΣ

x } is the Σ-extended tangent space to
h.

(ii) NΣ
e (h) = ~E Σ

x /TΣ
e (f0) is the Σ-normal space to h.

(iii) codΣ(h) = dimR NΣ
e (h).

(iv) If dimR NΣ
e (h) = r < ∞ and {hi}ri=1 ⊂ ~E Σ

x is a basis for NΣ
e (h) then a Σ-

miniversal unfolding of h is H(x, α) = h(x) +
∑r

i=1 αihi(x).
Let f ∈ ~E Γ

(x,λ). Then the organizing centre f0 of f is defined as f0(x) = f (x, 0).
Clearly, f0 is not only Σ-equivariant but it is actually Γ-equivariant. We assume
henceforth that f0 is of finite Σ-codimension. To fix the ideas, f0 satisfies

codΣ(f0) = r . (H0)



Equivalent bifurcation problems 283
This hypothesis is fundamental in our work. In Section 3·2 we show that under (H0)
the path formulation is always feasible (see Theorem 3·2·1). However, we also show in
Section 3·1·2 that (H0) is not always necessary, by giving an example of a bifurcation
problem where codΓ(f ) is finite but f0 does not satisfy (H0).

Let F0: (Rn+r, 0) → Rm be the Σ-miniversal unfolding of f0 with r parameters
α = (α1 . . . αr), constructed from a basis {hi}ri=1 of NΣ

e (f0), namely

F0(x, α) = f0(x) +
r∑
i=1

αi hi(x) .

We say that α: (R`, 0) → (Rr, 0) is a path in the r-dimensional parameter space
of the miniversal unfolding of f0. The pullback (ᾱ ∗F0): (Rn+`, 0) → Rm is given
by (ᾱ ∗F0)(x, λ) = F0(x, ᾱ(λ)). We can now state the fundamental result about the
existence of a space of paths. With the above notation let

P = { α ∈ P`,r | α is Γ-equivariant.} , (3·1)

That is, α ∈ P if and only if α(γ`λ) = γr α(λ) for all γ ∈ Γ). We call P the space of
paths.

Theorem 3·1·1 (Space of Paths). There exists a basis {hi}ri=1 of NΣ
e (f0) and a Γ-

action on Rr (see (3·2) below) such that

(α∗F0)(x, λ) = f0(x) +
r∑
i=1

αi(λ)hi(x)

is Γ-equivariant for α ∈ P.

We call such as basis a good basis, see Lemma 3·1·3. The proof of this result is in
the next subsection.

3·1·1. Space of paths

We now construct the space P of Γ-equivariant λ-paths through the parameter
space of F0. Consider the isomorphism θ: ~E Σ

x /TΣ
e (f0)→ Rr defined by

θ([g]) = θ

(
r∑
i=1

αihi

)
= (α1 . . . αr) .

Let ϕ : Γ×~E Σ
x → ~E Σ

x be the action of Γ on ~E Σ
x defined by ϕ(γ, g) = γtm (g ◦ γn).

Lemma 3·1·2. ϕ is well-defined and TΣ
e (f0) is a ϕ-invariant submodule of ~E Σ

x .

Proof. Since Σ is a normal subgroup of Γ, a simple verification shows that for g ∈
~E Σ
x the equation ϕ(γ, g)(σnx) = σm ϕ(γ, g)(x) holds. Moreover, let h ∈TΣ

e (f0); that is,
there are T ∈MΣ

x and X ∈ ~ΘΣ
x such that h = Tf0 + (f0)xX. Then ϕ(γ, h) ∈TΣ

e (f0) ,
∀ γ ∈ Γ. q

As a consequence, we can project ϕ down to the quotient to define an action ϕ̄ on
Γ×~E Σ

x /TΣ
e (f0) by ϕ̄(γ, [g]) = [ϕ(γ, g) ]. Then ϕ̄ is well-defined, since TΣ

e (f0) is a ϕ-
invariant submodule of ~E Σ

x , and it defines a representation ρr : Γ→ GL(r), ρ(γ) = γtr
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where γr is the matrix defined by

[ϕ̄(γ, hi)] =
r∑
j=1

(γr)ij [hj] , 1 6 i 6 r .

As usual we identify the action with its image.
We now consider a particular choice of a polynomial basis {hi}ri=1 of NΣ

e (f0) for
which the previous equivariance is ‘exact’ and γr ⊂ O(r); that is, we want the
relations

γtm hi(γnx) =
r∑
j=1

(γr)ij hj(x), ∀ γ ∈ Γ, ∀ 1 6 i 6 r , (3·2)

to hold for the polynomials, not only for the classes, and we want ρr to be an or-
thogonal representation. When such a choice is possible, we call such a basis a good
basis.

Lemma 3·1·3. There exists a good basis

Proof. Since (H0) holds, that is codΣ(f0) = r, there exists k ∈ N such that (Mk
x)Σ ·

~E Σ
x ⊂ TΣ

e (f0). Denoting by PΣ
k−1 the vector space of Σ-equivariant polynomials of

degree less or equal to k − 1, it follows that ~E Σ
x /TΣ

e (f0) ⊂ PΣ
k−1. As TΣ

e (f0) w PΣ
k−1

is Σ-invariant, the tangent space has some Σ-invariant complement NΣ
e (f0) in PΣ

k−1.
Choose a basis {hi}ri=1 for NΣ

e (f0) so that

ϕ̄(γ, hi) = γtm hi ◦ γn =
r∑
j=1

(γr)ij hj ,

and change the coordinates again to make of ρr an orthogonal action. q

Proof of Theorem 3·1·1. We have constructed a good basis in Lemma 3·1·3; Now
we define the space of paths P more precisely. For a good basis {hi}ri=1, let [g] =∑r

i=1 αi hi. Then ϕ̄ is explicitly given by

ϕ̄(γ, [g]) =
r∑
i=1

αi (γtm hi ◦ γn) =
r∑
i=1

αi

(
r∑
j=1

(γr)ij hj

)
=

r∑
i=1

(γtrα)i hi ,

where (γtr)ij = (γr)ji, 1 6 i, j 6 r. By considering the isomorphism θ: ~E Σ
x /TΣ

e (f0)→
Rr we have ρr(γ)(α) = γtrα for all α ∈ Rr.

Let P`,r = {α: (R`, 0) → (Rr, 0)} be the set of paths in the unfolding parameter
space. We define an action ϕp on P`,r by ϕp : Γ×P`,r → P`,r, (γ, α) 7→ γtr (α◦γ`). The
fundamental space of paths we want to work with is the subspace of P`,r defined as
P = Fixϕp, that is, α ∈ P if and only if α(γ`λ) = γr α(λ), ∀ γ ∈ Γ. The proof now
follows from a straightforward calculation, carried out in detail in Sitta [24]. q

3·1·2. Counterexample

The following example shows that

codΓ(f ) <∞ does not imply that codΣ(f0) <∞ .

We consider O(2)-equivariant bifurcation problems with 2 variables and 2 param-
eters. For convenience we shall use complex notation, that is, (x1, x2, λ1, λ2) ∈ R4 is
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identified with (z, λ) = (x1 + ix2, λ1 + iλ2) ∈ C2. Let O(2) act on C2 by θ · (z, λ) =
(eiθz, eiθλ) and κ · (z, λ) = (z̄, λ̄). Then as in [24]:

(i) E
O(2)
(z,λ), the ring of O(2)- invariant germs, is generated by u = zz̄, v = λλ̄ and

ω = zλ̄ + z̄λ.
(ii) ~E O(2)

(z,λ) , the E
O(2)
(z,λ)-module of O(2)-equivariant map germs, is generated by z and

λ, that is,

f (z, λ) = p(u, v, ω)z + q(u, v, ω)λ .

We also denote f by [p, q].
(iii) Considering the action of O(2) on λ only, every O(2)-equivariant mapping

Λ ∈ ~E O(2)
λ has the form Λ(λ) = ξ(λλ̄)λ = ξ(v)λ, for some ξ ∈ Ev.

(iv) MO(2)
(z,λ), the E

O(2)
(z,λ)-module of O(2)-equivariant matrices, is generated by the

following linear maps on C:

S1(z, λ)w = w,

S2(z, λ)w = (zλ̄− z̄λ)w,

S3(z, λ)w = z2w̄,

S4(z, λ)w = zλw̄,

S5(z, λ)w = λ2w̄.

(v) The extended tangent space at f = [p, q] ∈ ~E O(2)
(z,λ) is defined by

TO(2)
e (f ) =

{
Sf + fxX + fλΛ | S ∈MO(2)

(z,λ), X ∈ ~E
O(2)

(z,λ) , Λ ∈ ~E O(2)
λ

}
.

A calculation shows that

TO(2)
e (f ) = E

O(2)
(z,λ)· <g1 . . . g7> +E

O(2)
λ · <g8> (3·3)

where

g1 = [ p, q] ,

g2 = [ωp + 2vq,−2up− ωq] ,
g3 = [ up + ωq,−uq] ,
g4 = [ vq, up] ,

g5 = [−vp, ωp + vq] ,

g6 = [ p + 2upu + ωpω, 2uqu + ωqω] ,

g7 = [ωpu + 2vpω, p + ωqu + 2vqω] ,

g8 = [ 2vpv + ωpω, q + 2vqv + ωqω] .

The example is the generic bifurcation problem f (z, λ) = εuz−δλ, where ε2 = δ2 = 1.
Using (3·3), TO(2)

e (f ) = [M(u,v,ω),E], so

codO(2)(f ) = dimR ~E
O(2)

(z,λ)/TO(2)
e (f ) = 1.

The organizing centre of f is by f0(z) = uz. The isotropy subgroup of λ is the
trivial group, Σ = 1. Thus, codΣ(f0) = codK(f0). By Proposition 2·4 ([26], p. 494),
any K-finite germ is C-finite, and using the geometric criterion for a germ to be
C-finite we find that f0 has infinite Σ-codimension since the complexification of f0

has a non-isolated singularity.
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That f is the generic bifurcation problem follows from the general theory of [8].
A straightforward calculation shows that M(u,v,ω) and < v, ω > are intrinsic ideals
and that [I,J] is an intrinsic module if and only if I and J are intrinsic ideals and
<v, ω> ·J ⊂ I ⊂ J. Therefore

P(f ) = [M2
(u,v,ω) + M(u,v,ω)·<v, ω>, M(u,v,ω)] .

Hence if pou� 0 and qo� 0, simple rescalings show that [p, q] is contact equivalent
to f with ε = sg pou and δ = sg qo.

3·2. General path formulation

Now we show that if (H0) holds then we can always define a path formulation for
the bifurcation diagrams and their unfoldings.

Theorem 3·2·1 (path formulation). Let f ∈ ~E Γ
(x,λ) with organizing centre f0 ∈ ~E Γ

x of
finite KΣ-codimension r having miniversal unfolding F0(x, α) = f0(x) +

∑r
i=1 αi hi(x).

Then there exists a path α̂ ∈ P such that f is KΓ
λ-contact equivalent to α̂MF0.

Similarly, if F is an unfolding of f with parameters β, then there exists an unfolding
A of α̂ with parameters β such that F is KΓ

(λ,β)-contact equivalent to AMF0.

Proof. We construct a KΓ
λ-trivial homotopy G:[0, 1] → ~E Γ

(x,λ) between f and
ᾱ(., 1)MF0, defined by

G(x, λ, t) = (1− t) f (x, λ) + t F0(x, ᾱ(λ, t))

for some (yet to be determined) ᾱ(., t) ∈ P with ᾱ(0, t) = 0, ∀ t ∈ [0, 1]. By ‘trivial
homotopy’ we mean that Gt is KΓ

λ-contact equivalent to f , ∀ t ∈ [0, 1], which would
imply that α̂ = ᾱ(., 1).

To find ᾱ, define

H(x, λ, α, t) = (1− t) f (x, λ) + t f0(x) +
r∑
i=1

αihi(x).

Note that G = (t ᾱ(λ, t))MH and that H is Γ- equivariant. Moreover, F0, G and H are
all unfoldings of f0.

The key ingredient is the following version of the Parametrized Preparation
Theorem (the idea is to have germs in (x, λ, α) but not in t ∈ [0, 1]).

Parametrised equivariant preparation theorem (see Arnold et al. [1]).
If

~E Σ
x = TKΣ

x(f0) + R · <Hα1 . . . Hαr>

then

~E Σ
(x,λ,α,t) = TKΣ

(x,λ,α,t)(H) + E(λ,α,t)·<Hα1 . . . Hαr> ∀ t ∈ [0, 1] . (3·4)

Let g(x, λ) = f (x, λ) − f0(x). From the Hadamard Lemma there exist {Mj}kj=1 ⊂
~E Σ
x such that g(x, λ) =

∑k
j=1 λjMj(x, λ). We can use (3·4) to decompose each Mj ,

1 6 j 6 k. That is, there exist (Sj , Yj , aj) such that

Mj(x, λ) = Sj(x, λ, α, t)H(x, λ, α, t)+Hx(x, λ, α, t)Yj(x, λ, α, t)+
r∑
i=1

(aj)i(λ, α, t)hi(x) .
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Now define S =

∑n
i=1 λiSi, Y =

∑n
i=1 λiYi and a =

∑r
i=1 λiai. Then

f (x, λ)− f0(x) = SH +HxY +
r∑
i=1

ai(λ, α, t)hi(x) . (3·5)

Moreover, S(x, 0, α, t), Y (x, 0, α) and a(0, α, t) are all identically 0 for all t ∈ [0, 1].
Those two properties are preserved when we Γ-average (3·5) to get Γ-equivariant S,
Y and a.

Now consider the following ODE for t ∈ [0, 1]:

d

dt
(t ᾱ(λ, t)) = a(λ, ᾱ(λ, t), t) .

For consistency at t = 0 we need

ᾱ(λ, 0) = a(λ, ᾱ(λ, 0), 0) . (3·6)

We want to have ᾱ(0, 0) = 0, and we know that a(0, 0, 0) = aα(0, 0, 0) = 0. We use
the Implicit Function Theorem to find a unique solution ᾱ(λ, 0) of (3·6); we use that
solution as an initial point for the ODE. Moreover, since a(0, 0, t) = 0 we see that
ᾱ(0, t) = 0 for all t ∈ [0, 1].

Once we have ᾱ we can get the rest of the change of coordinates in the classical
manner. We integrate Ẋ = Y (X,λ, tᾱ, t) to find X(x, λ, t) such that X(x, λ, 0) = x.
As Y (0, 0, 0, t) = 0, ∀ t ∈ [0, 1], we verify that X(0, 0, t) = 0, ∀ t ∈ [0, 1]. Finally we
integrate the matrix vectorfield

Ṫ (x, λ, t) = T (x, λ, t)S(X(x, λ, t), λ, t ᾱ(λ, t), t)

to find T such that T (x, λ, 0) = In. Then

T−1TtG(X,λ, t) +Gx(X,λ, t)Xt +Gt(X,λ, t) ≡ 0

with

Gt(x, λ, t) = −(f (x, λ)− f0(x)) +
r∑
i=1

d

dt
(t ᾱ(λ, t))hi(x).

We conclude that
d

dt
(T G(X,λ, t)) ≡ 0 ,

so that T G(X,λ, t) is a constant over time, equal to G0 = f . q

3·3. Tangent spaces to a path

Suppose that (H0) holds and let NΣ
e (f0) be generated by a good basis {hi}ri=1. Let

ρr be the orthogonal representation defined in Section 3·1·1. Consider the action of Γ
on α ∈ Rr given by (γ, α) 7→ γrα. Note that the Σ-miniversal unfolding of f0, denoted
as before by F0, is Γ-equivariant. More precisely, F0(γnx, γrα) = γmF0(x, α), ∀ γ ∈ Γ.

In what follows we establish preliminary results needed to define the tangent
space and the unipotent tangent space to a Γ- equivariant path. We have to keep
track of the symmetry on λ ∈ R`. Because of that, we first enlarge the space of
paths P. Let P̂ be the set of Γ-equivariant paths defined by β̃(λ) = (α̃(λ), λ) for
α̃ ∈ P. Let πr: Rr+` → Rr be the natural projection. For β = (α, λ) ∈ Rr+`, let
F̂o: (Rn+r+`, 0)→ Rm be defined as

F̂o(x, β) = Fo(x, πr(β)) = (In×πr)∗Fo(x, β) .
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We also have the following β-parametrised spaces with the Γ-action on the β- space:
~E Γ

(x,β), MΓ
(x,β), ~Θ

Γ
(x,β), ~E

Γ
β , EΓ

β and ~Θ Γ,o
(x,β). From a simple calculation it follows that

F̂o ∈ ~E Γ
(x,β), β̃

∗F̂o = α̃ ∗Fo and so β̃ ∗F̂o ∈ ~E Γ
(x,λ). We have already proved that (α̃∗Fo) ∈

~E Γ
(x,λ) if α̃ ∈ P (Theorem 3·1·1).

The tangent space at f̂ ∈ ~E Γ
(x,β) is defined by

TΓ(f̂ ) =
{
Ŝf̂ + f̂x ξ̂ | Ŝ ∈MΓ

(x,β) and ξ̂ ∈ ~Θ Γ
(x,β)

}
and the unipotent tangent space at f̂ ∈ ~E Γ

(x,β) is

TUΓ(f̂ ) = {Ŝf̂ + f̂xξ̂ | Ŝ ∈MΓ
(x,β), ξ̂ ∈ ~Θ

Γ,o
(x,β) satisfying Ŝo = 0 and ξ̂ox = 0} .

Because OΓ
β is a noetherian ring (Montaldi [20]), the following intersections of

OΓ
β-modules have a finite number of generators {h′i}si=1, {h′′i }ti=1, respectively, such

that

TΓ(F̂o) w (Oβ·<h1 . . . hr>)Γ = OΓ
β·<h′1 . . . h′s> , (3·7)

and

TUΓ(F̂o) w (Oβ·<h1 . . . hr>)Γ = OΓ
β·<h′′1 . . . h′′t > . (3·8)

Recall here that F̂o is a polynomial. Note that OΓ
β·<h′′1 . . . h′′t >⊂ OΓ

β·<h′1 . . . h′s> .
For any 1 6 j 6 s, we can decompose h′j as h′j(x, β) =

∑r
i=1 (ηj)i (β)hi(x) where

ηj : (Rr+`, 0) → Rr, ηj = (ηj1 . . . ηjr ) is Γ-equivariant, that is, ηj (γr+`β) = γr ηj (β),
for all γ ∈ Γ. We define

N = EΓ
β · <η1 . . . ηs> . (3·9)

Similarly, for any 1 6 j 6 t, we can decompose h′′j as h′′j (x, β) =
∑r

i=1 (η̃j)i (β)hi(x)
where η̃j : (Rr+`, 0)→ Rr, η̃j = (η̃j1 . . . η̃jr ) is Γ-equivariant. We define

Ñ = EΓ
β · <η̃1 . . . η̃t> . (3·10)

For α̃ ∈ P, let ωα̃ : P`,r → ~E Σ
(x,λ) be given by ωα̃(ξ) =

∑r
i=1 ξi hi. We define the

extended tangent space at the path α̃ by

Te(α̃) = α̃ ∗N + α̃λ · ~E Γ
λ

and the unipotent tangent space at α̃ by

TU(α̃) = α̃ ∗Ñ + α̃λ · ~MΓ2

λ .

We denote by P(α̃) the higher order terms of α̃ ∈ P and define ξ ∈ P(α̃) if and only
if ωα̃(ξ) ∈ P(α̃ ∗Fo).

Proposition 3·3·1. Let ξ ∈TU(α̃). If ωα̃(ξ) ∈ Itr TUΓ(α̃ ∗Fo) then ξ ∈ P(α̃).

Proof. Since ξ ∈TU(α̃), we deduce that ωα̃(ξ) ∈TU Γ(α̃ ∗Fo) by Proposition 3·4·5.
By hypothesis, ωα̃(ξ) ∈ Itr TUΓ(α̃ ∗Fo) and so ωα̃(ξ) ∈ P(α̃ ∗Fo) by Proposition 2·5·2.
By definition, ξ ∈ P(α̃). q

We define the normal extended tangent space at α̃ ∈ P by Ne(α̃) = P/Te(α̃), and
define the codimension of α̃ ∈ P as codΓ(α̃) = dimRNe(α̃).
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Theorem 3·3·2. The map ωα̃ induces an isomorphism between Ne(α̃) and NΓ

e (α̃ ∗Fo)
as real vector spaces. Moreover if {φi}ri=1 ⊂ P projects into a basis of Ne(α̃), then
{ωα̃(φi)}ri=1 projects into a basis of NΓ

e (α̃ ∗Fo).

Corollary 3·3·3. codΓ(α̃ ∗Fo) is finite if and only if codΓ(α̃) is finite.

3·4. Proofs.

From the decomposition of h′j , 1 6 j 6 s, define η̂j(β) = (ηj(β), λ) . Note that
η̂j ∈ ~O Γ

β , since η̂j(γr+`β) = (ηj (γr+`β), γ`λ) = (γrηj(β), γ`λ) = γr+` η̂j(β), ∀ γ ∈ Γ.
Define

N̂ = EΓ
β·<η̂1 . . . η̂s> . (3·11)

Similarly, for 1 6 j 6 t, let ˆ̃ηj(β, λ) = (η̃j(β), λ). Note that ˆ̃η(β) ∈ ~O Γ
β . Define

ˆ̃N = EΓ
β·< ˆ̃η1 . . . ˆ̃ηt> . (3·12)

Let ωβ : ~E Γ
β → ~E Γ

(x,β) be defined as ωβ(µ̂) =
∑r

i=1 (πr ◦ µ̂)i hi. Clearly ωβ(µ̂) ∈ ~E Γ
(x,β).

Proposition 3·4·1. ω−1
β (TΓ(F̂o)) = N̂ and ω−1

β (TUΓ(F̂o)) = ˆ̃N .

Proof. We show that ω−1
β (TΓ(F̂o)) = N̂ in two steps.

(i) N̂ ⊂ ω−1
β (TΓ(F̂o)). Let η̂ ∈ N̂ , that is, η̂ =

∑s
j=1 µj η̂j . Therefore

ωβ(η̂) =
r∑
i=1

(πr ◦ η̂)ihi =
r∑
i=1

(
s∑
j=1

µj(πr ◦ η̂j)
)
i

hi

=
s∑
j=1

µj

(
r∑
i=1

(ηj)ihi

)
=

s∑
j=1

µjh
′
j .

It follows that ωβ(η̂) ∈ EΓ
β·<h′1 . . . h′s>⊂TΓ(F̂o).

(ii) ω−1
β (TΓ(F̂o)) ⊂ N̂ . Let µ̂ ∈ ~E Γ

β with ωβ(µ̂) ∈ TΓ(F̂o). We have to show that
µ̂ ∈ N̂ . Therefore ωβ(µ̂) =

∑r
i=1 (πr ◦ µ̂)ihi ∈ TΓ(F̂o) implies that ωβ(µ̂) ∈ EΓ

β·
<h′1 . . . h

′
s>. Hence,

ωβ(µ̂) =
r∑
j=1

µjh
′
j =

s∑
j=1

µj

(
r∑
i=1

(ηj)ihi

)

=
r∑
i=1

(
s∑
j=1

(µj(πr ◦ η̂j))i

)
hi = ωβ

(
s∑
j=1

µj η̂j

)
.

By uniqueness, µ̂ =
∑s

j=1 µj η̂j and so µ̂ ∈ N̂ .

The proposition follows then from (i) and (ii). The proof that ω−1
β (TUΓ(F̂o)) = ˆ̃N

is similar. q

Proposition 3·4·2. ωα̃ is an R-isomorphism between P and (Eλ·<h1 . . . hr>)Γ.

Proof. It is straightforward to show that ωα̃ is a R-linear map and that ωα̃
is injective since {hi}ri=1 is a basis of NΣ

e (f0). What remains to be shown is that
ωα̃(P) = (Eλ· < h1 . . . hr >)Γ. We have already proved that for ξ ∈ P, ωα̃(ξ) is
Γ-equivariant and so ωα̃(P) ⊂ (Eλ· <h1 . . . hr>)Γ. It remains to be verified that
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(Eλ· < h1 . . . hr >)Γ ⊂ ωα̃(P). Let ζ ∈ (Eλ· < h1 . . . hr >)Γ, that is, ζ(x, λ) =∑r
i=1 νi(λ)hi(x). Let ν(λ) = (ν1(λ) . . . νr(λ)). We claim that ν ∈ P.
Define ξ =

∫
Γ γ

t
r ν γ` dγ where dγ is the Haar measure on Γ. For h(x) =

(h1(x) . . . hr(x)), we have that ξ ∈ P and

(ωα̃(ξ))(x, λ) = <ξ(λ), h(x)> = < (
∫

Γ γ
t
r ν γ`)(λ), h(x)>

=
∫

Γ <ν(γ`λ), γtr h(x)> =
∫

Γ <ν(γ`λ), (Ir ⊗ γ−1
m )h(γnx)>

=
∫

Γ γ
−1
m <ν(γ`λ), h(γnx)>=

∫
Γ γ
−1
m ζ(γ`λ, γnx)

= ζ(x, λ) = (ωα̃(ν))(x, λ) .

Therefore, by injectivity, ν = ξ and so ν ∈ P. q

For β̃ ∈ P̂, we define ωβ̃: P̂→ ~E Γ
(x,λ) by ωβ̃(ξ̃) = ωα̃ (πr ◦ ξ̃). By definition, it follows

that ωβ̃(ξ̃) =
∑r

i=1 ξi hi with ξ = πr ◦ ξ̃ = (ξ1 . . . ξr) and ωβ̃ is an R-isomorphism
between P̂ and (Eλ·<h1 . . . hr>)Γ. Recall that

(i) For β̃ ∈ P̂, (β̃ ∗F̂o) ∈ ~E Γ
(x,λ),

T̂Γ
e (β̃ ∗F̂o) = {T (β̃ ∗F̂o) + (β̃ ∗F̂o)xX | T ∈MΓ

(x,λ) and X ∈ ~Θ Γ
(x,λ)} ,

T̂U
Γ
(β̃ ∗F̂o)={T (β̃ ∗F̂o)+(β̃ ∗F̂o)xX | T ∈MΓ

(x,λ), X ∈ ~Θ
Γ,o
(x,λ) with T o=Xo

x = 0}.
(ii) From (3·9) and (3·10),N = EΓ

β·<η1 . . . ηs>, ηj : (Rr+`, 0)→Rr is Γ-equivariant,
1 6 j 6 s, and Ñ = EΓ

β· < η̃1 . . . η̃t >, η̃j : (Rr+`, 0) → Rr is Γ- equivariant,
1 6 j 6 t.

Let (β̃ ∗ηj): (R`, 0) → Rr, (β̃ ∗ηj)(λ) = ηj(α̃(λ), λ), 1 6 j 6 s and (β̃ ∗η̃j): (R`, 0) →
Rr be given by (β̃ ∗η̃j)(λ) = ηj(α̃(λ), λ), 1 6 j 6 t. It follows that β̃ ∗ηj and β̃ ∗η̃j
belong to P and we may write β̃ ∗ηj = α̃ ∗ηj , 1 6 j 6 s and β̃ ∗η̃j = α̃ ∗η̃j , 1 6 j 6 t.

We define

α̃ ∗N = EΓ
λ·<α̃ ∗η1 . . . α̃

∗ηs> (3·13)

and

α̃ ∗Ñ = EΓ
λ·<α̃ ∗η̃1 . . . α̃

∗η̃t> . (3·14)

From (3·11) and (3·12), N̂ = EΓ
β·< η̂1 . . . η̂s >, η̂j : (Rr+`, 0) → Rr is Γ-equivariant,

1 6 j 6 s, and ˆ̃N = EΓ
β·< ˆ̃η1 . . . ˆ̃ηt>, ˆ̃ηj : (Rr+`, 0)→ Rr is Γ- equivariant, 1 6 j 6 t.

By definition, (β̃ ∗η̂j)(λ) = η̂j(α̃(λ), λ) = (ηj(α̃(λ), λ), λ), 1 6 j 6 s, and (β̃ ∗ ˆ̃ηj)(λ) =
ˆ̃ηj(α̃(λ), λ) = (η̃j(α̃(λ), λ), λ), 1 6 j 6 t. Hence β̃ ∗ η̂j and β̃ ∗ ˆ̃ηj belong to P̂ for all
1 6 j 6 s, 1 6 j 6 t, respectively.

We define

β̃ ∗N̂ = EΓ
β·<β̃ ∗η̂1 . . . β̃

∗η̂s> (3·15)

and

β̃ ∗ ˆ̃N = EΓ
β·<β̃ ∗ ˆ̃η1 . . . β̃

∗ ˆ̃ηt> . (3·16)

Proposition 3·4·3. ω−1
β̃

(T̂Γ
e (β̃ ∗F̂o)) = β̃ ∗N̂ and ω−1

β̃
(T̂U

Γ
(β̃ ∗F̂o)) = β̃ ∗ ˆ̃N , where

β̃ ∗N̂ and β̃ ∗ ˆ̃N are defined in (3·15) and (3·16).

Proof. To prove ω−1
β̃

(T̂Γ
e (β̃ ∗F̂o)) = β̃ ∗N̂ we show first in two steps that

ω−1
β̃

(T̂Γ
e (β̃ ∗F̂o)) ⊂ β̃ ∗N̂ .
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Step 1. By definition, β̃ is an immersion and so there exists Ψ: (Rr+`, 0)→ (R`, 0)

such that Ψ ◦ β̃ = I`. It is then possible to exhibit a Γ-equivariant map Ψ̃, that is,
Ψ̃ ◦ γr+` = γ` Ψ̃, such that Ψ̃ ◦ β̃ = I`.

We define Ψ̃ =
∫

Γ γ
t
` Ψ◦γr+`. Using the properties of Haar integration, Ψ̃: (Rr+`, 0)→

(R`, 0) and

Ψ̃ ◦ γ′r+` =
∫

Γ
γt` Ψ ◦ γr+`γ

′
r+` =

∫
Γ
γ′` γ

′

`

t
γt` ◦Ψ ◦ γr+`γ

′
r+`

=
∫

Γ
γ′` ν

t Ψ ◦ ν (with ν = γγ′) = γ′` ◦ Ψ̃ .

Further, Ψ̃ ◦ β̃ =
∫

Γ γ
t
` Ψ ◦ γr+` ◦ β̃ =

∫
Γ γ

t
` Ψ ◦ β̃ ◦ γ` =

∫
Γ γ

t
` γ` = I`.

Via Ψ̃,
(i) MΓ

(x,λ) = β̃ ∗MΓ
(x,β) since β̃ ∗MΓ

(x,β) ⊂MΓ
(x,λ) and, for T ∈MΓ

(x,λ), we may define
Ŝ(x, β) = (Ψ̃∗T )(x, β) = T (x, Ψ̃(β)). Clearly, Ŝ ∈MΓ

(x,β) and

(β̃ ∗Ŝ)(x, λ) = Ŝ(x, β̃(λ)) = T (x, Ψ̃ ◦ β̃(λ)) = T (x, λ) .

(ii) ~Θ Γ
(x,λ) = β̃ ∗~Θ Γ

(x,β) since β̃ ∗~Θ Γ
(x,β) ⊂ ~Θ Γ

(x,λ) and for X ∈ ~Θ Γ
(x,λ), we may define

ξ̂(x, β) = (Ψ̃∗X)(x, β) = X(x, Ψ̃(β)). Clearly, ξ̂ ∈ ~Θ Γ
(x,β), and

β̃ ∗ξ̂(x, λ) = ξ̂(x, β̃(λ)) = X(x, Ψ̃ ◦ β̃(λ)) = X(x, λ) .

Step 2. Let ξ̃ ∈ P̂ such that ωβ̃(ξ̃) ∈ T̂Γ
e (β̃ ∗F̂o). We have to show that ξ̃ ∈ β̃ ∗N̂ .

Because ωβ̃(ξ̃) = ωα̃(πr ◦ ξ̃) = ωα̃(ξ) =
∑r

i=1 ξi hi ∈ T̂Γ
e (β̃ ∗F̂o) there exist T ∈ MΓ

(x,λ)

and X ∈ ~Θ Γ
(x,λ) such that

ωβ̃(ξ̃)(x, λ) = T (x, λ) (β̃ ∗F̂o)(x, λ) + (β̃ ∗F̂o)x(x, λ)X(x, λ) .

From Step 1, ωβ̃(ξ̃) = β̃ ∗(ŜF̂o+ (F̂o)x ξ̂) ∈ β̃ ∗(T̂Γ(F̂o)) with Ŝ ∈MΓ
(x,β) and ξ̂ ∈ ~Θ Γ

(x,β).
By Proposition 3·4·1, ω−1

β (TΓ(F̂o)) = N̂ and so we may write ωβ̃(ξ̃) ∈ β̃ ∗ ωβ(N̂ ); that
is, there exists ξ̂ ∈ N̂ , ξ̂ =

∑s
j=1 µj η̂j , such that

ωβ̃(ξ̃) = β̃ ∗ ωβ(ξ̂) = β̃ ∗ (
∑r

i=1(πr ◦ ξ̂)i hi) = β̃ ∗
(∑r

i=1(
∑s

j=1 µj (πr ◦ η̂j))i hi
)

=
∑r

i=1 β̃
∗ (πr ◦

∑s
j=1 µj η̂j)i hi =

∑r
i=1(πr ◦ (β̃ ∗

∑s
j=1 µj η̂j))i hi = ωβ̃ (β̃ ∗ξ̂).

By uniqueness, ξ̃ = β̃ ∗ξ̂ with ξ̂ ∈ N̂ and so ξ̃ ∈ β̃ ∗N̂ . Therefore, ω−1
β̃

(T̂Γ
e (β̃ ∗Fo)) ⊂

β̃ ∗N̂ .
Now we wish to show the converse: ωβ̃(β̃ ∗N̂ ) ⊂ T̂Γ

e (β̃ ∗F̂o). Let ξ̂ ∈ N̂ , that is, ξ̂ =∑s
j=1 µj η̂j . By Proposition 3·4·1, ωβ(ξ̂) ∈TΓ(F̂o) and so there exist some Ŝ ∈MΓ

(x,β)

and ξ̂′ ∈ ~Θ Γ
(x,β) with ωβ(ξ̂) = ŜF̂o + (F̂o)x ξ̂′. Now, from Step 1,

ωβ̃ (β̃ ∗ξ̂) =
∑r

i=1(πr ◦ β̃ ∗ξ̂)i hi =
∑r

i=1 β̃
∗(πr ◦ ξ̂)i hi = β̃ ∗

∑r
i=1(πr ◦ ξ̂)i hi = β̃ ∗ωβ(ξ̂)

= β̃ ∗ (ŜF̂o + (F̂o)x ξ̂′) = (β̃ ∗ Ŝ) (β̃ ∗F̂o) + (β̃ ∗Fo)x (β̃ ∗ ξ̂′)
= T (β̃ ∗F̂o) + (β̃ ∗Fo)xX

for some T ∈ MΓ
(x,λ) and X ∈ ~Θ Γ

(x,λ). Hence, ωβ̃ (β̃ ∗ξ̂) ∈ T̂Γ
e (β̃ ∗F̂o) and ωβ̃ (β̃ ∗N̂ ) ⊂

T̂Γ
e (β̃ ∗F̂o).
We conclude that ω−1

β̃
(T̂Γ

e (β̃ ∗F̂o)) = β̃ ∗N̂ .
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It remains to show that ω−1
β̃

(T̂U
Γ
(β̃ ∗F̂o)) = β̃ ∗ ˆ̃N . This is similar to the proof of the

previous result, so we omit the details of the calculations. We use Proposition 3·4·1,

the definition of T̂U
Γ
(F̂o) and write, via Ψ̃, (β̃ ∗ Ŝ)(x, λ) = T (x, λ) with Ŝ ∈ MΓ

(x,β),

T ∈MΓ
(x,λ), and (β̃ ∗ξ̂)(x, λ) = X(x, λ) with ξ̂ ∈ ~Θ Γ,o

(x,β), X ∈ ~Θ
Γ,o

(x,λ). Note that (β̃ ∗Ŝ)o =

0 if and only if T o = 0 and (β̃ ∗ξ̂)ox = 0 if and only ifXo
x = 0. Therefore the proposition

holds. q

Proposition 3·4·4. Let α̃ ∈ P. Then, ω−1
α̃ (T̂Γ

e (α̃ ∗Fo)) = α̃ ∗N and

ω−1
α̃ (T̂U

Γ
(α̃ ∗Fo)) = α̃ ∗Ñ .

Proof. This follows from Proposition 3·4·3 since α̃ ∗Fo = β̃ ∗F̂o, ωβ̃(ξ̃) = ωα̃(πr ◦ ξ̃)
and α̃ ∗N = β̃ ∗(πr ◦ N̂ ), α̃ ∗Ñ = β̃ ∗(πr ◦ ˆ̃N ). Here N̂ , ˆ̃N are given by (3·11), (3·12),

and πr ◦ N̂ , πr ◦ ˆ̃N denote the EΓ
β-modules πr ◦ N̂ = EΓ

β·<πr ◦ η̂1 . . . πr ◦ η̂s> and

πr ◦ ˆ̃N = EΓ
β·<πr ◦ ˆ̃η1 . . . πr ◦ ˆ̃ηt>, respectively. q

Proposition 3·4·5. ω−1
α̃ (TΓ

e (α̃ ∗Fo)) = Te(α̃) and ω−1
α̃ (TUΓ(α̃ ∗Fo)) = TU(α̃).

Proof. We show the first part in two steps:

(i) Te(α̃) ⊂ ω−1
α̃ (TΓ

e (α̃ ∗Fo)). We can split ξ̃ ∈ Te(α̃) as ξ̃ = ξ1 + ξ2 with ξ1 ∈
α̃ ∗N and ξ2 ∈ α̃λ · ~E Γ

λ . From Proposition 3·4·4, ωα̃(ξ1) ∈ T̂Γ
e (α̃ ∗Fo). Let

ξ2 = (L1 . . . Lr) where Li =
∑`

j=1 (α̃i)λj Λj . Then

ωα̃(ξ2)(x, λ) =
r∑
i=1

Li(λ)hi(x) = (Fo)α(x, α̃(λ)) α̃λ(λ) Λ(λ) = (α̃ ∗Fo)λ(x, λ) Λ(λ) .

Hence, ωα̃(ξ2) = (α̃ ∗Fo)λ ◦ Λ for some Λ ∈ ~E Γ
λ . From the linearity of ωα̃,

ωα̃(ξ̃) ∈TΓ
e (α̃ ∗Fo). Therefore (i) holds.

(ii) Let ξ̃ ∈ P and suppose that ωα̃(ξ̃) = ζ ∈ TΓ
e (α̃ ∗Fo). We have to show that

ξ̃ ∈T(α̃). We can split TΓ
e (α̃ ∗Fo) = T̂Γ

e (α̃ ∗Fo)+
{

(α̃ ∗Fo)λ ◦ Λ | Λ ∈ ~E Γ
λ

}
and

ζ = ζ1 + ζ2. We claim that there exists ξ2 ∈ α̃λ · ~E Γ
λ such that ωα̃(ξ2) = ζ2. As

a matter of fact, ζ2 = (α̃ ∗Fo)λ ◦ Λ for some Λ ∈ ~E Γ
λ and so

ζ2 = (α̃ ∗Fo)λ ◦ Λ =
r∑
i=1

(∑̀
j=1

(α̃i)λj Λj

)
hi = ωα̃(α̃λ ◦ Λ) .

Therefore there exists ξ2 satisfying the claim.

From the linearity of ωα̃, ζ1 = ωα̃(ξ̃ − ξ2) and by Proposition 3·4·4, ξ̃ − ξ2 ∈ α̃ ∗N .
Hence, ω−1

α̃ (TΓ
e (α̃ ∗Fo)) ⊂Te(α̃). From (i), ω−1

α̃ (TΓ
e (α̃ ∗Fo)) = Te(α̃).

The proof of the second part is analogous to what we have done for the first part:
now we use Proposition 3·4·4 and the definitions of the unipotent tangent spaces at
α̃ ∗Fo and α̃. q
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Proof of Theorem 3·3·2. Consider the following diagram:

P

Te(α̃)

P

~E Γ
(x,λ)

TΓ
e (α̃ ∗Fo)

~E Γ
(x,λ)

? ?

-Ωα̃

-ωα̃

πα̃ πα̃

Define Ωα̃: Ne(α̃)→NΓ
e (α̃ ∗Fo) by Ωα̃([v]) = [ωα̃(v)].

(i) Ωα̃ is well-defined, that is, [v1] = [v2] implies that Ωα̃([v1]) = Ωα̃([v2]).
Note that if [v1] = [v2] then v1 − v2 ∈ Te(α̃) and so, ωα̃(v1 − v2) ∈ TΓ

e (α̃ ∗Fo)
by Proposition 3·4·5. Hence, [ωα̃(v1)] = [ωα̃(v2)].

(ii) Ωα̃ is R-linear since ωα̃ and the projections are R-linear.
(iii) Ωα̃ is injective since if Ωα̃([v1]) = Ωα̃([v2]) then ωα̃(v1) − ωα̃(v2) ∈ TΓ

e (α̃ ∗Fo).
From Proposition 3·4·5, (v1−v2) ∈ ω−1

α̃ (TΓ
e (α̃ ∗Fo)) = Te(α̃) and so, [v1] = [v2].

(iv) Ωα̃ is surjective.

Im Ωα̃ =
{

[f ] ∈NΓ
e (α̃ ∗Fo) | [f ] = Ωα̃ ([v]) for some [v] ∈Ne(α̃)

}
.

Since Im Ωα̃ ⊂ NΓ
e (α̃ ∗Fo), it remains to show that NΓ

e (α̃ ∗Fo) ⊂ Im Ωα̃. Let [f ] ∈
NΓ

e (α̃ ∗Fo). By the definition of Ωα̃, [f ] = πα̃ (ωα̃ (ξ)) = (Ωα̃ ◦ πα̃) (ξ) = Ωα̃ ([ξ])
for some ξ ∈ P, that is, [f ] ∈ Im Ωα̃. Therefore Ωα̃ is an isomorphism between
Ne(α̃) and NΓ

e (α̃ ∗Fo). From Proposition 3·4·5, the other claim of the theorem is
straightforward, since ω−1

α̃ (TΓ
e (α̃ ∗Fo)) = Te(α̃).

4. Classification of D4-equivariant bifurcation problems using the path formulation

In this section we confirm and extend the classification obtained in [8].

4·1. Organizing centres

The D4-action on R2×R2 that we are studying is defined by

κ̂ · (x1, x2, λ1, λ2) = (κ · (x1, x2), λ1, λ2) = (x1,−x2, λ1, λ2),
µ̂ · (x1, x2, λ1, λ2) = (µ · (x1, x2), κ · (λ1, λ2)) = (x2, x1, λ1,−λ2).

(4·1)

The isotropy subgroup of λ is Σ
def
=<1, κ̂, µ̂κ̂µ̂, (κ̂µ̂)2>' Z2 ⊕ Z2.

As defined before, (3·2) induces an action on the Σ-unfolding parameters α ∈ Rr.
So we define the action of D4 on (z, α, λ) where z = (x1, x2), α = (α1 . . . αr) and
λ = (λ1, λ2) by

(κ · x, γκr · α, λ1, λ2) and (µ · x, γµr · α, λ1,−λ2).

When it is clear from the context, we denote this action by (γ2 x, γr α, γ` λ).
Let N = zz̄, δ = − 1

2 (z2 + z̄2) and u4 = λ2
2. The ring EΣ

z of Σ- invariant germs is
generated by N and δ. The EΣ

z -module of Σ-equivariant germs ~E Σ
z is generated by

z and z̄, and we identify h and [p, q]. The set MΣ
z of Σ-commuting matrices is the

EΣ
z -module generated by
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S1(z)w = w , S2(z)w = w̄ , S3(z)w = i
2ω (w + w̄) , S4(z)w = i

2ω (w̄ − w) ,

where ω = i
4 (z̄2 − z2).

The extended tangent space is TΣ
e (h) = {Sh + hzX | S ∈ MΣ

z , X ∈ ~E Σ
z } and a

calculation shows that TΣ
e (h) = EΣ

z ·<h1 . . . h6> where

h1 = [p, q] , h3 = (p + q)[N− δ, δ−N ] , h5 = [NpN + δpδ, NqN + δqδ] ,
h2 = [q, p] , h4 = (p− q)[N+ δ, N+ δ] , h6 = [δpN +Npδ, δqN +Nqδ] .

The general form for a D4-bifurcation problem is

f (z, λ) = p(u) z + q(u) δz̄ + r(u)λ2z̄ + s(u)λ2δz

where p, q, r, s ∈ Eu, u = (N, ∆, λ1, u4), and po = 0.
The organizing centre of f is f0(z) = f (z, 0) = p(N,∆) z + q(N,∆) δz̄.
We classify those organising centres using the D4-theory. If we want to stop at

topological codimension 2 problems (with two parameters), we need to consider the
following cases. We denote by ∆x,y(p, q) the expression poxq

o
y − poyqox.

Theorem 4·1·1. Let f ∈ ~E D4
(x,λ) of topological codimension less or equal to 2, then its

organizing centre belongs to the following list:
(i) f 1

0 (z) = mNz + ε5δz̄, (f 1
0 is the generic organizing centre),

the nondegeneracy conditions are m�±1, 0 and qo� 0,
(ii) (when m = 0) f 2

0 (z) = ε2N
2z + ε5δz̄,

(iii) (when m = −1) f 3
0 (z) = −ε5Nz + ε5 δz̄,

(iv) (when m = 1) f 4
0 (z) = ε1Nz + ε3N

2z + ε1δz̄,
(v) (when qo = 0) f 5

0 (z) = ε1Nz + ε6∆ δz̄.
Here m = poN/|qo |, ε1 = sg poN , ε2 = sg poNN , ε3 = sg (poNN + 2po∆ − 2qoN ), ε5 = sg qo and
ε6 = ε1 sg ∆N,∆(p, q).

Proof. We first rule out many organizing centres via the following remarks.
Suppose that the Z2 ⊕ Z2-codimension of an organizing centre f0 is k. Observe

that the modal parameters of f0 are also modal parameters for the path α̃ and all
component of α̃ are 0 at the origin unless they correspond to a modal parameter
of f0. Hence, at constant and first order in the invariants λ1, u4, the tangent space
Te(α̃) has dimension less than or equal to k+m (the vectorfields component) + 6 (the
λ1, u4-derivatives part). Thus we require 3k− (k +m + 6) > 3 +m, hence k > 9

2 +m;
that is, the germ must be of Z2 ⊕ Z2-topological codimension at least 5.

The centres listed in the Theorem are of Z2 ⊕ Z2-topological codimension less or
equal to 3. The next layers can be found in [3]. Of those, the only centre remaining
under consideration is

εN 3z + ε0δz̄

because it is of Z2⊕Z2-topological codimension 4. Its Z2⊕Z2-universal unfolding is

(εN 3+ α1 + α2N+ α3N
2) z + (ε0δ + α4) z̄

with the Z2-action given by −1 7→ (α1, α2, α3,−α4). An explicit analysis in this case
show that a general path has codimension at least 3. q

Note that f 3
0 is not distinguished in the D4-theory for organizing centres. It belongs

to the same KD4- class as f 1
0 , but its Z2 ⊕ Z2-universal unfolding is different, and
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Table 1. Normal forms. Here top-cod denotes the topological D4-codimension and cod
the differentiable D4-codimension

Case Normal form Top-cod Cod

I0 [mN + ε0λ1, ε5, 1, 0] 0 1
I1 [mN + ε3Nλ1 + ε4λ

2
1 + α, ε5, 1, 0] 1 2

I2 [mN + nNu4 + ε0λ1, ε5, λ1 + ε8u4 + α, 0] 1 3
I3 [mN + ε3Nλ1 + ε11λ

3
1 + α + βλ1, ε5, 1, 0] 2 3

I4 [mN + ε7Nλ
2
1 + ε4λ

2
1 + α + βNλ1, ε5, 1, 0] 2 3

I5 [mN + ε3Nλ1 + ε4λ
2
1 + n1u4 + α, ε5, λ1 + β, 0] 2 4

I6 [mN + ε0λ1 + ε9Nu4, ε5, u4 + α + βλ1, 0] 2 3
I7 [mN + ε0λ1 + α + βNu4, ε5, λ1 + ε8u4, 0] 2 3
I8 [mN + ε0λ1 + nNu4 + αu4, ε5, λ1 + ε10u

2
4 + β, 0] 2 4

so we have to consider as an additional class for our classification. With only one
parameter and no symmetry it was again not necessary to make that distinction (cf.
[10]).

4·2. Classification of D4-equivariant problems with organizing centre I

The following theorem gives the classification up to topological codimension 2 of
D4-problems with organizing centre f 1

0 (z) = mNz + ε5 δz̄, m�±1, 0.

Theorem 4·2·1 (Recognition Theorem for f 1
0 ). Let f = [p, q, r, s] be a D4-

bifurcation problem with organizing centre f 1
0 . Then f is of topological codimension

0,1 or 2 if and only if it belongs to the following list. Moreover, f is KD4
λ -equivalent to the

given normal form in each case below if and only if it satisfies the correspondent sets of
defining and nondegeneracy conditions listed below in Section 4·2·1. In all cases po = 0.
The parameters α, β are the unfolding parameters, as m,m1,m2, n, n1 are moduli.

4·2·1. Additional information

Case I0: Nondegeneracy conditions
poN · poλ1

· ro · (poN 2 − qo2)� 0.
Case I1: Defining condition

poλ1
= 0.

Nondegeneracy conditions
poN · poλ1λ1

· qo · ro · (poN 2 − qo2) · (poNλ1
qo − qoλ1

poN )� 0.
Case I2: Defining condition

ro = 0.
Nondegeneracy conditions
poN · poλ1

· qo · (poN 2 − qo2) · ∆λ1,u4 (p, r) · ξ3 · ξ4� 0.
Case I3: Defining conditions

poλ1
= poλ1λ1

= 0.
Nondegeneracy conditions
poN · poλ1λ1λ1

· ro · (poN 2 − qo2) · (poNλ1
qo − qoλ1

poN )� 0.
Case I4: Defining conditions

poλ1
= poNλ1

qo − qoλ1
poN = 0.

Nondegeneracy conditions
poN · poλ1λ1

· ro · (poN 2 − qo2) · ξ7� 0.
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Case I5: Defining conditions
ro = poλ1

= 0.
Nondegeneracy conditions
poN · qo· (poN 2 − qo2) · ξ8� 0.

Case I6: Defining conditions
ro = ξ4 = 0.

Nondegeneracy conditions: poN · poλ1
· (poN 2 − qo2) · ξ3 · ξ5� 0.

Case I7: Defining conditions
ro = ξ3 = 0.

Nondegeneracy conditions
poN · poλ1

· (poN 2 − qo2) · ∆λ1,u4 (p, r) · ξ4� 0.
Case I8: Defining conditions

ro = ∆λ1,u4 (p, r) = 0.
Nondegeneracy conditions
poN · poλ1

· (poN 2 − qo2) · ξ3 · ξ4 · ξ6� 0.

Coefficients: ε0 = sg poλ1
, ε1 = sg poN , ε2 = sg poNN , ε3 = ε5 sg (poNλ1

qo− qoλ1
poN ), ε4 =

sg poλ1λ1
, ε5 = sg qo, ε7 = ε1 ε5 sg ξ7, ε9 = ε0, ε5 sg (poN

2 − qo2) ξ3, ε10 = (poλ1
· (poN 2 − qo2) ·

sg ξ6/ξ4,

ε8 = ε0 sg
(po

2

N − qo
2
) · ∆λ1,u4 (p, r)

poλ1
· (qoso− roNpoN ) + roλ1

· (po2

N − qo
2 )

, ε11 = sg poλ1λ1λ1
.

ξ2 = poλ1
· (roN − so) + ro · (qoλ1

− poNλ1
),

ξ3 = poN · (po
2

N − qo
2
) · ∆λ1,u4 (p, q) + qo · (po2

N − qo
2
) · (poNλ1

pou4
− poNu4

poλ1
)

+poN · poλ1
· qo · (ro2

N + so
2
)− poλ1

· roN · so · (po
2

N + qo
2
),

ξ4 = poλ1
· (qoso − roNpoN ) + roλ1

· (poN 2 − qo2),
ξ5 = pou4

· (qoso − poNroN ) + rou4
· (poN 2 − qo2),

ξ6 = pou4
·roλ1
· (poλ1u4

poλ1
−poλ1λ1

pou4
)+poλ1

·pou4
· (roλ1λ1

pou4
−roλ1u4

poλ1
)−poλ1

·∆u4u4,λ1 (p, r),
ξ7 = poλ1λ1

· pou4
· qo · (poN 2 − qo2) + poN · r2

o · (poNλ1λ1
qo − poNqoλ1λ1

)
+poλ1λ1

· qo · ro · (soqo − poNroN ) + poλ1λ1
· ro2 · (poNqoN − po∆qo − 1

2p
o
NNq

o),
ξ8 = poλ1λ1

· pou4
· roλ1
· (poNλ1

qo − qoλ1
poN ),

m =
poN
|qo| , n =

ε5 p
o
λ1
· (qo2− po2

N )

qo2 · [poλ1
· (soqo− poNroN ) + roλ1

· (po2

N − qo
2 )]2

ξ3, n1 =
pou4
· | poλ1λ1

|
2 roλ1

2 .

4·2·2. Variational problems

Another criterion affecting the choice of a normal form is the gradient structure of
some bifurcation problems. For instance, the first example in [8] of buckling of elastic
shells is usually given a variational formulation. We refer to Bridges and Furter [3] for
a theory of the contact equivalence classification of gradient bifurcation problems.
The difficulty is that KD4

λ - equivalence does not in general preserve the gradient
structure of the problem, although it defines an equivalence relation on ~E D4

∇,λ. Bridges
and Furter [3] show that it is enough to look for normal forms that are gradients,
and that the basis of the vector space ~E D4

∇,λ/(~E
D4
∇,λ wTe(f )) provides the generators

needed for the gradient universal unfolding of f . In effect we are looking for normal
forms and universal unfolding terms that are the gradients of suitable equivariant
functionals.

In our problem, a routine calculation shows that

f0(z) = p(N,∆) z + q(N,∆) δz̄
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is a gradient if and only if qN + 2p∆ ≡ 0. By inspection all of the organising centers
classified in Theorem 4.1.1 satisfy that condition. For their universal unfoldings, that
condition together with the additional one rN +s+2∆s∆ = 0, is also readily checked.
Thus we have the following result:

Theorem 4·2·2. The list of gradient bifurcation problems and the universal unfoldings
in ~E D4

∇,λ of organizing centres f 1
0 of topological codimension up to 2 is the same as the list

given in Theorem 4·2·1.

This is again a situation where symmetry puts enough constraints on the diagrams
so that the difference between gradient systems and the rest is negligible. This al-
ready happens for Dn-equivariant (n > 3) bifurcation problems with one parameter,
see Bridges and Furter [3].

4·2·3. Hierarchy of parameters

So far we have not considered any hierarchical structure involving parameters,
such as λ1 � λ2 or λ2 � λ1, but retaining the same symmetry constraints. Such
hierarchies require us to consider changes of coordinates in KD4

λ with Λ satisfying

Λ(λ1, λ2) = (Λ1(λ1, λ2),Λ2(λ2)) (4·2)

or

Λ(λ1, λ2) = (Λ1(λ1),Λ2(λ1, λ2)).

The advantage of such more restricted changes of coordinates is that they respect
the order in λ2 (respectively λ1) of the λ1-slices (respectively λ2-slices), instead of
simply respecting open regions in parameter space. We ask if any of the normal forms
in Theorem 4·2·1 is also a normal form for this more restrictive equivalence, with
the same codimension. The path formulation is particularly well-adapted to answer
such a question, because the vectorfields generating N and Ñ are independent of
such considerations. Only the part α̃λ will change. Hence the new tangent spaces for
the equivalence corresponding to (4·2) are given by

Te(α̃) = α̃MN + ED4
λ · h̃4 + ED4

λ2
· h̃5

and

TU(α̃) = α̃MÑ + M
D2

4
λ · h̃4 + MD4

λ2
· h̃5,

where α̃MN and α̃MÑ are given in Theorem 4·3·1.
Note that the residual Z2-symmetry on λ2 already imposes some restrictions. In

particular, a simple inspection shows that the second assumption on Λ is too strong
– none of our normal forms persists with the same codimension. It is then a straight-
forward verification to see that only I0 and I6 remain as normal forms with the same
universal unfoldings for the more restrictive change of coordinates in (4·2).

4·3. Proofs

For Case I, f 1
0 (z) = mNz + ε5 δz̄, m� ±1, 0. Using the Z2 ⊕ Z2-description, we

write f 1
0 = [mN, ε5δ]. A calculation shows that

TΣ
e (f 1

0 ) = E Σ
N,δ· < [0, N ], [δ, 0], [0, δ2], [N 2, 0], [mN, ε5δ]> .
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The Σ-normal space NΣ
e (f 1

0 ) is generated by [1, 0], [N, 0] and [0, 1] as a real vec-
tor space. The Σ-unfolding of f 1

0 is given by F 1
0 (z, α) = m̂Nz + α1 z + (ε5δ + α3) z̄,

where m̂ represents (m + α2). Because D4 acts on z as z̄ and iz̄, it follows that
{ [1, 0], [N, 0], [0, 1] } is a good basis; the action on the α-space is generated by κ̂
acting as I3 and µ̂ as −1 on the last component, but as the identity on the first two.

Let P2,3 = {α̃: (R2, 0) → (R3, 0)} be the set of paths defined from the bifurcation
parameter space to the unfolding parameter space. The action ψ of D4 on α̃ ∈ P2,3

is given by

γ · α̃ = γt3 · (α̃ ◦ γ`) , ∀ γ ∈ D4.

P denotes the set of D4-equivariant paths, that is,

P = P2,3|Fixψ = {α̃ ∈ P | α̃(γ`λ) = γ3 α̃(λ)}.

A calculation shows that α̃ ∈ P if and only if

α̃(λ1, λ2) = (α1(λ1, u4), α2(λ1, u4), λ2α3(λ1, u4)).

By Theorem 3·2·1, f is KD4
λ -equivalent to α̃∗F 1

0 where

(α̃∗F 1
0 )(z, λ) = [(m + α2(λ1, u4))N + α1(λ1, u4), ε5, α3(λ1, u4), 0].

Theorem 4·3·1. Let α̃ ∈ P. Then the tangent spaces at α̃ are

Te(α̃) = ED4
λ ·<h̃1 . . . h̃5> (4·3)

and

TU(α̃) = ED4
λ ·<h̃1, h̃2, α1h̃3, λ1h̃3, u4h̃3, λ

2
1h̃4, u4h̃4, λ1h̃5, u4h̃5> (4·4)

where
h̃1 = (m̂u4α

2
3, (1− m̂2)α1, m̂α1α3λ2),

h̃2 = (u4α1α3, m̂(1− m̂2)u4α3, α
2
1λ2),

h̃3 = (α1, 0, α3λ2),
h̃4 = ((α1)λ1 , (α2)λ1 , (α3)λ1λ2),
h̃5 = (2u4(α1)u4 , 2u4(α2)u4 , α3λ2 + 2u4(α3)u4λ2),

 (4·5)

To find the tangent space at a path α̃ ∈ P, we follow § 3·2. We start by calculating
the tangent space at a germ f̂ ∈ ~E D4

(z,β). We denoted (α, λ) by β and define

~E D4
(z,β) =

{
f̂ : (C ×R3×R2, 0)→ C | f̂ (γ2z, γ3+`β) = γ2f̂ (z, β), ∀ γ ∈ D4

}
,

~Θ D4,o
(z,β) = {ξ̂ ∈ ~ΘD4

(z,β) | ξ̂o = 0},

MD4
(z,β) = {Ŝ: (C ×R3×R2, 0)→ GL(2) | Ŝ(γ2z, γ3+`β) γ2 = γ2 Ŝ(z, β), ∀ γ ∈ D4 }.

The action of D4 on C ×R3×R2 is given by

κ̃ · (z, α1, α2, α3, λ1, λ2) = (z̄, α1, α2, α3, λ1, λ2),
µ̃ · (z, α1, α2, α3, λ1, λ2) = (iz̄, α1, α2,−α3, λ1,−λ2).

The D4-invariants for this action are

û1 = N = zz̄, û2 = ∆ = δ2 = 1
4 (z2 + z̄2)2, û3 = λ1, û4 = λ2

2 = u4,
û5 = α1, û6 = α2, û7 = α2

3, û8 = δα3, û9 = δλ2, û10 = α3λ2 .

}
(4·6)
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They satisfy the following relations: û2

8 = û2û7, û
2
9 = û2û4 and û2

10 = û7û4. Let
ū = (û1 . . . û7) where the ûi, 1 6 i 6 7, are stated in (4·6).

Proposition 4·3·2. (i) ~E D4
(z,β) is freely generated by z, δz̄, λ2z̄, α3z̄, δλ2z, δα3z,

α3λ2z and δα3λ2z̄ as an Eū-module.
(ii) MD4

(z,β) is the Eū- module freely generated by the following linear maps on C :

Ŝ1(z, β)w = w , Ŝ2(z, β)w = λ2w̄ , Ŝ3(z, β)w = δw̄ ,

Ŝ4(z, β)w = α3w̄ , Ŝ5(z, β)w = δλ2w , Ŝ6(z, β)w = δα3w ,

Ŝ7(z, β)w = α3λ2w , Ŝ8(z, β)w = δα3λ2w̄ , Ŝ9(z, β)w = iωw̄ ,

Ŝ10(z, β)w = −iλ2ωw , Ŝ11(z, β)w = −iδωw , Ŝ12(z, β)w = −iα3ωw ,

Ŝ13(z, β)w = iδλ2ωw̄ , Ŝ14(z, β)w = iδα3ωw̄ ,

Ŝ15(z, β)w = iα3λ2ωw̄ , Ŝ16(z, β)w = −iδα3λ2ωw ,

where ω =
i

4
(z̄2 − z2).

From Proposition 4·3·2, every f̂ ∈ ~E D4
(z,β) is written as

f̂ (z, α, λ) = p1(ū) z + p2(ū) δz̄ + p3(ū)λ2z̄ + p4(ū)α3z̄
+p5(ū) δλ2z + p6(ū) δα3z + p7(ū)α3λ2z + p8(ū) δα3λ2z̄

and we identify f̂ and [p1 . . . p8].
The tangent space at f̂ ∈ ~E D4

(z,β) is given by

TD4
e (f̂ ) =

{
Ŝf̂ + f̂z X̂ | Ŝ ∈MD4

(z,β), X̂ ∈ ~E
D4

(z,β)

}
.

Proposition 4·3·3. TD4
e (f̂ ) = Eū·<g1 . . . g24> where

g1 = [p1, p2, p3, p4, p5, p6, p7, p8] ,
g2 = [u4p3, u4p5, p1, u4p7, p2, u4p8, p4, p6] ,
g3 = [∆p2, p1, ∆p5, ∆p6, p3, p4, ∆p8, p7] ,
g4 = [α2

3p4, α
2
3p6, α

2
3p7, p1, α

2
3p8, p2, p3, p5]

g5 = [∆u4p5, u4p3, ∆p2, ∆u4p8, p1, u4p7, ∆p6, p4],
g6 = [∆α2

3p6, α
2
3p4, ∆α2

3p8, ∆p2, α
2
3p7, p1, ∆p5, p3],

g7 = [α2
3u4p7, α

2
3u4p8, α

2
3p4, u4p3, α

2
3p6, u4p5, p1, p2],

g8 = [∆α2
3u4p8, α

2
3u4p7, ∆α2

3p6, ∆u4p5, α
2
3p4, u4p3, ∆p2, p1],

g9 = [Np1 − ∆p2, p1 −Np2, ∆p5 −Np3, ∆p6 −Np4, Np5 − p3, Np6 − p4,
Np7 − ∆p8, p7 −Np8],

g10 = [∆u4p5 −Nu4p3, Nu4p5 − u4p3, Np1 − ∆p2, Nu4p7 − ∆u4p8,
p1 −Np2, u4p7 −Nu4p8,∆p6 −Np4, Np6 − p4],

g11 = [∆p1 −N∆p2, Np1 − ∆p2, N∆p5 − ∆p3, N∆p6 − ∆p4, ∆p5 −Np3,
∆p6 −Np4, ∆p7 −N∆p8, Np7 − ∆p8],

g12 = [∆α2
3p6 −Nα2

3p4, Nα
2
3p6 − α2

3p4, Nα
2
3p7 − ∆α2

3p8, Np1 − ∆p2, α
2
3p7 −Nα2

3p8,
p1 −Np2,∆p5 −Np3, Np5 − p3],

g13 = [N∆u4p5 − ∆u4p3, ∆u4p5 −Nu4p3, ∆p1 −N∆p2, ∆u4p7 −N∆u4p8,
Np1 − ∆p2, Nu4p7 − ∆u4p8, N∆p6 − ∆p4,∆p6 −Np4],

g14 = [N∆α2
3p6 − ∆α2

3p4, ∆α2
3p6 −Nα2

3p4, ∆α2
3p7 −N∆α2

3p8, ∆p1 −N∆p2,
Nα2

3p7 − ∆α2
3p8, Np1 − ∆p2, N∆p5 − ∆p3, ∆p5 −Np3],

g15 = [Nu4α
2
3p7 − u4α

2
3∆p8, u4α

2
3p7 −Nu4α

2
3p8, ∆α2

3p6 −Nα2
3p4, ∆u4p5 −Nu4p3,

Nα2
3p6 − α2

3p4, Nu4p5 − u4p3, Np1 − ∆p2, p1 −Np2],



300 J. E. Furter, A. M. Sitta and I. Stewart

g16 = [∆α2
3u4p7 −N∆α2

3u4p8, Nα
2
3u4p7 − ∆α2

3u4p8, N∆α2
3p6 − ∆α2

3p4,
N∆u4p5 − ∆u4p3, α

2
3∆p6 −Nα2

3p4, ∆u4p5 −Nu4p3,∆p1 −N∆p2, Np1 − ∆p2],
g17 = [2Np1N + 4∆p1∆ + p1, 2Np2N + 4∆p2∆ + 3p2, 2Np3N + 4∆p3∆ + p3,

2Np4N + 4∆p4∆ + p4, 2Np5N + 4∆p5∆ + 3p5, 2Np6N + 4∆p6∆ + 3p6,
2Np7N + 4∆p7∆ + p7, 2Np8N + 4∆p8∆ + 3p8],

g18 = [−2∆p1N − 4N∆p1∆ + ∆p2, −2∆p2N − 4N∆p2∆ − 2Np2 + p1,
−2∆p3N − 4N∆p3∆ + ∆p5, −2∆p4N − 4N∆p4∆ + ∆p6,
−2∆p5N − 4N∆p5∆ − 2Np5 + p3, −2∆p6N − 4N∆p6∆ − 2Np6 + p4,
−2∆p7N − 4N∆p7∆ + ∆p8, −2∆p8N − 4N∆p8∆ − 2Np8 + p7],

g19 = [−2∆u4p5N − 4N∆u4p5∆ − 2Nu4p5 + u4p3, −2u4p3N − 4Nu4p3∆ + u4p5,
−2∆p2N − 4N∆p2∆ − 2Np2 + p1, −2∆u4p8N − 4N∆u4p8∆ − 2Nu4p8 + u4p7,
−2p1N − 4Np1∆ + p2, −2u4p7N − 4Nu4p7∆ + u4p8,
−2∆p6N − 4N∆p6∆ − 2Np6 + p4, −2p4N − 4Np4∆ + p6],

g20 = [α2
3p4 − 2Nα2

3p6 − 2∆α2
3p6N − 4N∆α2

3p6∆, α
2
3p6 − 2α2

3p4N − 4Nα2
3p4∆,

α2
3p7 − 2∆α2

3p8N − 4N∆α2
3p8∆ − 2Nα2

3p8, p1 − 2∆p2N − 4N∆p2∆ − 2Np2,
−2α2

3p7N − 4α2
3Np7∆ + α2

3p8, −2p1N − 4Np1∆ + p2,
p3 − 2∆p5N − 4N∆p5∆ − 2Np5, p5 − 2p3N − 4Np3∆],

g21 = [2N∆u4p5N + 4∆2u4p5∆ + 3∆u4p5, 2Nu4p3N + 4∆u4p3∆ + u4p3,
2N∆p2N + 4∆2p2∆ + 3∆p2, 2N∆u4p8N + 4∆2u4p8∆ + 3∆u4p8,
2Np1N + 4∆p1∆ + p1, 2Nu4p7N + 4∆u4p7∆ + u4p7,
2N∆p6N + 4∆2p6∆ + 3∆p6, 2Np4N + 4∆p4∆ + p4],

g22 = [2N∆α2
3p6N + 4∆2α2

3p6∆ + 3∆α2
3p6, 2Nα2

3p4N + 4∆α2
3p4∆ + α2

3p4,
2N∆α2

3p8N + 4∆2α2
3p8∆ + 3∆α2

3p8, 2N∆p2N + 4∆2p2∆ + 3∆p2,
2Nα2

3p7N + 4∆α2
3p7∆ + α2

3p7, 2Np1N + 4∆p1∆ + p1,
2N∆p5N + 4∆2p5∆ + 3∆p5, 2Np3N + 4∆p3∆ + p3],

g23 = [2Nu4α
2
3p7N + 4∆α2

3u4p7∆ + u4α
2
3p7, 2Nu4α

2
3p8N + 4∆u4α

2
3p8∆ + 3α2

3u4p8,
2Nα2

3p4N + 4∆α2
3p4∆ + α2

3p4, 2Nu4p3N + 4∆u4p3∆ + u4p3,
2Nα2

3p6N + 4∆α2
3p6∆ + 3α2

3p6, 2Nu4p5N + 4∆u4p5∆ + 3u4p5,
2Np1N + 4∆p1∆ + p1, 2Np2N + 4∆p2∆ + 3p2],

g24 = [−2∆α2
3u4p7N − 4N∆α2

3u4p7∆ + ∆α2
3u4p8,

−2∆α2
3u4p8N − 4N∆α2

3u4p8∆ − 2Nu4α
2
3p8 + u4α

2
3p7,

−2∆α2
3p4N − 4N∆α2

3p4∆ + ∆α2
3p6, −2∆u4p3N − 4N∆u4p3∆ + u4∆p5,

−2∆α2
3p6N − 4N∆α2

3p6∆ − 2Nα2
3p6 + α2

3p4,
−2∆u4p5N − 4N∆u4p5∆ − 2Nu4p5 + u4p3,
−2∆p1N − 4N∆p1∆ + ∆p2,−2∆p2N − 4N∆p2∆ − 2Np2 + p1].

Proposition 4·3·4. The unipotent tangent space at f̂ ∈ ~E D4
(z,β) is

TUD4 (f̂ ) = Eū·<Ng1, ∆g1, α1g1, α2g1, α
2
3g1, λ1g1, u4g1, g2 . . . g16,

Ng17, ∆g17, α1g17, α2g17, α
2
3g17, λ1g17, u4g17, g18 . . . g24>

where g1 . . . g24 are stated in Proposition 4·3·3.

Proof of Theorem 4·3·1. We calculate the tangent space Te(α̃) at α̃ in two steps.
The space TU(α̃) is computed following the same lines.

Step 1. F̂ 1
0 : (C ×R3×R2, 0)→ C is defined by

F̂ 1
0 (z, α1, α2, α3, λ1, λ2) = F 1

0 (z, α1, α2, α3) = (m̂N+ α1) z + ε5 δz̄ + α3 z̄

where m̂ = m + α2.
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Using Proposition 4·1·6, a calculation shows that TD4

e (F̂ 1
0 ) = Eū· < g1 . . . g15 >,

where

g1 = ε5δz̄ + m̂Nz , g2 = (m̂2 − 1)Nλ2z̄ + m̂α1λ2z̄ + m̂α3λ2z ,
g3 = m̂∆z + α1Nz , g4 = (m̂2 − 1)∆λ2z̄ − α1α3λ2z − α2

1λ2z̄ ,
g5 = ε5(1− m̂2)δλ2z + α1λ2z̄ + α3λ2z,
g6 = ε5(m̂2 − 1)δα3λ2z̄ + α1

2λ2z̄ + α1α3λ2z,
g7 = m̂2Nδα3z + ε5α

2
1Nz , g8 = (1− m̂2)N 2λ2z̄ + α1α3λ2z + α2

1λ2z̄ ,
g9 = m̂N 2z + α1Nz , g10 = α1z + α3z̄ , g11 = α1α3λ2z + α2

3λ2z̄ ,
g12 = m̂α2

3z + (1− m̂2)α1Nz + m̂α1α3z̄ ,
g13 = α1α3λ2z + m̂(1− m̂2)Nα3λ2z + α2

1λ2z̄ ,
g14 = α1α

2
3z + m̂(1− m̂2)α2

3Nz + α2
1α3z̄ ,

g15 = m̂α2
3α3λ2z + (1− m̂2)α1Nα3λ2z + m̂α1α

2
3λ2z̄ .

It follows that TD4
e (F̂ 1

0 ) w (Eβ·<z,Nz, z̄>)D4 = ED4
β ·<h′1, h′2, h′3, h′4, h′5, h′6> where

h′1 = m̂α2
3z + (1− m̂2)α1Nz + m̂α1α3z̄,

h′2 = α1α3λ2z + m̂(1− m̂2)Nα3λ2z + α2
1λ2z̄,

h′3 = α1α3
2z + m̂(1− m̂2)α2

3Nz + α2
1α3z̄,

h′4 = m̂α2
3α3λ2z + (1− m̂2)α1Nα3λ2z + m̂α1α

2
3λ2z̄,

h′5 = α1z + α3z̄,
h′6 = α1α3λ2z + α2

3λ2z̄ .

Let ηj : (R3×R2, 0)→ R3, 1 6 j 6 6, be given by

η1(α, λ) = (m̂α2
3, (1− m̂2)α1, m̂α1α3),

η2(α, λ) = (α1α3λ2, m̂(1− m̂2)α3λ2, α
2
1λ2),

η3(α, λ) = (α1α
2
3, m̂(1− m̂2)α2

3, α
2
1α3),

η4(α, λ) = (m̂α3
3λ2, (1− m̂2)α1α3λ2, m̂α1α

2
3λ2),

η5(α, λ) = (α1, 0, α3),
η6(α, λ) = (α1α3λ2, 0, α2

3λ2).

The ηj are D4-equivariant since

ηj(α1, α2,−α3, λ1,−λ2) = γ3 · ηj(α1, α2, α3, λ1, λ2)

with γ3 · ηj = (ηj1 , ηj2 ,−ηj3 ), 1 6 j 6 6.
Let N = ED4

β ·<η1 . . . η6 >. For α̃ ∈ P, we define α̃∗N = ED4
λ ·< α̃∗η1 . . . α̃

∗η6 >,
where

α̃∗η1 = (m̂u4α
2
3, (1− m̂2)α1, m̂α1α3λ2),

α̃∗η2 = (u4α1α3, m̂(1− m̂2)u4α3, α
2
1λ2),

α̃∗η3 = (u4α1α
2
3, m̂(1− m̂2)u4α

2
3, α

2
1α3λ2),

α̃∗η4 = (m̂α3
3u

2
4, (1− m̂2)α1α3u4, m̂α1u4α

2
3λ2),

α̃∗η5 = (α1, 0, α3λ2),
α̃∗η6 = (α1u4α3, 0, u4α

2
3λ2).

Since αi ∈ ED4
λ , we have that α̃∗N = ED4

λ ·<h̃1, h̃2, h̃3> with

h̃1 = (m̂ u4α
2
3, (1− m̂2)α1, m̂ α1α3λ2),

h̃2 = (u4α1α3, m̂ (1− m̂2)u4α3, α
2
1λ2),

h̃3 = (α1, 0, α3λ2).

 (4·7)
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Step 2. Clearly ~E D4
λ is generated by

(
1
0

)
and

(
0
λ2

)
as an ED4

λ -module. Then, as

α̃λ =

 (α1)λ1 2λ2(α1)u4

(α2)λ1 2λ2(α2)u4

λ2(α3)λ1 α3 + 2u4(α3)u4

 ,

h̃4 = α̃λ

(
1
0

)
= ((α1)λ1 , (α2)λ1 , (α3)λ1λ2)

h̃5 = α̃λ

(
0
λ2

)
= (2u4 (α1)u4 , 2u4(α2)u4 , α3 λ2 + 2(α3)u4u4 λ2) .

In a similar way we get Ñ and

TU(α̃) = α̃∗Ñ + α̃λ ~M
D2

4
λ . q

Proof of Theorem 4·2·1. We use (4·3) and (4·4) to find, respectively, the tangent
space and the unipotent tangent space of the path associated with each normal
form, denoted hereafter by g.

The first part of the theorem follows from Propositions 3·3·1 and 3·4·5. To obtain
the normal form and the non-degeneracy conditions we change of coordinates modulo
an intrinsic submodule contained in the intrinsic part of TUD4 (g), which in turn
is contained in P(g) by Proposition 2·5·2. The miniversal unfolding follows from
Theorems 2·3·1 and 3·3·2. To conclude the proof, we now state the basic data for
each case.

Case I0. Associated path: α̃(λ) = (ε0λ1, 0, λ2).

Te(α̃) = ED4
λ ·< (1, 0, 0), (0, λ1, 0), (0, u4, 0), (0, 0, λ2)> .

Ne(α̃) =< (0, 1, 0)>; m is a modal parameter.
TU(α̃) = ED4

λ ·< (λ2
1, 0, 0), (u4, 0, 0), (0, λ1, 0), (0, u4, 0), (0, 0, λ1λ2), (0, 0, u4λ2)> .

Case I1. Associated path: α̃(λ) = (ε4λ
2
1, ε3λ1, λ2).

Te(α̃) = ED4
λ ·< (u4, 0, 0), (0, λ1, 0), (0, u4, 0), (2ε4λ1, ε3, 0), (0, 0, λ2)> .

Ne(α̃) =< (1, 0, 0), (0, 1, 0)>; m is a modal parameter.
TU(α̃) = ED4

λ ·< (u4, 0, 0), (λ3
1, 0, 0), (0, λ2

1, 0), (0, u4, 0), (0, 0, λ1λ2), (0, 0, u4λ2) > .

Case I2. Associated path: α̃(λ) = (ε0λ1, nu4, (λ1 + ε8u4)λ2).

Te(α̃) = ED4
λ ·< (−2mλ2

1, ε0(1−m2)λ1, 0), (u4, 0, 0), (ε0, 0, λ2),
(−ε0λ1, 2nu4, 0), (ε0m(1−m2)λ2

1, 0, 2nλ
2
1λ2)> .

Ne(α̃) = < (0, 1, 0), (0, u4, 0), (0, 0, λ2)>; m and n are modal parameters.
TU(α̃) = ED4

λ ·< (λ2
1, 0, 0), (u2

4, 0, 0), (0, λ1, 0), (0, u2
4, 0), (0, 0, u4λ1λ2),

(ε0u4, 0, u4λ2), (0, 0, λ2
1λ2)> .

Case I3. Associated path: α̃(λ) = (ε11λ
3
1, ε3λ1, λ2).

Te(α̃) = ED4
λ ·< (mu4 + ε3u4λ1, 0, 0), (0, u4, 0), (λ3

1, 0, 0), (3ε11λ
2
1, ε3, 0), (0, 0, λ2)> .

Ne(α̃) =< (0, 1, 0), (1, 0, 0), (λ1, 0, 0)>; m is a modal parameter.
TU(α̃) = ED4

λ ·< (u4, 0, 0), (λ4
1, 0, 0), (0, u4, 0), (0, λ2

1, 0), (0, 0, λ1λ2), (0, 0, u4λ2)> .
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Case I4. Associated path: α̃(λ) = (ε4λ

2
1, ε7λ

2
1, λ2).

Te(α̃) = ED4
λ ·< (u4, 0, 0), (λ2

1, 0, 0), (ε4λ1, ε7λ1, 0), (0, u4, 0), (0, 0, λ2)> .
Ne(α̃) = < (1, 0, 0), (0, 1, 0), (0, λ1, 0)>; m is a modal parameter.

TU(α̃) = ED4
λ ·< (mu4, ε4(1−m2)λ2

1, 0), (0, u4, 0), (λ3
1, 0, 0), (0, λ3

1, 0),
(0, 0, λ1λ2), (0, 0, u4λ2)> .

Case I5. Associated path: α̃(λ) = (ε4λ
2
1 + n1u4, ε3λ1, λ1λ2).

Te(α̃) = ED4
λ ·< (mu4λ

2
1, (1−m2)n1u4,mλ1λ2), (4n1u4λ

3
1, 0, ε4λ

2
1λ2),

(2n1u4, 0, λ1λ2), (2ε4λ1, ε3, λ2), (0, λ1, 0)> .
Ne(α̃) = < (1, 0, 0), (u4, 0, 0), (0, 1, 0), (0, 0, 1)>; m and n1 are modal parameters.

TU(α̃) = ED4
λ ·< (ε4mλ

4
1, (1−m2)n2

1u4, 2ε4n1mλ
4
1λ2), (u4λ

3
1, 0, 0), (0, λ2

1, 0),
(0, u4λ1, 0), (2n1u4λ1, 0, λ2

1λ2), (2ε4u4λ1, ε3u4, u4λ2),
(n1u4λ1 − ε4λ

3
1, 0, 0), (n1u

2
4 − ε4u4λ

2
1, 0, 0)> .

Case I6. Associated path: α̃(λ) = (ε0λ1, ε9u4, u4λ2).

Te(α̃) = ED4
λ ·< (1, 0, 0), (0, λ1, 0), (0, u4, 0), (0, 0, λ2

1λ2), (0, 0, u4λ2)> .
Ne(α̃) = < (0, 1, 0), (0, 0, λ2), (0, 0, λ1λ2)>; m is a modal parameter.

TU(α̃) = ED4
λ ·< (u4, 0, 0), (λ2

1, 0, 0), (0, λ1, 0), (0, u2
4, 0), (0, 0, λ2

1λ2),
(0, 0, u4λ1λ2), (0, 0, u2

4λ2)> .

Case I7. Associated path: α̃(λ) = (ε0λ1, 0, (λ1 + ε8u4)λ2).

Te(α̃) = ED4
λ ·< (0, λ1, 0), (0, u2

4, 0), (0, 0, u4λ2), (ε0, 0, λ2), (ε0, 0, λ2), (λ1, 0, 0)> .
Ne(α̃) = < (1, 0, 0), (0, 1, 0), (0, u4, 0)>; m is a modal parameter.

TU(α̃) = ED4
λ ·< (0, λ1, 0), (0, u2

4, 0), (0, 0, u4λ1λ2), (0, 0, u2
4λ2), (λ2

1, 0, 0),
(ε0u4, 0, u4λ2), (0, 0, λ2

1λ2)> .

Case I8. Associated path: α̃(λ) = (ε0λ1, nu4, (λ1 + ε10u
2
4)λ2).

Te(α̃) = ED4
λ ·< (ε0, 0, λ2), (ε0λ1, 0, u2

4λ2), (0, 2nu4, λ1λ2), (0, λ1, 0)> .
Ne(α̃) =< (u4, 0, 0), (0, u4, 0), (0, 1, 0), (0, 0, λ2)>; m and n are modal parameters.

TU(α̃) = ED4
λ ·< (λ2

1, 0, 0), (ε0u4, 0, u4λ2), (0, λ1, 0), (0, 2nu2
4, u4λ1λ2),

(0, 0, u2
4λ1λ2), (0, 0, u3

4λ2), (0, 0, λ2
1λ2)> .
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