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In certain Mott-insulating dimerized antiferromagnets, triplet excitations of the paramagnetic phase display
both three-particle and four-particle interactions. When such a magnet undergoes a quantum phase transition
into a magnetically ordered state, the three-particle interaction becomes part of the critical theory provided that
the lattice ordering wave vector is zero. One microscopic example is the staggered-dimer antiferromagnet on
the square lattice, for which deviations from O(3) universality have been reported in numerical studies. Using
both symmetry arguments and microscopic calculations, we show that a nontrivial cubic term arises in the
relevant order-parameter quantum field theory, and we assess its consequences using a combination of analytical
and numerical methods. We also present finite-temperature quantum Monte Carlo data for the staggered-dimer
antiferromagnet which complement recently published results. The data can be consistently interpreted in terms of
critical exponents identical to that of the standard O(3) universality class, but with anomalously large corrections
to scaling. We argue that the cubic interaction of critical triplons, although irrelevant in two spatial dimensions,
is responsible for the leading corrections to scaling due to its small scaling dimension.
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I. INTRODUCTION

Coupled-dimer magnets have become model systems for
quantum phase transitions (QPTs)."?> Such dimerized magnets
are obtained from placing quantum spins on a regular lattice
in d spatial dimensions, with two spins per unit cell and
strong (weak) exchange interactions within (between) the unit
cells. Depending on the ratio of the exchange interactions, the
ground state can be either a paramagnet, dominated by singlet
pairs in each unit cell, or a state with magnetic long-range
order. Experimentally, the QPTs between these two phases can
often be driven by pressure. Additionally, these systems show
another QPT upon applying an external field to the paramagnet,
which allows one to realize Bose-Einstein condensation of
magnons.’

On the theoretical side, it is commonly assumed that
the zero-field QPT is—by virtue of quantum-to-classical
mapping—in the same universality class as that of the
(d + 1)-dimensional classical Heisenberg model, often re-
ferred to as O(3) universality class (note that the dynamical
exponent z =1 in that case).” Numerical simulations of
various microscopic two-dimensional (2D) coupled-dimer
Heisenberg models have indeed found critical exponents
consistent with three-dimensional (3D) O(3) universality, in
agreement with this prediction.*® Therefore it came as a
surprise when results from accurate quantum Monte Carlo
(QMC) simulations of a particular coupled-dimer Heisenberg
magnet, the so-called staggered-dimer model with spins
1/2, displayed distinct deviations from standard O(3) critical
behavior, indicating a different universality class.? In contrast,
the often studied columnar dimer model was found to follow
O(3) universality,>® suggesting the existence of two classes
of coupled-dimer magnets.'® Subsequent QMC simulations
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of the staggered-dimer model,''~!* focusing exclusively on
the correlation-length exponent, obtained data consistent with
those of Ref. 9. However, it was argued that the data for the
largest systems could be fitted to standard O(3) scaling laws.

In this paper, we propose a resolution to the puzzle provided
by the numerical data. We show that there are indeed two
different classes of coupled-dimer magnets, henceforth called
A and B. While class A follows standard O(3) universality, the
low-energy quantum field theory of class B is characterized
by an additional cubic interaction of critical fluctuations,
which has no classical analog. While similar cubic terms have
appeared before in the literature in different contexts,'*'8
their effect on the critical behavior has not been discussed,
to our knowledge. We also note that two-particle decay of
triplet excitations via cubic interactions at elevated energies
has received some attention both experimentally'®*’ and
theoretically,?'>> but it was commonly assumed that such
three-particle processes are negligible at lowest energies.”
Here, we derive and analyze the critical cubic interaction term
of class B in some detail. While its precise characterization
in two space dimensions presents a challenge, our results
are consistent with this term being weakly irrelevant in the
renormalization-group (RG) sense.

This leads us to suggest the following scenario for class-B
coupled-dimer magnets like the staggered-dimer model: The
asymptotic critical exponents are the ones of the O(3) univer-
sality class, but anomalously large corrections to scaling arise
from the cubic interaction term. This scenario is consistent with
the numerical data reported in Refs. 9—-13. In addition, we also
present finite-temperature QMC results for the temperature
scaling of the quantum critical uniform susceptibility, which
lend further support to this scenario.
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A. Overview of results

The QPT between a non-symmetry-breaking paramagnetic
and a collinear antiferromagnetic phase in an insulating magnet
with SU(2) symmetry is typically described by a quantum field
theory of the ¢* type,

1 > u
S= [ dirdv3 (G0, + @0 +mogi] + 5362
)

in standard notation. Here, ¢,(X,t) is a three-component
vector order-parameter field describing magnetic fluctuations
near the ordering wave vector Q, with « = x,y,z. For
simplicity, the action has been written for real ¢, (appropriate
for time-reversal invariant Q) and isotropic real space; the
generalization to other cases is straightforward. The critical
behavior of model (1) is known to be of standard (d + 1)-
dimensional O(3) universality.

Below we show that the spatially anisotropic cubic term'+!8

S =i / dlrde - (05 x 9:3), @

with x being a particular space direction, appears in the low-
energy field theory for 2D coupled-dimer magnets belonging
to class B. This cubic interaction of critical fluctuations bears
some superficial similarity with Berry-phase and winding-
number terms, to be discussed below, however, its prefactor y,
is not quantized and the field ¢ is not restricted to unit length.

Our detailed analysis suggests that the cubic term Sz in
d =2 space dimensions is irrelevant in the RG sense, albeit
with a small scaling dimension. It constitutes the leading
irrelevant operator at the critical fixed point. Consequently,
the asymptotic critical behavior is of O(3) type, but with
anomalous corrections to scaling. We show that this scenario
is consistent with the existing numerical data.

B. Outline

The body of the paper is organized as follows: In Sec. II
we introduce the microscopic models under consideration,
together with the bond-operator representation of their Hamil-
tonian. We discuss the conditions for the occurrence of cubic
terms in the microscopic bond-operator formulation. Together
with the knowledge of the magnetic ordering wave vector,
this allows us to subdivide the models into classes A and B,
where a cubic term does (B) or does not (A) occur in the
low-energy field theory. Section III is devoted to a careful
derivation of this low-energy field theory for the magnetic
ordering transition in the presence of cubic terms of a specific
model belonging to class B. The critical behavior of this field
theory will in turn be discussed in Sec. IV. We employ both
scaling arguments and direct classical Monte Carlo simulations
to assess the relevance of the cubic triplon-interaction term,
with the conclusion that the most plausible scenario is its weak
irrelevancy. This conclusion is supported in Sec. V by QMC
results obtained for various coupled-dimer models of classes
A and B. A summary and outlook will close the paper. Various
technical details are relegated to the appendixes.
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II. LATTICE MODELS OF DIMERIZED MAGNETS

In this paper, we consider Heisenberg models with spins
1/2, §;, placed on a regular lattice with spatially modulated
couplings. The general Hamiltonian is thus

H=> 1SSy 3)
(Ji"

where the sum is over all pairs of lattice sites jj’. Specifically,
all models have two sites per unit cell, with an antiferro-
magnetic intracell coupling J’ defining the dimers. Spins in
different unit cells are connected by couplings J according
to the underlying lattice geometry. We restrict our attention
to lattices without geometric frustration, where the classical
ground state is unique up to global spin rotations. Various 2D
examples, namely the staggered and columnar dimer models
as well as the herringbone and bilayer model, are shown in
Fig. 1.

Quite generically, these coupled-dimer models possess a
paramagnetic ground state for J'>> J, without symmetry
breaking of any kind and dominated by intracell singlets
(Fig. 1). In contrast, for J' ~ J, a semiclassical Néel state with
broken SU(2) symmetry is realized. The critical properties of
the resulting QPT as function of J/J' are the subject of this

paper.

A. Bond-operator representation

An efficient microscopic description of the excitations
of coupled-dimer models is provided by the bond-operator
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FIG. 1. (Color online) Two-dimensional coupled-dimer magnets
considered in this paper. In all panels, thick (thin) bonds refer to
Heisenberg couplings J' (J), solid (open) circles represent spins
3‘} (S’iz) of each dimer. In addition, the singlet configurations in
the paramagnetic ground states realized for J' > J are shown.
(a) Staggered-dimer, (b) columnar-dimer, (c) Herringbone-dimer, and
(d) bilayer Heisenberg model on the square lattice. The QPTs to
the antiferromagnetic phases are located at (a) (J'/J). = 2.5196(2)
(Refs. 9, 8,12, and 13), (b) (J'/J). = 1.9096(2) (Refs. 9, 8, and 24),
(©) (J'/J). = 2.4980(3) (Ref. 10), (d) (J'/J), = 2.5220(1) (Ref. 6).
From the analysis in this paper, we conclude that the QPT of models
(a) and (c) belong to class B, while that of (b) and (d) belong to class
A; for details see text.
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representation.”> Switching to a lattice of dimer sites i, the
four states of a dimer i can be represented using bosonic
bond operators {s, , m} (¢ = x,y,z), which create the dimer
states out of a fictitious vacuum. Explicitly (and omitting
the site index i), |s) = sT|0), |a) = £]|0), where |s) = (1))
= NAD/V2Z ) =N+ ID/V2 ) =i +
NAN/V2, 12) = (1)) + [1)//2. The Hilbert space
dimension is conserved by imposing the constraint
o o L . .
s/si+ Y ,titie =1 on every site i. The original spin
operators S' and S? of each dimer are given by

Syt =HisTt, +tlsF iea,s,/t;ty), )

where €44, is the antisymmetric tensor with €,,, =1 and
summation convention over repeated indices is implied.

Using Eq. (4), the Heisenberg Hamiltonian (3) can now
be rewritten in terms of the bond operators {si.tie}.22" In
the paramagnetic phase it is desirable to have a theory for
triplet excitations only. Among others, two routes have proven
useful: (a) In the spirit of spin-wave theory, the constraint
is resolved by writing s; =s| = (1 — .. 1;,)/2. Expanding
the root then generates a series of higher-order triplet terms.
(b) The formalism is re-interpreted as follows:?’ Starting
from a background product state of singlets on all dimers,
o) =11, sj |0), the operators tja can be viewed as creating
local triplet excitations in the singlet background. This re-
interpretation, e.g., changes the local triplet energy from J'/4
to J' = J'/4 — (—3J'/4). The constraint takes the form of a
hard-core condition, Za tja tio < 1. In both cases, subsequent
approximations are usually designed to describe dilute triplet
excitations on top of the paramagnetic ground state.?

The final bond-operator Hamiltonian can be written as

H = Eo + Hz + H3 + H4 + Hresta (5)

where Ey = 3J'N /8, with N being the number of sites of the
original (spin) lattice, and H5 3 4 are terms obtained from H
containing two, three, and four triplet operators, respectively.
Approaches (a) and (b) only differ in the treatment of those
higher-order terms in Hes;, Which originate from the different
treatment of the Hilbert-space constraint: while (a) leads to
an infinite series (starting at quartic order), in case (b) Hyes
only consists of the infinite on-site (i.e., hard-core) repulsion
of triplets.”’

Performing a Fourier transformation for the triplet opera-
tors, tja =N"1/2 D exp(—il_é . ﬁi)tga, here on the lattice of
dimers with N’ = N /2, H, 3.4 can be generically written as

T
ZAk ot B (el i +He] (6)
Hs = —eaﬁ)\ZS;ﬂ; zg tht +He, ()
’ —pa PB k.
2« N Py
_ ! A "
H4 - ZN/Ga/SAEOtuv Z yk p+kﬂ G- ];/Ltqutp)u ( )

q.p

with the coefficients Az, By, &z, and y; depending on the lattice
geometry. Their explicit form for the models in Figs. 1(a) and
1(b) will be given below.
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In the paramagnetic phase, an expansion around the singlet
product state |[vo) is justified. The leading-order term H,
describes noninteracting triplet excitations (“triplons”), with
energy

wp = /A2 - B2, )

obtained from a Bogoliubov transformation tga = u,;bj;a -

vib_g, with coefficients uf =1/2+ Ag/2w; and v? =
—1/2 + Ay /2w, and upvy = B;/2wy. In the paramagnetic
phase, w; > 0 for all k. Setting H & 'H, is often referred to as
harmonic approximation.

'H3 4.rest cONtain interactions among the triplons. While Hy
and H,.sx Will contribute to the quartic self-interaction in the
low-energy field theory, the cubic term H3 requires a more
detailed discussion: As will be shown below, it may induce
a cubic term of the form (2) in the low-energy theory, which
then allows three-particle (in addition to standard four-particle)
interactions of critical fluctuations.

B. Bond operators for the staggered and columnar
Heisenberg models

For the staggered-dimer model in Fig. 1(a), a straightfor-
ward calculation gives

A; =T + B,
J
Bj = —=[cos(2ky) + cos(ky + ky) + cos(ky — ky)],
2 ' (10)
& = —J[sin(2ky) + sin(k, + k) + sin(k, — k)],
Vi = B,

where k, , refer to momenta on the original square lattice of
spins. The triplon dispersion obtained at the harmonic level,
i.e., from Hj, is shown in Fig. 2(a). Its minimum energy at
é = (0,0) reaches zero at the critical value J'/J = 3; the
quantum Monte Carlo result for the location of the QPT is
(J')J)e = 2.5196(2). 12

Similarly, for the columnar dimer model, Fig. 1(b),

A]'(' = J/ + B‘5
J
Bl-(' = 5[2 cos ky — cos(2ky)],
& = —J sin(2k,), (n

J
Vi = —5[2 cos ky + cos(2k,)].

Now the dispersion minimum is at é = (0, £ m), Fig. 2(b).
At the harmonic level, the critical point is again located at
J'/J =3, while the currently most precise quantum Monte
Carlo result is (J'/J). = 1.909 48(4),%* consistent with the
previous value of (J'/J). = 1.9096(2).

Figure 2 also shows the lower bound of the two-particle con-
tinuum at the critical coupling. In the columnar dimer model,
Fig. 2(b), one-particle and two-particle sectors only couple
at elevated energies (where the single-particle dispersion is
inside the two-particle continuum). In the staggered-dimer
model the situation is different: the single-particle dispersion
coincides with the bottom of the two-particle continuum at
criticality. While this coincidence at all wave vectors is an
artifact of the harmonic approximation, it is the correct result

174416-3



FRITZ, DORETTO, WESSEL, WENZEL, BURDIN, AND VOJTA

PHYSICAL REVIEW B 83, 174416 (2011)

I T T T T T
4 T —— = < g
/ \
/ \
3 / - -\ ]
/ \
5
X / \
S 2F v/ - - \
|/ N
- N
1 3 - s 1 3 - s
r X
0 NS T R N N L —— L L 0 I N . I —— i L L
r X M r r Y M r
K K

FIG. 2. (Color online) Triplet excitation spectrum (harmonic level) for the staggered (a) and columnar (b) dimerized AF Heisenberg models
along high symmetric directions in the Brillouin zone. Solid (black) and dashed lines correspond, respectively, to J' = 3J and J' = 3.5J. The
dotted line is the bottom of the two-particle continuum for J' = 3J—this coincides with the single-triplet dispersion in (a). Finally, panels
(c) and (d) show the Brillouin zones for the staggered (c) and columnar (d) dimerized Heisenberg models.

near Q =0 for a critical point with dynamical exponent
z = 1. In the presence of a nonvanishing cubic term H3 in the
Hamiltonian, this implies a coupling between one-particle and
two-particle sectors down to lowest energies,” as discussed in
the following.

C. Symmetries and cubic interactions

Before diving into the derivation of the low-energy field
theory, it is worth discussing for which coupled-dimer models
a cubic triplon-interaction term will be part of the low-energy
field theory.

First, a cubic piece H3 with & # 0 does not exist in all
microscopic models. In fact, in high-symmetry cases like the
much-studied bilayer Heisenberg model, Fig. 1(d), & = 0.7
An analysis shows that, due to the antisymmetric character
of Hs, its coefficient &; is nonvanishing provided that two
dimers i,i’ are coupled in an asymmetric fashion, such that the
couplings J¥' (k,k' = 1,2) between the spins S* on i and S¥
on i’ obey J!! — J?2 = 0 and/or J'?> — J2! £ 0. This can be
translated into the following symmetry condition: &; vanishes
provided that the model remains invariant if in every dimer
the spins 1 and 2 are interchanged (together with all their
couplings).

Second, H3 can enter the low-energy theory only if the
ordering wave vector on the dimer lattice is Q = O—this
immediately follows from momentum conservation. As we
shall show in the next section, these two conditions are indeed
sufficient for a nonvanishing cubic term (2) to appear in the
low-energy theory, and thus these conditions define our class
B of coupled-dimer models.

Members of class B are the staggered-dimer model in
Fig. 1(a) as well as the coupled-dimer models on the
honeycomb lattice!” and the herringbone square lattice,'”
Fig. 1(c)—these are exactly the models for which deviations
from O(3) critical behavior have been discussed.”'” On the
other hand, both the columnar and bilayer models, Figs. 1(b)
and 1(d), do not fulfill these conditions and hence belong
to class A. Indeed, standard O(3) critical behavior has been
established for these models.%%?

III. LOW-ENERGY QUANTUM FIELD THEORY

In this section we derive the effective low-energy field the-
ory designed to capture the physics near the antiferromagnetic
quantum critical point of the models introduced in Sec. II.
We shall present in detail the derivation of a ¢* theory from
the bond-operator representation of the microscopic spin-1,/2
model; in Appendix B we shall also sketch the derivation of
a nonlinear o model in the semiclassical limit of Eq. (3). In
both cases, a cubic term of the form (2) will appear for the
class-B models; however, we believe the nonlinear o model is
not useful for further analysis; see Sec. III B.

A. From bond operators to the ¢* model

A derivation of a ¢* theory from the bond-operator
formalism has been presented in the context of the colum-
nar dimer model in Ref. 29. Here we shall follow this
procedure, taking also into account the cubic piece H3
which will enter the ¢* theory only if the ordering wave
vector é =0.

In a Lagrangian formulation, the bond operators can be rep-
resented by a complex bosonic vector field 7(7, 7). Importantly,
this contains information both about the staggered and uniform
magnetization fluctuations on each dimer, i.e., it contains the
degrees of freedom of both (S‘ 1_3 2y and (3‘ 145 2). The latter
live at high energies and will eventually be integrated out to
obtain a theory for the staggered fluctuations only. To this end,
we decompose the complex field7 = Z(¢ + ian), where ¢ and
7 are real three-component vectors, a is the lattice spacing,
and

7 = 2—3/2a—3/21/l/2 (12)

is a renormalization factor.

A continuum-limit formulatlon is obtained by an expansion
of momenta in the vicinity of k= Q After some straightfor-
ward algebra the action corresponding to Hamiltonian H; (6)
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takes the form
1 - - -
82 = E / dzrdf [Ci(ax(p)z + Ci(ayfﬂ)z + m0¢2]
1 - o o
+ E/dzrdr(mﬂn2 + 26 /M7 0. P) (13)

for both the staggered and columnar dimer models. Here, m,
tunes the phase transition, while m, remains finite near the
QPT. Explicitly, we have mo = J'(J' —3J)a" and m, =
J’2. This implies that the transition at the mean-field level
takes place at J' =3J (as in the harmonic bond-operator
approximation above). From the form of m( we can deduce its
bare scaling dimension to be 2 (relevant), since the continuum
limit of the field theory obtains for a — 0, and the mass term
grows upon approaching that limit. Furthermore, ¢? = 3JJ’
and cf = JJ'. The dynamics is encoded in the mixed-field
linear time derivative.

The cubic Hamiltonian piece H3 (7) of the staggered-dimer
model, Fig. 1(a), can be cast into the form

S = / Prdt 8,6 - (G x 7), (14)

where 0, originates from &; o< k, for small 12, and yy =
JJB3/221/21/2 The latter implies that the scaling dimension
of yp is (—1/2), and consequently it is irrelevant at tree level.
Note that there is another term of the form

S =y / PrdT 8,7 - (G x 7). (15)

This term turns out to be more irrelevant than S; (it scales like
a*?) and hence will be discarded.

Importantly, a term of form S3 (14) does not appear for the
columnar dimer model, Fig. 1(b): there, é = (0, £+ m),and a
term with three fields carrying momentum Q is forbidden by
momentum conservation. In contrast, for other coupled-dimer
models with ordering wave vector Q = 0 and nonvanishing &;
in H3, a cubic term appears. We have checked this explicitly
for the honeycomb and herringbone lattices. The spatial
structure of S3 is strongly anisotropic, with the direction
of the scalar spatial derivative being determined by the
orientation of the dimers (via the small-momentum expansion
of &;). For instance, for the herringbone lattice, Fig. 1(c),
this direction is diagonal with respect to the underlying
square lattice.

The quartic interaction term is again identical for the
staggered and columnar dimer models and reads

Sy =5 / d’rdt [(§%)° + a1(§ x ) + a@?7?], (16)

where ug = 3 -2913J3a~! and o, o a?. Since the terms
X «ayp,a, are more irrelevant than the first one we discard them.

The next step is to integrate out the field 7. Although
my > 0, care is required: the coupling to ¢ via S3 renders
the field 7 gapless at the critical point. However, we have
explicitly checked that this complication does not introduce
singularities; see Appendix A. To proceed, we introduce a
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new field 7’ = 77 + \/;m* 0. @, such that the quadratic part of the
action reads

_ - - R -
&=3 / d*rdt[c(0:6) + c(0,@) + (0:6)" + mog’]

+ 27 a2, 17)

where now a second-order time derivative for ¢ appears. Next,
7' is integrated out from S, + Sz + S;. Keeping only the
lowest-order terms and defining Sy4 = S, 4+ Sy we find

I ] o,
Su=1 / Prdt[ 057 + 0,5 + 0§ +mod?]

n ;—Z Prdv(@*)? (18)
and
S; = iyo/dzran - (0:@ X ;). (19)

The additional term S3 (19)—identical to Eq. (2) announced
in the Introduction—represents the crucial difference to a
standard ¢* (or Ginzburg-Landau) theory as described by S»4.
Among the various additional higher-order terms, there are

Suian o / Lrdc§ 0.3 x 697" (0)

with n > 1. As usual, they may be discarded since they are
more irrelevant in the RG sense compared to Sz (19).

Summarizing, within the framework of the bond-operator
approach one can derive, for the staggered dimer model, an
effective ¢* theory supplemented by an infinite number of
additional terms. The most relevant of these is Sz (19), which
will be further discussed in Sec. III B below.

B. Discussion of the cubic term

The derivation of the g04 theory has lead to a cubic term S3,
Eq. (19), which is present for the staggered dimer model, but
absent for the columnar dimer model.

1. Symmetries

The cubic term (19) respects SU(2) symmetry and time
reversal, as ¢ is odd under time reversal. It respects momentum
conservation provided that ¢ parametrizes fluctuations at wave
vector zero. Finally, the existence of the term requires that ¢ is
odd under the mirror operation x — —x while it is even under
y — —y, which is the case for the staggered magnetization on
the horizontally aligned dimers in the models in Figs. 1(a) and
1(b). The cubic term is fundamentally guantum in the sense
that no quantum-to-classical mapping exists for this term due
to its prefactor i. This also implies that the field theory with
cubic term will not be amenable to an efficient Monte Carlo
sampling, since it suffers from a sign problem [a remarkable
exception is the two-dimensional O(3) model with a 6 vacuum
term, for which efficient simulations can be performed using
constrained-angle variables on the triangular lattice, leading to
meron-cluster decoupling].*°
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2. Quantization and relation to topological charge

A cubic term can also be derived in the language of the
nonlinear o model, see Appendix B, with the result

83 = i(SofddVdTﬁ : (8x7l X 8Tﬁ), (21)

where 7 is now a unit-length O(3) field, and § is proportional to
the modulation (J — J') of the couplings in Fig. 1(a). Similar
cubic terms were derived before for the standard'*!> and the
dimerized'” Heisenberg models on the honeycomb lattice, but
in all cases neglected in the subsequent analysis.

Importantly, Eq. (21) may suggest an interpretation in terms
of a topological charge (or skyrmion number) in x-t space.
We can introduce a functional Q of a vector field a in two
dimensions according to

Qla(x,y)] = %/dxdya - (0ya X dya). (22)
For a unit-length field a, Q[a] is known as topological ®
term. It is quantized to integer values for periodic boundary
conditions and smooth configurations of a: a is a map from
the 2D plane to the unit sphere, and Q measures how often
space is wrapped around the sphere.® Notably, the Berry phase
term Sp of a 1D antiferromagnetic spin chain, represented
in spin coherent states, can be represented in a very similar

fashion:33!

S - . - -
S = iE / dxdtn-(0n x 9;n) =2wiSO[n(x,7)]. (23)

Due to the quantization, Sp drops out from the partition
function for integer spins S due to e5* =1, while Sp
contributes nontrivial sign changes from skyrmions for half
integer S 32 Now, the dimer-model cubic term (21) in d = 2
can be written as

S; = 4ni80/dy Olny(x,7)], 24)
where 7i,(x,7) = 7i(x,y,7). Note that, in contrast to Sp in
Eq. (23), the prefactor in S5 (24) is not quantized. Based on
the expression (24), Ref. 17 concluded that S; is negligible,
arguing that smooth configurations imply that Q[7,] = const,
and skyrmion lines described by nonzero Qfrn,] should
be energetically suppressed. This argument is certainly not
rigorous, as instanton events are not accounted for. However,
the nonuniversal prefactor of S5 may suggest that nontrivial
contributions to Q[n y] tend to average out.

A central issue in the discussion of S is therefore whether
the quantization in terms of a topological charge in x-t
space really plays a role. We believe that this is not the
case, for the following reasons: (i) In the ¢* (i.e., soft-spin)
version of the field theory, the field occurring in Sz (19) is
not normalized to unity, such that Q[(Zy] is not quantized.
(Even if amplitude fluctuations are frozen out at large length
scales, Q[(ﬁy] is sensitive to fluctuations on all scales.)
(ii) Before taking the spatial continuum limit, the expression
in 83 involves a discrete sum over x, with the derivative 9,¢
replaced by a linear function of ¢. While lattice definitions
of Q preserving its topological character for unit-length fields
have been put forward,> those involve the fields in a strongly
nonlinear fashion. In contrast, for a discretization with a linear
approximation to the derivative it is easy to show that the
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topological character is not preserved. This will be explicitly
shown in Sec. IV B below.

Therefore we believe that the cubic term in the order-
parameter theory of class-B coupled-dimer magnets is un-
related to quantized topological charges, i.e., the relation
suggested by Egs. (21) and (24) is an artifact of the unit-
length continuum limit underlying the nonlinear ¢ model.
Consequently, standard tools like perturbative RG can be used
to analyze the cubic term in the ¢* formulation.

3. Cubic interactions in magnetically ordered phases

Before dealing with the consequences of the cubic triplon
interaction (19) at quantum criticality, we briefly discuss its
fate inside the magnetically ordered phases of the coupled-
dimer models of Sec. II.

The spin-space structure of the cubic term is such that it
couples triplons of all three polarizations. Upon entering the
symmetry-broken phase, one of these modes becomes gapped
and turns into a damped longitudinal mode while the two others
become Goldstone modes (spin waves) of the ordered phase.
Hence the cubic term (19) now couples the Goldstone modes
to the longitudinal mode and thus contributes to the decay of
the latter, however, it is no longer exclusively acting in the
low-energy sector.

Interestingly, cubic interactions among spin waves are
present in noncollinearly ordered magnets>* with the
triangular-lattice antiferromagnet being a prime example.
However, the lattice ordering wave vector is typically nonzero
in these cases, such that the effect of cubic interactions
at low energies scales with the magnetic order parameter
and is suppressed upon approaching a QCP to a possible
paramagnetic state from the ordered side.

IV. CRITICALITY IN THE PRESENCE OF CUBIC
INTERACTIONS

According to our analysis so far, the cubic term S is the
most relevant additional term present in the low-energy field
theory for the quantum phase transition [as compared to the
standard O(3) case]. Therefore the central question is whether
this term is relevant or irrelevant in the RG sense at the O(3)
(or Wilson-Fisher) critical fixed point in (2 + 1) dimensions.
This can be answered by determining the scaling dimension
of the coupling constant multiplying the local cubic operator
which appears inside S;.

In this section, we shall follow two routes: First, we analyze
the cubic operator in the ¢* theory perturbatively in € =
4 — D. Second, we determine the operator’s scaling dimension
directly in D = 3 dimensions, by means of a classical Monte
Carlo calculation of the operator’s correlation functions at
the Wilson-Fisher fixed point. The results of both methods
are consistent with the cubic term being weakly irrelevant in
D =3.

A. Perturbative determination of the scaling dimension

The O(3) critical fixed point is perturbatively accessible in
the framework of the ¢* theory (1) in a double expansion in the
quartic interaction ug and € = 4 — D. For D < 4 the Gaussian
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fixed point is unstable toward the Wilson-Fisher fixed point,
with a renormalized interaction u ~ O(¢).

We start by determining the scaling dimension of the cubic
operator’s (2) coupling constant at the Gaussian fixed point.
After rescaling the lengths such that the gradient terms are
isotropic, the action in D = d + 1 dimensions reads®

S = %/dDr[mo(p,f —i—(%(pu,)z] + %/dl)r((pi)z

—i—iyo/dDr(o' (0,9 X 0y%). 25)
At tree level, we obtain the well-known scaling dimensions

¢l = (D —2)/2,
[uole = D —4[¢lg =4 — D, (26)
[Yolc = D —2—3[¢lc = 2 — D)/2,

with the subscript G referring to the Gaussian fixed point.
Substituting D = 3, the cubic term is found to be irrelevant
with a scaling dimension of [yy] = —%—the same conclusion
appeared already in Sec. III A.

At the Wilson-Fisher fixed point, both fields and vertices
receive perturbative corrections leading to anomalous dimen-
sions. A simple (but incomplete) estimate of the scaling
dimension of y, at the Wilson-Fisher fixed point consists
of taking into account the field renormalization only. This
amounts to using [yo] = D — 2 — 3[¢] with [¢] = (D — 2+
n)/2 leading to

2—D 3p
[yol ¥ —— — — ~ —0.556 25, 27
2 2
where n = 0.0375(5) in D = 3 (Ref. 35) was used. Although
indicative, we cannot expect this estimate to be reliable, as it
ignores vertex corrections: it is known that composite operators
may have large anomalous dimensions (see, e.g., Ref. 36).

A more complete treatment requires a perturbative RG
analysis of the full theory Sy4 + S3. This expansion is done
about the Gaussian theory, with two dimensionless nonlinear
couplings u = ugAP™* and y = AP =22, where A is
an ultraviolet cutoff. To one-loop order, the calculation is
conveniently performed in the momentum-shell scheme. It
turns out that, due to the antisymmetry of the y vertex, no
diagrams mixing u# and y exist to one-loop order. Furthermore,
y does not introduce field renormalizations. Hence the flow
equation for u is not modified by y, and the flow of y does not
involve u. To one-loop order we simply have

du N +38

— =@G-Du—-K 2 28
T ( u ol (28)
dy 2-D 29)
a2 r

where dl = dA /A, N = 3 is the number of field components,
and K; =297 '7?2T(d /2)]’1. Thus, the tree-level result
[v0] = (2 — D)/2 does not receive one-loop corrections. If
renormalizations of the y vertex due to u remained absent at
higher loop orders, only field renormalizations would influence
the flow of y, and the estimate (27) would be correct. However,
we see no fundamental reason for a general cancellation
of such vertex renormalizations. Instead of going to higher
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loop orders, we will improve on the estimate (27) using a
non-perturbative numerical approach.

B. Monte Carlo analysis in D = 3

We shall now numerically determine the scaling dimension
of the cubic term S; directly in (2 4+ 1) dimensions at the
Wilson-Fisher fixed point. Note that this task is simpler than
solving the full quantum model including S3: in particular, it
boils down to the simulation of a classical problem in D =
(d + z) dimensions, with z = 1, as the O(3) critical field theory
described by S,4 follows a quantum-to-classical mapping.

We define the composite operator

O@F) = ¢(r) - (3:¢(F) x 3,p(F)). (30)
Its scaling dimension [O] = Ap can be obtained from the
long-distance decay of its correlation function:

C(F) = (0(HO(0)) 3D

[FPo”
From this, the scaling dimension of the coupling constant
(more correctly, the associated vertex function) is obtained
through

[yl = D — Ao. (32)

In the following, we determine the scaling dimension
Ao of the composite operator O by a lattice Monte Carlo
simulation of a classical Heisenberg ferromagnet in D =3
dimensions, where we shall measure the correlator Eq. (31)
at criticality. This approach exploits that the model is in the
same universality class as the O(3) Landau-Ginzburg theory
and hence realizes the Wilson-Fisher fixed point in D = 3, but
gives us access to correlation functions in a nonperturbative
manner. Specifically, we simulate the classical Heisenberg
model

H=-7)5"5; (33)
(i)

with ferromagnetic interactions between nearest neighbors
on a simple cubic lattice. The §,~ are classical (commuting)
three-component vectors of unit length (3'12 = 1). We employ
the Wolff cluster algorithm,37 which allows an efficient
Monte Carlo simulation and provides high-accuracy critical
exponents for the O(3) universality class.*® The critical point
of this model is known to be located at K. = J/(kpT,) =
0.693035(37).%

In the lattice simulation, the operator O needs to be
discretized. Guided by the derivation of the field theory from
the discrete lattice model, Sec. II, we know that the derivatives
in Eq. (30) should be discretized using a linear function of the
spins (in contrast to Ref. 33). The standard two-point forward
formula leads to

O tattice = S - (§i+eX X §i+e}.)’ (34)

where e,(e,) denotes a unit step in the x (y) direction. We
have checked that other (linear) discretization schemes give
qualitatively similar results.

Before we turn to the results for the correlator C(F), we
make a brief detour to discuss the quantity O itself. As men-
tioned above, its layer integral Q(z) = ny O(x,y,z)/(4m)
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8x8x8

12

FIG. 3. (Color online) Histograms of the intralayer “skyrmion
number” Q(z) (see text), obtained from a Monte Carlo simulation of
the classical Heisenberg model (33) at its critical temperature. The
curves have been obtained from 10® measurements on systems of
size L3 with L = 4,6,8; each measurement gave Q(z) for a single
layer with fixed z. Note that Q is not quantized, as it does not involve
unit-length fields in the continuum limit. The distributions are found
to be Gaussian, with a width scaling linearly with L.

may suggest an interpretation in terms of a topological charge.
However, the numerical Monte Carlo simulations show that
OQ(z) is not quantized at criticality; see Fig. 3. Instead, Q(z)
displays a single peak at @ = 0, with a width scaling as L in
a system of size L*. Since the number of spins in each layer
is L?, this width simply reflects the standard thermodynamic
scaling of fluctuations of a noncritical extensive observable.
Therefore Fig. 3 supports the conclusion of Sec. III B that O(F)
is a conventional non-critical density.

The correlator of O is measured along the two inequivalent
directions, i.e., within the xy plane and along the z axis:

Coy(r) = (O(r,0,0)00)) = (O(0,r,0)0(0)),
35)

C.(r) = (00,0, O0)),

where r now denotes discrete lattice coordinates. We find that
both correlation functions drop quickly with the separation
r, and a large number of Monte Carlo sweeps are required
to reduce the statistical uncertainty in the correlator. The most
efficient way to estimate the decay exponents of C(r) in a finite-
size system is to measure the correlation functions at half the
linear system size, C,(L/2) and C,(L/2), for different lattice
sizes, as to minimize finite-size effects. We employed up to
10!2 Wolff cluster updates for system sizes L = 6,8,10,12,14
to obtain the data shown in Fig. 4.

Despite the relatively small system sizes, C,,(L/2) and
C.(L/2) show an algebraic decay with L/2, consistent with
critical behavior. For both correlators, the decay appears to
be faster than 1/ r%. However, a reliable determination of the
decay exponent is difficult, because the data display a slight
curvature at the largest system sizes. A direct fit of all data
points yields Ap &~ 4, while the large-system data are more
consistent with Ap & 3.2...3.5. With Eq. (32) this suggests
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FIG. 4. (Color online) The correlators C,,(L/2),C.(L/2) as
functions of L/2 for different system sizes L from Monte Carlo
simulations of the ferromagnetic Heisenberg model (33) at its critical
temperature. The dashed line corresponds to a decay proportional to
(L/2)7%. Note that the uncertainty of the C.(7) data point is of the
same order as the value itself.

that the scaling dimension [yp]wF is in the range —0.2... —
0.5, consistent with weak irrelevancy of the cubic operator at
the Wilson-Fisher fixed point. However, from the present data
we cannot rule out that y; is instead weakly relevant.

C. Scenario: Large corrections to O(3) scaling

Let us summarize the state of affairs concerning the critical
behavior of class-B dimer models: (i) We have found that
the combination of low symmetry and vanishing ordering
wave vector leads to the presence of a cubic term in the
low-energy field theory—this cubic term represents the most
relevant difference to a standard O(3) field theory. (ii) The
cubic term is strongly irrelevant in (3 — €) space dimensions,
while the Monte Carlo results of Sec. IV B suggest that it has
a small scaling dimension in d = 2, most likely being weakly
irrelevant. (iii) The published QMC results for the staggered
dimer model indicate either critical exponents slightly different
from those of the O(3) universality class® or, if the fitting
is restricted to large systems only, exponents consistent with
their O(3) values.'!'? Note that a conventional value for the
critical exponent v was obtained also using an unconventional
finite-size scaling analysis of the spin stiffness'? whose validity
remains to be verified.

Points (i) and (ii) strongly suggest that the cubic term
is responsible for the unusual behavior seen in the QMC
calculations. Point (iii) then implies that the cubic term is
irrelevant (instead of relevant) in the RG sense, as otherwise
the deviations from O(3) universality would grow (instead of
shrink) with system size.

This leads us to propose the following scenario for the
quantum phase transition in class-B coupled-dimer models:
The cubic term is weakly irrelevant in d = 2 and therefore
constitutes the leading irrelevant operator at the Wilson-Fisher
fixed point. Hence the asymptotic critical behavior is that of
the standard O(3) universality class, but the corrections to
scaling are different from standard O(3) universality. In the
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next section, we present numerical results that support this
scenario. A detailed analytical calculation of the corrections
to scaling arising from the cubic term is left for future work.

V. QUANTUM MONTE CARLO RESULTS

In this section, we present further results from QMC
simulations of critical dimerized antiferromagnets to assess
the scenario discussed above. First, we re-analyze finite-size
data for critical exponents obtained in Ref. 9 in terms of
anomalously large corrections to O(3) scaling. Second, we
show results for the finite-temperature uniform susceptibility
at criticality—this is a noncritical quantity, which has been
studied both analytically and numerically for critical antifer-
romagnets in the past. Again, dimer models of classes A and
B are found to display distinctly different behavior.

A. Correction exponent

Following the idea of large corrections to scaling outlined
above, we investigate here whether the inclusion of appropriate
scaling corrections yields critical exponents compatible with
the O(3) universality class for the staggered dimer model. In
particular, we focus on the order parameter (i.e., the staggered
magnetization) m, estimated using only the z component of
the spin operator via m% = | Y_,(—1)*"*S7|. The analysis of
this quantity led to the most pronounced deviation from O(3)
critical behavior in Ref. 9, and it complements more recent
simulations '"!? that focus solely on the exponent v of the
correlation length. At the quantum critical point, m? is expected
to scale according to

(m?) ~ L=P/"(1 4 ¢,, L™, (36)

thus providing access to the ratio 8/v of critical exponents.
For the case of the columnar dimer model, perfect agreement
with O(3) exponents was found—even when neglecting the
presence of the corrections to scaling.®!0

For the standard O(3) universality class, the correction
exponent w is given by* woe) = 0.782(13) (in the ¢* language
arising from the flow of the quartic interaction u on the
critical manifold). Hence if the deviations in §/v observed
in Ref. 9 were due to standard irrelevant operators, inclusion
of w = wp3) should result in the O(3) value for B/v. Our
results from performing fits to the data of Ref. 9, presented in
Table I, indicate that this is not the case, i.e., we cannot cast
the fitting results with O(3) values of the critical exponents.

We continue to investigate a second scenario, in which
we fix the known O(3) exponent §/v but leave w as a free fit
parameter. The lower parts of Table I contain the corresponding
fitting results, which indicate that we can indeed arrive at a
O(3) critical value for B/v, but at the expense of a w < wo(3).
It should be understood that the performed analysis actually
provides an effective correction exponent for the length scales
studied. Nevertheless, from further numerical studies of the
herringbone and honeycomb coupled-dimer models,'” we
can empirically relate the presence of the cubic operator
to unusually large (and slowly vanishing) corrections to the
leading O(3) scaling. In fact, from the symmetry arguments
presented in Sec. I C, both models belong to class B (as the
staggered-dimer model) with a cubic triplon interaction term at

PHYSICAL REVIEW B 83, 174416 (2011)

TABLE 1. Fit results for the critical exponent quotient /v for
the staggered dimer model. The table summarizes several results of
fits including a correction to scaling exponent for three values of «,
within twice its error bar and L > 10. The entry (ref) refers to the
relevant reference values for the 3D O(3) universality class given in
the last line. Reported error bars are twice the fit error.

a. B/v a) x2/d.o.f.
2.5194 0.525(1) ref 4.0
2.5196 0.529(1) ref 1.33
2.5198 0.533(1) ref 1.1
2.5194 ref 0.63(3) 1.7
2.5196 ref 0.55(2) 0.6
25198 ref 0.48(3) 26
Refs. 39,40 0.5188(3) 0.782(13)

low energies. This provides numerical support for the scenario
outlined above, in which the cubic operator leads to enhanced
corrections to an O(3) scaling behavior.

B. Finite-temperature susceptibility

In this section, we focus on the thermodynamic behavior, in
particular the temperature scaling of the uniform susceptibility
at the quantum critical point. For this purpose, we performed
QMC simulations of various dimerized two-dimensional an-
tiferromagnets at their respective quantum critical coupling
ratios; see Fig. 1.

For the simulations, we employed the stochastic series
expansion method with a directed operator-loop update.*'~#3
We considered systems with N = 2L? spin, for linear system
sizes L up to 512. The quantum nonlinear o model prediction
for the uniform susceptibility is a linear dependence y = AT
on the temperature (7') within the quantum critical region,
where the prefactor A depends on the spin-wave velocity and
a universal constant.*** This implies an essentially constant
ratio x/T = A inside the quantum critical region. Such a
linear-T scaling of x has been observed for both the bilayer*®
and a coupled plaquette lattice* model significantly into the
quantum critical region.

The QMC results of the uniform susceptibility for the
staggered and the columnar dimer arrangements are shown in
Fig. 5 for different system sizes. As seen from comparing the
QMC results for different system sizes, we obtain finite-size
converged estimates for the thermodynamic-limit behavior
down to 7/J = 0.04. Comparing the data for the two cases,
we find that while for the columnar arrangement y /T shows
only mild changes with 7 below about 0.2/, for the staggered
case, larger deviations from a constant value of x /T are
observed over the whole accessible temperature range. We take
these enhanced deviations from the linear-7 scaling of x as a
signature of the scenario outlined in the previous section, even
though we are not in a position to derive from our theoretical
analysis the actual form of the leading deviation from the
linear-T scaling of .

In Fig. 6, we show the low-T temperature dependence
of x/T for all four models in Fig. 1 at their respective
quantum critical points, extrapolated to the thermodynamic
limit. Strikingly, we find sizable and similar corrections to
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FIG. 5. (Color online) QMC results for the temperature depen-
dence of the uniform susceptibility x for the columnar and the
staggered model at the quantum critical point for different system
sizes. Also shown are fits to an ansatz x /T = A — BT + CT? for
the low-T behavior of x /T extrapolated to the thermodynamic limit
(dashed). Note the logarithmic T scale.

the linear-T scaling of x for both class-B models (staggered
dimer and herringbone), whereas such corrections are less
pronounced for the class-A models (columnar dimer and
bilayer).

For all models, the leading low-T' behavior is consistent
with a linear decrease of x /T, i.e.,

x/T=A—-BT, B=>0, 37

shown by the linear fits in Fig. 6. For the staggered dimer and
the herringbone model, enhanced corrections B are required,
as seen from the linear fit lines in Fig. 6, which have about
twice the slope as those for the other two models. While
polynomial corrections to the linear-T' scaling of x are thus
compatible with our data, it is interesting to assess, if our data
are consistent also with other functional forms of the leading

0.1

0.09 bilayer

ers

0.07 |- herringbgne A
staggered dimers 7
0.06 ! | ! | ! | !
0 0.1 0.2 0.3 0.4
T/J

FIG. 6. (Color online) Quantum Monte Carlo results for the
temperature dependence of the uniform susceptibility x for different
dimer antiferromagnets. The shown data represent the thermody-
namic limit. Linear lines represent fits of the low-7" behavior of x /T
to a linear ansatz.
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correction terms. For example, recently Sandvik observed a
dominating logarithmic term in the low-7 corrections to the
linear-T scaling of x in a two-dimensional Heisenberg model
with four-spin interactions (the J-Q model).>***8 For our
data, the type of corrections can be judged from both Figs. 5
and 6. Figure 5, with a logarithmic T scale, shows a quadratic
fit x/T = A — BT + CT?, which is seen to fit the data well
up to about T &~ .15, while no robust behavior linear in log(7")
is observed.

We thus conclude from our QMC analysis, that (i) at the
quantum critical point deviations from a linear-T scaling of
x are exhibited by all considered models, (ii) the leading
corrections to the linear-7T scaling can be captured by a low-
order expansion in 7, Eq. (37), and (iii) in those models, for
which nontrivial cubic terms emerge, considerably enhanced
corrections to the linear-T scaling of x are present. In fact,
Figs. 5 and 6 give a rather clear indication of the two classes
A and B of dimer models, with class A (B) displaying small
(large) corrections to the leading x /7T = const behavior. It
proved difficult to extract the actual functional form of the
scaling corrections from the QMC simulations, but we tend to
exclude low-temperature logarithmic corrections as found for
the J-Q model in Refs. 24,47, and 48.

VI. CONCLUSIONS

Analyzing quantum phase transitions in models of coupled-
dimer magnets, we have identified two distinct universality
classes A and B. While class A displays conventional O(3)
critical behavior, class B is characterized by the presence of
three-particle interactions of critical fluctuations, described
by a cubic term in the order-parameter field theory. We have
shown that various 2D coupled-dimer models including the
recently studied staggered-dimer model belong to class B.
Combining field-theoretic arguments and results from large-
scale numerical simulations, we have put forward the following
scenario for the quantum phase transition in class-B models:
The leading critical behavior is that of the standard O(3)
universality class, but anomalously large corrections to scaling,
different from O(3) behavior, arise from the cubic term. This
scenario appears consistent with all available information; in
particular it solves the puzzle concerning the interpretation
of recent QMC results for the staggered dimer model.>'3 A
precise analytical characterization of the scaling corrections
arising from the cubic term is left for future work.

Itis conceivable that similar three-particle interaction terms
also appear for quantum phase transitions with underlying
symmetries different from SU(2). Then, the corresponding
class-B transitions might even display novel leading critical
behavior.
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APPENDIX A: DERIVATION OF ¢* THEORY:
SELF-ENERGY CORRECTIONS

In Sec. IITA, we derived a ¢*-type low-energy theory
from the bond-operator representation of the staggered dimer
Heisenberg model. In the course of the derivation we integrated
out the field 7 based on the fact that it is gapped. However,
at the critical point this statement turns out to be true only at
tree level, due to the self-energy corrections to 7 arising from
three-particle interactions described by Eq. (14). Therefore
we have to verify whether integrating out 77 is still permissible
without introducing singular terms.

Consider the self-energy of the field 7 due to the cubic term
(14) which enables decay into two ¢ fields. In lowest-order
perturbation theory and at criticality, it reads

2 w2 2k 4k} + o

A
3 16 [I2 + k2 + w?
X y n

This implies that the tree-level gap is actually filled. Does this
invalidate the step of integrating out the field 7 as done in
Sec. I A? In order to answer that question one has to estimate
the emerging interaction terms. The most relevant one of those
is in the static limit given by

i o (A1)

58S / dxdt(¢*) 2 xz7(k = 0,0, = 0) (A2)

with
> diqdw - -
xealk =000 =0) o | Z0GrG.0)Gr(—G — )
(A3)

in which G (g,w) now is the full Green’s function taking into
account the self-energy in Eq. (Al). The respective integral
reads

- dPgdw 1
xii (€ = 0,0, = 0) . ;
@)
moa NGt t+o?

(A4)

with o parametrizing the strength of the self-energy correction.
This expression reduces to the case of a gapped 7 for o = 0. It
is obvious that o 7 0 does not produce singular contributions.
We have performed similar checks for other terms generated
from integrating out 7.

We thus conclude that the presence of the cubic term (14),
although rendering the field 7 gapless at criticality, does not
invalidate the derivation of the effective ¢* theory (18).

APPENDIX B: DERIVATION OF THE NONLINEAR
o MODEL

Here we sketch the derivation of a nonlinear o model
for the staggered-dimer Heisenberg antiferromagnet, as usual
performed in the semiclassical limit starting from the magnet-
ically ordered phase (see Chap. 13 of Ref. 3). A cubic term
will appear as a result of this derivation, further discussed in
Sec. III B.
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The Hamiltonian (3) can be written as

H=> Jis8; S (B1)
js
where § = %,7 and
Jis = J[1 +(A/2)85 :(1 + (=1)7)]. (B2)

Here, A = J’/J — 1 measures the modulation in the cou-
plings, and (—1)/ = %1 for the two sublattices of the square
lattice [solid and open circles in Fig. 1(a)].

To derive a field theory, we replace S =S N ;» where N fi
is a three-component unit-length vector. Assuming proximity
to a state with collinear Néel order, N ; can be parametrized by

4 172 2
Ni(t) = (—1)jﬁj(r) (1 — %L?(r)) + %LJ‘(T). (B3)

Here 7i; and L; are the (slowly varying) staggered and uniform
components of the magnetization, respectively, obeying the
constraints 7 = 1 and7; - L; = 0. We have restored the lattice
constant a and assume that Ijlz < S*a~*

Substituting Eq. (B3) into the Hamiltonian (B1) and
expanding the square-root results in the following Hamiltonian
piece H, for the magnetic couplings along the y axis:

2 2a* -, . . iz 7 a*
H,=JS*) e Li—ninjes (D Lis o
j

4
+ (=1 ZJ%} +O(L?). (B4)
Upon taking the continuum limit, only the first two terms
of Eq. (B4) are finite. The other two terms oscillate on
the lattice scale and disappear in the continuum limit. The
remaining Hamiltonian piece H, is similar to H, with § — %,
with the crucial difference that the oscillating behavior of
the couplings changes the prefactors of the third and fourth
term to (—1)/(—1)/ = 1. Therefore these terms—which will
eventually lead to a cubic term analogous to Eq. (2)—survive
in the continuum limit for the staggered-dimer model (but not
for the columnar dimer model, simply reflecting that a cubic
term is forbidden by momentum conservation in the latter).
The continuum version of the Hamiltonian (B1) then reads

H = %/dzrdr {S[(3y7)* + (1 + A/2)(3,71)°]

+4a>2 4+ AJ2)L* — 2SaAL - (3,71)} (B5)

for the staggered-dimer model, while the last term is absent in
the columnar dimer model.

Passing to a coherent-state path-integral formulation and
integrating out the L fields, the action for the unit-length 7

field assumes the form
S=8Sp+5+ S5, (B6)

where

Cpp
SB:iSZ(—l)//O dr/o duiij - (3,4i; x ;i) (B7)
J
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is the familiar Berry phase term [Eq. (13.52) of Ref. 3] and
1 R R -
S, = % / d*rdr [c;(0511)* + c(0yin)” + (3.71)]
(B8)

JSA
S =1 a
8

/dzrdrﬁ (e X O11),

¢y = JSa/8 + 6A,
cy = JSav8+2A,
g =2a*J(4+ A).

The velocities ¢, and c, agree with the spin-wave velocities
calculated within spin-wave theory for the model (B1). The
prefactor of S3 vanishes for A = 0, i.e., for the (unmodulated)
square-lattice Heisenberg model.

APPENDIX C: RG ANALYSIS OF THE NONLINEAR
o MODEL

Despite the fact that the cubic term (BS8) in the nonlinear
o model involves an artificial quantization as discussed in
Sec. III B, one can attempt an RG analysis of this nonlinear
o model using an expansion in € = (d — 1). Here, we follow
the calculation of Refs. 49 and 50 and only display the relevant
changes.

We assume an isotropic velocity ¢ and a momentum-space
ultraviolet cutoff A. After rescaling the coordinates according
to xo = Act and ¥’ = AX, the action assumes the form

1 u oo .
S = —/ dxo/ dx [(Bﬂn)2 — 2hgon,
2g0 Jo |

—2i8gon - (don x 1), (CD)

where u =0,1,...,d, u = AcB is the rescaled tempera-
ture, 1/g9 = ,os/(cAd‘l) measures the stiffness pg, h =
H/(cA“*D encodes an applied staggered field H, and
8 = A/(cA?") represents the strength of the cubic term. The
tree-level scaling dimensions of the coupling constants follow
as [gol=1—d,[h] =d + 1, and [§] = d — 1. In contrast to
the ¢* theory, here power counting indicates that the cubic
term is relevant ford > 1.

The € expansion is generated as usual via the parametriza-
tion 1 = (7Tx,my,[1 — nf — ng]l/z) and expansion of the ac-
tion in 7 fields. Doing so, the lowest-order contribution
of the original cubic term is found to be of order O(*).
Momentum-shell RG equations are obtained from integrating
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gA
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FIG. 7. Schematic renormalization-group flow for the nonlinear
o model (C1) for thecased > 1,h =0,and T = 0.

out modes with momenta e~ < k < 1 and diagrammatically
analyzing the perturbative corrections as in Ref. 50. It turns
out that the new coupling § does not modify the one-loop flow
of g and £, as the possible contributions exactly cancel. The
only correction to § arises from a g diagram.

As a result, the one-loop RG equations in the limit H — 0
and T — O read

dg 1

= = 1—d)g+ EKdgz, (C2)
ds d+1

=5 = d—1)8+ K,g8, (C3)

where K/ I = pd-1pd2p (d/2). Equation (C2) corresponds to
the limit 7 — 0 of Eq. (3.1a) from Ref. 50.

The renormalization-group flow is illustrated in Fig. 7. The
only nontrivial fixed pointis at (g,5) = (g.,0) with g. = 2(d —
1)/K . While this controls the QPT for § = 0, it is unstable
with respect to finite §. While it is possible that the inclusion of
higher loop orders stabilizes a nontrivial fixed point at finite §,
the one-loop result in itself is puzzling: Most disturbingly,
the coupling § becomes more relevant with increasing d
(already at tree level), in contrast to conventional expectations.
One might argue that in fact the combination (g§), being
marginal at tree level, measures the strength of the cubic term.
However, the absence of a stable fixed point remains to be
understood.

Thus the RG results for the nonlinear o model (above)
and for the ¢* model (Sec. IV A) appear to mutually disagree
regarding the role of the three-particle interaction term. As
discussed in Sec. III B, we believe that the nonlinear o model
analysis is not trustworthy (at least partially) due to artifacts
of the unit-length continuum limit. It is worth mentioning
that disagreement between the two field theories was already
pointed out, for instance, in Refs. 51 and 52. To our knowledge,
these issues are not completely settled.>
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