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Resumo

Esta tese é baseada em parte do meu trabalho de doutoramento e tem como objetivo
apresentar uma andlise detalhada de algumas propriedades recém abordadas do fantasma
b composto no formalismo de espinores puros. Primeiramente sera feita uma revisao
dos formalismos minimo e nao-minimo. Em seguida, serd apresentada a construcao do
fantasma b passo a passo, incluindo correcoes quanticas. Por fim, serao estudadas em
detalhes suas propriedades fundamentais, que vao desde a nilpoténcia até a definicao de

um possivel conjugado, o fantasma c.

Palavras-chave: Teoria de supercordas; formalismo de espinores puros; fantasma b
composto.

Area do conhecimento: Particulas elementares e campos.



Abstract

This thesis is based in part of my work during the Ph.D. and aims to present a detailed
analysis of some newly studied properties of the composite non-minimal pure spinor b
ghost. First, a review of the minimal and non-minimal pure spinor formalisms will be
presented. Then, the construction of the non-minimal b ghost will be done step-by-step,
including quantum corrections. Finally, some of its fundamental properties will be studied
in detail, ranging from nilpotency until the definition of a possible canonical conjugate,
the ¢ ghost.

Keywords: Superstring theory; pure spinor formalism; composite b ghost.
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Chapter 1
Introduction

The super Poincaré covariant quantization of the superstring was achieved in the year
2000, with the development of the pure spinor formalism [1]. It can be described as an ad
hoc approach to the quantization of the string, in the sense that the gauge fixing proce-
dure that provides the BRST-like approach has not yet been discovered. Allowing explicit
Lorentz covariant computations in the elegant language of D = 10 superfields, the for-
malism gathers together the advantages of the other traditional superstring descriptions
(RNS and Green-Schwarz) without most of their restrictions. The Green-Schwarz formu-
lation [2] cannot be quantized in a Lorentz covariant manner, only in the (semi) light
cone gauge, and the introduction of the interaction-point operators makes hard even the
construction of vertex operators. As for the Ramond-Neveu-Schwarz (RNS) string [3, 4],
amplitude computations require the sum over spin structures (implied by world-sheet su-
persymmetry and related to GSO projection), integration over super moduli space and
the introduction of picture-changing and spin operators [5]|, lacking explicit space-time
supersymmetry (the algebra closes up to a picture changing operation) and making the
Ramond sector hard to deal with. Another advantage of the pure spinor formalism is the
possibility of dealing with curved backgrounds that have Ramond-Ramond flux, feature
that is most welcome concerning the latest developments of the AdS/CFT correspondence.

Despite all the good features of the pure spinor approach, its world-sheet origin is
still unknown, as reparametrization symmetry is hidden. It is a well known fact that in
gauge fixing such symmetry, a (b, ¢) system rises as the ghost-antighost pair. The ¢ ghost
is a conformal weight —1 field, as it comes from the general coordinate transformation

parameter, and the b ghost, the conjugate of ¢, is a conformal weight +2 field. Concerning



amplitudes, the fundamental objects of study in quantum strings, the ¢ ghost appears at
tree and 1-loop level. In these world-sheet topologies (respectively, the sphere and the
torus), the conformal Killing symmetries can be removed by fixing some vertex positions.
In the pure spinor formalism, given the amplitude prescriptions described in [1, 6, 7], a
possible ¢ ghost plays no role at all.

For the b ghost the story is different. In a BRST-like description, b ghost insertions
lie in the heart of the BRST invariance of string loop amplitudes. The fundamental
property is {Q,b} = T, where T is the energy-momentum tensor (since the BRST charge
has ghost number +1, the b ghost must have ghost number —1). Combined with the
Beltrami differentials, this property induces only a surface contribution in the moduli
space integration. Therefore, understanding the properties of the b ghost is a fundamental
task in providing a better understanding of the formalism and potential developments.

In the minimal pure spinor formalism, where the available ghost variables are the pure
spinor A* and its conjugate w,, the b ghost is based upon a complicated chain of operators
and can be implemented only in a picture raised manner |6, as there are no suitable ghost
number —1 fields.

With the addition of the ghost fields (Xa,r&) and their conjugates (@®, s®), the so-
called non-minimal pure spinor formalism enables a much simpler construction of the b
ghost [7]. More than that, the theory can be interpreted as a twisted N' = 2 ¢ = 3
topological string, where the BRST charge and the b ghost are the fermionic generators,
while the ghost number current and the energy-momentum tensor are the bosonic ones.
This fact allowed the covariant computation of multiloop superstring amplitudes without
picture changing operators, making the super Poincaré symmetry explicit in all the steps.

However, the general properties of b are non-trivial, as it is also non-trivially composed.
Its rich structure has been explored over the years [8, 9, 10, 11, 12, 13|, but it is not yet
completely understood.

This thesis will present several of these properties in detail and it will be organized as
follows. Chapter 2 reviews the basic concepts of the pure spinor formalism, introducing
the pure spinor ghosts and some of their properties, and preparing the ground for the
subsequent study on the b ghost. Chapter 3 will start with the classical definition of the
b ghost, intuitively presenting its structure. Then, the quantum definition will be dealt
with, including the ordering prescription and possible quantum corrections to the classical

definition. Finally, some of the fundamental properties of b will be derived in details,



including: primary field condition (which is clearly related to the ordering prescription);
cohomology (an exclusion criterion will be established for the non-trivial cohomology of b);
the topological string perspective; non-uniqueness (some deformations on the definition of
the currents will be analyzed and constrained in order to not spoil the topological string
algebra); and a candidate for the ¢ ghost (the formalism does not have a natural conformal
weight —1 field to act as the conjugate of b and its existence is intriguing, requiring
an unusual construction). Chapter 4 summarizes the content of the thesis, presenting
some research perspectives on the subject. Appendix A includes the conventions and
some properties of the gamma matrices, while appendix B detailedly shows the free-field
parametrization of the pure spinor constraints, including the computation of the complete

set of OPE’s related to the pure spinor fields.



Chapter 2

Review of the Pure Spinor Formalism

The goal of this chapter is to present the field content of the pure spinor formalism
and some of its fundamental structures, introducing the basic tools that will be needed
for the construction of the b ghost.

To motivate the pure spinor construction, it might be useful to explain that Siegel’s
proposal [14] for the covariant quantization of the superstring was to replace the fermionic
constraints of the Green-Schwarz formalism, that includes both first and second class ones,

by another set of constraints where the fundamental piece is

1 m 1 m
do = pa— 50X (07m)o — 5 (07700) (B7m),
= 0.
Here, X™ is the usual bosonic worldsheet scalar, with m = 0,...,9 the spacetime vector
index, and (6%,p,) is the fermionic conjugate pair, with @ = 1,...,16 the spacetime

(chiral) spinor index. Note that d, is the generator of the supersymmetric derivative.
Although this approach succeeded for the superparticle [15], a suitable set of first class
constraints was never found for the superstring. However incomplete, it also led Siegel to

conjecture the integrated massless vertex to be
1 " N N
‘/éiegel - % ¢ {H Am + 00 Aa + daW } ,

where A,,, A, and W are the usual super-Yang-Mills fields (more details below).



As will be presented in the next sections, the pure spinor BRST-charge has a simple
form, where the supersymmetric operator d, appears multiplied by a constrained bosonic
spinor ghost A®, enabling a natural superfield description of the cohomology. Supporting
this structure, the massless vertex of the pure spinor approach is shown to be very similar

to Siegel’s proposal, but with a correction that comes from the ghost sector.

2.1 Matter fields

The matter content of the pure spinor superstring is described by the Green-Schwarz-

Siegel action

1 o (1oymy 08
Sm= 5 [ @ (23)( DX, + s ) , (2.1)

with free field propagators given by:

X™() X" (y) ~ —n™"In|z—y|?, (2.2a)

5 Oa
Pa(2)0” (y) ~ oy

(2.2b)

Observe that the fundamental length of the string is being fixed through o' = 2 but it
can be easily recovered by dimensional analysis.

The supersymmetric charge will be defined to be

1 1
(o = 515 {pa + §3Xm (0vm), + 21 (09m00) (0v),, (2.3)
and the supersymmetry algebra is directly reproduced

{9a: a5} = =05 P (2.4)

Here, P, is the usual momentum operator, with
P, = i?é@Xm, and [P, X"] = —id,,.
The construction of the supersymmetric invariants follows:

- axm%(eymae), (2.52)



1

1
dy = Po— §8Xm (09m),, 3 (04™08) (0vm),, - (2.5b)

It is straightforward to obtain the OPE’s among them through the fundamental ones
given in (2.2):

" () I (y) ~ —%, (2.64)
m 9g°

do ()T (y) ~ Z;B_ ”l (2.6b)

s () ~ T (2.60)

It will be useful also to present also the action of the the operators of (2.5) on a superfield
F(X,0):

Om I

I, (2) F(X,0,y) ~ ———, 2.7
OF (Xbiy) ~ s (2.7
D,F
do (2) F (X,0;y) ~ S 2.8
()F (X.0i) ~ (29
Here,
1 m

D,=0,+ 3 (Pyaﬁﬁﬁ) Om, (2.9)

with 9, = 5=, 9, = 52=. Note that
{Da, D} = 7030m, (2.10)

as expected from the OPE (2.6¢).

Up to this point, the basic blocks of the matter sector have been introduced without
mentioning the original superstring description. By that it is meant the two fundamental
objects that arise naturally in the Green-Schwarz formulation: the Virasoro constraint
and the fermionic constraints (related to x-symmetry).

The Virasoro constraint (%HmHerdaaea = 0) is identified with the energy-momentum
tensor Thmaier Of the theory, given by

1
Tmatter - _§aXmaXm_paaea7



and the most direct piece of information one may extract from it is the central charge of

the matter sector. Computing the OPE of T},.ier with itself one obtains:

1 1 2Tmatter aT’matter
z—y)' (z—y)?® (z—v)

Tnatter (Z) Tinatter (y) ~ = (2-11)
Hence, the free matter action yields a negative central charge (—22).

The fermionic constraints (d, = 0) are a bit more subtle, as they satisfy (2.6¢). This
implies that only half of the components of d, are first class constraints. Although one
can use a gauge fixing procedure to solve them (light cone gauge), it breaks explicitly
Lorentz symmetry because there is no simple way to covariantly split the first and second
class constraints mixed in.

The vanishing of the central charge in string theory is related to the vanishing of world-
sheet gravitational anomalies. The way the pure spinor formalism solves the conformal
anomaly and deals with the fermionic constraints that are being ignored will be explained

below.

2.2 Ghost fields

The fundamental ingredient in the construction of the formalism is a bosonic ghost \*
that, in an indirect manner, implements the xk-symmetry generators of the Green-Schwarz

superstring in a BRST fashion. The first step is to define the current

JersT = A\%d,, (2.12)
and the associated charge
Q= yéJRRST, (2.13)
satisfying
(Q.0} = — 515 (" \) I, (2.14)
Now, if one imposes
A" =0, (2.15)

(the D = 10 pure spinor constraint), the charge defined in (2.13) is nilpotent, being a
BRST-like operator built out of the d,.



To understand a bit more these pure spinors, it is interesting to start with an uncons-

trained bosonic spinor pair (A%, ), ) satisfying

5&
A% (2) Qs (y) ~ —2—. 2.16
()2 () ~ 2 (216
Naively, one may try to project A® into a pure spinor,
A* L PEAS. (2.17)

Here, Pg = 05 + Kj plays the role of the projector, although its form is not known
yet. Now, it is possible to constrain K3 by some general properties of projections. The
simplest one is that

PﬁPg =Py = Kj= —KﬁKg. (2.18)

In other words, projected subspaces are invariant under the action of the projection.
When this concept is applied to the pure spinor \“, that is Pg‘)\ﬁ = A%, one readily notes
that

KGN =0 = K=K ("\),, (2.19)

since the pure spinor constraint is the only information available so far. Besides, equation
(2.18) implies that
ng (7n)‘)a = Kna (’Ym)\)a = Tlmn-

A possible solution for K that satisfies all these constraints is given by

L(Cym)" (7N
2 C-x

Kg = (2.20)
where C, is also a pure spinor and K§ depends recursively on the pure spinor which is
being projected, which strictly speaking make it not a projector, although enough for the
present purpose.

The next step is to associate €2, to the conjugate w, of A*. Clearly this is not a
trivial relation, as A% is constrained. To acknowledge this, note that an explicitly Lorentz

invariant action for the ghost sector,

S = [ @ (waOAY) (2.21)

:27r



has the gauge symmetry
dewo = €m (Y"N),, - (2.22)

It is now straightforward to write down an OPE between A* = PgA” and Qg ~ wg,

1 |sa_ 1(Cm (A
z—y | P 2 C-A

A (2) wg (y) ~ (2.23)
As a consistency check, note that w, has no poles with Ay \. The meaning of C,, is not
clear in this derivation and in principle troublesome, since it breaks Lorentz symmetry.
In fact, it is directly related to the definition and the gauge fixing of w,. For a simple
example on that see section B.3 of the appendix.

The simplest gauge invariant quantities that can be built out of w, are
Ty = —wo\, N™ = —%wvm")\, Jy = —wA,

respectively, the energy-momentum tensor, the Lorentz current and the ghost number
current.

Due to the non linear form of the pure spinor constraint, there might be ordering
contributions in their quantum version, such as 9 In (C\) for Ty or 1n (C\) for the ghost
number current!. Without knowing these ordering contributions one can determine, for
example, the central charge associated to the pure spinor variables, that is directly read

from the quartic pole in the OPE of the energy-momentum tensor with itself,

CA/2

Ty (2)Th(y) ~ ——
(z—w)
1(Cm a(vm/\)gl [

1(Cy)” ("N

2 =22, (2.24
(e 2 C‘)\ Y ( )

= C) =2 5%-— 5 O\

which precisely cancels the contribution coming from the matter part of the theory, equa-
tion (2.11). More than that, this result gives a hint on the number of independent com-
ponents of A*: the pure spinor constraint (2.15) implies that only 11 components of \*

are independent.

!This approach known as Y-Formalism [16, 9]: a pure spinor variable Y, = % is defined and all the
relevant quantum operators are constructed and made work fixing those ordering contributions, but it
will not be discussed here.
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Instead of working with the constrained variable \* and its messy OPE;, it is possible
to use only free fields. One way of doing this is through the U (5) decomposition of
the SO (10) spinors, the original formulation of the pure spinor formalism in [1]. This
construction is presented in the appendix with a free-field parametrization of the pure
spinor A“ and the derivation of most of the results below.

For the minimal pure spinor formalism, the full set of OPE’s of the ghost sector is

given by:

T(2)Taly) ~ iy +2

Ty
(z—v) -y

L) Dh(y) ~ Dwt ety AW ~ 25

(z—y) (z—vy) z=y)’ (z=y)’
mn mn mn mn @ P
TN () ~ 2o+ P05 N (@)N () ~ 3

N (@) y(y) o~ regular, () () ~ — i

nmPpan pmaNrin o pele Nalm

N™ (2) NP (y) ~ 6(2 — ) =)

Next section presents a basic introduction to the cohomology of the pure spinor su-

perstring.

2.3 Pure spinor cohomology

Having introduced the ghost fields, it is now time to discuss the pure spinor BRST charge
of equation (2.13) and its cohomology.

The first unconventional thing to be noted is that it contains more than the (would
be) 8 first class constraints of the Green-Schwarz superstring, since the pure spinor A®
has eleven independent components.

Another fact that is worth mentioning is the existence of the operator £ = %. Note
that {Q,¢&} = 1 for any constant spinor C,. Such an operator is potentially dangerous
as it trivializes the cohomology of the BRST like charge: any BRST-closed operator O,
i.e., [Q,0] =0, is BRST exact: O = {Q,£0}. From another point of view, the state

¢ gives a hint on the space of allowed states and one way of avoiding it is prohibiting
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inverse powers of A*. In the RNS formalism, for example, the existence of £ led to the
introduction of the concept of small Hilbert space and picture changing operators [5].

Physical states will be defined to be in the ghost number 1 cohomology of (2.13) and
to understand a bit more the origin of the pure spinor superstring spectrum, the massless
case will be discussed in details.

The unintegrated massless vertex operator is given by
Up = \"A, (X,0). (2.25)

As there is no negative conformal weight field available?, A, contains only the zero modes
of the matter fields (that is only X™ and 6%, not their derivatives).
The condition for Uy to be in the cohomology of the BRST charge is the vanishing of

{Q,Up} = \*N D, Ap, (2.26)

where D, was defined in (2.9). The Fierz decomposition of the symmetric product A*\?
is given by

1 1 mnpgr \y A
)\0(/\,3 = E (AfymA) Vnalﬁ + m (/\7 m /\) ’7m€qur7 (227)

where the 3-form vanishes because ™" is antisymmetric in the spinor indices. The first
term on the right-hand side vanishes due to the pure spinor constraint. Therefore, the
vanishing of (2.26) implies

(D’YmnpqrA) =0, (2'28)

which is the linearized version of the super Yang-Mills equation of motion for the superfield
A, |17|, the expected massless superstring spectrum.
As mentioned in the beginning of the chapter, the integrated version of the massless

vertex operator closely resembles the one proposed by Siegel in [14] and is given by

Vo = %{HmAm +00%A, + d WV + Nmnan} , (229)

2In fact, an artificial construction has been recently proposed for a —1 conformal weight composite
field ([12], section 3.6), but it is not yet fully understood.
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where
_ 1 af
A, = g(Da I Az) (2.30a)
(1W)y = (DadAm — OmAa), (2.30D)
1
F,., = 5(8mAn—8nAm) (2.30c¢)
1
= 72 Umn “ Da B;
16 (Ymn) 8 W

are the usual superfields built out of A,. BRST-closedness of V is straightforward to de-
monstrate and [Q, Vp] vanishes up to a surface term after using the pure spinor constraint
and the equation of motion (2.28).

The massive spectrum is much harder to describe in this covariant fashion. For

example, the unintegrated vertex of the first massive level is given by

U = 0MN*A,(X,0) + X*00°B,g (X,0) + \*dsCP (X, 0)
FATI" Clo (X, 0) + A*N™" D gy (X, 0) + A\ I E, (X, 0) . (2.31)

BRST-closedness will impose the equations of motion and the constraints among all the
superfields present in Uy [18]. Obviously, higher massive levels will involve more superfields
and constraints making the search for a full superspace description of the spectrum almost
impossible. If this is so, it could be asked how one knows that the pure spinor formalism is
equivalent to the traditional superstring formalism, even at the cohomological level. This
is a question that has been addressed long ago and proof that the pure spinor cohomology
is equivalent to the light-cone Green-Schwarz spectrum was obtained in [19] through a
complicated procedure, where the pure spinor variable was written in terms of SO (8)
variables, involving an infinite chain of ghost-for-ghosts. Later, the equivalence of the
pure spinor spectrum with the traditional superstring formalisms was demonstrated in
different ways |20, 21|, involving field redefinitions and similarity transformations, but an
explicit superfield description of the massive states was still lacking. Recently, a complete
spectrum generating algebra was introduced, enabling a systematic description of the
whole pure spinor spectrum in terms of SO (8)-covariant superfields [22]. In a separate
work [23], a light-cone analysis of the pure spinor superstring was made, arguing that

there is no other state in the pure spinor cohomology besides the ones described by the
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DDF-operators®, up to Lorentz transformations and BRST-exact contributions.
Next section will present the non-minimal variables of the pure spinor formalism. As
will be discussed, these extra fields do not change the cohomology, but are fundamental

ingredients in the construction of the non-minimal b ghost.

2.4 Non-minimal variables

The non minimal version of the pure spinor formalism includes a new set of ghosts,

(XQ, ra). The former is also a pure spinor, that is

M"A =0, (2.32)
whereas the latter is a fermionic spinor constrained through

A" = 0. (2.33)

Both constraints imply that there are only 11 independent components in each spinor.

Their conjugates are represented by (@w®, s*) and are gauge transformed by

55,(25@& = €" (/Vm;‘)a + gbm (’er)a 5
5ps” = ¢ (ymA)". (2.34)

In a straight analogy with the minimal formalism, one can derive the OPE’s

_ M) (v C
Ag (2) W™ (y) ~ . i , [5[}‘ — %( ! )X(; >ﬁ , (2.35)
" ()" (7C)
[e% 1 o 1 7m me
rg(2) s (y)NZ_y [55—5 oWk g (2.36)

3The DDF operators were introduced in [24] for the bosonic string. It is important to mention
that a DDF construction within the pure spinor formalism was already discussed in [25]. However, the
approach of Mukhopadhyay has a important difference. The lack of an explicit expression for the DDF
operators in [25], although sufficient for his purposes, makes the superfield description of the massive
states incomplete and introduces BRST-exact terms in the creation/annihilation algebra that demand an
extended argument for proving the validity of the construction.
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Here, C" is a constant pure spinor. Due to (2.33), one can expect a non trivial OPE

between r and w. Indeed, it is straightforward to show that:

1 1

_<7~.€>

z—1y |2

(Mm)” ("C)y 1) (7€),
(N 5)2 2 A C

rg (2)w* (y) ~ (2.37)

All of these relations were postulated in 9], where they were obtained requiring X’ymr and
M\ to be regular with respect to @® and s®.

There are several gauge invariant quantities that can be built out of w® and s.

N = % (/_\ymna_) — Tym”s) ,
J5 = —\@, T = —@O\ — s0r, b =ruo, (2.38)
S =\s, S = %S\”ymns, Jr =rs.

Here, N is the Lorentz generator, T is the energy-momentum tensor, and Jy and J,
are the ghost number currents. The quantum versions of the above objects are subject to
ordering effects. Again, instead of working with (2.35), (2.36) and (2.37), it is much more
convenient to use the free fields coming from the usual U (5) decomposition. All of the
ordering effects together with the relevant OPE’s are given in appendix B.3. The results

can be summarized as follows:

5
(z—y)* T

Ty

Tx(2)Tx(y) ~ 2

REOTW) ~ st i 57 (@) T5) ~

JT(Z>TX(y) ~ (zi—z)s—i_(z;]—;)Q’ @(Z)TX@) ~ @27

O(2)S(y) ~ —tm -2 S(2)Tx(y) ~ S,

CGey)? Gy (z—y)

Tx (Z) Ta (y) ~ (fiayy T (Z) on (y> ~ (fi(;),

Frmn

() Raly) ~ —Za ()5 () ~ X

(z=y)’
O (2)®(y) ~ regular, N (2)J;(y) ~ regular,

—mn — mlg NP L ol NI —mn
N™ (@ N" () ~ 2N N () @ (y) ~ regular,
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J5(2) Ix(y) ~ —ﬁ, Jx (2) Jp (y) ~ —(L

z—y z=y)”’

=7mn

N™(2)J, (y) ~ regular, N (2)S(y) ~ regular,

~ mn ~ dymm
N (Oh) ~ 180 g ~ 2
N (@) raly) ~ =325 K(2)h) ~ 2=,

Jo(2)ra(y) ~ 29, J(2)ra(y) ~ regular,
J(2) Aa (y) ~ regular.

Note that there are no contributions to the central charge (any contribution coming from
the non minimal sector would imply a conformal anomaly) and no contributions to the
level of the Lorentz algebra?.

The non-minimal ghosts enter the formalism in a very simple way, as the BRST charge
is defined to be

0= 55 (Ady + D). (2.39)
N
JBRrsT(2)

The same notation was used for the BRST charge in the minimal formalism, but from
now on, only (2.39) will be referred to as ). The cohomology of (2.39) is independent of
(X, w,r, 3), as can be seen from the quartet argument, and there is a state £ that trivializes
it,

6 - X}\X_GT.H’ {Qag} =1

Since r, and 0% are grassmannian variables, £ can be expanded in a finite power series in

terms of r - f. Besides, r, has only 11 independent components, in such a way that

9 11 T'e n
i (75)

n=0

‘yl

>|

Therefore, one way of avoiding the appearance of £ is limiting the amount of inverse
powers of A\.
It is argued in |7] that the occurrence of £ is directly related to the pure spinor inte-

gration measure in amplitude calculations, where a divergence occurs for inverse powers

*As pointed out in [9], there is a typo in the J, OPE with itself in [7] and their result is confirmed
here within the U (5) decomposition. The quadratic pole in ® (z) S (y) is also absent there.
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greater than A Concerning loop amplitudes, the obstruction is due to the fact that
a genus ¢ > 1 loop needs 3 (g — 1) b ghost insertions, increasing the divergence in A\. In
[8] a regularization scheme that overcomes this problem was developed, but its practical
implementation still very difficult.

As will be shown in the next section, inverse powers of A\ are a fundamental ingredient

in the construction of the b ghost



Chapter 3

The b ghost

The role of the b ghost in string theory is very clear whenever one starts with an action
that is 2D reparametrization invariant, as it is related to the modular description of the
worldsheet topology.

In the path integral formulation, the b ghost insertions are of the form

B, = /sz {b(2)0:9(z;7)}, (3.1)

where 7 represents the moduli parameters and ¢ is the worldsheet metric (more details
can be found in |26] and references therein).

The key property of the b ghost is

{Q,0} =T, (3.2)

where T is the full energy-momentum tensor of the theory under consideration. Together
with equation (3.1), it ensures the BRST invariance of loop amplitudes up to surface
terms in the moduli space integration. Thus, the b ghost coming from gauge fixing the
reparametrization symmetry provides a natural way to build loops.

In the pure spinor formalism, however, one starts with an action in the conformal
gauge, and there is no known gauge fixing procedure that accounts for the origin of the
pure spinor BRST-like charge, and worldsheet reparametrization symmetry is hidden in

this approach.

17
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Therefore, in order to build an amplitude prescription in the pure spinor superstring
that has the nice geometric interpretation of the traditional formalisms, it is necessary to
have a field acting as a b ghost, as there is no fundamental one.

This chapter will present the construction of the b ghost in the non-minimal pure
spinor formalism, together with some of its main properties, where special attention will

be devoted to the most recent results.

3.1 Definition and Construction

As introduced initially in [6] for the minimal and extended in [7] to the non-minimal
pure spinor formalism, the construction of the b ghost is based on a chain of operators
satisfying some special relations, that will be reviewed below.

In the minimal formalism, there is a natural starting point. Since the BRST charge
contains A“p,, and part of the energy momentum tensor is given by —p,90% — w,0A\“, one
can expect that

by = —w,00% + - -

The subscript ¢l means that only classical commutation relations are being used (no
quantum ordering effects, that will be dealt with in the next subsection) and the ...
stand for possible extra contributions, as will be explained.

Although simple, this term has not the w, gauge invariance (in gauge fixing it, some
of the 90“ components decouple). It can be directly seen from (2.23) that one can build

a non covariant gauge invariant form of w, [16], given by

(WymC) (vmk)a'

Ga (€) = o = 20\
Inserting it in the expression of b, above,
by = —w,00%+ ...
1 (Cy™00) 1 (CO0)
pr— ——N —_—_— - ——
4" ON 4J CA

where, in the second line, the identity (A.3) was used in order to make the construction
explicitly gauge invariant. The ... stand for a term related to X™, that closes the relation

{Q,ba} = T. It is easy to convince oneself that this extra part must be proportional to
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" (yd),, ()\B)_l, since it provides a (9X)? contribution and has ghost number —1.

Now, the first link of the up-mentioned chain of operators is defined to be
1 o 1 o 1 o
G* = §Hm (Ymd)® — z_le” (v™"00)" — ZJ(% , (3.3)

satisfying
{Qv Ga} =\ (T)\ + Tmatter) )

and leading to
Co.G*

TN

Despite its origin, C', can be any constant spinor. In the amplitude context, this form of

bcl

ba is certainly dangerous due to the presence of picture changing operators proportional
to d (A). This problem could be avoided in [6], where a picture raised version of the b
ghost was developed, based on a complicated chain of operators (H"‘ﬁ, KB, Lo‘ﬁw\), that
could implement the desired relation without poles in A* (there is also another proposal
for the picture changing operators in the minimal formalism |27|, where there is no such
problem, but loop amplitudes, i.e., amplitudes involving b ghost insertions, have not yet
been calculated using them).

In the non minimal formalism, the new links appear in a much simpler way. To include
the non minimal energy momentum tensor, it is worth noting the symmetric form that
(A\,p) and (r,w) appear in the BRST charge (2.39), leading to

{Q, —so‘(‘ﬁa} = Tx.

The main difference from the minimal case is the replacement of C\, by A, in be1, which

explains, operationally, the generation of the chain of operators, since [Q,XQ] = —7,.
Starting with
D Wes
by = —s“0A . e
cl S 1o} + )\BAB +

the non minimal BRST charge acts as

{Qu bcl} - T)\ + TX + Tmatter - (AXOJ‘[BQ (/\QGB - /\,Bch) “+ ...
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which leads to the introduction of an operator H*? satisfying

Q. H*"] = % (AG7 = NG”).
That is, _ B
b = — s, + 220 o) A_‘”@ HY +
AgA? (AN)

Of course, Xarﬂ (X)\) - generates an extra piece of the chain. And that is how it works.
The extra terms generated are all of the form X (r)" (X)\) ot Om). Naively, being able
to construct all the links, the chain must stop at n = 11 but, in fact, it happens at n = 3.

It can be shown that

_ 1 - 2 3 [
b = =8O + = AaG* — —— X1 HY — ——— Xorpr, K7 + —— N rgr,ra L7
(AN (W) (W) (W)
satisfies {Q, ba} = Th + T + Tmatter, Where
P = L 08 (gymneg 4 o NI
4.96 "mnp ’
1 .
Kaﬁ’y = _mNmn [vgwﬁnp (P}/pd)’y + P)/’r/él’ZLp (,-)/pd) + P)/;an (,.Ypd)ﬁj| )
1 T8 (0% (0% (6%
O (96)2 N™ NP [Wmiﬂ;?s + 'Yg%pfyqré + ’7;/nnp75r>\s} ;

[Q)Haﬁ} = \eGhl {Q,Kaﬁv} = Negfl, [Q’Laﬁvk} = Mo KB

and A“LA9 = 0 ensures the end of the chain. The demonstration of the above relations
makes heavy use of the gamma matrices identities given in the appendix, from (A.3) to

(A.9), together with the constraints (2.32) and (2.33).

The quantum b ghost

All the construction so far was purely classical. However, in the quantum theory, one
is dealing with products of operators that diverge when approach each other in the co-

ordinate space and an ordering prescription is needed. In this work, the ordering is
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implemented through:

AB) W= 5 T B ). 3.9

S 2mi J (2—y)

More details on this ordering prescription can be found in [28].

The full quantum version of the b ghost in the non minimal pure spinor formalism can

be cast as
b: b,1 +b0—|—b1 +b2—|—b3, (35)
where
b= 50N, = 9 222 ) \egp?,
()
by = ( o GO‘) 40,  Go=1488 (I dy) — LN, (v00)" — LJ00> + 4020,
by = —3! (X"Tﬁ)”’ Kaﬁv) 7 KoBy — —%Nmn%[ﬁgp <7pd)ﬂ ’
b3 =4l XO”"BTWT)\ Laﬁ'y)\ Laﬂ'y)\ _ __3 (Nmn Nrs) npq,y[aﬁ ,Y’Y])‘
AN ’ o rnplars:

(3.6)
Note that the subscript n in b, is the r charge ¢, of the operators, defined as

[dz00. 001 = ©00). (3.7
The building blocks of b,, satisfy the ordered version of the classical commutation relations:
{Q ="} = T5, {Q.G*} = (A" D+ Tateer)
[Q7Ha6} — ()\[a7gﬁ}> ’ {Q,K“m} - ()\[a’Hﬁﬂ) ’
[Q7La6w\} = ()\[a’ Kﬁw\}) ’ ()\[a’ Lﬁw\vl) = 0.

There are some observations that must be made concerning the above operators:

e the ordering here plays a major role, allowing a correct manipulation of the quantum
corrections to the b ghost. Obviously, a different ordering prescription must not

conflict with {Q,b} = T. It turns out that both computations and results are
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clearer using (3.4);

e there is an explicit correction related to the ordering prescription chosen. The

operator O defined above is required because

((Xoff’ﬁ —Xﬁ?‘a) )\Q,Gﬁ) B <Xa7"/5 ()\ajGﬁ) — (/\B,Ga)> #0,

(W) On)*

and

<(;j\) ) ()‘aa TA)) - T)\ 7& 0.

One can see that {Q, O} precisely matches these inequalities. In [9], besides (3.4),

an alternative prescription was used, that conveniently absorbs the operator O.

e the quantum contribution to G is proportional to 9?0%. The coefficient can be fixed
through the U (5) decomposition or, more directly, comparing the cubic pole between

the energy momentum tensor and both sides of the equation {Q,G*} = (\*,T).

Therefore, the quantum version of the bghost of (3.5) and (3.6) satisfy

{Q,0} =T, (3.8)

where 7' is the full energy-momentum tensor of the theory, as desired.

Next section presents some of the basics properties of the bghost of (3.5).

3.2 Properties

3.2.1 Primary Conformal Field

OPE computations are more systematic! within the prescription (3.4). As a sample, it
will be shown here that the b ghost for the non minimal formalism is a primary field.

Concerning b_1, the ordering does not matter and it is straightforward to see that

b_l ab_l
z-y)?® -y

'See chapter 6 of [28], where the normal ordering is presented in details.

T(2)b-1(y) ~2
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For by, however, there are some subtleties. Analysing G* first,

N oG~ 20~
T (2) G* (y) 2(z—y)2+ G + GC_o (3.9)

Note that the cubic pole receives contributions from Jy (the ghost current anomaly), 9*6*
and (Hm, %ﬁdg):

8 N Jy . d.J,
(z—y)?’ (z—y)? -y
T (2)9%0*(y) ~ 2(28_93/)3 +2(j_9y)2 + (f_ey)
T (z) (I, 420dg) (y) ~ ( (Zlimy)Q + (f?z)ﬁﬁﬁdﬁ)

aB g B0d
N (Hm’ T ds | ,6’).
(z—y) (2—y)

T(2) Ix(y) ~

Y

According to the ordering prescription, the first term in the last OPE can be rewritten as

2mi J (w —y)

1 dw { ! Hm(w)+ﬁaﬂm(w)}mﬂdﬁ(y)=

96° (I yaldg)  (O1™, 72Pdg)

— 10 :
(z-v)° (-’ (:—y)
where (2.6¢) is responsible for the cubic pole. Therefore,
00 m, 284 o (1™, ~8d
T (z) (1™, ypds) (y) ~ =10 -+ 2( Tm 25) ( m B).
(z-9) (2 =) (2 —y)

Adding up all the contributions, equation (3.9) is reproduced. For the whole by,

T () bo (y) ~ <(Ziy)a (%) ’Ga)

\ G« 0G* 06* O 00
+ + 2 (

ﬁ’2(2—@/)2+(2—y)+(z—y)3 Z—y)2+(2—y)' (3.10)




24

Again, the first term on the right-hand side can be rewritten as

wf e () e o (%) ) - (50)

Replacing this equation in (3.10), the cubic pole disappears, yielding a primary field.

For by, by and bs, there are no contributions like the one in by (they are all proportional
to the pure spinor constraints), therefore the b ghost given in (3.5) and (3.6) is a primary
field:

T by ~ 22—t (3.11)

3.2.2 Nilpotency

The results of this subsection are based on [11|. A previous demonstration on the nil-
potency of the pure spinor b ghost was given in [10], which will be shown here to be
incomplete.
The OPE of the b ghost with itself can be cast as
Og O, % O3

b(z)b ~
S P i e e}

(3.12)

for there are no (covariant, supersymmetric) negative conformal weight fields in the theory.

Due to its anticommuting character, b(2)b(y) = —b(y) b(z), implying that

O 1 004 O3
b(2)b(y) ~ (z—y)3+§(z—y)2+(2—y). (3.13)
Furthermore, since {Q,b} = T and b is a primary field of conformal weight 2,
{Q0(2)}b(y) —b(2){Q.0(y)} = T(2)b(y) —b(2)T(y) (3.14)
~ regular, (3.15)
or, equivalently,

(z—y)° 2 (z—-y? (2-y)
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Comparing equations (3.14) and (3.16), one concludes that O; and O3 are BRST closed.
Taking now into account the specific form of the b ghost for the non-minimal pure
spinor formalism, given in (3.5), it is a simple task to verify that the cubic poles are all

proportional to the constraints (2.32) and (2.33). The possible terms will be listed below:

e h_; may give rise to cubic poles only in the OPE with b3, due to ordering effects.

The different terms are proportional to

(X’ymnpr) (8}%"”7’) (Xfym”/\) (X’yqﬁ\) , (X’ymnpr) (8X’ypq7”r) (Xfym”'yqr)\) ,

" a 7 . o a . (3.17)
(MmO (r7P7r) (A7™A) (MgrA) s (MinpOX) (17?7 r) (A g0 A) -

e by has cubic poles with itself, by, by and bs:

in by (2) b (y), it comes from the multiple contractions of TI"™ (v,,d) with itself

and from its single contraction with 920°, both proportional to II™ (X”me)

— for by (2) by (y), it will arise in the contractions of (dy™"Pd) (AX) ~ with all the
terms in by, being proportional to (X’ymnpr) (X'ym"pd).

in the OPE by (2) by (), the multiple contractions of N™" (vPd)“ will give cubic
poles like:
(vamﬂ") N (Xypr) ,
(X’ymnpr) J (X’ym”)\) (X’ypr) , (3.18)
O [(MY™X) Aa] (AMymmpr) (7P7)

finally, in by (2) b3 (y), the cubic poles are of the form:

(X@@) (X’ym")\) (Xfyqr)\) (Xfymnpr) (roPar) , (3.19)
(me"(%) (X'yqr)\) (X'ymnpr) (ryParr) . '
e by has cubic poles with itself, by and bs:

— in by (2) by (y), they are of the form

0 () (77
(vanpr) (va”qr) NE (3.20)
0 (X’ymnpr) (Xfyp‘”’r) (X’ym”)\) (X’yqr)\) .
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— for by (2) by (y), the only possible cubic poles are proportional to

(M) Myarsr) (A" X) (1777708

(X’anpr) (X'Ymnqr) (rg7700) . 321

— the cubic poles arising in by (2) b3 (y) come from the multiple contractions of
N™ 1P (AN) ~? with bs, and are given by

B (XZmin) (X”ijqr) (T’yqis’r’) (X’y”s )\) 117, B
(Mﬁnpr) (an,\) NG ()\fy,fsr) (MT A) (ry7) (M) | (3.22)
()‘/Ymnpr) (A,ymn)\> I1° ()\’)/qrsr) ()\/qu/ytu)\) (T’)/StuT) )

e by has cubic poles with itself and with bs:

— in by (2) be (y), they are of the form

(vanpr) (Xf)/qrsr) (rfypstr) thmqnnr7

(X’Ymin) (X,.Ymn)\) (X’qu?") (X’)/qr)\) (T’yPStr) I1,. (323)

— for by (2) b3 (y), do appearing in by is inert and there are only contractions

involving the ghost Lorentz currents:

(M) (1P d) (A7) (rygrsr) (W75A)

(X%mpr) (van/\) (ryPd) (X%rsr) (Xv’”)\) (rystr) (X%u )\) . (3.24)

e the cubic poles of b3 (z)bs (y) involve all possible contractions of the the Lorentz

generators and will give similar results to the ones above, only with more r’s.

Due to the pure spinor constraints,

(™) Nmnp) = (™), (Mmnp2) = Mupr) (™) =0, (3.25)

and every expression listed contains at least one of these types of contractions. Conse-
quently, O; = 0 and
(3.26)
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It is clear from (3.5), that O3 can only be composed with supersymmetric invariants:
matter fields (II"™, d,, 00%); ghost currents from the minimal sector (N™", J); ghost fields
(A%, A\a,7o); and, in principle, their partial derivatives.

In [10], the vanishing of O3 has been argued as follows. The author assumed that all
partial derivatives of r, that may appear in the OPE (3.26) can be removed due to the

pure spinor constraint, since

MY"Or = —OMy™r. (3.27)

Based on that assumption, all the r, dependence of O3 could be made explicitly through
O3 = Q+1,Q% 4+ 1m0 + ... (3.28)

where the 2’s are supersymmetric, ghost number —2, conformal weight 3, BRST closed

operators. Since the BRST charge can be split into two pieces according to the r-charge

Q = Qo+Q, (3.29a)
Qo = 55 (A"da) (3.29b)

Q1 = yg (@%74a) (3.29¢)

requiring [@, O3] = 0, implies [Qo, 2] = 0. Then, it has been shown that there are no 2
with the above requisites satisfying [Qo, 2] = 0, so it vanishes identically. Then, Q = 0
implies [Qo, 2%] = 0. Again, this can be demonstrated to vanish. Pursuing this argument,
the nilpotency of the b ghost was obtained in [10].

However, the absence of 0"r, in Os is incorrect, as will be illustrated soon, which
means that the cohomology argument of [10], summarized above, must be extended, as
will now be done.

The computation of (3.26) is organized according to the r-charge of the operators,
that is

O3z = (bb), + (bb); 4 (bb)y + (bb)5 + (bb), + (bb)5 + (bb) - (3.30)

To make the expressions more clear, the ordering notation will be dropped.
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The first term, (bb),, is given by

0 = [z {00 () + 01 ()1 () + 01 (0 () (3:31)
N™ (XYpn08) (A00) a (MimnpOX) N™ 1P
(W)’ SO
1" (06) (V) | () (™)
(W)’ ROV
" (9, 0) | (00) (00) | (A00) (9396)
(W)* (W) (W)*

= Qp1

+ Q3

. (3.32)

+ Qo5

where g, are just numerical coefficients. By a direct computation, it is relatively simple
to show the vanishing of (bb),. It is enough to compute [Q, (bb),] and use the BRST

argument mentioned above. Note that [(Q), D] = 0 implies the vanishing of

Qo.(0B),] = oo Nmn (X%_m(?;\) (X90) B am% (dry™\) (fwm;ae) (X00)
(M) (M)
Nmn (Xfymn(?@) (X@A) (X’ymmﬁX) % (d~y™™\) 117
oo W)’ s W)’
L w (X’ymnPGX) N™™ (AyPO0) W I (X@@) (X'ym’yn89) "
02 (X)\)z 03 (X)\)2
L (30N) (ind) | ("06) (306) (3
(W)’ v (W)’
N a042(x%nan) (@, (0N (80) () (\0A)
(W)’ Sk eSSk
L 0700 (™) | (0N) (9006) _  (A06) (90N
()’ o T

The Lorentz generators N™" appear in three terms. It is straightforward to check that
they are not related by a Fierz decomposition of the spinors, implying that ag; = age = 0.
Now, there is only one term that contributes with one d, and two 00%, so agz = 0, which,
on the other hand, imply that «ag, = 0, since the term with one d, and one II"™ cannot

be cancelled any more. The vanishing of ag5, aps and «g7 is evident, since they do not
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possibly cancel each other. There is no linear combination of the above operators that can
be annihilated by Qo, therefore (bb), = 0.
The second term, (bb),, is

(bb), = /dz {00 (2) b1 (y) + b1 (2) bo (y) + b1 (2) b2 (y) + b2 (2) b1 (y)}  (3-33)
. (X’ymnpr) N™IIP (X@H) 4 an (X’ymnpr) N (8}%’(1) N
o B
v (X%W,@X) N™™ (r~Pd) o (X%mpr) (dy™"Pd) (X@@)
B %
. (AMimnpT) l}m (38X7”p@0) 4o (X%a?_X) (37"7md) | (3.34)
(AN) (AN)
Since [Q1, (bb),] = 0, [Qo, (bb),] must also vanish:
[Qo, (bb>1] = 0411% (X%nnpr) (djm’;)\) Hp (X@H) — o1 (X%rmpr) Nm_" ();7”60) (X@@)
(M) (W)
C (vanpr) N™TIP (X@)\) . % (vamﬂ") (dy™™\) (3X7pd)
W)’ h W)’
v (Mimnpr) N™ (OMPyIN) 11, B 0413% (MimnpO) (dy™N) (ryPd)
)’ o’
v oan (X’ymnpé?X) N™ (roPyIN) 11, B a142 (Xfymnpr) (dy™ P9 \) T, (Xag)
% S
=y Bt (™7 d) QON) () (X0 96) (92" 06)
o’ K o’
. Mmrpr) ™ (0X7703) - (Aym®*X) (177" V) L,
W)’ ' W)’ |

There is only one term that contains one Lorentz generator N and two 00%, so aq; =
0. Now, there are two other terms that contain N, but they are unrelated to any
Fierz decomposition, implying that o195 = ay3 = 0. The remaining terms are obviously
independent: aj4 = 0, since it is the only one with (dy™""d); ay5 = 0, as no other term

contains two 00%; and a6 = 0, for there is nothing else to cancel it. As (bb),, (bb), is not
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BRST closed for any set of coefficients oy, and (bb); = 0 is the single possibility left.

Going on,

(bb), = /dZ {bo () b2 (y) + b2 (2) bo (y) + b1 (2) by (y) + b-1 (2) b3 (y) + bs (2) b1 ()}

(3.35)
can be written as
i o)’ (W)’
v (X'ymnpr) (GX'YWT) N™"N,, s (vaﬁr) (X%d) (ry™"00)
' '
v (Xymnpr) (8X7qr) N™n NP 4o (X%mpr) (7«71032}) N™
(W)’ (o)’
BY m 27 2V (Y ~m
i mwmaggz P | g 202 (;Lgiv o) 336
The last line of the expression is (Qp-closed. In computing [Qo, (bb),],
L (Mmnpr) (r7Pd) (dy™N) (AOO M) (197Pd) N (AOA
[QO, <bb)2] = 02 2 ( L ) ( (X,\))EL ) ( ) - 0421( r ) ( (X)\)L ( )
(Xfymnp'r’) (ryPyN) I, N™" (X@@) (X’ymﬁr) (ry™~y"A) 11, (X@@)
- Q2 — 1 — (2 — 4
(AN) (AN
(X’ymar) (ry™d) (AOX) : (X'ymnpr) (8}%"”7") (dy™N) Ny,
oo oW’ oo oW’
% (X'ymnpr) (GX’}/quT) N™ (dyg\) (X’ymé?r) (X%d) (ry™™ON)
o oW’ oo o'
+ oy (X’}/m@T'> (X/Yan/\) Hp (T.,Ymnag) . 0425% (X’}/min) (8X’}/q7’) Nmn (d,ypq)\)
(o)’ (W)’
% (vanpr) (GX%T) (dy™™\) NP1 % (vanpr) (ryp(?QX) (dy™™\)
— Qs — — Qg6 — 1 )
(AN) (AN)

the terms that contain matter fields or the Lorentz current do not vanish for any set as,

of coefficients: ap; = 0, for it is the single term that contains N™" and 1I"; gy = oy = 0,
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since they are the only ones that contribute with one II"™ and one 90“, but independently;

a3 = aps = 0, because they are the remaining (and also independent) terms containing

the Lorentz generator; and agg = 0, for it is not BRST closed.

(bb), can be cast as:

(bb); = /dz {bo (2) b3 (y) + b3 (2) bo (y) + b1 (2) by (y) + b2 (2) b1 (y)} (3.37)
_ . (X%mpr) (ryPTr) N™ Ny, (X@H) ta (T YmnpT) (vaﬁr) N™ (X@O)
31 (X)\)E) 32 (X)\)E)
L (vaar) (ry™or) (X@@) N (mear) (Xfyn(?r) (roy™m"080)
33 (X)\)S 34 (X)\)B

(Xfymﬁr) (X%ﬁr) (ry™"\) (X&?)

+ Q35

o . (3.38)

It is straightforward to see that the first two terms are not BRST closed. One of the

contributions of the first one contains two Lorentz generators, that cannot be cancelled,

so ag; = 0. The same happens for the second one, which has a contribution in [Qo, (bb),]

with one Lorentz generator, not balanced by any other, thus asgs = 0. The result of the
computation of [Q1, (bb),] + [Qo, (bb),] with the remaining terms is

@1, (bD),] + [Qo, (bb)s]

N 4 (AymOr) (ry™9?X) (rA) . (rym0r) (ry™o*N)
27 (X)\)5 27 (X)\)4

N (M 0r) (rymo*r) N 4 (Mym0*X) (ry™mor) (r)
SR ” (W)’

N (r7m82X) (r~™0r) . (vaﬁr) (X%ﬁr) (ry™™oN)
28 (X)\)4 34 (X)\)E)

N (vaazr) ry™Or) o (Xymf)r) (ry™or) (X@)\)
28 (X)\)4 33 (X)\)5

N (Xymar) (X%ar) (ry™™\) (X@)\)
v ()’ |

Obviously, there is no nontrivial solution to {aa7, g, 33, (34, g5} that may lead to the
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vanishing of this equation, thus (bb), = (bb), = 0. Note that

(Aym0r) (ry™or) (A06)
(W)’

(3.39)

does not allow the removal of partial derivatives acting on r, which contradicts the as-
sumption of [10].

So far, the pure spinor constraints only have been used to reduce the number of
independent terms in the OPE computation. It turns out that for (bb),, (bb), and (bb)s,
all possible terms being generated vanish due to the constraints.

For

(bb), = / dz {by (2) b3 (y) + b3 (2) b1 (y) + b2 (2) b2 (y)} , (3.40)

the simple poles are given by:

e terms with two N’s and one II, like

(X’ymnpr) (X'yqrsr) (ryPdty) N™ N"IT*

- 3.41
)" (340

Since (ry™™r) = (ry™y"yPr) and (AM™r) (r,)" = (ry™r) (Ap)°,
(Mmnpr) (Mearst) (r7777) = (Ymnpr) (rYarst) (AP Y1X) (3.42)

which vanishes because (X,yman) =0.

e terms with one N, one Il and one partial derivative (Taylor expansion of a quadratic

pole), as
ONYarnp?) (MYgrst) (ryPT7 1) NI
() G | o
which vanishes, since
(X’qu?“) (ryPr) = (X'qu'ysr) (ry?~Pr)

= 4 (X”ymr) (rYsYmFr)
— 2 (A1) (ryPr) = 8 (rysr) (MPr)
= 0. (3.44)
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e terms with one N and two d’s, like

(Mimnpr) (™ 7) N™, (r97d) (135)

o (3.45)

Since \y™™r is equal to Ay"~y"yPr, this term is proportional to (va)a (va)ﬁ,

and, according to equation (A.9), it vanishes.

e terms with two d’s and one partial derivative, such as

(X%mpr) (6X7m”qr) (ryPd) (rv,d)
()" '

(3.46)

Decomposing (OXVm"pr) as (OX’ym’Wpr) +n"P (X’ym(%) —n"P (XW"GT), it is possible

to rewrite the expression as follows,

(Mimrp) (OM™97) = (M ¥pr) (ON797) + 20" (Mppr) (Ay™Or)
= (M) (rpmyr) = 2 (Mpr) (0Xy7r)
8 (A1) (OMpr) + 20" (MY ympr) (A1)
0

)l

(3.47)

showing that this term also vanishes.

e and terms with one IT and two partial derivatives (Taylor expansion of a cubic pole),

like _ _
(3)\7mnp87") (Avm”qr) (Typqrr) I

(W)
Decomposing (93™dr) as (9Xy™yr) — n™ (Ihy™dr) + ™ (9"dr), the

expression

(3.48)

(8X’ymnp87“) (X’ymnqr) (r’ypqrr) (3.49)

can be split into two pieces. One of them is similar to the ones presented before and

also vanishes. The other one is proportional to

(X%nar) (X%zar) (ry™™r) = (rymor) (A%ar) ( mnpr)



and vanishes, since (X’ym)a (va)

For

= — (rm0r) (AM0r) (M"y"r) |

—"

)= [ d () () + b2 () ).

all contributions to the simple pole will have d,:

e there are terms with two N’s, as

(X'ymnpr) (ryPd) (X*qur) (rystur) N™n™" Ny,

Note that

(W'

(Mimnpr) MNgrst) 17 = (M Yompr) (Nvgsr) 0™

gives a vanishing contribution.

— () (™) (s
= 0,

e terms with one N and one partial derivative, as

(Mmnp0r) (ryPd) (A1) (rygesr) NT°

(W)’

It is easy to extract the pure spinor constraint out of this expression:

(X'.)/mnpaT) (X,ymnqr) =

(X”ymn”ypﬁr) (X’ym””yqr)

2 (X'ym(?r) (X’ym’y"qr) Ny

4 (N"™X) (@r77myr) = 10 (Myp0r) (Ayr)
2 (vaﬁr) (vaov”qr) Nnp-

0.

34

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)



35

e and terms with two partial derivatives, coming from the cubic poles, like

(8X%,mp8r) (ryPd) (Xfym"qr) (TYgrsT) (Xv’”sx\) |

o (3.56)

Note that (ryg-s) (A\7"*A) has the same structure of (3.25) and also vanishes.

Finally, for the last term in the b(z)b(y) OPE, where only the ghost fields appear,

W)= [ dz ()b )}, (3.57)
e there are terms with three N's, like

(X’Ymnpr) (ryPrr) (vagtr) (rYewor) Ngp N [N

— (3.58)
(W)’
Since A\y""Pr = \y"y"APr, (Xfymnpr) (Xfqu’"'r) vanishes, as shown above.
e terms with two N’s and one partial derivative, like
o X _— pqr X mns st N TNtu
( Y pT) (7"7 T) ( i T) (T’Y t T) q 7 (359)

()
which has the same structure presented before, being proportional to the pure spinor

constraints.

e terms with one N and two partial derivatives, coming from triple poles, such as

0 (Nmgr) (17777) (F9™1) (rr) N,

(X)\)S , (3.60)
which are similar to the above ones and vanish.
e and terms with three partial derivatives, like
(02%yr) (77 0r) (y™*r) (rgrsr) (3.61)

(W)’
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that can be rewritten as

(GX'ym@r) (r~20r) (Xym”pr) (T"Ynpg™)

— 3.62
o) (3.62)
and vanish, since
(X'Ymnpr) (T7npqr) = (X’an'ymr) (TVnPVQT)
= (") (MY 1)
— 2(M™r) (rygr) = 8(ry™r) (Mygr)
~ 0 (3.63)

Summarizing, in the OPE computation several terms vanish identically due to the pure
spinor constraints (in particular, (bb),, (bb); and (bb), do not present nontrivial contribu-
tions). The remaining terms are excluded through the BRST argument, since they were
shown to be not BRST closed. Therefore,

(0b), = (bb), = (bb)3 = (bb)4 = (bb>5 - (bb)es =0, (3.64)
and the pure spinor b ghost is, indeed, nilpotent:

b(2)b(y) ~ regular. (3.65)

3.3 Non-minimal pure spinor formalism as a N = 2 to-
pological string

Another interesting property of the b ghost is the pole structure of its OPE with the

BRST current:
3 J T

Jorst ()W) ~ st T Y gy

(3.66)

where

X \) (A6
R A S P )_<§).
Y RRDY o)
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= JA—JA—{Q <S+2AA—‘19>}. (3.67)

With a BRST transformation, the U(1) current can be brought into a more natural form,
without changing the ghost numbers of the BRST charge and the b ghost.

To verify the interpretation of J as the ghost number current, it is worth noting that,

3 J 0.
T(2)J(y) ~ o) +(Z_y)2+(z_y), (3.68)
T Ionsr ) ~ L (3.60)
J(2)b(y) ~ —<ny), (3.70)
J(2)J(y) ~ (Z_Sy)g (3.71)

Together, b, T', Jgrsr and J may describe a twisted N/ = 2 ¢ = 3 critical topological

string |7|. The untwisted version would satisfy

T'ET )~ Bh 2t + 2 TR0~ 2 + 25
8GT — 3_G~ 0G—
T (Z) Gt (y) ~ §(Z y)z + (=% T’ (Z> G (y) 2 y? + (z—y)’

J(2)GH(y) ~ E0 T ()G (y) ~ — S

(z—y)’ (2—y)°’

_ T'+10J
J(Z)J(y> ~ (z—3y)2’ G* (Z)G (y) (z— y)3 + (z— y)2 + (z— Z/) ’

GT (2) Gt (y) ~ regular, G~ (z) G~ (y) ~ regular,

where G* = Jgger, G- =band T" = T — $0J. The twist here means 7" — 17" — 9.,
which modifies the conformal weights of the ghosts A and r from % to 0 and turns the

central charge off.

3.4 b ghost cohomology

It is interesting to point out that in the same manner that the BRST cohomology is non-

trivial only for world-sheet scalars, the b ghost cohomology can be shown to be non-trivial
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only under a certain condition, that will now be derived.

Defining,

B = %dzb (2), (3.72)
it is direct to demonstrate through the OPE (3.66) that
{B,Jgrsr (2)} =T (2) — 0J (2). (3.73)

Now, suppose that there is an operator V}, satisfying

Vhg OVhg

T(2)Vig(y) ~ h + : (3.74a)
() hg() z—y)2 (z—y)
Vi,

J(2)Vig(y) ~ g . 3.74b

and that is annihilated by B, i.e.
(B, Viy) = 0. (3.75)

Then it follows that
Vi %
{B, Jprst (2) Vig ()}~ (h+g) —"2 5 +(1—9) — (3.76)
(z—y) (z—y)

showing that Vj, is B-exact for (h+ g) # 0 and constituting an exclusion criterion for
the non-trivial cohomology of B.

The cohomology of B will not be further discussed. Note that even the space where
B acts is not yet understood. For example, one has to be concerned about poles em (X)\)
higher than 11, as there is not a simple regularization scheme that would allow a formal
functional integration over its zero modes [8]. Note also that there is no natural candidate

for an operator that trivializes the B cohomology.

3.5 Non-uniqueness

From equation (3.8), it is clear that the b ghost can be defined only up to BRST-exact
terms. In this sense, it is not unique and it might be interesting to check whether the

basic properties presented above are preserved with a BRST-exact deformed version of b.
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For example, the simplest known version of the pure spinor b ghost,

C )_+2(cam(ca@, 5.77)

bpe = —SON + | ==, G~

(CA (CN)°
differs from (3.5) by a BRST-exact term [9]. It obviously satisfies {Qq, b,.} = T, but it is
non-covariant due to the presence of the constant spinor C,.

Performing the OPE computation of b, with itself, given by

I (Cy,CO) . 1, of
e (2) bue (y) ~ EEEYDYL I1 \(_JH —d@&)}—g(d’y od)+...5, (3.78)

~~ Dm

A

one readily observes that b, is nilpotent? only for (C,,C') = 0, that is, when C, is a
pure spinor.

Consider, now,

b = b+1Q.4]. (3.79)
Due to (3.65), it is clear that

0 (2) ¥ (y) ~b(2)[Q,8W)]+1Q,8(2)]b(y) +[Q, B(2)][Q, 5 (y)] - (3.80)

Note that the left-hand side of this relation can be written as

{Q,8(2)b(y) =b(2)By) +B(2)[Q,BWI}+T(2)By)—B(()T (y).

Requiring 3 to be a primary conformal weight 2 object,

T (2)B(y) — B() T (y) ~ regular, (3.81)

and equation (3.80) is equivalent to

V' (2)V () ~{Q, (B(2)b(y) —b(2) By) +B(2)[Q, B W)} (3.82)

20bserve that A, the Virasoro constraint, and D™, belong to Siegel’s algebra [14]. As a possible pole
in (3.78) should be BRST-closed, it is straightforward to determine the remaining terms appearing inside
the curly brackets of (3.78), up to BRST-exact ones, like {QO, anm% )
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There is no hope that & will be nilpotent for a generic /3, as in the non-covariant example

above, and to understand the general case, it is useful to start with a simpler one.

351 [= (S, AA—%

Consider the particular covariant deformation

200

where S was defined in (2.38). Tt is straightforward to show that

Q.8 = - (uﬁ ) Xa@) ) (S X(‘M)

iV VY
rof\ [, (A99) (r))
+<S, XA) <S’—(XA)2 ) (3.84)
and
B (2)[Q, B (y)] ~ regular. (3.85)

There are no double poles, and possible simple poles are proportional to (X89)2 = 0.

The OPE between [ and b is also simple to obtain. The action of S in b is to transform
7o in Ao, making all the terms in the chain vanish due to the antisymmetric form of H?,
K37 and L*"*. There are simple poles proportional to (X(‘?Q)Z and also quadratic poles
related to the contraction between d, and 96° (and, of course, simple poles coming from
the Taylor expansion), but they always appear together with the constraints (2.32) and
(2.33), implying that

B (2)b(y) ~ regular. (3.86)
Looking back to expression (3.82) and using (3.85) and (3.86), nilpotency of the deformed
b ghost B
00
ba =b+a s S, e s 3.87
(3] (3.87

follows directly, i.e.
ba (2) by (y) ~ regular. (3.88)



41

Here, a is just a numerical constant.
As a final check, the OPE computation of b, with the BRST current results
3 Jq T

Jprst (2) ba (y) ~ - + G - = (3.89)

where

(3.90)

Jo=Jx—aJx+ (1 —a)J. + (8a—2) (Xa/\ o (r) (X89)> :

— — + —
A A\ (A)\)

Observe that

and the right-hand sides of the above equations do not depend on a.
Together, b,, J,, Jersgr and T satisfy a N' = 2 ¢ = 3 critical topological string algebra.
To illustrate how this particular example might be interesting, observe that (3.90)

admits three simplifications, depending on the numerical choices of a:

e the first one is trivial, a = 0, and corresponds to the usual construction, without

deformations;

e the second choice is a = 1, removing J, from the U (1) current. In this case, the

combination (Jy — Jy) is explicit, but does not appear alone.

e and the last one is a = 1. With this particular choice, (3.90) is more conventional

looking, since the unusual non-quadratic-terms vanish:

J1=J\ — Jx—l- J,. (3.91)

A
=] w

Wl

Note that the non-minimal variables become fractionally charged.
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As a final comment before presenting the general discussion, note that ( satisfies the

criteria discussed in section 3.4 as a possible non-trivial object in the b ghost cohomology.

3.5.2 The invariance of the topological string algebra

Now, a more general class of deformations (defined as in (3.79)) will be analysed.
Requiring invariance of the A/ = 2 é = 3 algebra, it will be shown that some constraints

on the deformations must be imposed and S will be restricted to be:
e a commuting object, in order for &’ to have definite statistics;

e an ghost number —2 object with respect to J (then & will have a definite ghost

charge), that is
B

EEE (3.92)

J(2)B(y) ~ =2

e supersymmetric, which avoids the explicit introduction of objects that trivialize the

cohomology. The two known examples are

&1 = %, (3.93a)
_ ()
{2 = 0N — (0) (3.93b)

where {Qo, &1} = {Qo, &} = 1 and C, is any constant spinor?;

e and, as already mentioned, a primary conformal weight 2 field,

B a8
(z—y)2+(z_y>’

T (2) 5 (y) ~2 (3.94)

With this in mind, the impact of the deformation on the topological string algebra

will be analyzed.

3The constructions with constant spinors in (3.77) and (3.93a) are a bit subtle, since they not globally
defined in the pure spinor space. More details can be found in [27].
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Assuming that the BRST current does not change, the first relation that will be

presented is the OPE between Jgrsr and 3, that can be generically written as

[Q1, 8] — v [Qo, f] + [Qo, B]
(z —y)? (z—y)

Jprst (2) B (y) ~ ; (3.95)

where (),, is defined to be
Qn = }IgdZZ"JBRST (2),

not to be confused with the r-charge used in the nilpotency analysis. Now, for example,
Qo will represent the full BRST-charge.

Note that the cubic pole (3.95) vanishes, since there are no ghost number —1 anticom-
muting world-sheet scalars with the above requisites (for example, (XG) is ruled out as it

is not supersymmetric). Then, it follows that

J
(z—y)*

for the BRST charge @) is nilpotent. The quadratic pole does not have to vanish and the
deformed U (1) current is defined to be

Jprst (2) [Qo, B (1) ~ (3.96)

J'=J = {Qo,[Q, A} (3.97)

Therefore, (3.66) is reproduced with J — J" and b — b'.

The next OPE, (3.68), is obviously preserved, since [ is a primary conformal weight
2 field by assumption.

The J" OPE with itself is given generically by

3+ 300
(z—y)2+(2_y)}7

()T () ~ { (3.98)

where the contribution of J (z) J (y) was made explicit. Observe that,

J(2){Qo, [Q1, B(W)]} = {Qo,J (2)[Q1, 8 )]} + Jsrsr (2) [Q1, 8 (y)]
= —{Qo,[@Q1,J (2)] B(y)} — Jprsr (2) [Q1, 5] (y)

z)| B
+1{Qo, [Q1,J (2) B(y)]} .
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As [Q1,J (2)] = —zJprsT (%), the right-hand side can be rewritten as

J(2){Qo, (@1, B} = {Qo,[Q1,J(2) B(y)]}
—2{Qo, Jrst (2) B(y)} +{Q1, Jersr (2) B (y)} - (3.99)

Noting that

for any n, m > 0, equation (3.95) implies that J (2) {Qo, [@1, 8 (v)]} is BRST-exact. Thus,
replacing the definition (3.97) in left hand side of (3.98), ¢ is demonstrated to be a ghost
number 0 BRST-exact world-sheet scalar, which cannot appear due to the hypothesis on
f and shows that the OPE (3.71) is reproduced when J — J'.

Going on, the OPE with Jpgrgr and (J' — J) can be trivially shown to be regular, as

its general form can be cast as

[Q1{Q1.[Qu. A1 |, (@0 {Q1.[Qu. A1}

22 z

Jerst (2) {Q1,[Qo, ]} (0) ~ (3.101)

Through (3.100), this result demonstrates that the deformations preserve (3.69).
The last OPE to be analysed is (3.70), with J — J" and b — b'.

J () (y) = J( )b (y) +{Q1, [Qo, B (2)]} b (y)
+J(2) [Qo, B ()] +{Q1, [Qo, 8 (2)]} [Qo, B (y)] - (3.102)

Using (3.92), (3.95) and {Q1,b(2)} = J (2) + 2T (2), the above equation can be rewritten

as

O v >
[ oa{Ql,[Qo,ﬁ(Zﬂ}ﬁ(y)]
—[Q0,{Q1, 8 (2) b(y)}] (3.103)

In order for the topological algebra to be preserved, equations (3.82) and (3.103)
impose some conditions on 3 and the following OPE’s must hold up to BRST-closed
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poles:
B(2)b(y) ~ regular, (3.104a)
B (2)[Qo, B (y)] ~ regular, (3.104b)
B (2){Qo, Q1,5 (v)]} ~ regular. (3.104c)

If this is the case,

V(2)b (y) ~ regular,
b/
(z-y)

Therefore, the N' = 2 ¢ = 3 critical topological string algebra is invariant under the
self-consistent deformations of the b ghost and the U (1) current, respectively, (3.79) and
(3.97), as long as the requisites on 3 presented before equation (3.95) and in (3.104) are

imposed. The example of subsection 3.5.1 satisfies all of these conditions.

3.6 The c ghost

The final feature to be investigated here about the b ghost is the existence of its conjugate,
namely the ¢ ghost.

In the topological string perspective, the existence of a ¢ ghost in the non-minimal
pure spinor formalism may seem to be meaningless. Indeed, the construction of the b
ghost conjugate is very unusual and, more than that, unrequired. The reason is simple.
First, one does not have a natural —1 conformal weight field to work with. Second, the
amplitudes prescription (including the notion of unintegrated vertex, compared to the
other superstring formalisms) is very well established without it.

Under these conditions, a ¢ ghost like field is undoubtedly strange. It will be defined

as

ez AN (3.105)
(AX) + (r90)
satisfying the relation
b(z)c(y) ~ ! (3.106)
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Note that ¢ must have ghost number +1, since b is a ghost number —1 field.
To demonstrate that (3.105) is the conjugate of (3.5), observe that

(rA) = — [Qo, (AN)] . (3.107)
By a direct computation, one can derive

(O2N) + (ro8)

b(2) (rA) (y) ~ = CEDEE (3.108)
which is verified through
b(2) [Qo, (AN)] () = —{Qu,0(2) (M) ()} +{Qo,b(2)} (AN) (y)
= {0 () (W) )} T (2) () )
oW {Qo, (M6)}
z-y) (-
(OMN) + (r08)
=) (3.109)

where (3.8) was used.
Since the b ghost is nilpotent, (3.65), the right hand side of the above equation does
not have any poles with b, that is

b(2) (OAX +108) (y) ~ regular. (3.110)

Therefore, equation (3.106) is directly reproduced.
Note also that

{Qo, ¢} = coc, (3.111)

the usual BRST relation between the ¢ ghost and the BRST charge, and that c is a
supersymmetric Lorentz scalar.
The analogous construction of the ¢ ghost as the conjugate of (3.87) is
(rA)

=T 0N + (@ 1) (0o, 000) ) (3.112)
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satisfying
1
(z—y)
Although interesting, the strange form of (3.105) may be pathological, in the sense

ba (=) ca () ~ (3.113)

that one now is able to construct an entire new class of composite operators that trivialize

the cohomology, e.g.

Yl B
= = Q=1 (3.114)

It is clear, however, that this construction is highly artificial and cannot emerge naturally

£

in any known process for the pure spinor formalism. From the conformal field theory point
of view, this kind of construction is very unusual. Note that the denominator in (3.105)
contains derivatives of world-sheet scalars, which implies that, wherever they vanish, the
c ghost is singular.

Note also that the existence of a composite field satisfying

trivializes the cohomology of b. In the twisting picture, the BRST current Jgrsr and
the b ghost exchange roles in different twists. Then, it might be useful to understand the
cohomology of the pure spinor b ghost and study the Siegel’s gauge implementation on

the physical vertices (e.g. [29]).



Chapter 4

Conclusion

In this thesis, an extensive study on the properties of the non-minimal pure spinor b
ghost was presented. Being a composite operator, even supposed to be simple properties
are not easy to work out. In doing so, however, the b ghost has been shown to be
structurally rich.

Some of these properties were addressed along the Ph.D. project and can be summa-

rized as follows:

e nilpotency, which is crucial in the topological string interpretation of the non-
minimal pure spinor formalism [11]. The previous demonstration was incomplete.
By presenting an explicit counter example, the proof could be carried out using

cohomology arguments.

e the non-uniqueness of b, as it is defined up to BRST-exact terms. This property has
been mildly explored in the formalism. A set of consistency criteria were established

in order for these ambiguities not to spoil the A" = 2 topological string algebra |12].

e and the introduction the ¢ ghost. The existence of the canonical conjugate of the
pure spinor b ghost is still a mystery. Based on an artificial construction (and, up to
the knowledge of the author, unexplored in 2d CFT’s), a composite ¢ ghost operator

was found, satisfying the expected properties [12].

All these results are potentially interesting in the pure spinor context as we are continuing

to dissect the very basic structures of the non-fundamental b. It is clear though that there

48
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isn’t so far a complete understanding of the role that the pure spinor b ghost plays when
the relation with the other superstring formalisms is concerned. Recent works have made a
huge progression towards this direction [13, 30], but the full picture is not yet transparent.

There are other features about b that may also help to clarify different aspects of the
formalism: the b ghost cohomology (also related to Siegel’s gauge, e.g. [29]); similarity
transformations that could simplify the b structure, possibly related to what is done in
[13]; the role of the newly introduced ¢ ghost and any possible relations with the natural
ghost system that would arise in the usual gauge fixing of the reparametrization symmetry.

The pure spinor formalism also has been consistently shown to provide an adequate
framework for describing the superstrings beyond flat space. Clearly, part of the task is to
compute amplitudes in such backgrounds and the b ghost is a fundamental piece. Recent
works have made some progress on the construction of the b ghost in curved backgrounds
[32, 33, 34], but there is plenty to be understood yet.



Appendix A

Conventions and useful properties

A.1 Conventions

Indices:
m,n,...=0,...,9 space-time vector indices,
a,B,...=1,...,16 space-time spinor indices,
a,b,...=1,...,5 U (5)vector indices.

The indices antisymmetrization is represented by the square brackets, meaning

... L) = — ({1... I, + all antisymmetric permutations) .
n!
For example,
[m . n] 1 m.mn n.m mn
V=S (T =) =

or,

1
A A = 3 (A HPT — X\ HP 4 NP H™ = N H® 4 NTHP — N\ HP)

Concerning OPE’s, the right-hand sides of the equations are always evaluated at the
coordinate of the second entry, that is,
C D

ADBO ~ st
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means C' = C (y) and D = D (y).

A.2 Gamma matrices

The gamma matrices ;5 and 78 satisfy
{7 = () g+ (V) g = 20"

The Fierz decompositions of bispinors are given by

XU = 3570 (™) + g5 Ve V"Y) + 5115 (3) Yiipar (O P)

xath? = 1502 (X¥) = g5 (V) o O7™) + g (), (790

where
707{1/6 - ,yg%a’ ’onrfzp = _’Ygzofzpv ’Yﬁfzpqr = ’ygiézpqr'

The main gamma matrix identity that is being used in this work is

(Y™™ 5 (vmn) 7\ = dvEAT — 20503 — 80597,

which can be deduced using (A.2). The other relevant one is given by

T (Vg Vyx + Yo Vox + Yan7s) = 0.
There are several other identities that can be derived from (A.3):
mmn\ m\ o A a
(Y™™ s Yoy = 2 (V™)™ (Ym)" g + 675705 — (v > A)
(Ymn) 5 Von T = =2 (Ym) gy (P77, + 675,05 — (v ¢ A).,
Yl (YN =12 482 () = g ()]

T = 48 (8207 - 6307

ol

(A.1)

(A.3)

All of them are very helpful in extracting the pure spinor constraints out of product of
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bispinors containing space-time vector indices contracted. For example:

(vanpr) (X'ym”/\) = 2 (X’me) (rYpmA) + 6 (1A) (X%X)
-2 (X’ymr) (X”ypm)\) —6 (X)\) (X’ypr)
= 0.

The last identity that is often used in the calculations is
e, = (1) (10 = 2) 7", (A9

which is particularly useful since it implies that (y"A), (ymA); = 0 for A being a pure

spinor.
A.3 Ordering considerations

This part of the text is intended to present some aspects of the ordering prescription
that is being used in this work.

Classical relations between currents are now corrected with ordering contributions.
For example,

1
Ngln (’Yn)\)a = E cl (fym)\)a

is valid for any pure spinor \. Its quantum version is given by
mn [ P 1 B m mQ
(N 9 )\ ) ’yaﬁlrlnp - 5 (1]7 )\ ) ,}/O‘B e 2 (’7 )\)Oé 9

showing that the some of the 45 Lorentz generators can be written in terms of the others
(in fact, only 10 are independent components).

Another important example is the equation
ANTg + JaON + NI (Y ON)™ = 0,

which establishes a connection between the energy momentum tensor and the other cur-

rents. Implementing the ordering leads to
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1 1
(A, T) + 40°\* = -1 (J,0\%) — 1 (Nyms (7™ ON)Y) .

This relation appears in the construction of the quantum b ghost, as well as

1 o mn o o i N
<Z> Yoty (N7, 297 96) = 80X007 + (N, N, (v706)") + (X, J007)

which is the ordered version of
28 NIZ (APAB) + ANCNI™ (4,,,00)" + 4N 1,007 = 0.

A further application is the Sugawara construction of the energy momentum tensor

for the minimal ghost sector,

1 1
T\ = ~5 (N™ Nyppp) — 3 (J,J)+ 0, (A.10)

which correctly reproduces the related OPE’s.



Appendix B

SO (10) to U (5): solving explicitly the

constraints

B.1 Spinorial projectors

Given an SO (10) chiral spinor A* (antichiral \,), one can write down its U (5) components

-1

through the use of some projectors P& and (Pf)” = P!, where I generically indicates

the U (5) indices, defined in such a way that

A = PONT 4 Lpajeb y paa) A+ = Pra*,

2% ab

Neb = pabpe, Ao = Paa)?,

(B.1)
Ao = PNy + 1PN, + PN, A = PP,
Aab = P34, N = Pra),.

Being invertible,

03 = POPS + 1Py Ps + Poopy,,  POPY =1,

PPt = 6eof — 8¢6¢, PP, = &2,

and PeP! =0 for I # J.
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Using the projectors, one can define the g-matrices,

—~
Q
[S]
~—
Q
ISy
Il

1
(prﬁa + PLP 4 e M PPy ) ,

Hg|H
(\»]

(9 = —= (PP + PuP5?)

-5

1
(ga)aﬁ ﬁ (P;P,Ba + ngaa + Zeabcdepgcpge) )

W = (e )
where €% and €40 are the totally antisymmetric U (5) tensors, with €1234° = ¢153,5 = 1.
It is straightforward to verify the following algebra:
{9% 9035 = (9°)"7 (gb).5 + ()™ (9%),5 = 20505,
{990} = (9" (") 5 + (9")" (9"),5 =0, (B-2)

{ga; gb}aﬂ - (ga)a7 (gb)wg + (gb)oW (ga)w =0.

B.2 SO (10) vectors

Given a SO (10) vector N™, the U (5) decomposition used in this work is:

nt = 1 (NQa_1+iN2a), NG =

2a—1 \T2a
) NZe=t 4 —iN=).

1
5

Sl

Therefore, the scalar product between N™ e P™ in the U (5) representation is given by
N™P,, = n*p, + nep®. In a similar manner, the relation between the g-matrices and the

4™ matrices is:

a

9= (P ), ga= 5 (P i) (B.3)

Note that the Dirac algebra follows from the above definition and equation (B.2).
For a rank-2 antisymmetric tensor N™", the U (5) decomposition is obtained through

the antisymmetric product of two vectors:
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nab = % (N2a71 2b—1 N2a 2b 4 iN2a 2b—1 4 jN2a—1 2b) 7
Nap = % (NQa—l 2b—1 N2a 2b Z'N2a 2b—1 Z'NZa—l 2b) ,
(B.4)
n(g = % (N2a—1 2b—1 + N2a 2b + Z'NQa 2b—1 Z'N?a—l 2b) + %5;}1 Zi:l N20—1 207
i 5 a—12a
n = 5 Za:l N2 12 .
Higher ranks will not be necessary here.
B.3 Minimal formalism
B.3.1 Pure spinors and gauge invariance
The translation of the pure spinor constraint Ay™\ = 0 to the U (5) language is
ab + 1 bey de
AAY =0 and ATN\, = —geabcdek A%, (B.5)

which easily follows from the g-matrices definition and their relation to the gamma ma-
trices (B.3).
The pure spinor action is a curved v system |31]|. If one forgets for a moment the

pure spinor constraint, the action would be

1 _
S\ = 7 d*z (waa)\a) ,
where (A, w) have (holomorphic) conformal weight (0, 1).
Due to the above constraints, an action that describes a pure spinor A* with mani-

fest SO (10) symmetry must be gauge invariant for d.w, = €, (7"A),, where w, is the

o

conjugate of A%, In the U (5) notation,
Owo = {Ea (ga/\)a + €4 (g“/\)a} = W = \/5 {€a>\+ + Eb>\ab} .

Therefore, the most natural gauge choice is w® = 0, which will be used from now on.
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B.3.2 Classical currents

The simplest gauge invariant quantities are the Lorentz current, N™" = —%w’ym”)\, the
ghost number current, J, = —wA, and the energy-momentum tensor, 7) = —wdA. In a
gauge fixed (w® = 0) Wick-rotated description (SO (9,1) to SO (10)), it is straightforward
to see (using (B.4) and (B.3)) that:

nab = _w+)\ab + ,\L+ (Aac)‘bdwcd - %)\ab)\decd) ) Nap = )\+wab7
1 1 1
n = 5 (g)\+w+ + Z)\abwab) 5 ng = )\aC(Jch — gdgAdecd,
T)\ = —w+8/\+ - %wabé)/\ab, J)\ = —)\+LU+ - %)\abwab.

B.3.3 Free fields and quantum currents

From the above construction, the OPE’s within the free field description of the pure

spinors are easily determined:

5a5b—§agh
A (2) s (1) ~ i A (2) e (y) ~ LEAZSEE) (B.6)

At will be parametrized here as e, where u is a chiral scalar field. Its conjugate, w,,

will be : e "0t : and the gauge fixed action,

:27T

1 - 1 =
S)\ - /dZZ <8t8u + iwabﬁ)\“b) s
will be accompanied by a chirality constraint on ¢ and u, whose propagator is given by

t(z)uly) ~=In(z-y). (B.7)

The chosen parametrization and possible ordering contributions introduce some freedom
in the construction of the quantum currents. Being aware of that, the quantum versions

of the gauge invariant objects above are given by:
n® = e [=APOt + N N0y — INPNAw g + BAPOu + COX®] | ngy = €'wap,

"= % <gat + i)\abwab> + Aau? ng = )\acwbc - %6gAdecd7
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T\ = —0tou — %waba)\ab + E0%*u, Jy, = —0t— %)\abwab + Dou.

A, B, C, D and F are constants to be fixed according to the criteria explained below.

In developing the pure spinor formalism, Berkovits [1| argued that the ghost contri-
bution to the Lorentz current would be such that

Nmn (Z) Npq (y) ~ _3(777"‘17710?1 - nmpnnq> N (nmpqu + 77nq]\/'m}o _ nqunp o nnmeq)
(Z - y)2 (z—vy)

In the SO (9,1) — SO (10) — U (5) decomposition, this can be translated to:

6a5c_15a6c
g (=) (y) ~ —3 U0 4

0Anc_§na
) (2) g (y) ~ regular,

ab ‘5‘[1&5107] ‘Sl[iaélc)]” 5[[377'2]] ab cd
n (Z) Ned (y) ~ _6(z—y)2 + 1 (z—y) + 4(z—y)’ n (Z) n (y) ~ reglllara
(5£lbn“]c—%5§n“b)

(z—y) ) Nap (2) Nea (y) ~ regular,

n® (z)ng (y) ~ 2

arn +16%n,
e () (y) ~ 2LBEBI) gL

nab Ng
n ()0 () ~ 2 () () ~ 2

Furthermore, one expects the ghost number current to be a scalar and the Lorentz
current to be a primary field (physical requirements), i.e.

Ia (2) N™ (y) ~ regular, — N™ (2) Ty (y) ~ 255

~ e

The above set of OPE’s is enough to fix the quantum contributions mentioned before.
The actual calculation gives:

e Energy-momentum tensor:

DT @) ~ 4220+ 2 n(2) Ta(y) ~ &2

) ~ e T
_ na,b Ng

nab (Z) T)\ (y) ~ ((2Z€y)23) + (zfy)27 Nab (2) T)\ <y> ~ (27;)27

KT @) ~ 2 L ()T () ~ .



29

e Ghost number current:

s)\ab

D@n? (Y~ (B+C+D+3)=m,  h(E)ny) ~

Ix (2) nap (y) ~ regular.  Jy (2) Jy (y) ~ %, Jx (z) n{ (y) ~ regular,

e Lorentz currents:

e—w)ab nab a
n(z)n®(y) ~(Z+4-5-5) (z72)2 + é(z 5o n(z)ng (y) ~ regular,

sagc—Lgage §AnE—§ena
i () ny ()~ —3CEEB0) (i) b () et () regular,

ny1a+565Ma
o (2) 5 (y) o 2058000 ) () ~ regular,

(A+15)
(z—y)*

(5([1bna]c_ L5en ab)

(z =)

n(2) nap (y) ~ —%ﬁnab, n(z)n(y) ~—

(o5 = apaet)
2 +2

0 (2)n (y) ~ 2 (C +2)

Y

slesl
(z—y)? (z-y)  (2—v)

n® (2)naa (y) ~ 2 (C — 1)

slslo
+2(1-24-B— ()2
(z—y)
By simple comparison, the ordering contributions are found to be A = %, B=2C=-2,

D=3,and F = 1.
It remains to determine the constant C, appearing in (2.23) in terms of the U (5)

variables. A direct computation gives,

a+ mA\
 Gualy) ~ 1 Jag - BT, B3

as first presented in [1]. That is, in gauge fixing w® = 0, one is automatically choosing

Ca — C+.
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B.4 Non minimal formalism

The (minimal) pure spinor formalism was generalized to the so-called non minimal version
|7|, which was built with the addition of Ao and 7, and, respectively, their conjugates, ©®
and s®, subject to the constraints (2.32) and (2.33). In the U (5) decomposition, they can

be rewritten as

- o 1 o
Aa)\ab = 07 )\+)\a - _geadee)\bc)\dea

_ _ _ 1 _
Ny + T A = 0, Ar® ==X\, — L—Leadee)\bcrde.

Ignoring the constraints for a moment, the non minimal action can be cast as

1
o

S d?z (@0‘5/_\& + saéra) ,

where (A, &) and (r,s) have conformal weight (0,1). When taken into account, the

constraints imply a gauge invariance of the action, given by . ,0% = € (Vm/_\)a +

O™ (Ymr)® and 05 = ™ (’ymj\)a. As in the minimal case, it is easy to see that w, = s, = 0

is a natural gauge choice, which will be assumed from now on.

B.4.1 Classical currents

The gauge invariant currents that can be built are given in (2.38). Note that

gmn (T'y_"‘"A) 45 (Z—A) — 4], =0
W\ W\

N (WL”"A> —Js (Q) +3J, (Z—A) 440 =0,
%) ¥ Py

meaning that they are not all independent. The U (5) decomposition follows directly from
(B.1), (B.3) and (B.4):

_ 1 _ 1- -
Ngp = _(D+)\ab + 71ab5+ + = <)\ac/\bd - _/\ab)\cd) ((DCd + z_‘_ SCd>
X, 2 X,

1 - 1< 1 <
+ I (ZAc[aTb]d + 5)\ab7"cd + —irab)\cd) s,
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n® = A\ 0™ —r, 5%, ny = %5,? (Xcdwcd — rcds“l) — (Xacwbc — rbcs“) ,
Je=rsT 4+ rgs®  n=1(GrisT 4 drgs® — S wT — 07,
J5 = =\ ot — %Xaba)ab, Ty = —wtor, — %(D“bﬁj\ab —stor, — %sab(?rab,
WL sy = %6,‘}Xcd50d — Ages™,
s=—1(3XisT+ 1 has™),  sa=—sTAw + i (AacAbd — SAapAca) 5%,
S =Ast+ %S\Gbsab, O =r,wt+ %rabwab.

Here, s is one of the U (5) components of S™, not to be confused with S = \s.

B.4.2 Free fields and quantum currents

In the gauge fixed version, the non minimal fields are just free (/3,v) and (b, c) systems,

satisfyin
o T (o)t Ly ~ab (6205-0302)
A ()W (W) ~ o7 A (2) 0% () ~ =

. 5284 —5a68
ry (2) s (y) ~ ﬁ, red (2) 5° (y) ~ ( (czl—yc)l )

Proceeding as in the minimal case above, it is convenient to parametrize A\, as ev,

where % is a chiral scalar. Its conjugate, @™ can be described as : e 0t :, such that

t(z)uly) ~=In(z—y). (B.9)

Imposing a chirality constraint on % and ¢, the gauge fixed action is just

Sx

1 __ | — _ 1 —
o /d2z <8t8ﬂ + §wab8Aab +sTOr, + isab&rab) . (B.10)

™

The quantum contributions may be determined in the same manner as done for the

minimal fields. The ones subject to ordering effects are:
n=m),+A0u, TNw=Mw), + B \s0u+ CoNg, J5x=(J5), + Do,

Jy= (1), + Edu, &= (®),+ Fe “Or, +Ge “r,ou, Tx=(Tx),+ Ho%,

cl

where the subscript ¢/ means just their naive classical version built with the quantum free
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N™ (2) J, (y) ~regular, N (2)® (y) ~regular, N (2)Js (y) ~ regular,

The result is:
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